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Industrial problem

Motivating application
Design and optimization of a new centrifugal pump.
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of a centrifugal pump

Pumps performance is measured by many different functions:
efficiency, flow rate...

To optimize a new centrifugal pump it is necessary to evaluate
these functions.

Function evaluations require CFD computations
(Computational Fluid Dynamics) — Expensive!

The competitiveness of the business requires the design
process to be as short as possible.

CFD is coupled with regression models.



of a centrifugal pump, standard approach

Geometry description.

e Choice of n independent degrees of freedom, p1, p2, ..., pn.
e Setting of the design space:

S = [plmimpl max] XKoo X [pnmimpnmax]-

Sampling of S.

CFD computations to evaluate objective functions values of
some samples to form a dataset to build the regression model.

Building the regression model.

The regression model is used to predict the objective functions
values of new samples.

Optimization algorithm: selection of an optimal solution.



Standard approach

@ If a single pump is considered: the redesign starts from a
baseline configuration geometrically close to the final one.

@ All the tools are fine tuned for the specific application.

@ All the geometrical constraints can be a priori taken into
account.
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All the computations performed can be used to form the
performance database to build the regression model.



Parametric design of a family of centrifugal pumps

@ Parametric design: a family of components has to be
considered.

@ Tens of parameters are necessary to describe their geometry.
@ The parameters vary in a wide range.
@ Resulting high dimensional design space.

@ It is impossible to take a priori into account all the
manufacturing or geometrical constraints.
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Problem: the most part (about 70%) of parameters combinations
corresponds to non manufacturable machines or to non-convergent
CFD computations!



@ The most part of the performed CFD computations are
useless, too many CFD computations are necessary to obtain
enough data to build the regression model.




@ The most part of the performed CFD computations are
useless, too many CFD computations are necessary to obtain
enough data to build the regression model.

@ The regression model cannot be used to predict function
values of randomly chosen samples, the prediction for non
good samples would yield a meaningless value, and many of
them would be part of the optimal solution set.




Need for classification
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Proposed approach: classification meta-model

We propose an approach based on coupling CFD computations and
the regression model with a classification meta-model.



Proposed approach: classification meta-model

We propose an approach based on coupling CFD computations and
the regression model with a classification meta-model.

The classifier is used to divide the random samples into two
classes:

o class F of feasible geometries: manufacturable machines and
convergent CFD calculations,

@ class U of unfeasible geometries: non manufacturable
machines or non-convergent CFD calculations.



Scheme of the proposed approach

© Geometry description.

o Choice of n independent degrees of freedom, p1, p2, ..., pn.
e Setting of the design space

S= [pl miny pl,max] X X [pn min pn,max]~

Sampling to S.

Classification

© 00

CFD computations on the samples classified as feasible to
obtain values of the objective functions.

© Regression model is built.
@ Classification
o

Regression model is used to predict function values of new
samples classified as feasible.

© Optimization algorithm: selection of an optimal solution.



Binary classification

@ Let consider a binary classification problem.
@ Some samples, that are called also features are assumed to
belong to two different classes, labelled as +1 and -1.

L . 1
L ]
[ ] [ ] 1
» @ [ ]
[ ] [ ]
[ ]
®*e
w
[ ] [ ] [ ]
L]
L]




Support Vector Machine

@ We used Support Vector Machine as a classifier.

@ Machine learning method: the meta-model is trained to do a
specific job, in this case it is trained to classify new samples.



Support Vector Machine

@ We used Support Vector Machine as a classifier.

@ Machine learning method: the meta-model is trained to do a
specific job, in this case it is trained to classify new samples.

@ It is assigned a training set 7, a set of couples given by a
sample x; € R” and the label of the class it belongs to
yi € {+1,—1}, i =1,..., Mg from which the machines
takes the necessary information to perform the classification
process:

T = {(Xl’y1)7 R (thrain’-ymtrain)}'



Separating hyperplane

@ During SVM training phase a hyperplane that separates
samples in the training set belonging to different classes is

searched.
o Hyperplane H = {x | h(x) =w'x+ b, w e R" bec R} .

h(x)=0

@ New samples are assigned to a class according to the sign of
function h.



@ The separating hyperplane is not unique: for each the margin
p(w, b) is defined as:

p(w, b) = min

@ The optimal hyperplane is the one that maximizes the margin:
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Optimal hyperplane

@ If features are linearly separable the optimal hyperplane exists
and is unique, it can be found solving

i 1|| [&
min _ —|lw
weR" beR 2
s.t. WTX,' +b>1, forall x; € F,

wlxj+b< —1, forall x; € U.



Optimal hyperplane

@ If features are linearly separable the optimal hyperplane exists
and is unique, it can be found solving

i 1|| [&
min _ —|lw
weR" beR 2
s.t. WTX,' +b>1, forall x; € F,

wlxj+b< —1, forall x; € U.

@ If the features are not linearly separable it is necessary to
allow the presence of some outliers inserting some slack
variables (; i =1, ..., M¢pajn in the model:

wlxi+b> 1— ¢ forall x; € F,
wixi+b<—1 + ¢ for all x; € U,
Gi >0,i= 1>'-'7mtrain-



Optimal hyperplane

Mtrain

e If x; is incorrectly classified ; > 1, so Y. (; is an upper
i=1

bound of the number of training features misinterpreted:

1 ) Mtrain
1 c _
min 3 [lwl* + Z;C

st yi(w'x +b) < 1-,
CI' >0,i=1,..., Myain.



Unbalanced Dataset

@ Parametric design: a training set has to be formed to train
SVM meta-model sampling randomly the design space.

@ Problem: the unfeasible samples are many more than the
feasible ones: SVM has to be trained on a strongly
unbalanced training set



Unbalanced Dataset

@ Parametric design: a training set has to be formed to train
SVM meta-model sampling randomly the design space.

@ Problem: the unfeasible samples are many more than the
feasible ones: SVM has to be trained on a strongly
unbalanced training set

{

e SVM has few information about the minority class to make an
accurate prediction

e It is easy to have many feasible features misclassified.



Unbalanced Dataset

@ We are interested in detecting feasible samples: it is necessary
to force the classifier to take features belonging to the
different classes into different consideration.



Unbalanced Dataset

@ We are interested in detecting feasible samples: it is necessary
to force the classifier to take features belonging to the
different classes into different consideration.

@ Two different weights are used for the positive and the
negative features:

Mtrain

min f||w|y2 +C Z G = min 7HW||2 O G G

x;€EF x; €U

@ C, > C_: the misinterpretation of feasible features is penalize
with more severity.
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@ We used the SVM implemented by Chih-Chung Chang and
Chih-Jen Lin in LIBSVM - A Library for Support Vector
Machines.



Numerical Tests

@ We used the SVM implemented by Chih-Chung Chang and
Chih-Jen Lin in LIBSVM - A Library for Support Vector
Machines.

@ The results of the classification procedure determines the
savings in terms of CFD computations.

o Compromise between

e finding as much feasible features as possible,
e allowing in their set as few false positives as possible.



Performance evaluation

Performance is evaluated by the confusion matrix, in which are
reported:

@ TPR true positive rate TPR = %,

@ FPR false positive rate FPR = %f,_—,;.

@ TNR true negative rate TNR = TN+FP'

FNR false negative rate FNR = TP+NFN
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@ The choice of the free parameters deeply affects the classifier
performance.

@ We investigated the best parameter choice, fixing C_ =1 and
varying C,.



Numerical Tests

@ The choice of the free parameters deeply affects the classifier
performance.

@ We investigated the best parameter choice, fixing C_ =1 and
varying C,.

@ Three different databases are considered, with n=40, 44, 42
degrees of freedom, and ratio between unfeasible and feasible
features 3:1, 7:1, 6:1.

@ SVM was trained over a set of my.,;, = 30000 geometries.



Best parameter choice

@ Literature: the coefficients corresponding to feasible and
unfeasible features should be inversely proportional to the
ratio of the corresponding features set sizes, [Shin, Cho, 2003]:
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Best parameter choice

@ Literature: the coefficients corresponding to feasible and
unfeasible features should be inversely proportional to the
ratio of the corresponding features set sizes, [Shin, Cho, 2003]:
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@ Best parameter choice: the ROC curve.



ROC curve

ROC Curve Dataset 1

™ +:1
0.8 m G=2
G =3
[ 1B : b
0.6 - G,=5
i f ¥ e
D»—' =10
04 1
-
0.2
o H
0 02 0.4 0.6 0.g 1
FER
ROG Gurve Dataset 2 ROG Curve Datasat 3
0 1 T
- &5 G+=1 : - G+=1
0.8 : : m G=2 os m C=2
; + G=3 ¢+ 03
G+=5 8 06} G+=5
= i £
¥y 2 . Ay
G,=10 |4 04b: m C =10}
; : e GC=20 ; e =0
D2t : - 02
o i
0 ; 0 ; " ;
o 0.2 0.4 0.8 oe 1 x] 0z 0.4 0.6 (8=} 1



Confusion matrix

3:1 C+:1 C+:2 C+: C+:5 C+:10

TPR | 31% 66% 78% 88% 94%

FPR | 4% 15% 23% 33% 45%

TNR | 96% 85% 7% 67% 55%

FNR | 68%  34%  22%  11% 5%
7:1 C+: C+:2 C+:3 C+: C+: C+:10 C+:20
TPR | 15% 53% 66% 7% 83% 86% 88%
FPR | 0.7% 6% 10% 16% 20% 23% 26%
TNR | 99% 94% 90% 84% 80% 7% 74%
FNR | 85% 46% 34% 22% 17% 13% 11%
6:1 C+:1 C+:2 C+:3 C+:5 C+:7 C+:10 C+:20
TPR | 20% 55% 68% 79% 84% 87% 90%
FPR | 1% 6% 10% 15% 18% 21% 23%
TNR | 99% 94% 90% 85% 82% 79% 7%
FNR | 79% 44% 32% 21% 16% 13% 10%
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Benefits of the proposed approach:

@ Strategy to handle the unbalancedness of the dataset: good
classification results on datasets with different number of
degrees of freedom and different ratio between feasible and
unfeasible features.



Conclusions

Benefits of the proposed approach:

@ Strategy to handle the unbalancedness of the dataset: good
classification results on datasets with different number of
degrees of freedom and different ratio between feasible and
unfeasible features.

@ First classification process: form the same dataset to build the
regression model as in the standard approach but saving
about 40% of the CFD computations.



Conclusions

Benefits of the proposed approach:

@ Strategy to handle the unbalancedness of the dataset: good
classification results on datasets with different number of
degrees of freedom and different ratio between feasible and
unfeasible features.

@ First classification process: form the same dataset to build the
regression model as in the standard approach but saving
about 40% of the CFD computations.

@ Second classification process: restrict the regression phase to
a set of samples that is far more balanced than the starting
dataset (from 7 : 1 — 2: 1), reducing the undesirable
presence of unfeasible samples in the optimal solution set.



Conclusions

Benefits of the proposed approach:

@ Strategy to handle the unbalancedness of the dataset: good
classification results on datasets with different number of
degrees of freedom and different ratio between feasible and
unfeasible features.

@ First classification process: form the same dataset to build the
regression model as in the standard approach but saving
about 40% of the CFD computations.

@ Second classification process: restrict the regression phase to
a set of samples that is far more balanced than the starting
dataset (from 7 : 1 — 2: 1), reducing the undesirable
presence of unfeasible samples in the optimal solution set.
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Performance evaluation

Performance is evaluated by the confusion matrix, in which are
reported:

° TPR. true posi.tiye rate or sensitivity or rec.a'll TPR = #P_Fly'
fraction of positive samples correctly classified over all positive
samples available during the test,

. _ FN - .
o FNR false .nfagatlve rate FNR = TPLAN fraction of feaS|b|e
features misinterpreted over all positive samples available
during the test,

@ TNR true negative rate or specificit.y TNR = mTifrV,_-P, fraction
of negative samples correctly classified over all negative
samples available during the test,

@ FPR false positive rate FPR = TNFif:FP, fraction of unfeasible
features misinterpreted over all negative samples available
during the test.



~ was set to the average squared distance among training patterns,
[Nanculef R, Frandi E, Sartori C, Allende H. A novel frank wolfe

algorithm, analysis and applications to large-scale svm training.
Information Sciences 2014]



