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The context

Consider a large-scale data-fitting problem:

min
x∈Rn

m∑
i=1

fi (x) (1)

for f : Rn → R and n� m.
In this context the limiting factor is thus the number of samples
rather than the dimension of the variables space.

I Objective: Devise an extension of the multilevel schemes we
have studied for the hierarchies of variables to this context
and test it (use a hierarchy on the samples set).
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Classical two-level algorithm: k-th iteration

Given xhk
1. Fine iteration: iteration on f h.

1.1 Compute a fine gradient step: shk = −∇f h(xhk ).
1.2 Do a line search on f h to choose αk

1.3 Set xhk+1 = xhk + αks
h
k .

2. Coarse iteration:

2.1 Initialisation : xH0 = IHh xhk
2.2 Compute first order coherence vH = IHh ∇f h(xhk )−∇f H(xHk )
2.3 Starting from xH0 , apply p steps of a minimization algorithm

with line-search on the problem

min
xH

f H(xH) + (vH)T xH

getting xHp . Set sHp,k = xHp − xH0 .

2.4 Consider the step I hHs
H
p,k and choose αk via a line search on f h

2.5 Fine level update: xhk+1 = xhk + αk I
h
Hs

H
p,k
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Classical multilevel algorithm with more levels

1. Ingredient: minimizer for a fixed level.
Consider OPT (x0, f , v , p) a function that, starting from x0,
applies p iterations of a convergent algorithm to

min
x

f (x) + vT x

2. Given xh0 , set vh = 0. For k = 0, . . . , set

xhk+1 = ML(f h, vh, xhk )

where ML(f h, vh, xhk ) is defined in the following slide.
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Classical multilevel algorithm with more levels

1. If coarsest level xhk+1 = OPT (xhk , f
h, vh, p2)

2. Fine iterations: x̄h = OPT (xhk , f
h, vh, p1)

3. Coarse iteration (recursion):

3.1 Initialisation : x̄H = IHh x̄h

3.2 Compute first order coherence
v̄H = IHh vh + IHh ∇f h(xhk )−∇f H(xHk )

3.3 xH+ = ML(f H , v̄H , x̄H)
3.4 Compute the step eH = xH+ − x̄H and eh = I hHe

H

3.5 Choose αk via a line search such that f h(xh+) ≤ f h(x̄h)
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Test problems

I Choose your favorite dataset for binary classification with data
(zi , yi ) for i = 1, . . . ,m

I Consider a simple logistic model:

fi =
1

N
log(1 + e−yix

T zi )

with (zi , yi ) ∈ Rn × {−1, 1} and x ∈ Rn.

I Consider a simple nonlinear least squares model with sigmoid
loss:

fi =
1

N

(
yi −

1

1 + e−yixT zi

)
with (zi , yi ) ∈ Rn × {0, 1} and x ∈ Rn.
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Task 1

I Implement a two-level algorithm.

I Define a suitable hierarchy (f H?) for (??)

I Solve problem (??) with the test models and your two-level
algorithm

I Compare it to a mini-batch version of SVRG (cf. course 3 and
next slide).

I Be careful in your comparison! What is a fair measure for
comparing the two algorithms?

I What is the difference between the two test problems?

I Optional: repeat with more than two-levels.
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Minibatch SVRG

Requires: p frequency update parameter, α learning rate, initial
guess x̃0

1. Iterate for s = 1, . . .

1.1 Set x̃ = x̃s−1

1.2 Compute G̃ = 1
m

∑m
i=1∇fi (x̃)

1.3 x0 = x̃
1.4 Iterate for k = 1, . . . , p

1.4.1 Choose randomly Sk ⊂ {1, . . . ,m}
1.4.2 xk = xk−1 − α( 1

|Sk |
∑

i∈Sk
∇fi (xk−1)− 1

|Sk |
∑

i∈Sk
∇fi (x̃) + G̃)

1.5 Set x̃s = xp

Task 2: Analyse a step of mini-batch SVRG and a step of the
two-level strategy (when the coarse model is employed). Derive a
link between the two of them.


