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Context: continuous optimization problems in learning
minx f(x) ⇒ minx∈Rn f(x) = 1

2∥F (x)∥2 = 1
2

∑m
i=1 Fi(x)

2

Large scale problems
F : Rn → Rm

• F has a large number of components: large m (ex: classification of
large datasets)

⇒ subsampled methods
Bellavia, S. and Gratton, S. and Riccietti, E.. A Levenberg-Marquardt method for large nonlinear least-
squares problems with noisy functions and gradients. Numer. Math. (2018).

�

• F has a large number of unknowns: large n (ex: deep learning)

⇒
multilevel methods

Common objective
Exploit objective function approximations to reduce computational
cost of the solution
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Outline

• Part I:
◦ high-order optimization methods
◦ their multilevel extension

• Part II:
◦ second order multilevel training methods for artificial neural networks
◦ Application to the solution of PDEs

3/37 Second-order optimization methods Elisa Riccietti



High-order optimization
methods



The optimization methods

We consider large-scale nonlinear unconstrained optimization
problems:

min
x

f(x)

Classical iterative optimization methods:

f(xk + s) ≃ T2,k(xk, s)

with T2,k(xk, s) Taylor model of order 2.
At each iteration we compute a step sk to update the iterate:

min
s

mk(xk, s) = T2,k(xk, s) + r(λk), λk > 0

r(λk) regularization term.
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Classical examples

• Trust region (TR) method:

Complexity: O(ϵ−2)

mk(xk, s) = f(xk) + sT∇f(xk) +
1

2
sT∇2f(xk)s+

λk

2
∥s∥2

• Adaptive Cubic Regularization (ARC) method:

Complexity: O(ϵ−3/2)

mk(xk, s) = f(xk) + sT∇f(xk) +
1

2
sT∇2f(xk)s+

λk

3
∥s∥3

Cubic regularization of Newton method and its global performance,
Y. Nesterov and B. Polyak, 2006

Adaptive cubic regularization methods for unconstrained
optimization, C. Cartis, N. Gould, Ph. Toint, 2009

Worst case complexity
Given ϵ > 0, compute the number of iterations required to achieve an
iterate xk such that ∥∇f(xk)∥ ≤ ϵ : k = O(ϵ?)
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Family of higher-order methods generalizing ARC

Model of order q ⇒ Complexity: O(ϵ−(q+1)/q)

mq,k(xk, s) = Tq,k(xk, s) +
λk

q + 1
∥s∥q+1, λk > 0

Tq,k(xk, s) =

q∑
i=1

1

i!
∇if(xk)(

i times︷ ︸︸ ︷
s, . . . , s)

Unifying framework for global convergence and worst-case complexity
is presented ⇒ ARC q = 2.

Worst-case evaluation complexity for unconstrained nonlinear
optimization using high-order regularized models, E. G. Birgin, J. L.
Gardenghi, J. M. Martı́nez, S. A. Santos and Ph. L. Toint, 2017
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ARq(x0, λ0, ϵ)

1: Given 0 < η1 < 1, set k = 0
2: while ∥∇xf(xk)∥ > ϵ do
3: • Initialization: Define mq,k(xk, s) = Tq,k(xk, s) +

λk
q+1∥s∥

q+1

4: • Model minimization: Find a step sk that sufficiently reduces
the model mq,k

5: • Acceptance of the trial point: Compute

ρk =
f(xk)− f(xk + sk)

Tq,k(xk, 0)− Tq,k(xk, sk)

6: if ρk ≥ η1 then
7: xk+1 = xk + sk, decrease λk,
8: else
9: xk+1 = xk, increase λk.

10: end if
11: k = k + 1
12: end while
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Bottleneck: Subproblem solution

Solving
min
s

Tq,k(xk, s) +
λk

q + 1
∥s∥q+1

represents greatest cost per iteration, which depends on the size of
the problem.

Our proposition: family of multilevel methods using high-order
models

Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On high-order
multilevel optimization strategies. Submitted to SIAM J. Optim. (2019).

�
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Multilevel strategy

Hierarchy of problems

• {f ℓ(xℓ)}, xℓ ∈ Rnℓ

• nℓ−1 < nℓ ⇒ f ℓ−1 is cheaper to optimize compared with f ℓ

• µℓ−1 model for f ℓ−1

xℓk

xℓ−1
0,k := Rℓxℓk

Rℓ

xℓ−1
∗,k

minx µ
ℓ−1(x)

xℓk+1 = xℓk + sℓk

sℓk = P ℓ(xℓ−1
∗,k − xℓ−1

0,k )

The procedure is recursive: more levels can be used
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MARq(x0, λ0, ϵ)

1: Given 0 < η1 < 1, set k = 0
2: while ∥∇xf(xk)∥ > ϵ do
3: • Initialization: Define the model mq,k(xk, s) = Tq,k(xk, s) +

λk
q+1

∥s∥q+1

and the lower level model
4: • Model minimization: Choose wether to use Taylor model or to recursively

minimize the lower level model to get sk
5: • Acceptance of the trial point: Compute

ρk =
f(xk)− f(xk + sk)

Tq,k(xk, 0)− Tq,k(xk, sk)

6: if ρk ≥ η1 then
7: xk+1 = xk + sk, decrease λk,
8: else
9: xk+1 = xk, increase λk.

10: end if
11: k = k + 1
12: end while
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Lower level model

When to use the lower level model?
• Choose lower level model µℓ−1 if

◦ if ∥∇µℓ−1
q,k (xℓ−1

0,k )∥ = ∥Rℓ∇f ℓ(xℓ
k)∥ ≥ κ∥∇f ℓ(xℓ

k)∥, κ > 0

◦ if ∥∇µℓ−1
q,k (xℓ−1

0,k )∥ > ϵℓ

• Minimize regularized Taylor model otherwise.

How to define the lower level model?
Modify f ℓ−1 to ensure coherence among levels
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Coherence between levels, q = 1

Let xℓ−1
0,k = Rxℓk. Model with first order correction:

µℓ−1
1,k (xℓ−1

0,k , sℓ−1) = f ℓ−1(xℓ−1
0,k +sℓ−1)+(Rℓ∇f ℓ(xlk)−∇f ℓ−1(xℓ−1

k ))T sℓ−1

This ensures that

∇µℓ−1
1,k (xℓ−1

0,k ) = Rℓ∇f ℓ(xℓk)

→ first-order behaviours of f ℓ and µℓ−1 are coherent in a
neighbourhood of the current approximation. If sℓ = P ℓsℓ−1

∇f ℓ(xℓk)
T sℓ = ∇f ℓ(xℓk)

TP ℓsℓ−1 = ∇µℓ−1
1,k (xℓ−1

0,k )T sℓ−1.
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Coherence between levels, q = 2

Let xℓ−1
0,k = Rxℓk. We define µℓ−1

2,k as

µℓ−1
2,k (xℓ−1

0,k , sℓ−1) = f ℓ−1(xℓ−1
0,k + sℓ−1)

+ (Rℓ∇f ℓ(xlk)−∇f ℓ−1(xℓ−1
k ))T sℓ−1

+
1

2
(sℓ−1)T ((Rℓ)T∇2f ℓ(xlk)P

ℓ −∇2f ℓ−1(xℓ−1
k ))sℓ−1

→ We can generalize this up to order q to have the behaviours of f ℓ

and µℓ−1
q,k to be coherent up to order q in a neighbourhood of the

current approximation.
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Coherence up to order q

We define

µℓ−1
q,k (xℓ−1

0,k , sℓ−1) =f ℓ−1(xℓ−1
0,k + sℓ−1)+

q∑
i=1

1

i!
[R(∇if ℓ(xk))−∇if ℓ−1(xℓ−1

0,k )] (sℓ−1, . . . , sℓ−1)︸ ︷︷ ︸
i times

,

where R(∇if ℓ(xℓk)) is such that for all i = 1, . . . , q and
sℓ−1
1 , . . . , sℓ−1

i ∈ Rnl−1

[R(∇if ℓ(xℓk))](s
ℓ−1
1 , . . . , sℓ−1

i ) := ∇if ℓ(xℓk, P
ℓsℓ−1

1 , . . . , P ℓsℓ−1
i ),

where ∇if ℓ denotes the i-th order tensor of f ℓ.
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Theoretical results: Assumptions

Assumption 1
Let us assume that for all ℓ the q-th derivative tensors of f ℓ are
Lipschitz continuous.

Assumption 2
There exist strictly positive scalars κEB, ρ > 0 such that

dist(x,X ) ≤ κEB∥∇xf(x)∥, ∀x ∈ N (X , ρ),

where X is the set of second-order critical points of f , dist(x,X )
denotes the distance of x to X and N (X , ρ) = {x | dist(x,X ) ≤ ρ}.

On the Quadratic Convergence of the Cubic Regularization Method
under a Local Error Bound Condition, M.C. Yue, Z. Zhou, and A.M.C.
So, 2018
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Theoretical results: global convergence

Theorem
Let Assumption 1 hold. Then, the sequence of iterates generated by
the algorithm converges globally to a first-order stationary point:

lim
k→∞

∥∇f(xk)∥ = 0

E. G. Birgin, J. L. Gardenghi, J. M. Martı́nez, S. A. Santos and
Ph. L. Toint, 2017: generalized to multilevel framework

S. Gratton, A. Sartenaer and Ph. L. Toint, 2008: extended to
higher-order models and simplified

17/37 Second-order optimization methods Elisa Riccietti



Theoretical results: global convergence

Theorem
Let Assumption 1 hold. Then, the sequence of iterates generated by
the algorithm converges globally to a first-order stationary point:

lim
k→∞

∥∇f(xk)∥ = 0

E. G. Birgin, J. L. Gardenghi, J. M. Martı́nez, S. A. Santos and
Ph. L. Toint, 2017: generalized to multilevel framework

S. Gratton, A. Sartenaer and Ph. L. Toint, 2008: extended to
higher-order models and simplified

17/37 Second-order optimization methods Elisa Riccietti



Theoretical results: complexity

Theorem
Let Assumption 1 hold. Let flow be a lower bound on f . Then, the
method requires at most

K3
(f(xk1)− flow)

ϵ
q+1
q

(
1 +

|log γ1|
log γ3

)
+

1

log γ3
log
(
λmax
λ0

)
iterations to achieve an iterate xk such that ∥∇f(xk)∥ ≤ ϵ, where

K3 :=
q + 1

η1λmin
L1/q.

E. G. Birgin, J. L. Gardenghi, J. M. Martı́nez, S. A. Santos and
Ph. L. Toint, 2017: k = O(ϵ

− q+1
q ) Complexity of standard method

is maintained
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Theoretical result: local convergence

Theorem
Let Assumptions 1 and 2 hold. Assume that L(f(xk)) is bounded for
some k ≥ 0 and that it exists an accumulation point x∗ such that
x∗ ∈ X . Then, the whole sequence {xk} converges to x∗ and it exist
strictly positive constants c ∈ R and k̄ ∈ N such that:

∥xk+1 − x∗∥
∥xk − x∗∥q

≤ c, ∀k ≥ k̄.

E. G. Birgin, J. L. Gardenghi, J. M. Martı́nez, S. A. Santos and
Ph. L. Toint, 2017: local convergence not proved

S. Gratton, A. Sartenaer and Ph. L. Toint, 2008: local
convergence not proved

M.C. Yue, Z. Zhou, and A.M.C. So, 2018: generalized to q > 2
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Numerical results on the solution of PDEs

{
−∆u(z) + eu(z) = g(z) in Ω ⊂ Rd,

u(z) = 0 on ∂Ω,

The following nonlinear minimization problem is then solved:

min
u∈Rnd

1

2
uTAu+ ∥eu/2∥2 − gTu,

which is equivalent to the system Au+ eu = g.

• Coarse approximations: coarser discretization of the problem (2d
times lower dimension).
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4 levels methods of order q = 2, d = 2

min
u∈Rn2

1

2
uTAu+ ∥eu/2∥2 − gTu,

d = 2, q = 2 n = 256 n = 512

AR2 MAR2 AR2 MAR2
ū1 itT /itf 11/11 7/2 23/23 15/4

save 2.2 4.1
ū2 itT /itf 27/27 13/4 56/56 22/6

save 3.9 6.1

ūi: strating point
itT /itf : total iterations/fine iterations
save: save in CPU time
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4 levels methods of order q = 3, d = 1

min
u∈Rn

1

2
uTAu+ ∥eu/2∥2 − gTu,

d = 1, q = 3 n = 1024 n = 4096

AR3 MAR3 AR3 MAR3
ū1 itT /itf 7/7 9/2 18/18 15/2

save 2.5 4.3
ū2 itT /itf 23/23 14/1 34/34 20/5

save 4.1 4.4

ūi: strating point
itT /itf : total iterations/fine iterations
save: save in CPU time
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Multilevel training methods



How to exploit multilevel method for training of ANNs?

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+

dw2

w 1

w3

w
4

w
5

v2

v
1

v3

v4

v 5

R1 ⇓ P1 ⇑

Iz → σ

b3

σ

b4

σ

b1

+

d

w 1

w3

w
4

v
1

v3

v4

R2 ⇓ P2 ⇑

Iz → σ

b3

σ

b1

+

d
w3

w 1

v3

v
1

Large-scale problem

• How to build the hierarchy of
problems? The variables to be
optimized are the network’s
weights:
NO evident geometrical
structure to exploit!

• The network possesses a purely
algebraic structure: can we
exploit it?
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How do we select the hierarchy of variables?

Algebraic multigrid (AMG): C/F splitting

Ruge and Stueben C/F splitting for Ax = b

• Two variables i, j are said to be coupled if ai,j ̸= 0.
• We say that a variable i is strongly coupled to another variable j, if
−ai,j ≥ ϵmaxai,k<0|ai,k| for a fixed 0 < ϵ < 1, usually ϵ = 0.25.

Prolongation-Restriction operators
P = [I;∆], R = P T .
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Which matrix should we use?

Assume to use a second-order model (Bk ∼ ∇2f(xk)):

mk(xk, s) = f(xk) + sT∇f(xk) +
1

2
sTBks+

λk

3
∥s∥3

At each iteration we have to solve a linear system of the form:

(Bk + λ̃kI)s = −∇f(xk), λ̃k > 0.

As in AMG for linear systems, we use information contained in matrix
Bk.
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Which matrix should we use?

Remark
Variables are
coupled!
{wi, bi, vi}

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+

dw2

w 1

w
4

w
5

v2

v3

v4

v 5

We do not use the full matrix Bk and we define A as:

Bk =

fv,v .. ..
.. fw,w ..
.. .. fb,b

→ A =
fv,v

∥fv,v∥∞
+

fw,w

∥fw,w∥∞
+

fb,b
∥fb,b∥∞

We define the coarse/fine splitting based on the auxiliary matrix A.
Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On a multilevel Levenberg-Marquardt
method for the training of artificial neural networks and its application to the solution of partial differential
equations. Optim. Methods Softw. (2020).

�
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Application: solution of PDEs with ANNs

Overcoming the curse of dimensionality in the numerical approximation of
high-dimensional semilinear parabolic partial differential equations (2020).

The Deep Ritz method: A deep learning-based numerical algorithm for
solving variational problems (2018)

A proof that deep artificial neural networks overcome the curse of
dimensionality in the numerical approximation of Kolmogorov partial differential
equations with constant diffusion and nonlinear drift coefficients (2018).

Analysis of the generalization error: Empirical risk minimization over deep
artificial neural networks overcomes the curse of dimensionality in the numerical
approximation of Black-Scholes partial differential equations (2019).

Solving stochastic differential equations and Kolmogorov equations by means
of deep learning (2018).

Deep Neural Networks motivated by Partial Differential Equations (2019).
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Why try to solve PDEs with ANNs?

Compared with classical approaches (FDM, FEM), approaches using
ANNs present the following advantages.

Advantages of ANNs over classical approaches
• Natural approach for nonlinear equations
• Provides analytical expression of the approximate solution which is

continuously differentiable
• The solution is meshless, well suited for problems with complex

geometries
• The training is highly parallelizable on GPU
• Allows to alleviate the effect of the curse of dimensionality (highly

effective for more than 4 dimensions)
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Our approach: express the solution as a neural network

1D case: D(z, u(z)) = g(z), z ∈ (a, b) u(a) = A, u(b) = B

Iz → σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

+ → û(w, z) ∼ u(z)

w vector of
weights and bi-
ases

Input
layer

Hidden
layer

Hidden
layer

Output
layer

Training problem: find the network weights w by minimizing

min
w

1

2T

T∑
t=1

(
D(z, û(w, zt))− g(zt)︸ ︷︷ ︸

Equation residual

)2
+ λp

(
(û(w, a)−A)2 + (û(w, b)−B)2︸ ︷︷ ︸

Boundary conditions

)
Least-squares problem → multilevel Levenberg-Marquardt method
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Classical Levenberg-Marquardt method

min
x

f(x) = ∥F (x)∥2

• Given xk ∈ Rn and λk ≥ 0, find the step sk ∈ Rn minimizing

mLM
k (xk, s) =

1

2
∥F (xk) + J(xk)s∥2 +

1

2
λk∥s∥2

= f(xk) +∇f(xk)
T s+

1

2
sTBks+

1

2
λk∥s∥2

Bk = J(xk)
TJ(xk) ∼ ∇2f(xk)

• Compute
ρk(sk) =

f(xk)− f(xk + sk)

mLM
k (xk, 0)−mLM

k (xk, sk)
.

• Step acceptance. Given η ∈ (0, 1):

◦ If ρk < η reject the step: xk+1 = xk and increase λk.
◦ If ρk ≥ η accept the step: xk+1 = xk + sk.
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Solution of PDEs: Numerical example

Poisson’s equation
(2D, n = 4096)

Method ADAM 1 level

2 levels

Iterations 10000 200

200

0 500 1000 1500 2000
Temps (s)

10 3

10 2

10 1

100

101
Er

re
ur

ADAM
LM

Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On a multilevel Levenberg-Marquardt
method for the training of artificial neural networks and its application to the solution of partial differential
equations. Optim. Methods Softw. (2020).
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Numerical results on difficult domains (n = 4096)

Left: −∆u+ ν2u = g1, u(x, y) = sin(ν(x+ y)) ν = 3
Right: −∆u+ νu2 = g1, u(x, y) = (x2+ y2)+ sin(ν(x2+ y2)), ν = 1

2

iter RMSE savings iter RMSE savings
min avg max min avg max

1 level 395 10−4 1408 10−3

2 levels 110 10−4 1.3 5.6 10.0 1301 10−3 1.2 1.9 2.4
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Conclusion



Conclusion

• Theoretical contribution: We have presented a class of multilevel
high-order methods for optimization and proved their global and
local convergence and complexity.

• Practical contribution: We have got further insight on the methods
proposing a AMG strategy to build coarse representations of the
problem to use some methods in the family for the training of
artificial neural networks.
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Perspectives

• Hessian-free variant. Make it a competitive training method: the
method needs to compute and store the Hessian matrix (for step
computation and to build transfer operators): too expensive for
large-scale problems.
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Thank you for your attention!

Slides and papers available here
bit.ly/elisaIRIT

Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On high-order
multilevel optimization strategies. Submitted to SIAM J. Optim. (2019).

�

Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On a multilevel
Levenberg-Marquardt method for the training of artificial neural networks and
its application to the solution of partial differential equations. Optim. Methods
Softw. (2020).
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Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On the iterative
solution of the extended normal equations. Submitted to SIAM J. Matrix Anal.
Appl. (2019).
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Tensor of order 3

Definition
Let T ∈ Rn3 , and u, v, w ∈ Rn. Then T (u, v, w) ∈ R, T (v, w) ∈ Rn

T (u, v, w) =
n∑

i=1

n∑
j=1

n∑
k=1

T (i, j, k)u(i)v(j)w(k),

T (v, w)(i) =

n∑
j=1

n∑
k=1

T (i, j, k)v(j)w(k), i = 1, . . . , n.
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Tensor of order i

Definition
Let i ∈ N and T ∈ Rni , and u ∈ Rn. Then T (u, . . . , u︸ ︷︷ ︸

i times

) ∈ R,

T (u, . . . , u︸ ︷︷ ︸
i−1 times

) ∈ Rn and

T (u, . . . , u︸ ︷︷ ︸
i times

) =

n∑
j1=1

· · ·
n∑

ji=1

T (j1, . . . , ji)u(j1) . . . u(ji),

T (u, . . . , u︸ ︷︷ ︸
i−1 times

)(j1) =

n∑
j2=1

· · ·
n∑

ji=1

T (j1, . . . , ji)u(j2), . . . u(ji), j1 = 1, . . . , n.
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Stopping criterion for inner iterations

mq,k(xk, sk;λk) < mq,k(xk, 0;λk), ∥∇smq,k(xk, sk;λk)∥ ≤ θ∥sk∥q,
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Hessian approximation in least squares

The Hessian of f is given by

∇2f(x) = J(x)TJ(x) + S(x) = J(x)TJ(x) +

m∑
i=1

Fi(x)∇2Fi(x).

Notice that term S(x) contains the second derivatives ∇2Fi of R. Its
norm depends both on the nonlinear residual F (x) and on the
magnitude of such derivatives.
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Prolongation operator for PDE problem without network

Pl: standard interpolation operator for d = 1 and on the nine-point

interpolation scheme defined by the stencil

1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

 for d = 2,

Rl =
1
2d
P T
l full weighting operators
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Prolongation operator for PDE problem with network

xhi = (PxH)i =

{
xHi if i ∈ C,∑

k∈Pi
δi,kx

H
k if i ∈ F,

with

δi,k =

{
−αiai,k/ai,i if k ∈ P−

i ,

−βiai,k/ai,i if k ∈ P+
i ,

αi =

∑
j∈Ni

a−i,j∑
k∈Pi

a−i,k
, βi =

∑
j∈Ni

a+i,j∑
k∈Pi

a+i,k
,

where a+i,j = max{ai,j , 0}, a−i,j = min{ai,j , 0}, Ni is the set of
variables connected to i (i.e. all j such that ai,j ̸= 0), Pi the set of
coarse variables strongly connected to i, which is partitioned in P−

i

(negative couplings) and P+
i (positive couplings).
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The multilevel LM method fits in the family

• If q = 1, the regularized model is defined as

mk(xk, s) = f(xk) +∇f(xk)
T s+

λk

2
∥s∥2,

• Least-squares problems:

mLM
k (xk, s) =

1

2
∥F (xk) + J(xk)s∥2 +

1

2
λk∥s∥2

=
1

2
∥F (xk)∥2 + sTJ(xk)

TF (xk) +
1

2
sTBks+

1

2
λk∥s∥2

= f(xk) +∇f(xk)
T s+

1

2
sTBks+

1

2
λk∥s∥2

• Let M = Bk
λk

+ I ⇒ λk
2 ∥s∥2M = 1

2s
TBks+

λk
2 ∥s∥2∗

• mLM
k (xk, s) = f(xk) +∇f(xk)

T s+ λk
2 ∥s∥2M .

∗For a positive definite matrix M ∈ Rn×n and x ∈ Rn, ∥x∥M = xTMx.



Model minimization at level ℓ

• Step computation in classical methods:
min
s

mk(xk, s)

which is equivalent to the solution of the normal equations:
(J(xk)

TJ(xk) + λkI)s = −J(xk)
TF (xk) ⇒ CGLS

• Multilevel method:
min
s

mℓ−1
k (xk, s) + cT s,

cT s ensures coherence among levels.
This model leads to extended normal equations:

(J(xk)
TJ(xk) + λkI)s = −J(xk)

TF (xk) + c ⇒ ?
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Stable solution of extended normal equations

• CGLS cannot be used, due to the presence of term +c

• CG is not stable on normal equations ATAx = AT b

CG

rk = AT (b−Axk).

CGLS

rk =b−Axk,

sk =AT rk.
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Stable solution of extended normal equations

⇒ We propose (CGLSI), a modification of CGLS, suitable for our
problem and more stable than CG

CGLS

rk =b−Axk,

sk =AT rk.

CGLSI

rk =b−Axk,

sk =AT rk + c.
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Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On the iterative
solution of the extended normal equations. Submitted to SIAM J. Matrix Anal.
Appl. (2019).
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