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Large scale problems with noisy function and noisy gradient

Let us consider the following nonlinear least squares problem:

min
x∈Rn

f (x) =
1

2
‖F (x)‖2

where F : Rn → RN with N ≥ n, continuously differentiable.

Noisy function and noisy gradients

We are interested in large scale problems for which either:

exact values for the function and the gradient are not available,

computing exact values is computationally demanding.
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Function approximations

We relay on cheap approximations fδ to f of known accuracy.

We measure the accuracy of the approximations in x by

|fδ(x)− f (x)| ≤ δ, δ noise level.

We assume that the accuracy level can be improved along the
optimization process.

The approximation is updated through iterations: fδk .

Jacobian and gradient approximation

Jδk Jacobian matrix approximation,

gδk gradient approximation.
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Typical applications

Machine learning, Data assimilation

Subsampling techniques

Large set of data at disposal: {1, . . . ,N}.
Redundancy in the measurements → subsampling: Xk ⊆ {1, . . . ,N}
such that |Xk | = Kk ≤ N is selected.

Fδk : Rn → RKk such that (Fδk )i = Fj , j ∈ Xk is built.
If Xk = {2, 5, 7} then Fδk = [F2;F5,F7]T .

fδk (x) = 1
2‖Fδk (x)‖2 → can be improved considering more

observations, i.e. increasing Kk .
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We propose a Levenberg-Marquardt method.

Algorithm : k-th iteration

1 Step computation: define the LM model

min
p∈Rn

mk(xk + p) =
1

2
‖Fδk (xk) + Jδk (xk)p‖2 +

1

2
λk‖p‖2,

and compute the step pLMk .

2 Check the noise level. If noise is too high reduce it.

3 Step acceptance based on ρδkk (pLMk ) =
fδk−1

(xk )−fδk (xk+pLMk )

mk (xk )−mk (xk+pLMk )
.

4 Regularization parameter update.
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1) The step

The step is the solution of the linearized least squares subproblem:

min
p∈Rn

mk(xk + p) =
1

2
‖Fδk (xk) + Jδk (xk)p‖2 +

1

2
λk‖p‖2,

where λk is an appropriately chosen regularization parameter.

This is equivalent to:

(Jδk (xk)T Jδk (xk) + λk I )pk = −gδk (xk)

+rk .

Large scale problems: an inexact step is computed.

For a residual, ‖rk‖ ≤ εk‖gδk‖ with εk small enough, the step
achieves the Cauchy decrease:

mk(xk)−mk(xk + p) ≥ θ

2

‖gδk (xk)‖2

‖Jδk (xk)‖2 + λk
, θ > 0.

which is sufficient to get global convergence.
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2) Noise control

The optimization process starts with a given noise level δ = δ0

depending on |X0|.
Noise control: our method relies on a mechanism to control the
noise: if it is judged to be too large it is reduced.

We assume to have access to function and gradient values at every
accuracy level.

The noise is driven to zero along the optimization process.

Assumption

It exists K̄ > 0 and δk ≥ 0, such that:

|fδk (x)− f (x)| =

∣∣∣∣12‖Fδk (x)‖2 − 1

2
‖F (x)‖2

∣∣∣∣ ≤ δk ,
‖g(x)− gδk (x)‖ ≤ K̄δk .
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2) Noise control

Given the noise level δk , in [Trust region methods, Conn, Gould,
Toint] this condition is used:

δk ≤ η0[mk(xk)−mk(xk + pLMk )],

with η0 appropriately chosen, to ensure a true reduction in the
noise-free objective function f .

mk(xk)−mk(xk + pLMk ) = O(λk‖pLMk ‖2).

Noise control:
δk ≤ κdλαk ‖pLMk ‖2,

for suitable constants κd > 0 and α ∈
[

1
2 , 1
)
.

The noise tends to zero:

lim
k→∞

λk‖pLMk ‖2 = 0.
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3) Step acceptance

Step acceptance based on ratio between actual and predicted reduction:

ρδkk (pLMk ) =
fδk−1

(xk)− fδk (xk + pLMk )

mk(xk)−mk(xk + pLMk )
.

1 If ρδkk (pLMk ) ≥ η1, accept the step xk+1 = xk + pLMk ,

2 Otherwise reject the step xk+1 = xk .
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4) Parameter update

The parameter update is inspired by [Bergou, Gratton, Vicente, 2016] and
[Bandeira, Scheinberg, Vicente, 2014].
Given γ > 1

Successful step:

λk+1 =

{
min{γλk , λmax} if ‖gδk (xk)‖ < η2/λk ,
λk if ‖gδk (xk)‖ ≥ η2/λk .

Unsuccessful step:
λk+1 = γλk .

We increase the parameter even in case of successful iterations.

‖g(xk )‖
(1+ck ) ≤ ‖gδk (xk)‖ ≤ ‖g(xk )‖

(1−ck ) , with ck = O

(
1

λ
1−α/2
k

)
.
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Theoretical results

Assumptions

Assumption 1:
Function f is continuously differentiable, and it exists κJ > 0 such
that for all k ≥ 0 and all x ∈ [xk , xk + pLMk ], ‖Jδ(x)‖ ≤ κJ .

Assumption 2: f has Lipschitz continuous gradient:
‖g(x)− g(y)‖ ≤ L‖x − y‖ for all x , y ∈ Rn.
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Global Convergence

Let the residual be small enough, i.e. rk satisfies ‖rk‖ ≤ εk‖gδk‖, with

εk ≤ min

{
θ1

λαk
,

√
θ2

λk
‖Jδk (xk)‖2 + λk

}

where θ1 > 0, θ2 ∈
(
0, 1

2

]
and α ∈

[
1
2 , 1
)
.

Lemma

The sequences {δk} and {xk} generated by the Algorithm are such that

lim
k→∞

δk = 0, lim
k→∞

‖g(xk)‖ = 0.
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Local convergence

Asymptotic step behaviour

The LM step asymptotically tends to the direction of the negative
perturbed gradient:

lim
k→∞

(pLMk )i +
θ

κ2
J + λk

(gδk (xk))i = 0 for i = 1, . . . , n,

where (·)i denotes the i-th vector component.

Lemma

Let pSDk = − θ
κ2
J+λk

gδk (xk). If xk̄ ∈ Br (x∗) and λk̄ big enough,

‖xk+1 − x∗‖ < ‖xk − x∗‖, for all k ≥ k̄ .

‖xk − x∗‖ tends to zero.
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Complexity analysis

Assumption

Let assume that the procedure is stopped when ‖gδk (xk)‖ ≤ ε.

The number of successful iterations N1 is bounded above by:

N1 ≤ fδks−1
(xks )

2

η1

κ2
J + λmax

θε2
= O(ε−2).

The number of unsuccessful iterations N3 is bounded above by a
constant independent of ε:

N3 ≤
log λmax

λ0

log γ
.

Complexity

Standard Levenberg-Marquardt methods complexity is preserved:

NT = O(ε−2),

Elisa Riccietti (DIMAI - UNIFI) Vancouver, 22-25 May 2017 18 / 38



Numerical Results

Test problems

We consider two problems of the form

min
x∈Rn

f (x) =
1

2
‖F (x)‖2 +

1

2
‖x‖2 =

N∑
j=1

Fj(x)2 +
1

2
‖x‖2,

with Fj : Rn → R, for j = 1, . . . ,N, N total number of samples.

P1: Data assimilation problem

P2: Machine learning problem
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Approximations

Function approximations built through a random subsampling.

Jδk (x) ∈ RKk×n is the Jacobian matrix of Fδk (x).

gδk ∈ Rn the gradient of fδk .

Linear algebra phase

CG method.

‖rk‖ ≤ 10−1‖gδk (xk)‖
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Performance evaluation criteria

We compare subsampled Levenberg-Marquardt method (SSLM) and full
Levenberg-Marquardt method (FLM) (Kk = N,∀k).

Cost counters

We evaluate savings arising from the employment of the noise control
strategy.

costf weighted counter of function evaluations costs
(if |Xk | = N cost=1, if |Xk | = Kk cost=Kk/N.) → savef savings in
function evaluations.

costp weighted counter of products costs
(if |Xk | = N cost=1, if |Xk | = Kk cost=Kk/N.) → savep savings in
products.
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Given the current sample set Xk , s.t. |Xk | = Kk .

Noise update

Given the step, check the noise: δk ≤ κdλαk ‖pLMk ‖2?
If not, repeat:

1 Increase the samples set size: |Xk+1| = K∗|Xk |.
2 Recompute function, Jacobian and gradient.

3 Need to check condition again → Need to recompute the step:
(Jδk (xk)T Jδk (xk) + λk I )pk = −gδk (xk) + rk .

→ Resulting samples set size: |Xk+1| = Knk
∗ |Xk |.

Parameters affecting the cost

δk ≤ κdλαk ‖pLMk ‖2.

K0 cardinality of the starting sample set.

|Xk+1| = Knk
∗ |Xk |.
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P1: Data assimilation problem

Nonlinear wave equation:

∂2u(z , t)

∂t2
− ∂2u(z , t)

∂z2
+ µeνu = 0,

u(0, t) = u(1, t) = 0,

u(z , 0) = u0(z),
∂u(z , 0)

∂t
= 0,

0 ≤ t ≤ T , 0 ≤ 0 ≤ 1.

We look for the initial state u0(z), from the knowledge of
observations u(zi , tj), tj > 0.

We consider a mesh involving n = 360 grid points for the spatial
discretization and Nt = 64 for the temporal one.

We assume to have an observation at each grid point:
N = n × Nt = 23040.
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P1: Data assimilation problem

It is possible to recover u0(z) solving the following data assimilation
problem:

min
x∈Rn

1

2
‖x − xb‖2

B−1 +
1

2

Nt∑
j=0

‖Hj(x(tj))− yj‖2
R−1
j

‖x‖2
M = xTMx for a symmetric positive definite matrix M,

xb ∈ Rn is the background vector (a priori estimate)

yj ∈ Rmj is the vector of observations at time tj , mj ≤ n.

Hj is the operator modelling the observation process at tj

x(tj) the state vector, solution of the nonlinear model at time tj .
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P1: Data assimilation problem

Background vector and observations from a chosen initial true state
by adding noise N(0, σ2

b) and N(0, σ2
o) with σb = 0.2, σo = 0.05.

Covariances matrices are diagonal: B = σ2
bIn and Rj = σ2

o Imj ∀j .
Least-squares problem reformulation:

F (x) =


1
σo

(H0(x(t0))− y0)
...

1
σo

(HNt (x(tNt ))− yNt )


where (Hj(x(tj))− yj) ∈ Rmj for j = 1, . . . ,Nt .

Kept K∗ = 1.5 fixed, we study the effect of κd , depending on K0.
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P1: effect of κd

K0 = 2000 FLM SSLM
K∗ = 1.5 κd = 1 κd = 10 κd = 100 κd = 1000 κd = 10000
it 9 11 12 12 12 11
CGit 2.4 5.4 4.9 4.2 4.2 3.9
costf 10 9.7 6.1 3.3 3.2 2.0
costp 67 46.1 26.8 14.9 13.5 10.3
|Xit| 23040 15188 6750 3000 3000 2000
RMSE 1.2e-2 3.0e-2 2.8e-2 3.8e-2 4.4e-2 7.8e-2
savef 3% 39% 67% 68% 80%
savep 31% 60% 78% 80% 85%
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P1: savings vs solution accuracy

K0 = 5000 FLM SSLM
K∗ = 1.5 κd = 1 κd = 10 κd = 100 κd = 1000 κd = 10000
it 9 11 11 12 12 12
CGit 2.4 4.1 3.9 4.0 4.1 3.7
costf 10 9.1 6.5 5.1 4.9 3.6
costp 67 54.8 37.2 34.6 32.9 27.3
|Xit| 23040 16875 11250 7500 7500 5000
RMSE 1.2e-2 2.7e-2 3.0e-2 2.1e-2 2.1e-2 2.7e-2
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P1: solution approximations
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P2: Machine learning problem

Binary classification problem: {(z i , y i )} with z i ∈ Rn, y i ∈ {−1,+1}
and i = 1, . . . ,N.
Training objective function: logistic loss with l2 regularization

f (x) =
1

2N

N∑
i=1

log(1 + exp(−y ixT z i )) +
1

2N
‖x‖2.

Least-squares form:

F (x) =
1

N


√

log(1 + exp(−y1xT z1))
...√

log(1 + exp(−yNxT zN))

 .
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P2: machine learning problem

Approximations to f are built as:

fδk (x) =
1

2Kk

∑
i∈Xk

log(1 + exp(−y ixT z i )) +
1

2Kk
‖x‖2.

We consider the CINA dataset [http://www.causality.inf.ethz.ch/data/
CINA.html], for which n = 132, N = 16033 for the training set,
Ñ = 10000 for the testing set.

Noise control condition parameters

K0 = 132.

κd = 10.

We study the effect of K∗.
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FLM SSLM
K∗ = 1.1 K∗ = 1.5 K∗ = 2 K∗ = 2.5 K∗ = 3 K∗ = 3.5

it 52 82 43 38 39 34 53
CGit 5.7 8.5 8.0 7.5 7.3 7.2 5.5
costf 53 19.8 14.1 15.9 21.2 16.5 37.7
costp 808 671.2 351.3 316.7 400.7 310.4 521.1
RMSE 6.0e-2 1.0e-1 6.6e-2 5.4e-2 4.7e-2 4.1e-2 3.9e-2
savef 63% 74% 70% 60% 69% 29%
savep 17% 56% 61% 50% 62% 35%
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THANK YOU FOR YOUR ATTENTION!
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Additional Assumption

Let f be twice differentiable in an open set containing L,

H(x∗) � 0, H Hessian matrix of f ,

‖H(x)− H(y)‖ ≤ M‖x − y‖ for all x , y ∈ L,

0 < l ≤ L <∞ such that l In � H(x∗) � L In with In the identity
matrix of size n.
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We estimate the noise in the following way:

δk '
√

2(N − Kk)

Kk
, with Kk = |Xk |.

If the components Fi (x) of F (x) were Gaussian,
∑N−Kk

i=1 Fi (x)2 would

follow a Chi-squared distribution with standard deviation
√

2(N − Kk).

k

0 5 10 15 20 25 30 35 40

δ
k

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

estimated δ
k

approximated δ
k

Solver it CGit costf costp |Xit| err ete

SSLMest 38 7.5 15.9 316.7 16000 5.4e-2 0.187
SSLMappr 37 7.4 17.7 318.1 16000 5.7e-2 0.186
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Model

k
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Noisy vs exact gradient

For λk sufficiently large it exists ck ∈ (0, 1) such that

‖g(xk)‖
(1 + ck)

≤ ‖gδk (xk)‖ ≤ ‖g(xk)‖
(1− ck)

, with ck =
2K̄
√
κd

λ
1−α/2
k

.

Gradient approximation

For λk large → ‖gδk (xk)‖ ' ‖g(xk)‖.
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The quality of the approximations of f and g at x depends on the distance
max{‖Fδ(x)− F (x)‖, ‖Jδ(x)− J(x)‖}, as follows:

|fδk (x)− f (x)| ≤ 1

2
‖Fδ(x)− F (x)‖

N∑
j=1

|Fj(x) + (Fδ)j(x))|,

‖g(x)− gδk (x)‖ ≤ ‖Jδ(x)− J(x)‖‖F (x)‖+ ‖Jδ(x)‖‖Fδ(x)− F (x)‖.

Then, we can assume that there exist K̄ ≥ 0 and δk ≥ 0, such that at
each iteration k uniformly in x :

|fδk (x)− f (x)| =

∣∣∣∣12‖Fδk (x)‖2 − 1

2
‖F (x)‖2

∣∣∣∣ ≤ δk , (1)

‖g(x)− gδk (x)‖ ≤ K̄δk . (2)

We will refer to δk as to the noise level.
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