A Levenberg-Marquardt method for large-scale noisy nonlinear least squares problems

Elisa Riccietti

Università degli Studi di Firenze Dipartimento di Matematica e Informatica 'Ulisse Dini'

Joint work with: Stefania Bellavia (Università di Firenze), Serge Gratton (ENSEEIHT, Toulouse)



SIOPT 2017

《曰》 《聞》 《臣》 《臣》

## Large scale problems with noisy function and noisy gradient

Let us consider the following nonlinear least squares problem:

$$\min_{x\in\mathbb{R}^n}f(x)=\frac{1}{2}\|F(x)\|^2$$

where  $F : \mathbb{R}^n \to \mathbb{R}^N$  with  $N \ge n$ , continuously differentiable.

#### Noisy function and noisy gradients

We are interested in large scale problems for which either:

- exact values for the function and the gradient are not available,
- computing exact values is computationally demanding.

### Function approximations

- We relay on cheap approximations  $f_{\delta}$  to f of known accuracy.
- We measure the accuracy of the approximations in x by

 $|f_{\delta}(x) - f(x)| \leq \delta$ ,  $\delta$  noise level.

- We assume that the accuracy level can be improved along the optimization process.
- The approximation is updated through iterations:  $f_{\delta_k}$ .

#### Jacobian and gradient approximation

- $J_{\delta_k}$  Jacobian matrix approximation,
- $g_{\delta_k}$  gradient approximation.

### Typical applications

Machine learning, Data assimilation

### Subsampling techniques

- Large set of data at disposal: {1,..., N}. Redundancy in the measurements → subsampling: X<sub>k</sub> ⊆ {1,..., N} such that |X<sub>k</sub>| = K<sub>k</sub> ≤ N is selected.
- $F_{\delta_k} : \mathbb{R}^n \to \mathbb{R}^{K_k}$  such that  $(F_{\delta_k})_i = F_j, j \in X_k$  is built. If  $X_k = \{2, 5, 7\}$  then  $F_{\delta_k} = [F_2; F_5, F_7]^T$ .

> < 3 > < 3 >

### Typical applications

Machine learning, Data assimilation

### Subsampling techniques

- Large set of data at disposal: {1,..., N}. Redundancy in the measurements → subsampling: X<sub>k</sub> ⊆ {1,..., N} such that |X<sub>k</sub>| = K<sub>k</sub> ≤ N is selected.
- $F_{\delta_k} : \mathbb{R}^n \to \mathbb{R}^{K_k}$  such that  $(F_{\delta_k})_i = F_j, j \in X_k$  is built. If  $X_k = \{2, 5, 7\}$  then  $F_{\delta_k} = [F_2; F_5, F_7]^T$ .
- f<sub>δk</sub>(x) = ½ ||F<sub>δk</sub>(x)||<sup>2</sup> → can be improved considering more observations, i.e. increasing K<sub>k</sub>.

A D A D A D A

## Algorithm : *k*-th iteration

Step computation: define the LM model

$$\min_{m{p}\in\mathbb{R}^n}m_k(x_k+m{p}) = rac{1}{2}\|\mathcal{F}_{\delta_k}(x_k)+J_{\delta_k}(x_k)m{p}\|^2 + rac{1}{2}\lambda_k\|m{p}\|^2,$$

and compute the step  $p_k^{LM}$ .

- ② Check the noise level. If noise is too high reduce it.
- Step acceptance based on  $\rho_k^{\delta_k}(p_k^{LM}) = \frac{f_{\delta_{k-1}}(x_k) f_{\delta_k}(x_k + \rho_k^{LM})}{m_k(x_k) m_k(x_k + \rho_k^{LM})}$ .

Regularization parameter update.



# 1) The step

• The step is the solution of the linearized least squares subproblem:

$$\min_{p \in \mathbb{R}^n} m_k(x_k + p) = \frac{1}{2} \|F_{\delta_k}(x_k) + J_{\delta_k}(x_k)p\|^2 + \frac{1}{2}\lambda_k \|p\|^2,$$

where  $\lambda_k$  is an appropriately chosen regularization parameter. • This is equivalent to:

$$(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I)p_k = -g_{\delta_k}(x_k)$$

# 1) The step

• The step is the solution of the linearized least squares subproblem:

$$\min_{p \in \mathbb{R}^n} m_k(x_k + p) = \frac{1}{2} \|F_{\delta_k}(x_k) + J_{\delta_k}(x_k)p\|^2 + \frac{1}{2}\lambda_k \|p\|^2,$$

where  $\lambda_k$  is an appropriately chosen regularization parameter. • This is equivalent to:

$$(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I) p_k = -g_{\delta_k}(x_k) + r_k.$$

• Large scale problems: an inexact step is computed.

# 1) The step

• The step is the solution of the linearized least squares subproblem:

$$\min_{p \in \mathbb{R}^n} m_k(x_k + p) = \frac{1}{2} \|F_{\delta_k}(x_k) + J_{\delta_k}(x_k)p\|^2 + \frac{1}{2}\lambda_k \|p\|^2,$$

where  $\lambda_k$  is an appropriately chosen regularization parameter. • This is equivalent to:

$$(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I)p_k = -g_{\delta_k}(x_k) + r_k.$$

- Large scale problems: an inexact step is computed.
- For a residual,  $||r_k|| \le \epsilon_k ||g_{\delta_k}||$  with  $\epsilon_k$  small enough, the step achieves the Cauchy decrease:

$$m_k(x_k)-m_k(x_k+p)\geq rac{ heta}{2}rac{\|g_{\delta_k}(x_k)\|^2}{\|J_{\delta_k}(x_k)\|^2+\lambda_k}, \qquad heta>0.$$

which is sufficient to get global convergence.



# 2) Noise control

- The optimization process starts with a given noise level  $\delta = \delta_0$  depending on  $|X_0|$ .
- **Noise control**: our method relies on a mechanism to control the noise: if it is judged to be too large it is reduced.
- We assume to have access to function and gradient values at every accuracy level.
- The noise is driven to zero along the optimization process.

#### Assumption

It exists  $\bar{K} > 0$  and  $\delta_k \ge 0$ , such that:

$$egin{aligned} &|f_{\delta_k}(x)-f(x)|=\left|rac{1}{2}\|F_{\delta_k}(x)\|^2-rac{1}{2}\|F(x)\|^2
ight|\leq\delta_k,\ &\|g(x)-g_{\delta_k}(x)\|\leqar{\kappa}\delta_k. \end{aligned}$$

## 2) Noise control

• Given the noise level  $\delta_k$ , in [Trust region methods, Conn, Gould, Toint] this condition is used:

$$\delta_k \leq \eta_0[m_k(x_k) - m_k(x_k + p_k^{LM})],$$

with  $\eta_0$  appropriately chosen, to ensure a true reduction in the noise-free objective function f.

- $m_k(x_k) m_k(x_k + p_k^{LM}) = O(\lambda_k \| p_k^{LM} \|^2).$
- Noise control:

 $\delta_k \leq \kappa_d \lambda_k^\alpha \| \boldsymbol{p}_k^{LM} \|^2,$ 

for suitable constants  $\kappa_d > 0$  and  $\alpha \in \left[\frac{1}{2}, 1\right)$ .

• The noise tends to zero:

$$\lim_{k\to\infty}\lambda_k\|p_k^{LM}\|^2=0.$$



Step acceptance based on ratio between actual and predicted reduction:

$$ho_k^{\delta_k}(p_k^{LM}) = rac{f_{\delta_{k-1}}(x_k) - f_{\delta_k}(x_k + p_k^{LM})}{m_k(x_k) - m_k(x_k + p_k^{LM})}.$$

• If  $\rho_k^{\delta_k}(p_k^{LM}) \ge \eta_1$ , accept the step  $x_{k+1} = x_k + p_k^{LM}$ ,

**2** Otherwise reject the step  $x_{k+1} = x_k$ .

## Algorithm : *k*-th iteration

Step computation: define the LM model

$$\min_{m{p}\in\mathbb{R}^n}m_k(x_k+m{p}) = rac{1}{2}\|\mathcal{F}_{\delta_k}(x_k)+J_{\delta_k}(x_k)m{p}\|^2 + rac{1}{2}\lambda_k\|m{p}\|^2,$$

and compute the step  $p_k^{LM}$ .

- One of the second se
- Step acceptance based on  $\rho_k^{\delta_k}(p_k^{LM}) = \frac{f_{\delta_{k-1}}(x_k) f_{\delta_k}(x_k + \rho_k^{LM})}{m_k(x_k) m_k(x_k + \rho_k^{LM})}$ .
- Regularization parameter update.

The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and [Bandeira, Scheinberg, Vicente, 2014]. Given  $\gamma>1$ 

• Successful step:

$$\lambda_{k+1} = \begin{cases} \min\{\gamma\lambda_k, \lambda_{\max}\} & \text{if } \|g_{\delta_k}(x_k)\| < \eta_2/\lambda_k, \\ \lambda_k & \text{if } \|g_{\delta_k}(x_k)\| \ge \eta_2/\lambda_k. \end{cases}$$

• Unsuccessful step:

$$\lambda_{k+1} = \gamma \lambda_k.$$

We increase the parameter even in case of successful iterations.

The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and [Bandeira, Scheinberg, Vicente, 2014]. Given  $\gamma > 1$ 

• Successful step:

$$\lambda_{k+1} = \begin{cases} \min\{\gamma\lambda_k, \lambda_{\max}\} & \text{if } \|g_{\delta_k}(x_k)\| < \eta_2/\lambda_k, \\ \lambda_k & \text{if } \|g_{\delta_k}(x_k)\| \ge \eta_2/\lambda_k. \end{cases}$$

• Unsuccessful step:

$$\lambda_{k+1} = \gamma \lambda_k.$$

We increase the parameter even in case of successful iterations.  $\frac{\|g(x_k)\|}{(1+c_k)} \le \|g_{\delta_k}(x_k)\| \le \frac{\|g(x_k)\|}{(1-c_k)}, \text{ with } c_k = O\left(\frac{1}{\lambda_k^{1-\alpha/2}}\right).$ 

### Assumptions

#### • Assumption 1:

Function f is continuously differentiable, and it exists  $\kappa_J > 0$  such that for all  $k \ge 0$  and all  $x \in [x_k, x_k + p_k^{LM}]$ ,  $||J_{\delta}(x)|| \le \kappa_J$ .

• Assumption 2: f has Lipschitz continuous gradient:  $\|g(x) - g(y)\| \le L \|x - y\|$  for all  $x, y \in \mathbb{R}^n$ . Let the residual be small enough, i.e.  $r_k$  satisfies  $||r_k|| \le \epsilon_k ||g_{\delta_k}||$ , with

$$\epsilon_k \leq \min\left\{rac{ heta_1}{\lambda_k^{lpha}}, \sqrt{ heta_2rac{\lambda_k}{\|J_{\delta_k}(x_k)\|^2 + \lambda_k}}
ight\}$$

where  $\theta_1 > 0$ ,  $\theta_2 \in (0, \frac{1}{2}]$  and  $\alpha \in [\frac{1}{2}, 1)$ .

#### Lemma

The sequences  $\{\delta_k\}$  and  $\{x_k\}$  generated by the Algorithm are such that

$$\lim_{k\to\infty}\delta_k=0, \qquad \qquad \lim_{k\to\infty}\|g(x_k)\|=0.$$

• • = • • = •

### Asymptotic step behaviour

The LM step asymptotically tends to the direction of the negative perturbed gradient:

$$\lim_{k\to\infty}(p_k^{LM})_i+\frac{\theta}{\kappa_J^2+\lambda_k}(g_{\delta_k}(x_k))_i=0\quad\text{for}\quad i=1,\ldots,n,$$

where  $(\cdot)_i$  denotes the *i*-th vector component.

#### Lemma

Let 
$$p_k^{SD} = -\frac{\theta}{\kappa^2 + \lambda_k} g_{\delta_k}(x_k)$$
. If  $x_{\bar{k}} \in B_r(x^*)$  and  $\lambda_{\bar{k}}$  big enough,

• 
$$||x_{k+1} - x^*|| < ||x_k - x^*||$$
, for all  $k \ge \bar{k}$ .

• 
$$||x_k - x^*||$$
 tends to zero.

→ Ξ →

## Complexity analysis

### Assumption

Let assume that the procedure is stopped when  $||g_{\delta_k}(x_k)|| \leq \epsilon$ .

• The number of successful iterations  $N_1$  is bounded above by:

$$\mathsf{N}_1 \leq f_{\delta_{k_s-1}}(x_{k_s}) \, rac{2}{\eta_1} \, rac{\kappa_J^2 + \lambda_{\mathsf{max}}}{ heta \epsilon^2} \, = \, \mathcal{O}(\epsilon^{-2}).$$

• The number of unsuccessful iterations  $N_3$  is bounded above by a constant independent of  $\epsilon$ :

$$N_3 \leq rac{\log rac{\lambda_{\max}}{\lambda_0}}{\log \gamma}.$$

#### Complexity

Standard Levenberg-Marquardt methods complexity is preserved:

$$N_T = O(\epsilon^{-2}),$$

Elisa Riccietti (DIMAI - UNIFI)

### Test problems

We consider two problems of the form

$$\min_{x\in\mathbb{R}^n} f(x) = \frac{1}{2} \|F(x)\|^2 + \frac{1}{2} \|x\|^2 = \sum_{j=1}^N F_j(x)^2 + \frac{1}{2} \|x\|^2,$$

with  $F_j : \mathbb{R}^n \to \mathbb{R}$ , for  $j = 1, \dots, N$ , N total number of samples.

3

通 ト イヨ ト イヨト

### Test problems

We consider two problems of the form

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} \|F(x)\|^2 + \frac{1}{2} \|x\|^2 = \sum_{j=1}^N F_j(x)^2 + \frac{1}{2} \|x\|^2,$$

with  $F_j : \mathbb{R}^n \to \mathbb{R}$ , for j = 1, ..., N, N total number of samples.

- P1: Data assimilation problem
- P2: Machine learning problem

## Approximations

- Function approximations built through a random subsampling.
- $J_{\delta_k}(x) \in \mathbb{R}^{K_k \times n}$  is the Jacobian matrix of  $F_{\delta_k}(x)$ .
- $g_{\delta_k} \in \mathbb{R}^n$  the gradient of  $f_{\delta_k}$ .

#### Linear algebra phase

- CG method.
- $||r_k|| \le 10^{-1} ||g_{\delta_k}(x_k)||$

We compare subsampled Levenberg-Marquardt method **(SSLM)** and full Levenberg-Marquardt method **(FLM)** ( $K_k = N, \forall k$ ).

#### Cost counters

We evaluate savings arising from the employment of the noise control strategy.

- cost<sub>f</sub> weighted counter of function evaluations costs
   (if |X<sub>k</sub>| = N cost=1, if |X<sub>k</sub>| = K<sub>k</sub> cost=K<sub>k</sub>/N.) → save<sub>f</sub> savings in
   function evaluations.
- $cost_p$  weighted counter of products costs (if  $|X_k| = N \text{ cost}=1$ , if  $|X_k| = K_k \text{ cost}=K_k/N$ .)  $\rightarrow save_p$  savings in products.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Given the current sample set  $X_k$ , s.t.  $|X_k| = K_k$ .

#### Noise update

Given the step, check the noise:  $\delta_k \leq \kappa_d \lambda_k^{\alpha} \| p_k^{LM} \|^2$ ? If not, repeat:

- Increase the samples set size:  $|X_{k+1}| = K_*|X_k|$ .
- Recompute function, Jacobian and gradient.
- Need to check condition again → Need to recompute the step:  $(J_{\delta_k}(x_k)^T J_{\delta_k}(x_k) + \lambda_k I) p_k = -g_{\delta_k}(x_k) + r_k.$

 $\rightarrow$  Resulting samples set size:  $|X_{k+1}| = K_*^{n_k} |X_k|$ .

Given the current sample set  $X_k$ , s.t.  $|X_k| = K_k$ .

### Noise update

Given the step, check the noise:  $\delta_k \leq \kappa_d \lambda_k^{\alpha} \|p_k^{LM}\|^2$ ? If not, repeat:

- Increase the samples set size:  $|X_{k+1}| = K_*|X_k|$ .
- Recompute function, Jacobian and gradient.
- Need to check condition again → Need to recompute the step: (J<sub>δ<sub>k</sub></sub>(x<sub>k</sub>)<sup>T</sup> J<sub>δ<sub>k</sub></sub>(x<sub>k</sub>) + λ<sub>k</sub>I)p<sub>k</sub> = -g<sub>δ<sub>k</sub></sub>(x<sub>k</sub>) + r<sub>k</sub>.

 $\rightarrow$  Resulting samples set size:  $|X_{k+1}| = K_*^{n_k} |X_k|$ .

### Parameters affecting the cost

- $\delta_k \leq \kappa_d \lambda_k^{\alpha} \| p_k^{LM} \|^2.$
- $K_0$  cardinality of the starting sample set.
- $|X_{k+1}| = K_*^{n_k} |X_k|.$

3

- 4 同 6 4 日 6 4 日 6

## P1: Data assimilation problem

#### Nonlinear wave equation:

$$\begin{aligned} \frac{\partial^2 u(z,t)}{\partial t^2} &- \frac{\partial^2 u(z,t)}{\partial z^2} + \mu e^{\nu u} = 0, \\ u(0,t) &= u(1,t) = 0, \\ u(z,0) &= u_0(z), \ \frac{\partial u(z,0)}{\partial t} = 0, \\ 0 &\le t \le T, \ 0 \le 0 \le 1. \end{aligned}$$

- We look for the initial state u<sub>0</sub>(z), from the knowledge of observations u(z<sub>i</sub>, t<sub>j</sub>), t<sub>j</sub> > 0.
- We consider a mesh involving n = 360 grid points for the spatial discretization and  $N_t = 64$  for the temporal one.
- We assume to have an observation at each grid point:  $N = n \times N_t = 23040.$

It is possible to recover  $u_0(z)$  solving the following data assimilation problem:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \|x - x_b\|_{B^{-1}}^2 + \frac{1}{2} \sum_{j=0}^{N_t} \|H_j(x(t_j)) - y_j\|_{R_j^{-1}}^2$$

•  $||x||_M^2 = x^T M x$  for a symmetric positive definite matrix M,

- $x_b \in \mathbb{R}^n$  is the background vector (a priori estimate)
- $y_j \in \mathbb{R}^{m_j}$  is the vector of observations at time  $t_j$ ,  $m_j \leq n$ .
- $H_i$  is the operator modelling the observation process at  $t_i$
- $x(t_i)$  the state vector, solution of the nonlinear model at time  $t_i$ .

- Background vector and observations from a chosen initial true state by adding noise  $N(0, \sigma_b^2)$  and  $N(0, \sigma_o^2)$  with  $\sigma_b = 0.2$ ,  $\sigma_o = 0.05$ .
- Covariances matrices are diagonal:  $B = \sigma_b^2 I_n$  and  $R_j = \sigma_o^2 I_{m_i} \forall j$ .
- Least-squares problem reformulation:

$$F(x) = \begin{bmatrix} \frac{1}{\sigma_o}(H_0(x(t_0)) - y_0) \\ \vdots \\ \frac{1}{\sigma_o}(H_{N_t}(x(t_{N_t})) - y_{N_t}) \end{bmatrix}$$

where  $(H_j(x(t_j)) - y_j) \in \mathbb{R}^{m_j}$  for  $j = 1, \dots, N_t$ .

- Background vector and observations from a chosen initial true state by adding noise  $N(0, \sigma_b^2)$  and  $N(0, \sigma_o^2)$  with  $\sigma_b = 0.2$ ,  $\sigma_o = 0.05$ .
- Covariances matrices are diagonal:  $B = \sigma_b^2 I_n$  and  $R_j = \sigma_o^2 I_{m_i} \forall j$ .
- Least-squares problem reformulation:

$$F(x) = \begin{bmatrix} \frac{1}{\sigma_o}(H_0(x(t_0)) - y_0) \\ \vdots \\ \frac{1}{\sigma_o}(H_{N_t}(x(t_{N_t})) - y_{N_t}) \end{bmatrix}$$

where  $(H_j(x(t_j)) - y_j) \in \mathbb{R}^{m_j}$  for  $j = 1, \dots, N_t$ .

• Kept  $K_* = 1.5$  fixed, we study the effect of  $\kappa_d$ , depending on  $K_0$ .

## P1: effect of $\kappa_d$

| $K_0 = 2000$      | FLM    |                |                 | SSLM             |                   |                    |
|-------------------|--------|----------------|-----------------|------------------|-------------------|--------------------|
| $K_* = 1.5$       |        | $\kappa_d = 1$ | $\kappa_d = 10$ | $\kappa_d = 100$ | $\kappa_d = 1000$ | $\kappa_d = 10000$ |
| it                | 9      | 11             | 12              | 12               | 12                | 11                 |
| CG <sub>it</sub>  | 2.4    | 5.4            | 4.9             | 4.2              | 4.2               | 3.9                |
| cost <sub>f</sub> | 10     | 9.7            | 6.1             | 3.3              | 3.2               | 2.0                |
| costp             | 67     | 46.1           | 26.8            | 14.9             | 13.5              | 10.3               |
| X <sub>it</sub>   | 23040  | 15188          | 6750            | 3000             | 3000              | 2000               |
| RMSE              | 1.2e-2 | 3.0e-2         | 2.8e-2          | 3.8e-2           | 4.4e-2            | 7.8e-2             |
| save <sub>f</sub> |        | 3%             | 39%             | 67%              | 68%               | 80%                |
| savep             |        | 31%            | 60%             | 78%              | 80%               | 85%                |



Elisa Riccietti (DIMAI - UNIFI)

## P1: savings vs solution accuracy

| $K_0 = 5000$      | FLM    |                |                 | SSLM             |                   |                    |
|-------------------|--------|----------------|-----------------|------------------|-------------------|--------------------|
| $K_* = 1.5$       |        | $\kappa_d = 1$ | $\kappa_d = 10$ | $\kappa_d = 100$ | $\kappa_d = 1000$ | $\kappa_d = 10000$ |
| it                | 9      | 11             | 11              | 12               | 12                | 12                 |
| CG <sub>it</sub>  | 2.4    | 4.1            | 3.9             | 4.0              | 4.1               | 3.7                |
| cost <sub>f</sub> | 10     | 9.1            | 6.5             | 5.1              | 4.9               | 3.6                |
| costp             | 67     | 54.8           | 37.2            | 34.6             | 32.9              | 27.3               |
| X <sub>it</sub>   | 23040  | 16875          | 11250           | 7500             | 7500              | 5000               |
| RMSE              | 1.2e-2 | 2.7e-2         | 3.0e-2          | 2.1e-2           | 2.1e-2            | 2.7e-2             |
| save <sub>f</sub> |        | 9%             | 35%             | 49%              | 51%               | 64%                |
| savep             |        | 18%            | 44%             | 48%              | 51%               | 59%                |



Elisa Riccietti (DIMAI - UNIFI)

## P1: solution approximations



э

**Binary classification problem**:  $\{(z^i, y^i)\}$  with  $z^i \in \mathbb{R}^n$ ,  $y^i \in \{-1, +1\}$ and i = 1, ..., N. Training objective function: logistic loss with  $l_2$  regularization

$$f(x) = \frac{1}{2N} \sum_{i=1}^{N} \log(1 + \exp(-y^{i} x^{T} z^{i})) + \frac{1}{2N} ||x||^{2}.$$

Least-squares form:

$$F(x) = \frac{1}{N} \begin{bmatrix} \sqrt{\log(1 + \exp(-y^{1}x^{T}z^{1}))} \\ \vdots \\ \sqrt{\log(1 + \exp(-y^{N}x^{T}z^{N}))} \end{bmatrix}$$

٠

Approximations to f are built as:

$$f_{\delta_k}(x) = rac{1}{2K_k} \sum_{i \in X_k} \log(1 + \exp(-y^i x^T z^i)) + rac{1}{2K_k} \|x\|^2.$$

We consider the **CINA dataset** [http://www.causality.inf.ethz.ch/data/ CINA.html], for which n = 132, N = 16033 for the training set,  $\tilde{N} = 10000$  for the testing set.

#### Noise control condition parameters

•  $K_0 = 132$ .

- $\kappa_d = 10.$
- We study the effect of  $K_*$ .

|                   | FLM    |             |             | SSLM        |               |             |               |  |
|-------------------|--------|-------------|-------------|-------------|---------------|-------------|---------------|--|
|                   |        | $K_* = 1.1$ | $K_* = 1.5$ | $K_{*} = 2$ | $K_{*} = 2.5$ | $K_{*} = 3$ | $K_{*} = 3.5$ |  |
| it                | 52     | 82          | 43          | 38          | 39            | 34          | 53            |  |
| CG <sub>it</sub>  | 5.7    | 8.5         | 8.0         | 7.5         | 7.3           | 7.2         | 5.5           |  |
| cost <sub>f</sub> | 53     | 19.8        | 14.1        | 15.9        | 21.2          | 16.5        | 37.7          |  |
| costp             | 808    | 671.2       | 351.3       | 316.7       | 400.7         | 310.4       | 521.1         |  |
| RMSE              | 6.0e-2 | 1.0e-1      | 6.6e-2      | 5.4e-2      | 4.7e-2        | 4.1e-2      | 3.9e-2        |  |
| save <sub>f</sub> |        | 63%         | 74%         | 70%         | 60%           | 69%         | 29%           |  |
| savep             |        | 17%         | 56%         | 61%         | 50%           | 62%         | 35%           |  |

15

8



K<sub>\*</sub>=1.1 10 \*\*\*\*\* K\_=3.5 14 -\*-CG 10



60

Elisa Riccietti (DIMAI - UNIFI)



## THANK YOU FOR YOUR ATTENTION!

Elisa Riccietti (DIMAI - UNIFI)

(日) (同) (三) (三)

2

#### Additional Assumption

- Let f be twice differentiable in an open set containing  $\mathcal{L}$ ,
- $H(x^*) \succeq 0$ , *H* Hessian matrix of *f*,
- $||H(x) H(y)|| \le M||x y||$  for all  $x, y \in \mathcal{L}$ ,
- 0 < I ≤ L < ∞ such that I I<sub>n</sub> ≤ H(x\*) ≤ L I<sub>n</sub> with I<sub>n</sub> the identity matrix of size n.

We estimate the noise in the following way:

$$\delta_k \simeq rac{\sqrt{2(N-K_k)}}{K_k}, \ \ ext{with} \ \ \ K_k = |X_k|.$$

If the components  $F_i(x)$  of F(x) were Gaussian,  $\sum_{i=1}^{N-K_k} F_i(x)^2$  would follow a Chi-squared distribution with standard deviation  $\sqrt{2(N-K_k)}$ .



| Solver               | it | CG <sub>it</sub> | cost <sub>f</sub> | cost <sub>p</sub> | $ X_{it} $ | err    | $\mathbf{e}_{te}$ |
|----------------------|----|------------------|-------------------|-------------------|------------|--------|-------------------|
| SSLM <sub>est</sub>  | 38 | 7.5              | 15.9              | 316.7             | 16000      | 5.4e-2 | 0.187             |
| SSLM <sub>appr</sub> | 37 | 7.4              | 17.7              | 318.1             | 16000      | 5.7e-2 | 0.186             |



2

### Noisy vs exact gradient

For  $\lambda_k$  sufficiently large it exists  $c_k \in (0,1)$  such that

$$\frac{\|g(x_k)\|}{(1+c_k)} \le \|g_{\delta_k}(x_k)\| \le \frac{\|g(x_k)\|}{(1-c_k)}, \text{ with } c_k = \frac{2\bar{K}\sqrt{\kappa_d}}{\lambda_k^{1-\alpha/2}}.$$

Gradient approximation

For  $\lambda_k$  large  $\rightarrow ||g_{\delta_k}(x_k)|| \simeq ||g(x_k)||$ .

3

The quality of the approximations of f and g at x depends on the distance  $\max\{\|F_{\delta}(x) - F(x)\|, \|J_{\delta}(x) - J(x)\|\}$ , as follows:

$$\begin{aligned} |f_{\delta_k}(x) - f(x)| &\leq \frac{1}{2} \|F_{\delta}(x) - F(x)\| \sum_{j=1}^N |F_j(x) + (F_{\delta})_j(x)\rangle|, \\ |g(x) - g_{\delta_k}(x)\| &\leq \|J_{\delta}(x) - J(x)\| \|F(x)\| + \|J_{\delta}(x)\| \|F_{\delta}(x) - F(x)\|. \end{aligned}$$

Then, we can assume that there exist  $\overline{K} \ge 0$  and  $\delta_k \ge 0$ , such that at each iteration k uniformly in x:

$$|f_{\delta_k}(x) - f(x)| = \left| \frac{1}{2} \|F_{\delta_k}(x)\|^2 - \frac{1}{2} \|F(x)\|^2 \right| \le \delta_k,$$
(1)  
$$\|g(x) - g_{\delta_k}(x)\| \le \bar{K} \delta_k.$$
(2)

We will refer to  $\delta_k$  as to the noise level.