Final project:

Low-rank correction for accelerating preconditioned iterative methods

Context

Objective

- Compute solution to linear system Ax = b
- $A \in \mathbb{R}^{n \times n}$ is ill conditioned

Preconditioned iterative method

- 1. Compute preconditioner M^{-1} such that $M^{-1} \approx A^{-1}$, e.g.,
 - Low precision LU factorization
 - Incomplete LU factorization
 - Block Low-Rank LU factorization
- 2. Solve Ax = b via some iterative method (e.g., GMRES) preconditioned by M^{-1} , e.g., with leeft-preconditioning, $M^{-1}Ax = M^{-1}b$
- Convergence to solution may be slow or fail
- \Rightarrow Objective: accelerate convergence

- Often, A is ill conditioned due to a small number of small singular values
- Then, A^{-1} is numerically low-rank

Factorization error might be low-rank?

Assume $M = A + \Delta A$ and consider the error

$$E = M^{-1}A - I = M^{-1}(M + \Delta A) - I$$
$$= M^{-1}\Delta A \approx A^{-1}\Delta A$$

Does *E* retain the low-rank property of A^{-1} ?

A novel preconditioner

Consider the preconditioner $M_k = M(I + E_k)$ with E_k a rank-k approximation to E.

- If $E = E_k$, $M_k = A$
- If $E \approx E_k$ for some small k, M_k^{-1} can be computed cheaply via Sherman-Morrison-Woodbury formula

Typical SV distributions of A^{-1} and E

Typical SV distributions of A^{-1} and E

Typical SV distributions of A^{-1} and E

- Gather some test matrices for which A^{-1} is numerically low-rank (you can generate them randomly, or take a look at Suitesparse collection for real-life problems)
- Prepare a reference solver (suggestion: use MATLAB's gmres) and some reference preconditioners M (e.g., MATLAB's ilu, or low precision lu)¹ (Lecture 9)
- If you use sparse matrices, remember Lecture 6 and look up MATLAB's reordering tools (e.g., dissect)
- How to compute a rank-k approximation of E ? Explicitly forming E is not a good idea! You should rather use a method that only requires matrix-vector multiplies...
- Perform some numerical experiments and test the role of k (or ε), etc.
- Should one build a fixed-rank (k) or fixed-accuracy (ε) LRA of E?
- Should one use left or right preconditioning? (note that M_k is defined differently in either case)
- Can refer to 📑 Higham and M. (2019) for some guidance

6/6

¹Either using MATLAB's single or simulating low precision by computing $lu(A + \Delta A)$ for a random perturbation ΔA