Harnessing inexactness in scientific computing

Lecture 9: low-rank approximations

Theo Mary (CNRS) <theo.mary@lip6.fr> <https://perso.lip6.fr/Theo.Mary/>

Elisa Riccietti (ENS Lyon) <elisa.riccietti@ens-lyon.fr> [https://perso.ens-lyon.fr/elisa.](https://perso.ens-lyon.fr/elisa.riccietti/) [riccietti/](https://perso.ens-lyon.fr/elisa.riccietti/)

M2 course at ENS Lyon, 2024–2025 Slides available on course webpage

[Introduction](#page-2-0)

[QR decomposition methods](#page-12-0)

[Randomization](#page-24-0)

[Mixed precision](#page-35-0)

[Gram-based QR/LRA](#page-61-0)

[Final project](#page-69-0)

[Introduction](#page-2-0)

Rank and numerical rank

In the following, B is a dense matrix of size $m \times n$ with $m \ge n$.

Definition (Rank)

The rank k of B is defined as the smallest integer such that there exist matrices X and Y of size $m \times k$ and $n \times k$ such that

$$
B = XY^{T}.
$$

Definition (Numerical rank)

The numerical rank k_{ε} of B at accuracy ε is defined as the smallest integer such that there exists a matrix B of rank k_{ϵ} such that

$$
||B-\widetilde{B}||\leq \varepsilon.
$$

Truncated SVD

Theorem (Eckart-Young)

Let $U\Sigma V^T$ be the SVD decomposition of B and let us note $\sigma_i = \Sigma_{i,i}$ its singular values. Then $B = U_{1:m,1:k} \Sigma_{1:k,1:k} V_{1:n,1:k}^T$ is the optimal rank-k approximation of B and

$$
||B-\widetilde{B}||_2=\sigma_{k+1}.
$$

Remark: in $\|\cdot\|_2$,

$$
k_{\varepsilon} = \min_{1 \leq k \leq \min(m,n)} \sigma_{k+1} \leq \varepsilon.
$$

Truncated SVD

Theorem (Eckart-Young)

Let $U\Sigma V^T$ be the SVD decomposition of B and let us note $\sigma_i = \Sigma_{i,i}$ its singular values. Then $B = U_{1:m,1:k} \Sigma_{1:k,1:k} V_{1:n,1:k}^T$ is the optimal rank-k approximation of B and

$$
||B-\widetilde{B}||_2=\sigma_{k+1}.
$$

Remark: in $\|\cdot\|_2$,

$$
k_{\varepsilon} = \min_{1 \leq k \leq \min(m,n)} \sigma_{k+1} \leq \varepsilon.
$$

5/40

Truncated SVD

Theorem (Eckart-Young)

Let $U\Sigma V^T$ be the SVD decomposition of B and let us note $\sigma_i = \Sigma_{i,i}$ its singular values. Then $B = U_{1:m,1:k} \Sigma_{1:k,1:k} V_{1:n,1:k}^T$ is the optimal rank-k approximation of B and

$$
||B-\widetilde{B}||_2=\sigma_{k+1}.
$$

Remark: in $\|\cdot\|_2$,

$$
k_{\varepsilon} = \min_{1 \leq k \leq \min(m,n)} \sigma_{k+1} \leq \varepsilon.
$$
\n
$$
\boxed{\Sigma_1}
$$

If $k_e = min(m, n)$ then B is said to be full-rank, otherwise it is rank-deficient. A class of rank-deficient matrices of particular interest are low-rank matrices.

Definition (Low-rank matrix)

B is said to be low-rank (for a given accuracy ε) if its numerical rank k_{ε} is small enough such that its rank- k_{ε} approximation $\widetilde{B} = XY^{T}$ requires less storage than the full-rank matrix B , i.e., if

$$
k_{\varepsilon}(m+n)\leq mn.
$$

In that case, B is said to be a low-rank approximation of B and ε is called the low-rank threshold.

In the following, for the sake of simplicity, we refer to the numerical rank of a matrix at accuracy ε simply as its "rank".

 \bullet Optimal truncated SVD costs $O(mn^2)$ flops, with a big constant in the $O() \Rightarrow$ too expensive for large matrices.

- \bullet Optimal truncated SVD costs $O(mn^2)$ flops, with a big constant in the $O() \Rightarrow$ too expensive for large matrices.
- Can rely instead on QR factorization.

$$
\|A-Q_1R_1\|\leq \|R_2\|
$$

- \bullet Optimal truncated SVD costs $O(mn^2)$ flops, with a big constant in the $O() \Rightarrow$ too expensive for large matrices.
- Can rely instead on QR factorization. The factorization need not be computed entirely but can actually be truncated:

Because $\|A^k\|$ is monotonically decreasing for $k=1,\ldots,n,$ the factorization can be interrupted as soon as $\| A^k \| \leq \varepsilon.$

- \bullet Optimal truncated SVD costs $O(mn^2)$ flops, with a big constant in the $O() \Rightarrow$ too expensive for large matrices.
- Can rely instead on QR factorization. The factorization need not be computed entirely but can actually be truncated:

Because $\|A^k\|$ is monotonically decreasing for $k=1,\ldots,n,$ the factorization can be interrupted as soon as $\| A^k \| \leq \varepsilon.$

• However, is the computed k close to the numerical rank k_{ϵ} , i.e., are such methods rank-revealing ?

[QR decomposition methods](#page-12-0)

Gram–Schmidt

• The Gram–Schmidt computes an orthonormal basis Q of the columns of a matrix $A \in \mathbb{R}^{m \times n}$

Classical (CGS)	Modified (MGS)
for $j = 1: n$ do	$Q = A$
$q_j = a_j$	$q_j = q_j$
for $i = 1: j - 1$ do	$r_{jj} = q_j _2$
$r_{jj} = q_j - r_{ij}q_i$	$q_j = q_j/r_{jj}$
end for	$r_{jj} = q_j _2$
$r_{jj} = q_j _2$	$q_j = q_j - r_{ij}q_j$
$q_j = q_j/r_{jj}$	$q_j = q_j - r_{ji}q_j$
$q_j = q_j/r_{jj}$	$q_j = q_j - r_{ji}q_j$
end for	end for

• However, unstable in finite precision: $\|I-Q^{\mathcal{T}}Q\|$ is of order $\kappa(A)^2u$ for CGS and $\kappa(A)$ u for MGS

• Flop count
$$
\sim \sum_{j=1}^{n} 4m(n-j) \sim 2mn^2
$$

9/40 • MATLAB demo

- Householder transformations are defined as $H = I 2vv^T$ where $||v||_2 = 1$
- Given a column vector x, we can use a Householder transformation to zero out all its coefficients except the first, i.e., transform it into a multiple of e_1
- Indeed, define $w = x s||x||_2e_1$ where $s = \pm 1$ and $v = w/||w||$, then $Hx = s||x||e_1$
- $s = +1$ chosen to avoid cancellation

Householder QR

 $R = A$ $Q = I$ for $j = 1$: n do $\alpha = ||A(j: m, j)||_2$ $s = -\operatorname{sign}(A(j, j))$ $w = A(j: m, j) - s\alpha e_1$ $v = w/||w||_2$ $H - I = 2w^{T}$ $R(i: m, j: n) = H \cdot R(j: m, j: n)$ $Q(1: m, j: n) = Q(1: m, j: n) \cdot H$ end for

- Householder QR successively applies Householder transformations to zero out all subdiagonal coefficients of A
- We obtain $R = H_n \cdots H_2 \cdot H_1 \cdot A$ and $Q = I \cdot H_1 \cdot H_2 \cdots H_n$. Alternatively, need not form Q which can be implicitly represented by storing the H_i transforms

• Numerically stable: $||I - Q^T Q|| = O(u)$ regardless of $\kappa(A)$

- $\bullet\,$ Flop count $\sim \sum_{j=1}^n 4(m-j)(n-j) \sim 2mn^2 2n^3/3$ without forming \emph{Q} , extra 2mn² for forming Q
- 11/40 MATLAB demo
- Householder QR factorization can be stopped after k steps, yielding truncated $(rank-k)$ factors
- Assuming $k \ll n$, flop count becomes $\sim 4mnk$
- How to ensure that k is close to the numerical rank ? \Rightarrow use column pivoting to choose the best column at each step

At step
$$
k = 1, \ldots, n
$$

At step
$$
k = 1, \ldots, n
$$

1. select column j of largest norm

At step
$$
k = 1, \ldots, n
$$

- 1. select column j of largest norm
- 2. permute columns k and j

- At step $k = 1, \ldots, n$
- 1. select column j of largest norm
- 2. permute columns k and j
- 3. reduce column k via Householder transform

- At step $k = 1, \ldots, n$
- 1. select column j of largest norm
- 2. permute columns k and i
- 3. reduce column k via Householder transform
- 4. update trailing submatrix (at least row k)

At step $k = 1, \ldots, n$

- 1. select column i of largest norm
- 2. permute columns k and i
- 3. reduce column k via Householder transform
- 4. update trailing submatrix (at least row k)
- 5. update column norms

How? At step k , we remove row k , hence $\|a_i^{(k+1)}\|$ $\|j^{(k+1)}\|_2^2=\|a_j^{(k)}\|_2^2$ $\int_j^{(k)} \|_2^2 - a_{kj}^2$ Risk of heavy cancellation in finite precision!

At step $k = 1, \ldots, n$

- 1. select column i of largest norm
- 2. permute columns k and i
- 3. reduce column k via Householder transform
- 4. update trailing submatrix (at least row k)
- 5. update column norms

How? At step k , we remove row k , hence $\|a_i^{(k+1)}\|$ $\|j^{(k+1)}\|_2^2=\|a_j^{(k)}\|_2^2$ $\int_j^{(k)} \|_2^2 - a_{kj}^2$ Risk of heavy cancellation in finite precision!

- This is a BLAS-2 algorithm. Partial block version exists but still poor computational efficiency and parallelization.
- MATLAB demo

[Randomization](#page-24-0)

Randomized projection methods

- $\bullet\,$ Let $A\in\mathbb{R}^{m\times n}$ and let $\Omega\in\mathbb{R}^{n\times \ell}$ be a random Gaussian matrix $(\omega_{ij}\sim \mathcal{N}(0,1))$
- Let $B = A\Omega$. A and B have the same range. Moreover, since the columns of Ω are independent, it is likely that the columns of B are also linearly independent.
- Let $Q = \text{qr}(B)$ and let $\ell = k + p$. Then we have

$$
\mathbb{E}(\|A-QQ^{\mathsf{T}}A\|_{\mathsf{F}}) \leq \left(1+\frac{k}{p-1}\right)^{1/2} \left(\sum_{i>k} \sigma_i^2\right)^{1/2}
$$

 \Rightarrow if $p > k$ ($\ell > 2k$), the rank- ℓ approximation $A \approx Q(Q^T A)$ is nearly as good as the best rank-k approximation. Moreover, taking small p (e.g., $\ell = k + 5$) is sufficient to get a good approximation up to constants.

From the rank-ℓ approximation $A \approx Q(Q^TA)$, a rank-k approximation XY^T can be efficiently recovered with the following algorithm.

 \equiv [Halko, Martinsson, Tropp \(2011\)](https://doi.org/10.1137/090771806)

- Cost:
	- Matrix products: 4mnℓ flops
	- \circ QR: $O(m\ell^2)$ flops
	- \circ LRA: $O(n\ell k)$ flops

Input: $A \in \mathbb{R}^{m \times n}$, rank k, oversampling p **Output:** $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{n \times k}$ such that $A \approx XY^T$ $\Omega \leftarrow \text{randn}(n, k + p)$ $B \leftarrow A\Omega$ $Q \leftarrow \text{qr}(B)$ $C \leftarrow A^T Q$ $ZY^{\mathsf{T}} \leftarrow \texttt{LRA}(C, k)$ $X \leftarrow QZ$

- Matrix multiplication is the bottleneck \Rightarrow BLAS-3, very efficient!
- Can be applied to A^T to interchange m and n
- Can use a structured Ω (sparse, FFT, ...) to reduce the flop count of the matmul
- MATLAB demo 16/40

Fixed-accuracy randomized LRA

- In practice k is often not known: we'd rather choose a target accuracy ε and let the algorithm find k_{ϵ} . This can be accomplished by adapting the algorithm as follows. \equiv [Martinsson and Voronin \(2016\)](https://doi.org/10.1137/15M1026080)
- The choice of the block size b presents a tradeoff between efficiency and risk of "overshooting" the rank
- Here, Q is orthonormalized with block MGS
- Flop count \sim 6*mng*, where $q \approx b \times [k/b]$. Increased constant (6 instead of 4) due to the need to downdate A to keep track of the error norm.

• MATLAB demo $17/40$ $X = QZ$

```
Input: A \in \mathbb{R}^{m \times n}, tolerance \varepsilon, block size b
Output: X \in \mathbb{R}^{m \times k}, Y \in \mathbb{R}^{n \times k} such that
A \approx XY^TInitialize Q and B to empty matrices.
    repeat
          \Omega \leftarrow \text{randn}(n, b)Y = A\OmegaQ_b = \text{qr}(Y - Q(Q^TY))B_b = Q_b^T AQ \leftarrow [Q \ Q_b]B \leftarrow \left[ \begin{array}{c} B \\ B \end{array} \right]B_b1
          A \leftarrow A - Q_h B_huntil ||A|| \leq \varepsilonZY^{\mathsf{T}} = \text{truncSVD}(B,\varepsilon)<br>X = QZ
```


Alternatively, randomization can be used to efficiently select the pivots in Householder QR. $\boxed{\triangleq}$ [Martinsson et al. \(2017\)](https://doi.org/10.1137/16M1081270) $\boxed{\triangleq}$ [Duersch and Gu \(2017\)](https://doi.org/10.1137/15M1044680) Compute a sample $S = \Omega A$ using a random matrix $Ω. At step k = 1 : b : n$

1. compute QR of S with B-G pivoting to select the "best" b columns

- 1. compute QR of S with B-G pivoting to select the "best" b columns
- 2. permute the selected columns upfront

- 1. compute QR of S with B-G pivoting to select the "best" b columns
- 2. permute the selected columns upfront
- 3. reduce b columns via Householder transform

- 1. compute QR of S with B-G pivoting to select the "best" b columns
- 2. permute the selected columns upfront
- 3. reduce b columns via Householder transform
- 4. update trailing submatrix

- 1. compute QR of S with B-G pivoting to select the "best" b columns
- 2. permute the selected columns upfront
- 3. reduce b columns via Householder transform
- 4. update trailing submatrix
- 5. update S

- 1. compute QR of S with B-G pivoting to select the "best" b columns
- 2. permute the selected columns upfront
- 3. reduce b columns via Householder transform
- 4. update trailing submatrix
- 5. update S
- High efficiency and parallelization
- ▲ Norm of the trailing submatrix is indirectly available through the sample: $\|s_j\| = \sqrt{b}\|a_j\|$ works well in practice

[Mixed precision](#page-35-0)

• Adaptive precision compression: partition U and V into q groups of decreasing precisions $u_1 \leq \varepsilon < u_2 < \ldots < u_q$ \bigoplus **Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2022)**

- Adaptive precision compression: partition U and V into q groups of decreasing precisions $u_1 \leq \varepsilon < u_2 < \ldots < u_q$ **a** Amestoy, Boiteau, Buttari, Gerest, Jézéguel, L'Excellent, M. (2022)
- Why does it work? $B = B_1 + B_2 + B_3$ with $|B_i| \le O(\|\Sigma_i\|)$

- Adaptive precision compression: partition U and V into q groups of decreasing precisions $u_1 \leq \varepsilon < u_2 < \ldots < u_q$ **a** Amestoy, Boiteau, Buttari, Gerest, Jézéguel, L'Excellent, M. (2022)
- Why does it work? $B = B_1 + B_2 + B_3$ with $|B_i| \le O(\|\Sigma_i\|)$
- With p precisions and a partitioning such that $\|\Sigma_k\| \leq \varepsilon \|B\|/u_k$, $||B - \widehat{U}_{\varepsilon} \Sigma_{\varepsilon} \widehat{V}_{\varepsilon}|| \leq (2p-1)\varepsilon ||B||$

- Adaptive precision compression: partition U and V into q groups of decreasing precisions $u_1 \leq \varepsilon < u_2 < \ldots < u_q$ **a** Amestoy, Boiteau, Buttari, Gerest, Jézéguel, L'Excellent, M. (2022)
- Why does it work? $B = B_1 + B_2 + B_3$ with $|B_i| \le O(\|\Sigma_i\|)$
- With p precisions and a partitioning such that $\|\Sigma_k\| \leq \varepsilon \|B\|/u_k$, $||B - \hat{U}_{\varepsilon} \Sigma_{\varepsilon} \hat{V}_{\varepsilon}|| \leq (2p-1)\varepsilon ||B||$
- Applicable to any LRA decomposition with rank-1 components of decaying norm (in $_{20/40}$ particular, QRCP)

Both matrices have ε -rank 30 (with $\varepsilon=10^{-9})$ but present very different potential for mixed precision

Let's assume a sequence of Householder transforms H^{i} $i=1,\ldots,k$ computed and applied in precision u to a vector $b=b^0$

$$
\widehat{b}^1 = H^1(b^0 + \Delta b^0), \qquad \|\Delta b^0\| \leq m u \|b^0\|
$$

Let's assume a sequence of Householder transforms H^{i} $i=1,\ldots,k$ computed and applied in precision u to a vector $b=b^0$

$$
\begin{aligned}\n\widehat{b}^1 &= H^1(b^0 + \Delta b^0), & \|\Delta b^0\| & \le m u \|b^0\| \\
\widehat{b}^i &= H^i(\widehat{b}^{i-1} + \Delta b^{i-1}), & \|\Delta b^{i-1}\| & \le m u \|\widehat{b}^{i-1}\| \\
\widehat{b}^k &= H^k(\widehat{b}^{k-1} + \Delta b^{k-1}), & \|\Delta b^{k-1}\| & \le m u \|\widehat{b}^{k-1}\| \\
\end{aligned}
$$

Let's assume a sequence of Householder transforms H^{i} $i=1,\ldots,k$ computed and applied in precision u to a vector $b=b^0$

$$
\hat{b}^{1} = H^{1}(b^{0} + \Delta b^{0}), \qquad \|\Delta b^{0}\| \leq mu \|b^{0}\| = mu \|b\|
$$
\n
$$
\hat{b}^{i} = H^{i}(\hat{b}^{i-1} + \Delta b^{i-1}), \quad \|\Delta b^{i-1}\| \leq mu \|\hat{b}^{i-1}\| = mu \|b\|
$$
\n
$$
\hat{b}^{k} = H^{k}(\hat{b}^{k-1} + \Delta b^{k-1}), \quad \|\Delta b^{k-1}\| \leq mu \|\hat{b}^{k-1}\| = mu \|b\|
$$

In conclusion

$$
\widehat{b}^k = H^k \dots H^1(b + \Delta b), \ \|\Delta b\| \leq kmu \|b\|
$$

Let's assume a sequence of Householder transforms H^{i} $i=1,\ldots,k$ computed and applied in precision u to a vector $b=b^0$

$$
\widehat{b}^{1} = H^{1}(b^{0} + \Delta b^{0}), \qquad \|\Delta b^{0}\| \leq mu \|b^{0}\| = mu \|b\|
$$
\n
$$
\widehat{b}^{i} = H^{i}(\widehat{b}^{i-1} + \Delta b^{i-1}), \qquad \|\Delta b^{i-1}\| \leq mu \|\widehat{b}^{i-1}\| = mu \|b\|
$$
\n
$$
\widehat{b}^{k} = H^{k}(\widehat{b}^{k-1} + \Delta b^{k-1}), \qquad \|\Delta b^{k-1}\| \leq mu \|\widehat{b}^{k-1}\| = mu \|b\|
$$

In conclusion

$$
\widehat{b}^k = H^k \dots H^1(b + \Delta b), \ \|\Delta b\| \leq kmu \|b\|
$$

and, consequently,

$$
||A - \widehat{Q}\widehat{R}|| \leq c_{mn}u||A||
$$
 (Higham, Chap. 19)

In the specific case of the QR factorization, the H transforms have a peculiar structure:

$$
H^{i}\widehat{b}^{i-1} = \left[\begin{array}{cc} I^{i-1} \\ & \bar{H}^{i} \end{array} \right] \left[\begin{array}{c} \widehat{b}_{1:i-1}^{i-1} \\ \widehat{b}_{i:m}^{i-1} \end{array} \right]
$$

and, therefore,

$$
\|\Delta b^{i-1}\| \le (m-i)u \|\widehat{b}_{i:m}^{i-1}\|
$$

In the specific case of the QR factorization, the H transforms have a peculiar structure:

$$
H^{i}\widehat{b}^{i-1} = \left[\begin{array}{cc} I^{i-1} \\ & \bar{H}^{i} \end{array} \right] \left[\begin{array}{c} \widehat{b}_{1:i-1}^{i-1} \\ \widehat{b}_{i:m}^{i-1} \end{array} \right]
$$

and, therefore,

$$
\|\Delta b^{i-1}\| \le (m-i)u \|\widehat{b}_{i:m}^{i-1}\|
$$

Introducing mixed precision

Because all the H^i and \bar{H}^i are unitary transformations, $\|\widehat{b}_{i:m}^{i-1}\|$ will be monotonically decreasing for $i = 1, \ldots, k \longrightarrow$ starting at some i u can be increased without increasing the error

Theorem

Assume that a truncated QR factorization is computed such that $k \le n$ Householder transformations are computed and applied to a matrix $A \in \mathbb{R}^{m \times n}$ using p different precisions of increasing unit roundoff u^i . Let k^i be the number of transformations that are computed using precision i . The computed R_i and Q_i satisfy

$$
||A - \sum_{i=1}^p \widehat{Q}_i \widehat{R}_i|| \leq ||A^{p+1}|| + \sum_{i=1}^p c_{mk} u^i ||A^i||.
$$

where A^i is the trailing submatrix after $\sum_{j=1}^{i-1} k_j$ transformations.

 \equiv [Buttari, M., Pacteau \(2024\)](https://hal.science/hal-04490215)

Using this result into an algorithm:

1. start the factorization with $u_1 \leq \varepsilon$

Using this result into an algorithm:

- 1. start the factorization with $u_1 \leq \varepsilon$
- $2.$ if after k_1 transformations $\|{\mathcal A}^2\|\leq {\varepsilon}/u_2\|{\mathcal A}\|$, switch to prec. u_2

Using this result into an algorithm:

- 1. start the factorization with $u_1 \leq \varepsilon$
- $2.$ if after k_1 transformations $\|{\mathcal A}^2\|\leq {\varepsilon}/u_2\|{\mathcal A}\|$, switch to prec. u_2
- 3. same for precisions $2, \ldots, p$

Using this result into an algorithm:

- 1. start the factorization with $u_1 \leq \varepsilon$
- $2.$ if after k_1 transformations $\|{\mathcal A}^2\|\leq {\varepsilon}/u_2\|{\mathcal A}\|$, switch to prec. u_2
- 3. same for precisions $2, \ldots, p$
- 4. if after $k_1+\cdots+k_p$ transformations $\|A^{p+1}\|\leq \varepsilon\|A\|$, stop

Using this result into an algorithm:

- 1. start the factorization with $u_1 \leq \varepsilon$
- $2.$ if after k_1 transformations $\|{\mathcal A}^2\|\leq {\varepsilon}/u_2\|{\mathcal A}\|$, switch to prec. u_2
- 3. same for precisions $2, \ldots, p$

4. if after $k_1+\cdots+k_p$ transformations $\|A^{p+1}\|\leq \varepsilon\|A\|$, stop

Phillips, FP64+FP32+BFloat16, $m = n = 2048$

Phillips, FP64+FP32+BFloat16, $m = n = 2048$

Phillips, FP64+FP32+BFloat16, $m = n = 2048$

Phillips, FP64+FP32+BFloat16, $m = n = 2048$

Experiments: Julia, image compression

With $\varepsilon = 0.04$ the rank is 191 but only 13 steps are done in fp32 and the rest in bf16 $_{27/40}$ (original size is $1057\times1600)$

Experiments: Fortran, performance

phillips, $m = n = 8192$

[Gram-based QR/LRA](#page-61-0)

$$
\begin{array}{l} \vspace{2mm} G \leftarrow A^T A \\ R^T R = \text{chol}(G) \\ Q = A R^{-1} \end{array}
$$

- The Cholesky QR algorithm computes the QR factorization of A via the Cholesky factorization of the Gram matrix $\mathcal{G} = A^T A$
- \bullet Unstable: $\|I-Q^{\mathcal{T}}Q\|\propto \kappa(\mathcal{G})$ u $= \kappa(A)^2$ u
- But very efficient, almost entirely BLAS-3. Flop count $\sim 2mn^2 + n^3/3$

$$
\begin{array}{l} \vspace{2mm} G \leftarrow A^T A \\ R^T R = \text{chol}(G) \\ Q = A R^{-1} \end{array}
$$

- The Cholesky QR algorithm computes the QR factorization of A via the Cholesky factorization of the Gram matrix $\mathcal{G} = A^T A$
- \bullet Unstable: $\|I-Q^{\mathcal{T}}Q\|\propto \kappa(\mathcal{G})$ u $= \kappa(A)^2$ u
- But very efficient, almost entirely BLAS-3. Flop count $\sim 2mn^2 + n^3/3$
- CholQR2: even when Q is far from orthonormal, it can still be well conditioned, i.e., $\kappa(Q) \ll \kappa(A)$. An idea is thus to reapply CholQR to Q. Then $||I - Q^T Q|| \propto u$ provided that $\kappa(A)^2u\ll 1.$
- MATLAB demo

Mixed precision Cholesky QR

 \equiv [Yamazaki et al. \(2015\)](https://epubs.siam.org/doi/abs/10.1137/14M0973773) :

31/40

- 1. $B = A^T A$ in precision u_{high}
- 2. Cholesky factorization: $R^\mathcal{T} R = B$ in precision $\mathit{u_{\rm high}}$
- 3. $Q = AR^{-1}$ in precision u_{low}
- Roughly half of the flops in precision u_{low} , but greater fraction in time

⁽a) d-CholQR time breakdown.

 $\|\,Q^{\mathcal{T}}Q-I\|=O(\kappa(A)^2u_{\rm high}+\kappa(A)u_{\rm low})$ \Rightarrow if $\kappa(A) \geq u_{\text{low}}/u_{\text{high}}$ no impact on stability

Mixed precision Cholesky QR

 \equiv [Yamazaki et al. \(2015\)](https://epubs.siam.org/doi/abs/10.1137/14M0973773) :

31/40

- 1. $B = A^T A$ in precision u_{high}
- 2. Cholesky factorization: $R^\mathcal{T} R = B$ in precision $\mathit{u_{\rm high}}$
- 3. $Q = AR^{-1}$ in precision u_{low}
- Roughly half of the flops in precision u_{low} , but greater fraction in time

 $\|\,Q^{\mathcal{T}}Q-I\|=O(\kappa(A)^2u_{\rm high}+\kappa(A)u_{\rm low})$ \Rightarrow if $\kappa(A) \geq u_{\text{low}}/u_{\text{high}}$ no impact on stability

SVD QR

$$
\begin{array}{l} \vspace{2mm} G \leftarrow A^T A \\ U \Sigma V^T = \mathrm{svd}(G) \\ \bar{Q} R = \mathrm{qr}(S^{1/2} U^T) \\ Q = A R^{-1} \end{array}
$$

- In CholQR(2), Cholesky breaks down if G becomes indefinite, i.e., when $\kappa(A)^2$ u $\gg 1$
- This issue can be circumvented by replacing Cholesky by SVD
- Useful when combined with repeated orthonormalization (e.g., SVDQR2), since this allows to successfully orthonormalize A even when $\kappa(A)^2u\gg 1$
- MATLAB demo

Randomized Cholesky QR

$$
\Omega \leftarrow \texttt{randn}(n,m) \newline \hspace*{1.5em}S \leftarrow \Omega A \newline \hspace*{1.5em} Q_S R_S \leftarrow \texttt{qr}(S) \newline \hspace*{1.5em} \widetilde{A} \leftarrow A R_S^{-1} \newline \hspace*{1.5em} QR \leftarrow \texttt{cholQR}(\widetilde{A}) \newline \hspace*{1.5em} \}
$$

- Use random projection to inexpensively compute an *n*-dimension QR factorization $Q_S R_S$
- Use R_S to precondition A: $\kappa(\widetilde{A}) = \kappa(A R_S^{-1}) \ll \kappa(A)$
- Apply CholQR (or any of its variants) to \widetilde{A}
- The R-factor of A can be recoved as RRs if needed **a** [Balabanov \(2022\)](https://arxiv.org/abs/2210.09953) **a** [Garrison and Ipsen \(2024\)](https://arxiv.org/abs/2406.11751)
- MATLAB demo

Gram SVD

- So far we have seen Gram-based algorithms for QR. What about for LRA?
- The SVD of A is closely related to the EVD of G :

$$
A = U\Sigma V^T \Rightarrow G = V\Sigma^2 V^T
$$

• The Gram SVD algorithm exploits this fact by computing the LRA $(AV_k) \times V_k^{\mathcal{T}}$ where V_k are the truncated eigenvectors of G (singular vectors of A)

Input: $A \in \mathbb{R}^{m \times n}$, rank k or tolerance ε **Output:** $X \in \mathbb{R}^{m \times k}$, $Y \in \mathbb{R}^{n \times k}$ such that $A \approx XY^T$ $G \leftarrow A^T A$ $V \Lambda V^{\mathcal{T}} \leftarrow e i g(\mathcal{G})$ Truncate V into V_k (such that $\|\Lambda_{k+1: n}\| \leq \varepsilon^2)$ $X \leftarrow AV_k$ and $Y \leftarrow V_k$

• Gram SVD is unstable in finite precision. However, despite the fact that $\kappa(\mathcal{G}) = \kappa(A)^2$, we can prove that the computed LRA satisfies $\quad \color{black} \textcolor{black}{\boxplus}$ [M. \(2024\)](https://hal.science/hal-04554516)

$$
||A-(AV_k)V_k^{\mathsf{T}}|| \leq \min(\kappa(A)u,\sqrt{u})||A||
$$

MATLAB demo

[Final project](#page-69-0)

Context

Objective

- Compute solution to linear system $Ax = b$
- $A \in \mathbb{R}^{n \times n}$ is ill conditioned

Preconditioned iterative method

- 1. Compute preconditioner M^{-1} such that $M^{-1} \approx A^{-1}$, e.g.,
	- Low precision LU factorization
	- Incomplete LU factorization
	- Block Low-Rank LU factorization
- 2. Solve $Ax = b$ via some iterative method (e.g., GMRES) preconditioned by M^{-1} , e.g., with leeft-preconditioning, $M^{-1}Ax = M^{-1}b$
- Convergence to solution may be slow or fail
- \Rightarrow Objective: accelerate convergence

Matrix lund a ($n = 147$, $\kappa(A) = 2.8e+06$)

• Often, A is ill conditioned due to a small number of small singular values \bullet Then, A^{-1} is numerically low-rank
Factorization error might be low-rank?

Assume $M = A + \Delta A$ and consider the error

$$
E = M^{-1}A - I = M^{-1}(M + \Delta A) - I
$$

$$
= M^{-1}\Delta A \approx A^{-1}\Delta A
$$

Does E retain the low-rank property of A^{-1} ?

A novel preconditioner

Consider the preconditioner $M_k = M(I + E_k)$ with E_k a rank-k approximation to E.

- If $E = E_k$, $M_k = A$
- If $E \approx E_k$ for some small k , M_k^{-1} can be computed cheaply via Sherman-Morrison-Woodbury formula

\mid Typical SV distributions of A^{-1} and E_{\parallel}

Typical SV distributions of A^{-1} and E

Typical SV distributions of \mathcal{A}^{-1} and E

Suggestions

- $\bullet\,$ Gather some test matrices for which A^{-1} is numerically low-rank (you can generate them randomly, or take a look at Suitesparse collection for real-life problems)
- Prepare a reference solver (suggestion: use MATLAB's gmres) and some reference preconditioners M (e.g., <code>MATLAB's</code> ilu, or low precision lu) 1 (Lecture 9)
- If you use sparse matrices, remember Lecture 6 and look up MATLAB's reordering tools (e.g., dissect)
- How to compute a rank-k approximation of E ? Explicitly forming E is not a good idea! You should rather use a method that only requires matrix–vector multiplies. . .
- Perform some numerical experiments and test the role of k (or ε), etc.
- Should one build a fixed-rank (k) or fixed-accuracy (ε) LRA of E?
- Should one use left or right preconditioning? (note that M_k is defined differently in either case)
- Can refer to \triangleq [Higham and M. \(2019\)](https://epubs.siam.org/doi/10.1137/18M1182802) for some guidance

¹Either using MATLAB's single or simulating low precision by computing $lu(A + \Delta A)$ for a 40/40 random perturbation ∆A