Harnessing inexactness
in scientific computing

Lecture 9:
low-rank approximations

Theo Mary (CNRS)
theo.mary@lip6.fr

https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon)
elisa.riccietti@ens-lyon.fr
https://perso.ens-1lyon.fr/elisa.
riccietti/

M2 course at ENS Lyon, 2024-2025
Slides available on course webpage

theo.mary@lip6.fr
https://perso.lip6.fr/Theo.Mary/
elisa.riccietti@ens-lyon.fr
https://perso.ens-lyon.fr/elisa.riccietti/
https://perso.ens-lyon.fr/elisa.riccietti/

N

40

Introduction

QR decomposition methods
Randomization

Mixed precision
Gram-based QR/LRA

Final project

Introduction

Rank and numerical rank

In the following, B is a dense matrix of size m x n with m > n.

Definition (Rank)
The rank k of B is defined as the smallest integer such that there exist matrices X and
Y of size m x k and n x k such that

B=XY'.

Definition (Numerical rank)

The numerical rank k; of B at accuracy ¢ is defined as the smallest integer such that
there exists a matrix B of rank k. such that

IB—B| <e.

4/40

Truncated SVD

Theorem (Eckart-Young)

Let ULV be the SVD decomposition of B and let us note o; = Y its singular
values. Then B = U1.m 1:kX1:k,1:k VlTn,l:k is the optimal rank-k approximation of B and

HB - '§||2 = Ok+1-

Remark: in || - |2,

ks = min Ok+1 <e.
1<k<min(m,n)

5/40

Truncated SVD

Theorem (Eckart-Young)

Let ULV be the SVD decomposition of B and let us note o; = Y its singular
values. Then B = U1.m 1:kX1:k,1:k VlTn,l:k is the optimal rank-k approximation of B and

HB - '§||2 = Ok+1-

Remark: in || - |2,
ke = 1§kgT1ii2(m,n) Tht1 < €.
A =1Up Us T, V2T

5/40

Truncated SVD

Theorem (Eckart-Young)

Let ULV be the SVD decomposition of B and let us note o; = Y its singular
values. Then B = U1.m 1:kX1:k,1:k VlTn,l:k is the optimal rank-k approximation of B and

HB - '§||2 = Ok+1-

Remark: in || - |2,
ke = min o <e.
© 1<k<min(m,n) ktl =
v’
A - U1

5/40

Low-rank matrices

6/40

If k- = min(m, n) then B is said to be full-rank, otherwise it is rank-deficient. A class
of rank-deficient matrices of particular interest are low-rank matrices.

Definition (Low-rank matrix)

B is said to be low-rank (for a given accuracy ¢) if its numerical rank k; is small
enough such that its rank-k. approximation B = XY T requires less storage than the
full-rank matrix B, i.e., if

ks(m+ n) < mn.

In that case, B is said to be a low-rank approximation of B and ¢ is called the low-rank
threshold.

In the following, for the sake of simplicity, we refer to the numerical rank of a matrix at
accuracy ¢ simply as its “rank”.

Computing low-rank approximations

How to compute a low-rank approximation?

e Optimal truncated SVD costs O(mn?) flops, with a big constant in the O() = too
expensive for large matrices.

7/40

Computing low-rank approximations

How to compute a low-rank approximation?

e Optimal truncated SVD costs O(mn?) flops, with a big constant in the O() = too
expensive for large matrices.

e Can rely instead on QR factorization.

Ry
Q1 @ X R> [A— QR1] < [[Ral

7/40

Computing low-rank approximations

How to compute a low-rank approximation?

e Optimal truncated SVD costs O(mn?) flops, with a big constant in the O() = too
expensive for large matrices.

e Can rely instead on QR factorization. The factorization need not be computed
entirely but can actually be truncated:

Ry
Q x Ak 1A= QiR < [A¥|
Because ||A¥|| is monotonically decreasing for k = 1, ..., n, the factorization can be

interrupted as soon as ||AX|| < e.

7/40

Computing low-rank approximations

How to compute a low-rank approximation?

e Optimal truncated SVD costs O(mn?) flops, with a big constant in the O() = too

expensive for large matrices.

e Can rely instead on QR factorization. The factorization need not be computed
entirely but can actually be truncated:

Ry
Q x Ak 1A= QiR < [A¥|
Because ||A¥|| is monotonically decreasing for k = 1, ..., n, the factorization can be

interrupted as soon as ||AX|| < e.

e However, is the computed k close to the numerical rank k., i.e., are such methods

rank-revealing ?

7/40

QR decomposition methods

Gram—=Schmidt

e The Gram—Schmidt computes an orthonormal basis @ of the columns of a matrix

A e RMxn
Classical (CGS) Modified (MGS)
for j=1: ndo QA=A
qj = aj for j=1: ndo
forizl:j—ldo rjj:”quz
rj = q 3 qj = q;/1jj
qj = qj — rijqi fori=j+1: ndo
end for ri = q/ qj
rij = llgill2 qi = qi = 1jiq;
qj = qj/rjj end for
end for end for

 However, unstable in finite precision: ||/ — QT Q| is of order x(A)?u for CGS and
k(A)u for MGS

* Flop count ~ > 7, 4m(n — j) ~ 2mn?
9/40 o MATLAB demo

Householder transformation

Householder transformations are defined as H = | — 2vv ' where ||v|, = 1

Given a column vector x, we can use a Householder transformation to zero out all
its coefficients except the first, i.e., transform it into a multiple of e;

, then Hx = s||x||e1

Indeed, define w = x — s||x||2e; where s = +1 and v = w/||w|

s = 41 chosen to avoid cancellation

10/40

Householder QR

R=A

Q :./ e Householder QR successively applies

forj=1:n .d° _ Householder transformations to zero out all
a=[[A(j: m,j)l2 subdiagonal coefficients of A

s = —sign(A(/,))
w=A(: m,j)— sae
v=w/|wl2
H=1-2wT"
R(: m,j:n)y=H-R(: m,j: n)
Q(l: m,j:n)=Q(l: mj: n)-H
end for
o Numerically stable: ||/ — QT Q|| = O(u) regardless of x(A)

* Flop count ~ > 7 ; 4(m — j)(n —j) ~ 2mn? — 2n3/3 without forming @, extra
2mn? for forming @
11/40 ¢ MATLAB demo

e We obtain R=H,---H>-H; - A and
Q=1-Hi-Hy---H,. Alternatively, need
not form @ which can be implicitly
represented by storing the H; transforms

Truncated Householder QR

e Householder QR factorization can be stopped after k steps, yielding truncated
(rank-k) factors

e Assuming k < n, flop count becomes ~ 4mnk

e How to ensure that k is close to the numerical rank 7 = use column pivoting to
choose the best column at each step

12/40

Householder QR with column pivoting (QRCP)

k Atstepk=1,...,n

— 4l

13/40

Householder QR with column pivoting (QRCP)

4l

13/40

Atstepk=1,...,n

1. select column j of largest norm

Householder QR with column pivoting (QRCP)

Atstepk=1,...,n

IR 1. select column j of largest norm

X
—~

== ———— ———————————_
,>
N

e = |- -]

2. permute columns k and j

13/40

Householder QR with column pivoting (QRCP)

k Atstepk=1,...,n
— IR 1. select column j of largest norm
LLH ; 2. permute columns k and j

3. reduce column k via Householder transform

13/40

Householder QR with column pivoting (QRCP)

k Atstepk=1,...,n

— IR 1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

13/40

Householder QR with column pivoting (QRCP)

13/40

4l

Atstep k=1,...,n

1.

AN

select column j of largest norm

permute columns k and j

reduce column k via Householder transform
update trailing submatrix (at least row k)

update column norms

How? At step k, we remove row k, hence

k+1 k
1215 = 112113 - 2,
Risk of heavy cancellation in finite precision!

Householder QR with column pivoting (QRCP)

Atstep k=1,...,n
\ 1. select column j of largest norm

permute columns k and j

reduce column k via Householder transform

update trailing submatrix (at least row k)

AN

update column norms

How? At step k, we remove row k, hence
k41 k
1215 = 112113 - 2,

Risk of heavy cancellation in finite precision!

e This is a BLAS-2 algorithm. Partial block version exists but still poor
computational efficiency and parallelization.

e MATLAB demo
13/40

Randomization

14/40

Randomized projection methods

15/40

Let A€ R™" and let Q € R™** be a random Gaussian matrix (w;j ~ N(0,1))

Let B = AQ. A and B have the same range. Moreover, since the columns of € are
independent, it is likely that the columns of B are also linearly independent.

Let @ = qr(B) and let £ = k + p. Then we have

. PERY: . 1/2

i>k

if p> k (£ > 2k), the rank-¢ approximation A~ Q(QTA) is nearly as good as the
best rank-k approximation. Moreover, taking small p (e.g., £ = k + 5) is sufficient
to get a good approximation up to constants.

Fixed-rank randomized LRA

Input: A€ R™*" rank k, oversampling p

From the rank-¢ approximation Output: X € R™*K Y € R"™K such that A~ XY T
AR Q_(QT_A)’ a rank-k Q < randn(n, k + p)
approximation XY 7 can be B AQ
efficiently recovered with the Q « qr(B)
following algorithm. C ATQ
[3) Halko, Martinsson, Tropp (2011) 7y T LRA(C k)

X+ QZ

e Matrix multiplication is the bottleneck
= BLAS-3, very efficient!

o Cost:
o Matrix products: 4mn/ flops e Can be applied to AT to interchange m and n
o QR: O(m(?) flops e Can use a structured Q (sparse, FFT, ...) to

© LRA: O(nfk) flops reduce the flop count of the matmul

16,40 e MATLAB demo

https://doi.org/10.1137/090771806

Fixed-accuracy randomized LRA

) _ Input: A € R™*", tolerance ¢, block size b
e In practice k is often not known: we'd rather Output: X € R™K Y € R"™K sych that

choose a target accuracy € and let the A~ XYT
algorithm find k.. This can be accomplished
by adapting the algorithm as follows.

Initialize @ and B to empty matrices.

) . repeat
[3) Martinsson and Voronin (2016) Q « randa(n, b)
e The choice of the block size b presents a Y — AQ ’
tradeoff between efficiency and risk of Qb =qr(Y — Q(QTY))
“overshooting” the rank B, = QbTA
e Here, Q is orthonormalized with block MGS Q « [Q Q]
 Flop count ~ 6mngq, where g ~ b x [k/b]. B« [B]
Increased constant (6 instead of 4) due to By
the need to downdate A to keep track of the A — A= QbBs
error norm. until [|A|| <e

ZY'T = truncSVD(B,)
MATLAB d ’
17/20 emo X=QZ

https://doi.org/10.1137/15M1026080

QR with randomized pivoting (QRRP)

Alternatively, randomization can be used to
S efficiently select the pivots in Householder QR.
[Martinsson et al. (2017) [2) Duersch and Gu (2017)
LLL‘ Compute a sample S = QA using a random matrix
Q. Atstepk=1:b:n

18/40

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

18/40

T

Alternatively, randomization can be used to

efficiently select the pivots in Householder QR.

[Martinsson et al. (2017) [2) Duersch and Gu (2017)

Compute a sample S = QA using a random matrix

Q. Atstepk=1:b:n

1. compute QR of S with B-G pivoting to select
the “best” b columns

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

Alternatively, randomization can be used to
S efficiently select the pivots in Householder QR.
[Martinsson et al. (2017) [2) Duersch and Gu (2017)
Compute a sample S = QA using a random matrix
Q. Atstepk=1:b:n
1. compute QR of S with B-G pivoting to select
the “best” b columns

e TN O 2. permute the selected columns upfront

18/40

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

18/40

T

Alternatively, randomization can be used to

efficiently select the pivots in Householder QR.

[Martinsson et al. (2017) [2) Duersch and Gu (2017)

Compute a sample S = QA using a random matrix

Q. Atstepk=1:b:n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

18/40

~

Alternatively, randomization can be used to
efficiently select the pivots in Householder QR.

[Martinsson et al. (2017) [2) Duersch and Gu (2017)
Compute a sample S = QA using a random matrix
Q. Atstepk=1:b:n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront
3. reduce b columns via Householder transform

4. update trailing submatrix

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

18/40

~

Alternatively, randomization can be used to
efficiently select the pivots in Householder QR.

[Martinsson et al. (2017) [2) Duersch and Gu (2017)
Compute a sample S = QA using a random matrix

Q.
1.

AN

Atstepk=1:b:n

compute QR of § with B-G pivoting to select
the “best” b columns

permute the selected columns upfront

reduce b columns via Householder transform
update trailing submatrix

update S

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

Alternatively, randomization can be used to
efficiently select the pivots in Householder QR.
[Martinsson et al. (2017) [2) Duersch and Gu (2017)

Compute a sample S = QA using a random matrix
Q. Atstepk=1:b:n

1. compute QR of S with B-G pivoting to select
the “best” b columns

permute the selected columns upfront
reduce b columns via Householder transform
update trailing submatrix

update S

AN

A High efficiency and parallelization

A Norm of the trailing submatrix is indirectly available through the sample:

18/40 |Isi|l = V/b||aj|| works well in practice

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

Mixed precision

19/40

Adaptive precision low rank compression
U Bl

VT

20/40

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression
U b, Us B pu

VlT precision uy
V2T precision u»
(VAR recision u

3 P 3

¢ Adaptive precision compression: partition U and V into g groups of decreasing
precisions 1y < e < <...< Ug
(3 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2022)

20/40

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression
U b, Us B pu

VlT precision uy
V2T precision u»
(VAR recision u

3 P 3

¢ Adaptive precision compression: partition U and V into g groups of decreasing
precisions 1y < e < <...< Ug
(3 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2022)

e Why does it work? B = B + By + 25 with [Bj| < O(||Z|)

20/40

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression
U b, Us B pu

VlT precision uy
V2T precision u»
elu ..
/12 V3T precision u3

e/us

¢ Adaptive precision compression: partition U and V into g groups of decreasing
precisions 1y < e < <...< Ug
(3 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2022)

e Why does it work? B = B; + By + B4 with |B;| < O(||Z]|)

e With p precisions and a partitioning such that [|Z4|| < ¢ B/ ux,
1B = U.X Ve S (20— 1)e| B

20/40

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression

UWlr Us g T

VlT precision uy
T - .
v, precision u»
elu ..
/12 V3T precision u3
€
e/us

¢ Adaptive precision compression: partition U and V into g groups of decreasing
precisions 1y < e < <...< Ug
(3 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2022)

e Why does it work? B = B; + By + B4 with |B;| < O(||Z]|)

e With p precisions and a partitioning such that [|Z4|| < ¢ B/ ux,
HB - UEZEVEH 5 (2P - 1)5HBH

e Applicable to any LRA decomposition with rank-1 components of decaying norm (in

b0/40 Pparticular, QRCP)

https://doi.org/10.1093/imanum/drac037

Examples of spectrum

Both matrices have e-rank 30 (with ¢ = 107%) but present very different potential for

mixed precision

100 T T T T 10° m

102 102

104 104

10°¢ 106

10°® 108

£

10710 F 10710

10712 F 10712

10714 R L R U B R R R i s S R B R i G BT S R S

0 20 40 60 80 100 20 40 60 80 100
No gain

Large gain

(almost all in lower precision) (all in higher precision)

21/40

Examples of spectrum

Log-linear spectrum

10° (s

10'10 L

fp64 fp32

10°18 . . .)
0 20 40 60 80 100

21/40

Householder QR in finite precision

Let's assume a sequence of Householder transforms H' i = 1,..., k computed and
applied in precision u to a vector b = b°

bt = HY(O+ AbY), IAB0 < mul|b]

22/40

Householder QR in finite precision

Let's assume a sequence of Householder transforms H' i = 1,..., k computed and
applied in precision u to a vector b = b°

B = HU(B+AK), AR < mullt
b= H(@®'+Ab), a6 < mulb Y
b= HABF4 ALK, AR < mubkY|

22/40

Householder QR in finite precision

Let's assume a sequence of Householder transforms H' i = 1,..., k computed and
applied in precision u to a vector b = b°

bt = HYL + AbY), 1AL < mul[Bl] = mulb]|
b= H(@O '+ abh), AV < mulB Y = mulb]
b = HK(BFT4ABY), ALY < mullBAY| = mullb|

In conclusion R
bk = HX ... HY(b+ Ab), || Ab|| < kmul|b||

22/40

Householder QR in finite precision

Let's assume a sequence of Householder transforms H' i = 1,..., k computed and
applied in precision u to a vector b = b°

bl = H(bO+ AK0), IAB0]| < mulb] = mulb]
b= H(bB " + A, AN < mulBY = mulb|
b = HK(bRL4 ABFY), ABKTY| < mu|[BFY = mulb|

In conclusion R
bk = HX ... HY(b+ Ab), || Ab|| < kmul|b||
and, consequently,

IA— QR|| < cmnul| Al (Higham, Chap. 19)
22/40

Householder QR in finite precision

In the specific case of the QR factorization, the H transforms have a peculiar structure:

i—-1 Ti—1
HiBi_l — [! _ ib\l_ll—l]
H' bi:m

and, therefore,

1AL < (m = i)ullbiz, |

m

23/40

Householder QR in finite precision

23/40

In the specific case of the QR factorization, the H transforms have a peculiar structure:

i-1 Ti-1
Hipi-1 — ! _ ibj:i—l
AL s

and, therefore,

1AL < (m = i)ullbiz, |

m

Introducing mixed precision R

Because all the H' and H' are unitary transformations, bﬁan will be monotonically
decreasing for i = 1,..., k — starting at some i u can be increased without
increasing the error

Truncated Householder QR in mixed precision

Theorem

Assume that a truncated QR factorization is computed such that k < n Householder
transformations are computed and applied to a matrix A € R™*" using p different
precisions of increasing unit roundoff u’. Let k' be the number of transformations that
are computed using precision i. The computed R; and Q; satisfy

p p
JA= 3" QR < 1471 + 3 et A

i=1 i=1

where A’ is the trailing submatrix after Zj’;i k; transformations.

[3) Buttari, M., Pacteau (2024)

24/40

https://hal.science/hal-04490215

Truncated Householder QR in mixed precision

Using this result into an algorithm:
1. start the factorization with 1y < ¢

25/40

Truncated Householder QR in mixed precision

Using this result into an algorithm:
1. start the factorization with u; < ¢
2. if after k; transformations ||A?| < e/up]||Al|, switch to prec. o

25/40

Truncated Householder QR in mixed precision

Using this result into an algorithm:
1. start the factorization with u; < ¢
2. if after k; transformations ||A?| < e/up]||Al|, switch to prec. o

3. same for precisions 2, ..., p
Ry
R
QQ
A3

25/40

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u; < ¢

2. if after ky transformations ||A%|| < e/up||Al|, switch to prec. us
3. same for precisions 2, ..., p

4. if after ky + - - - + k, transformations ||APFL|| < ¢||A||, stop

25/40

Truncated Householder QR in mixed precision

Using this result into an algorithm:
1. start the factorization with u; < ¢
2. if after k; transformations ||A?| < e/up]||Al|, switch to prec. o

3. same for precisions 2, ..., p
4. if after ky + - - - + k, transformations ||APFL|| < ¢||A||, stop

|A = QiR — @Ry — O35 < Bel|All

25/40

Experiments: Julia

Phillips, FP64+FP32+BFloatl6, m = n = 2048
T T T

100 | — SVD ||

— diag(R)

1072 -

Error

| | |
1 512 1,024 1,536 2,048

26,40

Experiments: Julia

Phillips, FP64+FP32+BFloatl6, m = n = 2048
T T T

100 | — SVD |

— diag(R)

1072 -

Error

| | |
1 512 1,024 1,536 2,048

26/40

Experiments: Julia

Phillips, FP64+FP32+BFloatl6, m = n = 2048
T T T

100 | — SVD |

— diag(R)

1072 .

Error

| | |
1 512 1,024 1,536 2,048

26,40

Experiments: Julia

Phillips, FP64+FP32+BFloatl6, m = n = 2048
T T T

100 | — SVD ||

— diag(R)

1072 -

Error

| | |
1 512 1,024 1,536 2,048

26,40

With ¢ = 0.04 the rankiis 191[)ut only 13 steps are done in fp32 and the rest in bfl6
(original size is 1057 x 1600)

Experiments: Fortran, performance

phillips, m = n = 8192

0.8
0.6
0.4
0.2

normalized time

10~ 1012 1010 10°8 107°
€

lo fp64 QRCP 00 fp64/fp32 QRCP

In fp64 QRRP 00 fp64/fp32 QRRP

28/40

Gram-based QR/LRA

29/40

Cholesky QR

G+ ATA
RTR = chol(G)
Q=AR!

e The Cholesky QR algorithm computes the QR factorization of A via the Cholesky
factorization of the Gram matrix G = AT A

e Unstable: ||/ — QT Q|| « k(G)u = x(A)?u
e But very efficient, almost entirely BLAS-3. Flop count ~ 2mn® + n3/3

30/40

Cholesky QR

30/40

G+ ATA
RTR = chol(G)
Q =AR!

The Cholesky QR algorithm computes the QR factorization of A via the Cholesky
factorization of the Gram matrix G = AT A

Unstable: ||/ — QT Q|| « k(G)u = x(A)?u
But very efficient, almost entirely BLAS-3. Flop count ~ 2mn? + n3/3

CholQR2: even when Q is far from orthonormal, it can still be well conditioned, i.e.,
#(Q) < k(A). An idea is thus to reapply CholQR to Q. Then ||/ — QT Q|| o u
provided that k(A)%u < 1.

MATLAB demo

Mixed precision Cholesky QR

[Yamazaki et al. (2015) :

1. B=ATAin precision up;gy,

2. Cholesky factorization: RT R = B in precision Unigh
3. Q@ = AR~ in precision uiyy,

e Roughly half of the flops in precision uj,y, but greater
fraction in time

Number of columns=20 (n)

Normalized time
8 2 & & 8 8 §

(a) d-CholQR time breakdown.

* QT Q — 1| = O(k(A)? thigh + £(A)tiow)
31/40 = if K(A) > Uiow/ Unigh NO impact on stability

https://epubs.siam.org/doi/abs/10.1137/14M0973773

Mixed precision Cholesky QR

[Yamazaki et al. (2015) :
1. B=ATAin precision up;gy,

2. Cholesky factorization: RT R = B in precision upgp, Application to
— Ap-1; i . -
3. Q = AR in precision ujoy communication-avoiding
e Roughly half of the flops in precision uj,y, but greater E"'C\AA_GIMQRESSMW
fraction in time N

Number of columns=20 (n)

26082

8 8

Nomalized time
- 288 2 5 8 8
Normalized Time

S 1K 150K 20K 25
Number of rows (m)

(a) d-CholQR time breakdown.
* QT Q — 1| = O(k(A)? thigh + £(A)tiow)
31/40 = if K(A) > Uiow/ Unigh NO impact on stability

GMRES 0-GEMM 1-GEMM _ 0-SYRK d-SYRK

https://epubs.siam.org/doi/abs/10.1137/14M0973773

SVD QR

32/40

G+ ATA

UZVT = svd(G)
QR = qr(SY72UT)
Q=AR!

In CholQR(2), Cholesky breaks down if G becomes indefinite, i.e., when
K(A)2u > 1
This issue can be circumvented by replacing Cholesky by SVD

Useful when combined with repeated orthonormalization (e.g., SVDQR2), since this
allows to successfully orthonormalize A even when x(A)?u > 1

MATLAB demo

Randomized Cholesky QR

Q < randn(n, m)
S+ QA
QsRs < qr(S)

A+ ARS?
QR < cholQR(A)

Use random projection to inexpensively compute an n-dimension QR factorization
QsRs

Use Rs to precondition A: k(A) = k(ARg') < K(A)

Apply CholQR (or any of its variants) to A

The R-factor of A can be recoved as RRs if needed
[3) Balabanov (2022) [2) Garrison and Ipsen (2024)

e MATLAB demo

33/40

https://arxiv.org/abs/2210.09953
https://arxiv.org/abs/2406.11751

Gram SVD

e So far we have seen Gram-based algorithms for QR. What about for LRA?
e The SVD of A is closely related to the EVD of G:

A=UzV' = G =vz2vT

e The Gram SVD algorithm Input: A € R™*", rank k or tolerance ¢
exploits this fact by computing Output: X € R™*k Y € R™ such that A~ XY T
the LRA (AVk) x V,T where Vi G« ATA
are the truncated eigenvectors VAVT « eig(G)
of G (singular vectors of A) Truncate V into Vj (such that [[Axi1. || < €2)
X < AVj and Y + V

e Gram SVD is unstable in finite precision. However, despite the fact that
k(G) = k(A)?, we can prove that the computed LRA satisfies [& M. (2024)

|A = (AVi)V,T || < min(k(A)u, Vu)|| Al
34/40 o« MATLAB demo

https://hal.science/hal-04554516

Final project

35/40

e Compute solution to linear system Ax = b
e Ae R™"isill conditioned

Preconditioned iterative method

1. Compute preconditioner M~1 such that M~1 ~ A~ eg.,

o Low precision LU factorization
o Incomplete LU factorization
o Block Low-Rank LU factorization

2. Solve Ax = b via some iterative method (e.g., GMRES) preconditioned by M1,
e.g., with leeft-preconditioning, M~1Ax = M~1b

e Convergence to solution may be slow or fail

= Objective: accelerate convergence
36/40

Key observation

Matrix lund_a (n = 147, k(A) = 2.8e+06)

0 50 100 150 0 50 100 150

SVD of A SVD of A™1

e Often, A is ill conditioned due to a small number of small singular values

° Then,A_lisnunwﬁca”ylowqank
37/40

Key idea
Factorization error might be low-rank?

Assume M = A + AA and consider the error
E=M1TA—I=MYM+AA) -

=M 1AA= ATIAA
Does E retain the low-rank property of A=1?

A novel preconditioner

Consider the preconditioner M) = M(/ + Ei) with Ej a rank-k approximation to E.
e IfE=FE, M =A

e If E ~ Ej for some small k, Mk_1 can be computed cheaply via
Sherman-Morrison-Woodbury formula

38/40

Typical SV distributions of A~! and E

0 100 200 300
k
Matrix cz308

39/40

Typical SV distributions of A~! and E

0 50 100 150 200

Matrix steaml

39/40

Typical SV distributions of A~! and E

0 50 100 150
k
Matrix rajat14

39/40

* Gather some test matrices for which A= is numerically low-rank (you can generate
them randomly, or take a look at Suitesparse collection for real-life problems)

e Prepare a reference solver (suggestion: use MATLAB's gmres) and some reference
preconditioners M (e.g., MATLAB's ilu, or low precision 1u)! (Lecture 9)

e If you use sparse matrices, remember Lecture 6 and look up MATLAB's reordering
tools (e.g., dissect)

e How to compute a rank-k approximation of E 7 Explicitly forming E is not a good
idea! You should rather use a method that only requires matrix—vector multiplies. . .

e Perform some numerical experiments and test the role of k (or ¢), etc.
e Should one build a fixed-rank (k) or fixed-accuracy (¢) LRA of E?

e Should one use left or right preconditioning? (note that My is defined differently in
either case)

e Can refer to [Higham and M. (2019) for some guidance

!Either using MATLAB's single or simulating low precision by computing 1u(A + AA) for a
40/40 random perturbation AA

https://epubs.siam.org/doi/10.1137/18M1182802

	Introduction
	QR decomposition methods
	Randomization
	Mixed precision
	Gram-based QR/LRA
	Final project

