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Abstract This paper deals with the optimization of energy resources management
of industrial districts, with the aim of minimizing the customer energy bill. Taking
into account real time information on energy needs and production and on energy
market prices, a cost function is built that should be minimized. Here we focus on
the solution of the arising nonlinear constrained optimization problem. We describe
the two solvers that have been employed for its solution: a Sequential Linear Pro-
gramming and a Particle Swarm Optimization.

Introduction

This paper is realized in collaboration with the research centre Enel Ingegneria e
Ricerca in Pisa, Italy and it is related to an Enel project devoted to the realization of
a software tool for the numerical solution of optimization problems arising in ener-
getic districts, [4]. An energetic district is a complex that comprises machines able
to generate, absorb or accumulate energy and that is interlaced with the electrical
grid with which it can exchange energy. Different machines can be part of a district:
generators (electrical, photovoltaic), accumulators, electrical or thermal loads.

Enel research centre aim is to develop a software tool able to find the best asset
of the machines in a district, i.e. the one that guarantees the lowest expenses for
the district management. The software tool builds the district model, an objective

Elisa Riccietti
Dipartimento di Matematica e Informatica “Ulisse Dini”, Università di Firenze, viale G.B. Mor-
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function that measures the costs related to the district management, and functions
modelling the physical constraints on the machines. A nonlinear minimization prob-
lem with nonlinear constraints arises from this modelling. In this paper we focus on
the solution of this optimization problem.

In finding the optimal solution a compromise between two needs should be
found. On one hand one aims at finding the machine asset corresponding to the
lowest possible value of the objective function. On the other hand the optimization
process should be as quick as possible, as it needs to be performed several times in a
day, when the needs of the district or the weather conditions affecting the renewable
resources change.

For this reason two different solvers were employed and compared: a Sequential
Linear Programming (SLP) and a Particle Swarm Optimization (PSO).

SLP is an iterative solver that generates a sequence of linear approximations of
the original nonlinear problem. It is supported by theoretical results and it is ensured
to converge to a local minimum. With this method it is not guaranteed to find the
global minimum, actually the generated sequence usually converges to the local
minimum nearer to the starting guess.

PSO is an heuristic research algorithm designed to find a global minimum of
the problem. It is a derivative free algorithm that requires just function values. For
this reason it is characterized by a slower convergence than SLP that is a first order
method.

PSO solver is then expected to find a better solution than SLP, but the optimiza-
tion process is expected to be longer. To investigate on this, the solvers were tested
on many different realistic examples of energetic districts, and on a real energetic
district provided by Enel.

1 Optimization Problem

The variables that need to be optimized are the physical parameters of the machine
that affect their functioning (such as the electrical power produced by generators,
that stored by batteries, the thermal power provided by boilers). The aim of the opti-
mization process is to build a plan of the machines parameters for the following day
to minimize the expenses related to the district management. The objective function
f represents the overall daily cost of energy obtained as a result of the difference be-
tween purchase costs (fuel and electric energy) and incomings (incentives and sales
revenues).

If n is the problem dimension, f : Rn→R is a nonlinear function. The optimiza-
tion problems is a constrained problem, with both nonlinear constraints and bound
constraints. The first ones represent physical constraints on the machines and are
modelled by a nonlinear function g : Rn → Rp. Bound constraints arise from the
fact that the variables are normalized in the interval [0,1] or [−1,1].

The resulting optimization problem is the following nonlinear constrained prob-
lem:
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min
x

f (x) (1)

xmin ≤ x≤ xmax, (2)
g(x)≤ 0, (3)

where x ∈ Rn is the parameters vector, xmin ∈ Rn and xmax ∈ Rn denote the related
bound constraints.

2 Sequential Linear Programming (SLP)

Sequential Linear Programming (SLP) is an iterative method to find local minima
of nonlinear constrained optimization problems [1], by solving a sequence of linear
programming problems. In our approach first a penalty function is built treating the
constraints as a penalty term, i.e. a new term is added to function f that is positive if
the constraints are not satisfied, and is zero otherwise. The resulting function is used
as the new objective function. Following [1, 5] the l1 penalty function was chosen:

Φ(x,ν) = f (x)+ν

p

∑
i=1

max(0,−gi(x)),

where ν > 0 is the penalty parameter. Then, at each iteration k, linear models of
function f and of the constraints are computed, approximating them in a neighbour-
hood of the current solution approximation xk with first order Taylor series:

mk(d) = f (xk)+∇ f (xk)
T d, gi(xk)+∇gi(xk)

T d i = 1, . . . , p,

where d = x−xk is the step. To obtain a globally convergent method, SLP approach
is usually coupled with a trust-region strategy, [2]. Then, a new constraint is added
to the bound constraints, that consists of a bound on the step-length:

‖d‖∞ ≤ ∆k,

where ∆k is called the trust-region radius. The linearized functions replace the non-
linear ones in the penalty function and the following linear minimization problem is
solved:

min
d

f (xk)+∇ f (xk)
T d +ν

p

∑
i=1

max(0,−gi(xk)−∇gi(xk)
T d) (4)

max((xmin− xk) j,−∆k)≤ d j ≤min((xmax− xk) j,∆k), j = 1, . . . ,n. (5)

At each iteration the computed solution dk is used as a step to define the new
solution approximation: xk+1 = xk + dk and the trust-region radius is updated. The
step is accepted if a sufficient decrease in the objective function f is obtained, and in
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this case the trust-region radius is possibly enlarged, otherwise the step is rejected,
the trust-region radius is reduced and the subproblem is solved again.

Following [5], for this approach we proved the following important theoretical
results:

1. global convergence of sequence {xk} generated by the algorithm to a KKT point
of Φ(x,ν) (if ν is big enough a minimizer of Φ is a solution of (1)-(3)),

2. convergence of the Lagrange multipliers estimates of problem (4)-(5) to the mul-
tipliers of problem (1)-(3).

This second theoretical results allows us to implement a reliable stopping crite-
rion, as it provides a measure of the distance of the solution approximation found to
a KKT point of the original system.

3 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is a stochastic evolutionary method designed
to converge to global minimum, [3]. It is inspired to the behaviour of bird swarms.
Following the natural metaphor, PSO evolves a population of individuals, referred
to as particles, within the search space, that behave according to simple rules but
interact to produce a collective behaviour to pursuit a common aim, in this case the
localization of a global minimum. The swarm is composed of s particles, each of
them represents a solution of the optimization problem and it is represented by a
vector x ∈ Rn. To each particle it is associated a velocity vector v too. The method
is based on an iterative algorithm and at each step k vectors x and v are updated:

vi
k+1 = wvi

k + c1r1(pi
best,k− xi

k)+ c2r2(pg
best,k− xi

k),

xi
k+1 = xi

k + vi
k+1,

where xi
k and vi

k are the position and velocity vector of the i-th particle, i = 1, . . . ,s,
at the k-th iteration, pi

best,k and pg
best,k are respectively the best position reached by

the i-th particle so far and the best position reached by the whole swarm (the best
position is the one that corresponds to the lowest value of the objective function),
c1, c2 and w are positive weights, r1 and r2 are random variables with uniform
distribution in [0,1].

The process is stopped as soon as a maximum number of iterations is reached or
when the objective function is not sufficiently decreased within a fixed number of
iterations. The solution of the problem is pg

best,k∗ where k∗ is the last iteration index.
Bound constraints are handled bringing back on the nearest boundary a particle x

that has left the search space and changing the sign of the particle velocity, to avoid
a new violation on the next iteration.

Originally PSO methods were developed to deal with problems with just bound
constraints, and later they were employed to solve also constrained problems [6].
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Usually a penalty function approach is used. We employed a quadratic penalty func-
tion:

Φ(x,τk) = f (x)+
1

2τk

p

∑
i=1

gi(x)2,

with τk penalty parameter that is decreased at each iteration to penalize with increas-
ing severity constraints violations.

The main advantage of PSO methods is that they do not require neither regularity
assumptions on the objective function nor to compute the first derivatives and are so
suitable when few information on the objective function are available. Clearly the
fact that few information on f are used, leads to a really slow method that requires
many iterations to converge. Furthermore these methods are heuristic and there are
not theoretical results that ensure convergence of the method.

4 Numerical Tests

The software tool equipped with the two solvers was tested on 13 different models
of synthetic energetic districts and on an existing district in Pisa, provided by Enel.

The numerical experimentation has been carried out on a PC equipped with a
AMD Phenom(tm)II X4 965 Processor 3.40 GHz, 8.00 GB RAM, Windows 7 Pro-
fessional 64 bit and using Matlab R2012a.

Results shown in the following tables are the average of those obtained over 10
runs, varying the starting point for SLP solver. In the headings of the following
tables f and k are the arithmetic mean of the function values and the number of
iterations, σf, σk are the standard deviations, min f, max f are the minimum and
maximum function values obtained, time/it(s) is the time for an iteration in seconds,
time(m) is the total time in minutes.

As an example we report in Table 1 the detailed results of the optimization pro-
cess provided by the two algorithms in one of the 13 tests. The model of energetic
district includes an accumulator, a boiler, a CHP, a wind generator, a photovoltaic
generator, 5 loads. The optimization problem has 398 variables subject to 213 pro-
cess constraints and 796 bound constraints.

Table 1 Comparison of solvers on an example of energetic district.

Solver f σf max f min f k σk time/it(s) time(m)

PSO 27.2 0.2 27.6 26.9 1004 881 0.5 9
SLP 26.9 0.3 27.5 26.6 51 12 1.4 1.2

From this test it is possible to deduce the following remarks.
The convergence rate of SLP algorithm is really higher than that of PSO, as it

employs first order informations on f . PSO method requires a very high number of
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iterations to find the minimum and so the computational time is higher. As expected
SLP is more suitable for real time optimization.

The capability of PSO method to find a global minimum does not clearly emerge
in these tests, actually in many tests the solution found by SLP is better, as it is
highlighted in Fig. 1 (left), in which we report for all the tests the comparison of the
objective function values obtained by the two solvers at the end of the optimization
process. On the other hand, in unconstrained tests on strongly nonlinear problems
taken from the literature, PSO performance results to be much higher than SLP
one, as it manages to find the global minimum, while the sequence generated by
SLP approaches the local minimum nearer to the starting guess. We can notice that
the energetic district test cases are characterized by a high number of nonlinear
constraints. On one hand we can think that the PSO constraints handling strategy
could be improved, on the other hand the standard deviation on function values is
really low, so it is possible that the problem does not have many local minima, and
the use of PSO algorithm is not worth it.

Fig. 1 Comparison of objective function values obtained by SLP and PSO on the 13 tests cases
(left), comparison of actual ( f0) and optimized management provided by the two solvers, on the
test case of Pisa district (right).

On the other hand in the test performed on the real example of energetic district,
that is much less constrained, PSO gains better performance than SLP.

This is a real district in Pisa that comprises: a CHP characterized by rated power
25 kWe and rated thermal power 75 kWt, a gas boiler with rated thermal power 35
kWt, a tank for the storage of hot water with capacity 9400 kj/ ◦C, a photovoltaic
generator with rated power 14 kWe, a wind farm with rated power 3 kWe, 2 loads.
The arising optimization problem has 288 variables, 576 bound constraints and 1
physical constraint.

For this district we have at our disposal data referring to the actual management
of local resources, so that we can evaluate savings arising from the optimized man-
agement provided by our procedures, as it is depicted in Fig. 1 (right) . In fact in
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Table 2 Results of the optimization of the energetic district of Pisa, f0 is the cost function for the
actual management (without optimization by our procedures).

Solver f0 f σf max f min f k σk time/it(s) time(m)

PSO 89.3 73.5 0.08 73.6 73.4 377 34 0.4 2.7
SLP 89.3 74.9 2.8 80.6 73.4 23 9 2.6 1

Table 2, that shows the results of the optimization of Pisa district provided by the
two methods, we report also the value of the unoptimized objective function f0, that
is computed using those data and represents the cost of the actual management.

In this case PSO algorithm performs better than SLP algorithm, providing a lower
value of the objective function and also a really smaller standard deviation. In this
case there is just one mild nonlinear constraint so the constraint handling strategy
does not have a strong impact on the search process and the capability of the evolu-
tionary algorithm to search for the global minimum appears as in an unconstrained
test case. We can also notice that in this case the execution time is reasonable also
for PSO algorithm.

Comparing the unoptimized management of local resources to the optimized one,
we can see that the employment of the software tool guarantees considerable sav-
ings in the energy bill, about 18% daily saving.
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