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Industrial problem

Motivating application

Design and optimization of a new centrifugal pump.



Design of a centrifugal pump

Pumps performance is measured by many different functions:
efficiency, flow rate...

To optimize a new centrifugal pump it is necessary to evaluate
these functions.

Function evaluations require CFD computations
(Computational Fluid Dynamics) → Expensive!

The competitiveness of the business requires the design
process to be as short as possible.

CFD is coupled with regression models.
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Design of a centrifugal pump, standard approach

1 Geometry description.

Choice of n independent degrees of freedom, p1, p2, . . . , pn.
Setting of the design space:

S = [p1min, p1max]× · · · × [pnmin, pnmax].

2 Sampling of S.

3 CFD computations to evaluate objective functions values of
some samples to form a dataset to build the regression model.

4 Building the regression model.

5 The regression model is used to predict the objective functions
values of new samples.

6 Optimization algorithm: selection of an optimal solution.



Standard approach

If a single pump is considered: the redesign starts from a
baseline configuration geometrically close to the final one.

All the tools are fine tuned for the specific application.

All the geometrical constraints can be a priori taken into
account.

⇓
All the computations performed can be used to form the

performance database to build the regression model.
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Parametric design of a family of centrifugal pumps

Parametric design: a family of components has to be
considered.

Tens of parameters are necessary to describe their geometry.

The parameters vary in a wide range.

Resulting high dimensional design space.

It is impossible to take a priori into account all the
manufacturing or geometrical constraints.

⇓
Problem: the most part (about 70%) of parameters combinations

corresponds to non manufacturable machines or to non-convergent
CFD computations!
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Drawbacks

The most part of the performed CFD computations are
useless, too many CFD computations are necessary to obtain
enough data to build the regression model.

The regression model cannot be used to predict function
values of randomly chosen samples, the prediction for non
good samples would yield a meaningless value, and many of
them would be part of the optimal solution set.
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Need for classification



Proposed approach: classification meta-model

We propose an approach based on coupling CFD computations and
the regression model with a classification meta-model.

The classifier is used to divide the random samples into two
classes:

class F of feasible geometries: manufacturable machines and
convergent CFD calculations,

class U of unfeasible geometries: non manufacturable
machines or non-convergent CFD calculations.
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Scheme of the proposed approach

1 Geometry description.

Choice of n independent degrees of freedom, p1, p2, . . . , pn.
Setting of the design space

S = [p1min, p1,max]× · · · × [pnmin, pn,max].

2 Sampling to S.

3 Classification

4 CFD computations on the samples classified as feasible to
obtain values of the objective functions.

5 Regression model is built.

6 Classification

7 Regression model is used to predict function values of new
samples classified as feasible.

8 Optimization algorithm: selection of an optimal solution.



Binary classification

Let consider a binary classification problem.
Some samples, that are called also features are assumed to
belong to two different classes, labelled as +1 and -1.



Support Vector Machine

We used Support Vector Machine as a classifier.

Machine learning method: the meta-model is trained to do a
specific job, in this case it is trained to classify new samples.

It is assigned a training set T , a set of couples given by a
sample xi ∈ Rn and the label of the class it belongs to
yi ∈ {+1,−1}, i = 1, . . . ,mtrain from which the machines
takes the necessary information to perform the classification
process:

T = {(x1, y1), . . . , (xmtrain , ymtrain)}.
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Separating hyperplane

During SVM training phase a hyperplane that separates
samples in the training set belonging to different classes is
searched.

Hyperplane H = {x | h(x) = wT x + b, w ∈ Rn, b ∈ R} .

New samples are assigned to a class according to the sign of
function h.



The separating hyperplane is not unique: for each the margin
ρ(w , b) is defined as:

ρ(w , b) = min
|wT x + b|
‖w‖

The optimal hyperplane is the one that maximizes the margin:

max
w∈Rn,b∈R

ρ(w , b)



Optimal hyperplane

If features are linearly separable the optimal hyperplane exists
and is unique, it can be found solving

min
w∈Rn,b∈R

1

2
‖w‖2

s.t. wT xi + b ≥ 1, for all xi ∈ F ,
wT xi + b ≤ −1, for all xi ∈ U .

If the features are not linearly separable it is necessary to
allow the presence of some outliers inserting some slack
variables ζi i = 1, . . . ,mtrain in the model:

wT xi + b ≥ 1− ζi for all xi ∈ F ,
wT xi + b ≤ −1 + ζi for all xi ∈ U ,

ζi ≥ 0, i = 1, . . . ,mtrain.
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Optimal hyperplane

If xi is incorrectly classified ζi > 1, so
mtrain∑
i=1

ζi is an upper

bound of the number of training features misinterpreted:

min
ω,b,ζ

1

2
‖w‖2 + C

mtrain∑
i=1

ζi

s.t. yi (w
T xi + b) ≤ 1− ζi ,

ζi ≥ 0, i = 1, . . . ,mtrain.



Unbalanced Dataset

Parametric design: a training set has to be formed to train
SVM meta-model sampling randomly the design space.

Problem: the unfeasible samples are many more than the
feasible ones: SVM has to be trained on a strongly
unbalanced training set

↓
SVM has few information about the minority class to make an
accurate prediction

It is easy to have many feasible features misclassified.
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Unbalanced Dataset

We are interested in detecting feasible samples: it is necessary
to force the classifier to take features belonging to the
different classes into different consideration.

Two different weights are used for the positive and the
negative features:

min
ω,b,ζ

1

2
‖w‖2 + C

mtrain∑
i=1

ζi → min
ω,b,ζ

1

2
‖w‖2 + C+

∑
xi∈F

ζi + C−
∑
xi∈U

ζi .

C+ > C−: the misinterpretation of feasible features is penalize
with more severity.
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Numerical Tests

We used the SVM implemented by Chih-Chung Chang and
Chih-Jen Lin in LIBSVM - A Library for Support Vector
Machines.

The results of the classification procedure determines the
savings in terms of CFD computations.

Compromise between

finding as much feasible features as possible,
allowing in their set as few false positives as possible.
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Performance evaluation

Performance is evaluated by the confusion matrix, in which are
reported:

TPR true positive rate TPR = TP
TP+FN ,

FPR false positive rate FPR = FP
TN+FP ,

TNR true negative rate TNR = TN
TN+FP ,

FNR false negative rate FNR = FN
TP+FN .



Numerical Tests

The choice of the free parameters deeply affects the classifier
performance.

We investigated the best parameter choice, fixing C− = 1 and
varying C+.

Three different databases are considered, with n=40, 44, 42
degrees of freedom, and ratio between unfeasible and feasible
features 3:1, 7:1, 6:1.

SVM was trained over a set of mtrain = 30000 geometries.
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Best parameter choice

Literature: the coefficients corresponding to feasible and
unfeasible features should be inversely proportional to the
ratio of the corresponding features set sizes, [Shin, Cho, 2003]:

C+

C−
w
|U|
|F|

.

Best parameter choice: the ROC curve.
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ROC curve



Confusion matrix

3 : 1 C+ = 1 C+ = 2 C+ = 3 C+ = 5 C+ = 10

TPR 31% 66% 78% 88% 94%
FPR 4% 15% 23% 33% 45%
TNR 96% 85% 77% 67% 55%
FNR 68% 34% 22% 11% 5%

7 : 1 C+ = 1 C+ = 2 C+ = 3 C+ = 5 C+ = 7 C+ = 10 C+ = 20

TPR 15% 53% 66% 77% 83% 86% 88%
FPR 0.7% 6% 10% 16% 20% 23% 26%
TNR 99% 94% 90% 84% 80% 77% 74%
FNR 85% 46% 34% 22% 17% 13% 11%

6 : 1 C+ = 1 C+ = 2 C+ = 3 C+ = 5 C+ = 7 C+ = 10 C+ = 20

TPR 20% 55% 68% 79% 84% 87% 90%
FPR 1% 6% 10% 15% 18% 21% 23%
TNR 99% 94% 90% 85% 82% 79% 77%
FNR 79% 44% 32% 21% 16% 13% 10%



Conclusions

Benefits of the proposed approach:

Strategy to handle the unbalancedness of the dataset: good
classification results on datasets with different number of
degrees of freedom and different ratio between feasible and
unfeasible features.

First classification process: form the same dataset to build the
regression model as in the standard approach but saving
about 40% of the CFD computations.

Second classification process: restrict the regression phase to
a set of samples that is far more balanced than the starting
dataset (from 7 : 1→ 2 : 1), reducing the undesirable
presence of unfeasible samples in the optimal solution set.

THANK YOU FOR YOUR ATTENTION!
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Performance evaluation

Performance is evaluated by the confusion matrix, in which are
reported:

TPR true positive rate or sensitivity or recall TPR = TP
TP+FN ,

fraction of positive samples correctly classified over all positive
samples available during the test,

FNR false negative rate FNR = FN
TP+FN fraction of feasible

features misinterpreted over all positive samples available
during the test,

TNR true negative rate or specificity TNR = TN
TN+FP , fraction

of negative samples correctly classified over all negative
samples available during the test,

FPR false positive rate FPR = FP
TN+FP , fraction of unfeasible

features misinterpreted over all negative samples available
during the test.



γ was set to the average squared distance among training patterns,
[Nanculef R, Frandi E, Sartori C, Allende H. A novel frank wolfe
algorithm, analysis and applications to large-scale svm training.
Information Sciences 2014]


