
Harnessing inexactness
in scientific computing

Lecture 9:
low-rank approximations

Theo Mary (CNRS)
theo.mary@lip6.fr

https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon)
elisa.riccietti@ens-lyon.fr

https://perso.ens-lyon.fr/elisa.

riccietti/

M2 course at ENS Lyon, 2024–2025
Slides available on course webpage

m

n

→m

k n

theo.mary@lip6.fr
https://perso.lip6.fr/Theo.Mary/
elisa.riccietti@ens-lyon.fr
https://perso.ens-lyon.fr/elisa.riccietti/
https://perso.ens-lyon.fr/elisa.riccietti/

Introduction

QR decomposition methods

Randomization

Mixed precision

Gram-based QR/LRA

Final project

2/40

Introduction

QR decomposition methods

Randomization

Mixed precision

Gram-based QR/LRA

Final project

3/40

Rank and numerical rank

In the following, B is a dense matrix of size m × n with m ≥ n.

Definition (Rank)

The rank k of B is defined as the smallest integer such that there exist matrices X and
Y of size m × k and n × k such that

B = XY T .

Definition (Numerical rank)

The numerical rank kε of B at accuracy ε is defined as the smallest integer such that
there exists a matrix B̃ of rank kε such that

∥B − B̃∥ ≤ ε.

4/40

Truncated SVD

Theorem (Eckart-Young)

Let UΣV T be the SVD decomposition of B and let us note σi = Σi ,i its singular

values. Then B̃ = U1:m,1:kΣ1:k,1:kV
T
1:n,1:k is the optimal rank-k approximation of B and

∥B − B̃∥2 = σk+1.

Remark: in ∥ · ∥2,
kε = min

1≤k≤min(m,n)
σk+1 ≤ ε.

= · ·A U Σ V T

5/40

Truncated SVD

Theorem (Eckart-Young)

Let UΣV T be the SVD decomposition of B and let us note σi = Σi ,i its singular

values. Then B̃ = U1:m,1:kΣ1:k,1:kV
T
1:n,1:k is the optimal rank-k approximation of B and

∥B − B̃∥2 = σk+1.

Remark: in ∥ · ∥2,
kε = min

1≤k≤min(m,n)
σk+1 ≤ ε.

= · ·A U2 Σ2 V T
2

U1

Σ1 V T
1

5/40

Truncated SVD

Theorem (Eckart-Young)

Let UΣV T be the SVD decomposition of B and let us note σi = Σi ,i its singular

values. Then B̃ = U1:m,1:kΣ1:k,1:kV
T
1:n,1:k is the optimal rank-k approximation of B and

∥B − B̃∥2 = σk+1.

Remark: in ∥ · ∥2,
kε = min

1≤k≤min(m,n)
σk+1 ≤ ε.

= · ·A U1

Σ1 V T
1

5/40

Low-rank matrices

If kε = min(m, n) then B is said to be full-rank, otherwise it is rank-deficient. A class
of rank-deficient matrices of particular interest are low-rank matrices.

Definition (Low-rank matrix)

B is said to be low-rank (for a given accuracy ε) if its numerical rank kε is small
enough such that its rank-kε approximation B̃ = XY T requires less storage than the
full-rank matrix B, i.e., if

kε(m + n) ≤ mn.

In that case, B̃ is said to be a low-rank approximation of B and ε is called the low-rank
threshold.
In the following, for the sake of simplicity, we refer to the numerical rank of a matrix at
accuracy ε simply as its “rank”.

6/40

Computing low-rank approximations

How to compute a low-rank approximation?

• Optimal truncated SVD costs O(mn2) flops, with a big constant in the O() ⇒ too
expensive for large matrices.

• Can rely instead on QR factorization.

The factorization need not be computed
entirely but can actually be truncated:

×Q1

Because ∥Ak∥ is monotonically decreasing for k = 1, . . . , n, the factorization can be
interrupted as soon as ∥Ak∥ ≤ ε.

• However, is the computed k close to the numerical rank kε, i.e., are such methods
rank-revealing ?

7/40

Computing low-rank approximations

How to compute a low-rank approximation?

• Optimal truncated SVD costs O(mn2) flops, with a big constant in the O() ⇒ too
expensive for large matrices.

• Can rely instead on QR factorization.

The factorization need not be computed
entirely but can actually be truncated:

×Q1 Q2 R2

R1

∥A− Q1R1∥ ≤ ∥R2∥

Because ∥Ak∥ is monotonically decreasing for k = 1, . . . , n, the factorization can be
interrupted as soon as ∥Ak∥ ≤ ε.

• However, is the computed k close to the numerical rank kε, i.e., are such methods
rank-revealing ?

7/40

Computing low-rank approximations

How to compute a low-rank approximation?

• Optimal truncated SVD costs O(mn2) flops, with a big constant in the O() ⇒ too
expensive for large matrices.

• Can rely instead on QR factorization. The factorization need not be computed
entirely but can actually be truncated:

×Q1

R1

Ak
∥A− Q1R1∥ ≤ ∥Ak∥

Because ∥Ak∥ is monotonically decreasing for k = 1, . . . , n, the factorization can be
interrupted as soon as ∥Ak∥ ≤ ε.

• However, is the computed k close to the numerical rank kε, i.e., are such methods
rank-revealing ?

7/40

Computing low-rank approximations

How to compute a low-rank approximation?

• Optimal truncated SVD costs O(mn2) flops, with a big constant in the O() ⇒ too
expensive for large matrices.

• Can rely instead on QR factorization. The factorization need not be computed
entirely but can actually be truncated:

×Q1

R1

Ak
∥A− Q1R1∥ ≤ ∥Ak∥

Because ∥Ak∥ is monotonically decreasing for k = 1, . . . , n, the factorization can be
interrupted as soon as ∥Ak∥ ≤ ε.

• However, is the computed k close to the numerical rank kε, i.e., are such methods
rank-revealing ?

7/40

Introduction

QR decomposition methods

Randomization

Mixed precision

Gram-based QR/LRA

Final project

8/40

Gram–Schmidt

• The Gram–Schmidt computes an orthonormal basis Q of the columns of a matrix
A ∈ Rm×n

Classical (CGS)

for j = 1: n do
qj = aj
for i = 1: j − 1 do

rij = qTi aj
qj = qj − rijqi

end for
rjj = ∥qj∥2
qj = qj/rjj

end for

Modified (MGS)

Q = A
for j = 1: n do

rjj = ∥qj∥2
qj = qj/rjj
for i = j + 1: n do

rji = qTi qj
qi = qi − rjiqj

end for
end for

• However, unstable in finite precision: ∥I − QTQ∥ is of order κ(A)2u for CGS and
κ(A)u for MGS

• Flop count ∼
∑n

j=1 4m(n − j) ∼ 2mn2

• MATLAB demo9/40

Householder transformation

• Householder transformations are defined as H = I − 2vvT where ∥v∥2 = 1

• Given a column vector x , we can use a Householder transformation to zero out all
its coefficients except the first, i.e., transform it into a multiple of e1

• Indeed, define w = x − s∥x∥2e1 where s = ±1 and v = w/∥w∥, then Hx = s∥x∥e1
• s = ±1 chosen to avoid cancellation

10/40

Householder QR

R = A
Q = I
for j = 1: n do

α = ∥A(j : m, j)∥2
s = − sign(A(j , j))
w = A(j : m, j)− sαe1
v = w/∥w∥2
H = I − 2vvT

R(j : m, j : n) = H · R(j : m, j : n)
Q(1 : m, j : n) = Q(1 : m, j : n) ·H

end for

• Householder QR successively applies
Householder transformations to zero out all
subdiagonal coefficients of A

• We obtain R = Hn · · ·H2 · H1 · A and
Q = I · H1 · H2 · · ·Hn. Alternatively, need
not form Q which can be implicitly
represented by storing the Hj transforms

• Numerically stable: ∥I − QTQ∥ = O(u) regardless of κ(A)

• Flop count ∼
∑n

j=1 4(m − j)(n − j) ∼ 2mn2 − 2n3/3 without forming Q, extra

2mn2 for forming Q

• MATLAB demo11/40

Truncated Householder QR

• Householder QR factorization can be stopped after k steps, yielding truncated
(rank-k) factors

• Assuming k ≪ n, flop count becomes ∼ 4mnk

• How to ensure that k is close to the numerical rank ? ⇒ use column pivoting to
choose the best column at each step

12/40

Householder QR with column pivoting (QRCP)

∥aj∥
k

j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

How? At step k , we remove row k, hence

∥a(k+1)
j ∥22 = ∥a

(k)
j ∥22 − a2kj

Risk of heavy cancellation in finite precision!

• This is a BLAS-2 algorithm. Partial block version exists but still poor
computational efficiency and parallelization.

• MATLAB demo

13/40

Householder QR with column pivoting (QRCP)

∥aj∥
k j At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

How? At step k , we remove row k, hence

∥a(k+1)
j ∥22 = ∥a

(k)
j ∥22 − a2kj

Risk of heavy cancellation in finite precision!

• This is a BLAS-2 algorithm. Partial block version exists but still poor
computational efficiency and parallelization.

• MATLAB demo

13/40

Householder QR with column pivoting (QRCP)

∥aj∥
k j At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

How? At step k , we remove row k, hence

∥a(k+1)
j ∥22 = ∥a

(k)
j ∥22 − a2kj

Risk of heavy cancellation in finite precision!

• This is a BLAS-2 algorithm. Partial block version exists but still poor
computational efficiency and parallelization.

• MATLAB demo

13/40

Householder QR with column pivoting (QRCP)

∥aj∥
k

j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

How? At step k , we remove row k, hence

∥a(k+1)
j ∥22 = ∥a

(k)
j ∥22 − a2kj

Risk of heavy cancellation in finite precision!

• This is a BLAS-2 algorithm. Partial block version exists but still poor
computational efficiency and parallelization.

• MATLAB demo

13/40

Householder QR with column pivoting (QRCP)

∥aj∥
k

j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

How? At step k , we remove row k, hence

∥a(k+1)
j ∥22 = ∥a

(k)
j ∥22 − a2kj

Risk of heavy cancellation in finite precision!

• This is a BLAS-2 algorithm. Partial block version exists but still poor
computational efficiency and parallelization.

• MATLAB demo

13/40

Householder QR with column pivoting (QRCP)

∥aj∥

k j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

How? At step k , we remove row k, hence

∥a(k+1)
j ∥22 = ∥a

(k)
j ∥22 − a2kj

Risk of heavy cancellation in finite precision!

• This is a BLAS-2 algorithm. Partial block version exists but still poor
computational efficiency and parallelization.

• MATLAB demo

13/40

Householder QR with column pivoting (QRCP)

∥aj∥
k j

At step k = 1, . . . , n

1. select column j of largest norm

2. permute columns k and j

3. reduce column k via Householder transform

4. update trailing submatrix (at least row k)

5. update column norms

How? At step k , we remove row k, hence

∥a(k+1)
j ∥22 = ∥a

(k)
j ∥22 − a2kj

Risk of heavy cancellation in finite precision!

• This is a BLAS-2 algorithm. Partial block version exists but still poor
computational efficiency and parallelization.

• MATLAB demo
13/40

Introduction

QR decomposition methods

Randomization

Mixed precision

Gram-based QR/LRA

Final project

14/40

Randomized projection methods

• Let A ∈ Rm×n and let Ω ∈ Rn×ℓ be a random Gaussian matrix (ωij ∼ N (0, 1))

• Let B = AΩ. A and B have the same range. Moreover, since the columns of Ω are
independent, it is likely that the columns of B are also linearly independent.

• Let Q = qr(B) and let ℓ = k + p. Then we have

E(∥A− QQTA∥F) ≤
(
1 +

k

p − 1

)1/2
(∑

i>k

σ2
i

)1/2

⇒ if p ≥ k (ℓ ≥ 2k), the rank-ℓ approximation A ≈ Q(QTA) is nearly as good as the
best rank-k approximation. Moreover, taking small p (e.g., ℓ = k + 5) is sufficient
to get a good approximation up to constants.

15/40

Fixed-rank randomized LRA

From the rank-ℓ approximation
A ≈ Q(QTA), a rank-k
approximation XY T can be
efficiently recovered with the
following algorithm.
 Halko, Martinsson, Tropp (2011)

Input: A ∈ Rm×n, rank k, oversampling p
Output: X ∈ Rm×k , Y ∈ Rn×k such that A ≈ XY T

Ω← randn(n, k + p)
B ← AΩ
Q ← qr(B)
C ← ATQ
ZY T ← LRA(C , k)
X ← QZ

• Cost:
◦ Matrix products: 4mnℓ flops
◦ QR: O(mℓ2) flops
◦ LRA: O(nℓk) flops

• Matrix multiplication is the bottleneck
⇒ BLAS-3, very efficient!

• Can be applied to AT to interchange m and n

• Can use a structured Ω (sparse, FFT, . . .) to
reduce the flop count of the matmul

• MATLAB demo
16/40

https://doi.org/10.1137/090771806

Fixed-accuracy randomized LRA

• In practice k is often not known: we’d rather
choose a target accuracy ε and let the
algorithm find kε. This can be accomplished
by adapting the algorithm as follows.
 Martinsson and Voronin (2016)

• The choice of the block size b presents a
tradeoff between efficiency and risk of
“overshooting” the rank

• Here, Q is orthonormalized with block MGS

• Flop count ∼ 6mnq, where q ≈ b × ⌈k/b⌉.
Increased constant (6 instead of 4) due to
the need to downdate A to keep track of the
error norm.

• MATLAB demo

Input: A ∈ Rm×n, tolerance ε, block size b
Output: X ∈ Rm×k , Y ∈ Rn×k such that
A ≈ XY T

Initialize Q and B to empty matrices.
repeat

Ω← randn(n, b)
Y = AΩ
Qb = qr(Y − Q(QTY))
Bb = QT

b A
Q ← [Q Qb]

B ←
[
B
Bb

]
A← A− QbBb

until ∥A∥ ≤ ε
ZY T = truncSVD(B, ε)
X = QZ17/40

https://doi.org/10.1137/15M1026080

QR with randomized pivoting (QRRP)

S

Alternatively, randomization can be used to
efficiently select the pivots in Householder QR.
 Martinsson et al. (2017) Duersch and Gu (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works well in practice

18/40

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

S

Alternatively, randomization can be used to
efficiently select the pivots in Householder QR.
 Martinsson et al. (2017) Duersch and Gu (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works well in practice

18/40

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

S

Alternatively, randomization can be used to
efficiently select the pivots in Householder QR.
 Martinsson et al. (2017) Duersch and Gu (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works well in practice

18/40

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

S

Alternatively, randomization can be used to
efficiently select the pivots in Householder QR.
 Martinsson et al. (2017) Duersch and Gu (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works well in practice

18/40

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

S

Alternatively, randomization can be used to
efficiently select the pivots in Householder QR.
 Martinsson et al. (2017) Duersch and Gu (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works well in practice

18/40

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

S

Alternatively, randomization can be used to
efficiently select the pivots in Householder QR.
 Martinsson et al. (2017) Duersch and Gu (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works well in practice

18/40

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

QR with randomized pivoting (QRRP)

S

Alternatively, randomization can be used to
efficiently select the pivots in Householder QR.
 Martinsson et al. (2017) Duersch and Gu (2017)

Compute a sample S = ΩA using a random matrix
Ω. At step k = 1 : b : n

1. compute QR of S with B-G pivoting to select
the “best” b columns

2. permute the selected columns upfront

3. reduce b columns via Householder transform

4. update trailing submatrix

5. update S

▲ High efficiency and parallelization

▲ Norm of the trailing submatrix is indirectly available through the sample:
∥sj∥ =

√
b∥aj∥ works well in practice

18/40

https://doi.org/10.1137/16M1081270
https://doi.org/10.1137/15M1044680

Introduction

QR decomposition methods

Randomization

Mixed precision

Gram-based QR/LRA

Final project

19/40

Adaptive precision low rank compression

U

V T

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥B∥

ε

ε/u2

ε/u3

• Adaptive precision compression: partition U and V into q groups of decreasing
precisions u1 ≤ ε < u2 < . . . < uq
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

• Why does it work? B = B1 + B2 + B3 with |Bi | ≤ O(∥Σi∥)
• With p precisions and a partitioning such that ∥Σk∥ ≤ ε∥B∥/uk ,
∥B − ÛεΣεV̂ε∥ ≲ (2p − 1)ε∥B∥

• Applicable to any LRA decomposition with rank-1 components of decaying norm (in
particular, QRCP)

20/40

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression

U

V T

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥B∥

ε

ε/u2

ε/u3

• Adaptive precision compression: partition U and V into q groups of decreasing
precisions u1 ≤ ε < u2 < . . . < uq
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

• Why does it work? B = B1 + B2 + B3 with |Bi | ≤ O(∥Σi∥)
• With p precisions and a partitioning such that ∥Σk∥ ≤ ε∥B∥/uk ,
∥B − ÛεΣεV̂ε∥ ≲ (2p − 1)ε∥B∥

• Applicable to any LRA decomposition with rank-1 components of decaying norm (in
particular, QRCP)

20/40

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression

U

V T

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥B∥

ε

ε/u2

ε/u3

• Adaptive precision compression: partition U and V into q groups of decreasing
precisions u1 ≤ ε < u2 < . . . < uq
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

• Why does it work? B = B1 + B2 + B3 with |Bi | ≤ O(∥Σi∥)

• With p precisions and a partitioning such that ∥Σk∥ ≤ ε∥B∥/uk ,
∥B − ÛεΣεV̂ε∥ ≲ (2p − 1)ε∥B∥

• Applicable to any LRA decomposition with rank-1 components of decaying norm (in
particular, QRCP)

20/40

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression

U

V T

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥B∥

ε

ε/u2

ε/u3

• Adaptive precision compression: partition U and V into q groups of decreasing
precisions u1 ≤ ε < u2 < . . . < uq
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

• Why does it work? B = B1 + B2 + B3 with |Bi | ≤ O(∥Σi∥)
• With p precisions and a partitioning such that ∥Σk∥ ≤ ε∥B∥/uk ,
∥B − ÛεΣεV̂ε∥ ≲ (2p − 1)ε∥B∥

• Applicable to any LRA decomposition with rank-1 components of decaying norm (in
particular, QRCP)

20/40

https://doi.org/10.1093/imanum/drac037

Adaptive precision low rank compression

U

V T

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥B∥

ε

ε/u2

ε/u3

• Adaptive precision compression: partition U and V into q groups of decreasing
precisions u1 ≤ ε < u2 < . . . < uq
 Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

• Why does it work? B = B1 + B2 + B3 with |Bi | ≤ O(∥Σi∥)
• With p precisions and a partitioning such that ∥Σk∥ ≤ ε∥B∥/uk ,
∥B − ÛεΣεV̂ε∥ ≲ (2p − 1)ε∥B∥

• Applicable to any LRA decomposition with rank-1 components of decaying norm (in
particular, QRCP)20/40

https://doi.org/10.1093/imanum/drac037

Examples of spectrum

Both matrices have ε-rank 30 (with ε = 10−9) but present very different potential for
mixed precision

0 20 40 60 80 100
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Large gain
(almost all in lower precision)

0 20 40 60 80 100
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

No gain
(all in higher precision)

21/40

Examples of spectrum

Log-linear spectrum

0 20 40 60 80 100
10

-15

10
-10

10
-5

10
0

21/40

Householder QR in finite precision

Let’s assume a sequence of Householder transforms H i i = 1, . . . , k computed and
applied in precision u to a vector b = b0

b̂1 = H1(b0 +∆b0), ∥∆b0∥ ≤ mu∥b0∥

= mu∥b∥
· · ·

b̂i = H i (b̂i−1 +∆bi−1), ∥∆bi−1∥ ≤ mu∥b̂i−1∥

= mu∥b∥

· · ·
b̂k = Hk(b̂k−1 +∆bk−1), ∥∆bk−1∥ ≤ mu∥b̂k−1∥

= mu∥b∥

In conclusion
b̂k = Hk . . .H1(b +∆b), ∥∆b∥ ≤ kmu∥b∥

and, consequently,

∥A− Q̂R̂∥ ≤ cmnu∥A∥ (Higham, Chap. 19)

22/40

Householder QR in finite precision

Let’s assume a sequence of Householder transforms H i i = 1, . . . , k computed and
applied in precision u to a vector b = b0

b̂1 = H1(b0 +∆b0), ∥∆b0∥ ≤ mu∥b0∥

= mu∥b∥

· · ·
b̂i = H i (b̂i−1 +∆bi−1), ∥∆bi−1∥ ≤ mu∥b̂i−1∥

= mu∥b∥

· · ·
b̂k = Hk(b̂k−1 +∆bk−1), ∥∆bk−1∥ ≤ mu∥b̂k−1∥

= mu∥b∥

In conclusion
b̂k = Hk . . .H1(b +∆b), ∥∆b∥ ≤ kmu∥b∥

and, consequently,

∥A− Q̂R̂∥ ≤ cmnu∥A∥ (Higham, Chap. 19)

22/40

Householder QR in finite precision

Let’s assume a sequence of Householder transforms H i i = 1, . . . , k computed and
applied in precision u to a vector b = b0

b̂1 = H1(b0 +∆b0), ∥∆b0∥ ≤ mu∥b0∥ = mu∥b∥
· · ·

b̂i = H i (b̂i−1 +∆bi−1), ∥∆bi−1∥ ≤ mu∥b̂i−1∥ = mu∥b∥
· · ·

b̂k = Hk(b̂k−1 +∆bk−1), ∥∆bk−1∥ ≤ mu∥b̂k−1∥ = mu∥b∥

In conclusion
b̂k = Hk . . .H1(b +∆b), ∥∆b∥ ≤ kmu∥b∥

and, consequently,

∥A− Q̂R̂∥ ≤ cmnu∥A∥ (Higham, Chap. 19)

22/40

Householder QR in finite precision

Let’s assume a sequence of Householder transforms H i i = 1, . . . , k computed and
applied in precision u to a vector b = b0

b̂1 = H1(b0 +∆b0), ∥∆b0∥ ≤ mu∥b0∥ = mu∥b∥
· · ·

b̂i = H i (b̂i−1 +∆bi−1), ∥∆bi−1∥ ≤ mu∥b̂i−1∥ = mu∥b∥
· · ·

b̂k = Hk(b̂k−1 +∆bk−1), ∥∆bk−1∥ ≤ mu∥b̂k−1∥ = mu∥b∥

In conclusion
b̂k = Hk . . .H1(b +∆b), ∥∆b∥ ≤ kmu∥b∥

and, consequently,

∥A− Q̂R̂∥ ≤ cmnu∥A∥ (Higham, Chap. 19)
22/40

Householder QR in finite precision

In the specific case of the QR factorization, the H transforms have a peculiar structure:

H i b̂i−1 =

[
I i−1

H̄ i

][
b̂i−1
1:i−1

b̂i−1
i :m

]

and, therefore,

∥∆bi−1∥ ≤ (m − i)u∥b̂i−1
i :m ∥

Introducing mixed precision
Because all the H i and H̄ i are unitary transformations, ∥b̂i−1

i :m ∥ will be monotonically
decreasing for i = 1, . . . , k −→ starting at some i u can be increased without
increasing the error

23/40

Householder QR in finite precision

In the specific case of the QR factorization, the H transforms have a peculiar structure:

H i b̂i−1 =

[
I i−1

H̄ i

][
b̂i−1
1:i−1

b̂i−1
i :m

]

and, therefore,

∥∆bi−1∥ ≤ (m − i)u∥b̂i−1
i :m ∥

Introducing mixed precision
Because all the H i and H̄ i are unitary transformations, ∥b̂i−1

i :m ∥ will be monotonically
decreasing for i = 1, . . . , k −→ starting at some i u can be increased without
increasing the error

23/40

Truncated Householder QR in mixed precision

Theorem

Assume that a truncated QR factorization is computed such that k ≤ n Householder
transformations are computed and applied to a matrix A ∈ Rm×n using p different
precisions of increasing unit roundoff ui . Let k i be the number of transformations that
are computed using precision i . The computed R̂i and Q̂i satisfy

∥A−
p∑

i=1

Q̂i R̂i∥ ≤ ∥Ap+1∥+
p∑

i=1

cmk iui∥Ai∥.

where Ai is the trailing submatrix after
∑i−1

j=1 kj transformations.

 Buttari, M., Pacteau (2024)

24/40

https://hal.science/hal-04490215

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u1 ≤ ε

2. if after k1 transformations ∥A2∥ ≤ ε/u2∥A∥, switch to prec. u2
3. same for precisions 2, . . . , p

4. if after k1 + · · ·+ kp transformations ∥Ap+1∥ ≤ ε∥A∥, stop

A

25/40

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u1 ≤ ε

2. if after k1 transformations ∥A2∥ ≤ ε/u2∥A∥, switch to prec. u2

3. same for precisions 2, . . . , p

4. if after k1 + · · ·+ kp transformations ∥Ap+1∥ ≤ ε∥A∥, stop

Q̂1

Â2

R̂1

25/40

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u1 ≤ ε

2. if after k1 transformations ∥A2∥ ≤ ε/u2∥A∥, switch to prec. u2
3. same for precisions 2, . . . , p

4. if after k1 + · · ·+ kp transformations ∥Ap+1∥ ≤ ε∥A∥, stop

Q̂1 Q̂2

R̂1

Â3

R̂2

25/40

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u1 ≤ ε

2. if after k1 transformations ∥A2∥ ≤ ε/u2∥A∥, switch to prec. u2
3. same for precisions 2, . . . , p

4. if after k1 + · · ·+ kp transformations ∥Ap+1∥ ≤ ε∥A∥, stop

Q̂1 Q̂2 Q̂3

R̂1

R̂2

Â4

R̂3

25/40

Truncated Householder QR in mixed precision

Using this result into an algorithm:

1. start the factorization with u1 ≤ ε

2. if after k1 transformations ∥A2∥ ≤ ε/u2∥A∥, switch to prec. u2
3. same for precisions 2, . . . , p

4. if after k1 + · · ·+ kp transformations ∥Ap+1∥ ≤ ε∥A∥, stop

Q̂1 Q̂2 Q̂3

R̂1

R̂2

R̂3

∥A− Q̂1R̂1 − Q̂2R̂2 − Q̂3R̂3∥ ≤ βε∥A∥

25/40

Experiments: Julia

1 512 1,024 1,536 2,048

10−10

10−8

10−6

10−4

10−2

100

E
rr
or
Phillips, FP64+FP32+BFloat16, m = n = 2048

SVD

diag(R)

26/40

Experiments: Julia

ε = 10−10

1 512 1,024 1,536 2,048

10−10

10−8

10−6

10−4

10−2

100

E
rr
or
Phillips, FP64+FP32+BFloat16, m = n = 2048

SVD

diag(R)

26/40

Experiments: Julia

ε = 10−8

1 512 1,024 1,536 2,048

10−10

10−8

10−6

10−4

10−2

100

E
rr
or
Phillips, FP64+FP32+BFloat16, m = n = 2048

SVD

diag(R)

26/40

Experiments: Julia

ε = 10−6

1 512 1,024 1,536 2,048

10−10

10−8

10−6

10−4

10−2

100

E
rr
or
Phillips, FP64+FP32+BFloat16, m = n = 2048

SVD

diag(R)

26/40

Experiments: Julia, image compression

With ε = 0.04 the rank is 191 but only 13 steps are done in fp32 and the rest in bf16
(original size is 1057× 1600)

orig.

fp32/bf16

fp32

bf16

27/40

Experiments: Fortran, performance

10−14 10−12 10−10 10−8 10−6

0.2

0.4

0.6

0.8

1

ε

n
or
m
al
iz
ed

ti
m
e

phillips, m = n = 8192

fp64 QRCP fp64/fp32 QRCP
fp64 QRRP fp64/fp32 QRRP

28/40

Introduction

QR decomposition methods

Randomization

Mixed precision

Gram-based QR/LRA

Final project

29/40

Cholesky QR

G ← ATA
RTR = chol(G)
Q = AR−1

• The Cholesky QR algorithm computes the QR factorization of A via the Cholesky
factorization of the Gram matrix G = ATA

• Unstable: ∥I − QTQ∥ ∝ κ(G)u = κ(A)2u

• But very efficient, almost entirely BLAS-3. Flop count ∼ 2mn2 + n3/3

• CholQR2: even when Q is far from orthonormal, it can still be well conditioned, i.e.,
κ(Q)≪ κ(A). An idea is thus to reapply CholQR to Q. Then ∥I − QTQ∥ ∝ u
provided that κ(A)2u ≪ 1.

• MATLAB demo

30/40

Cholesky QR

G ← ATA
RTR = chol(G)
Q = AR−1

• The Cholesky QR algorithm computes the QR factorization of A via the Cholesky
factorization of the Gram matrix G = ATA

• Unstable: ∥I − QTQ∥ ∝ κ(G)u = κ(A)2u

• But very efficient, almost entirely BLAS-3. Flop count ∼ 2mn2 + n3/3

• CholQR2: even when Q is far from orthonormal, it can still be well conditioned, i.e.,
κ(Q)≪ κ(A). An idea is thus to reapply CholQR to Q. Then ∥I − QTQ∥ ∝ u
provided that κ(A)2u ≪ 1.

• MATLAB demo

30/40

Mixed precision Cholesky QR

 Yamazaki et al. (2015) :

1. B = ATA in precision uhigh
2. Cholesky factorization: RTR = B in precision uhigh
3. Q = AR−1 in precision ulow

• Roughly half of the flops in precision ulow, but greater
fraction in time

• ∥QTQ − I∥ = O(κ(A)2uhigh + κ(A)ulow)

⇒ if κ(A) ≥ ulow/uhigh no impact on stability

Application to
communication-avoiding

GMRES

31/40

https://epubs.siam.org/doi/abs/10.1137/14M0973773

Mixed precision Cholesky QR

 Yamazaki et al. (2015) :

1. B = ATA in precision uhigh
2. Cholesky factorization: RTR = B in precision uhigh
3. Q = AR−1 in precision ulow

• Roughly half of the flops in precision ulow, but greater
fraction in time

• ∥QTQ − I∥ = O(κ(A)2uhigh + κ(A)ulow)

⇒ if κ(A) ≥ ulow/uhigh no impact on stability

Application to
communication-avoiding

GMRES

31/40

https://epubs.siam.org/doi/abs/10.1137/14M0973773

SVD QR

G ← ATA
UΣV T = svd(G)
Q̄R = qr(S1/2UT)
Q = AR−1

• In CholQR(2), Cholesky breaks down if G becomes indefinite, i.e., when
κ(A)2u ≫ 1

• This issue can be circumvented by replacing Cholesky by SVD

• Useful when combined with repeated orthonormalization (e.g., SVDQR2), since this
allows to successfully orthonormalize A even when κ(A)2u ≫ 1

• MATLAB demo

32/40

Randomized Cholesky QR

Ω← randn(n,m)
S ← ΩA
QSRS ← qr(S)
Ã← AR−1

S

QR ← cholQR(Ã)

• Use random projection to inexpensively compute an n-dimension QR factorization
QSRS

• Use RS to precondition A: κ(Ã) = κ(AR−1
S)≪ κ(A)

• Apply CholQR (or any of its variants) to Ã

• The R-factor of A can be recoved as RRS if needed
 Balabanov (2022) Garrison and Ipsen (2024)

• MATLAB demo

33/40

https://arxiv.org/abs/2210.09953
https://arxiv.org/abs/2406.11751

Gram SVD

• So far we have seen Gram-based algorithms for QR. What about for LRA?

• The SVD of A is closely related to the EVD of G :

A = UΣV T ⇒ G = VΣ2V T

• The Gram SVD algorithm
exploits this fact by computing
the LRA (AVk)×V T

k where Vk

are the truncated eigenvectors
of G (singular vectors of A)

Input: A ∈ Rm×n, rank k or tolerance ε
Output: X ∈ Rm×k , Y ∈ Rn×k such that A ≈ XY T

G ← ATA
VΛV T ← eig(G)
Truncate V into Vk (such that ∥Λk+1: n∥ ≤ ε2)
X ← AVk and Y ← Vk

• Gram SVD is unstable in finite precision. However, despite the fact that
κ(G) = κ(A)2, we can prove that the computed LRA satisfies M. (2024)

∥A− (AVk)V
T
k ∥ ≤ min(κ(A)u,

√
u)∥A∥

• MATLAB demo34/40

https://hal.science/hal-04554516

Introduction

QR decomposition methods

Randomization

Mixed precision

Gram-based QR/LRA

Final project

35/40

Context

Objective

• Compute solution to linear system Ax = b

• A ∈ Rn×n is ill conditioned

Preconditioned iterative method

1. Compute preconditioner M−1 such that M−1 ≈ A−1, e.g.,
◦ Low precision LU factorization
◦ Incomplete LU factorization
◦ Block Low-Rank LU factorization

2. Solve Ax = b via some iterative method (e.g., GMRES) preconditioned by M−1,
e.g., with leeft-preconditioning, M−1Ax = M−1b

• Convergence to solution may be slow or fail

⇒ Objective: accelerate convergence
36/40

Key observation

Matrix lund a (n = 147, κ(A) = 2.8e+06)

0 50 100 150
10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

SVD of A

0 50 100 150
10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

SVD of A−1

• Often, A is ill conditioned due to a small number of small singular values

• Then, A−1 is numerically low-rank
37/40

Key idea

Factorization error might be low-rank?

Assume M = A+∆A and consider the error

E = M−1A− I = M−1(M +∆A)− I

= M−1∆A ≈ A−1∆A

Does E retain the low-rank property of A−1?

A novel preconditioner

Consider the preconditioner Mk = M(I + Ek) with Ek a rank-k approximation to E .

• If E = Ek , Mk = A

• If E ≈ Ek for some small k , M−1
k can be computed cheaply via

Sherman-Morrison-Woodbury formula

38/40

Typical SV distributions of A−1 and E

0 100 200 300

10 -5

10 0

Matrix cz308

39/40

Typical SV distributions of A−1 and E

0 50 100 150 200

10 -5

10 0

10 5

Matrix steam1

39/40

Typical SV distributions of A−1 and E

0 50 100 150

10 -5

10 0

Matrix rajat14

39/40

Suggestions

• Gather some test matrices for which A−1 is numerically low-rank (you can generate
them randomly, or take a look at Suitesparse collection for real-life problems)

• Prepare a reference solver (suggestion: use MATLAB’s gmres) and some reference
preconditioners M (e.g., MATLAB’s ilu, or low precision lu)1 (Lecture 9)

• If you use sparse matrices, remember Lecture 6 and look up MATLAB’s reordering
tools (e.g., dissect)

• How to compute a rank-k approximation of E ? Explicitly forming E is not a good
idea! You should rather use a method that only requires matrix–vector multiplies. . .

• Perform some numerical experiments and test the role of k (or ε), etc.

• Should one build a fixed-rank (k) or fixed-accuracy (ε) LRA of E?

• Should one use left or right preconditioning? (note that Mk is defined differently in
either case)

• Can refer to Higham and M. (2019) for some guidance
1Either using MATLAB’s single or simulating low precision by computing lu(A+∆A) for a

random perturbation ∆A40/40

https://epubs.siam.org/doi/10.1137/18M1182802

	Introduction
	QR decomposition methods
	Randomization
	Mixed precision
	Gram-based QR/LRA
	Final project

