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Data sparse matrices

Data sparse matrices are not sparse but can be well approximated by “sparse data”:

σ

τ

hig
h r

an
k

low rank

complete domain

A block B represents the interaction
between two subdomains σ and τ .

Large distance ⇔ low numerical rank
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Block low-rank (BLR) matrices

σ

τ

Bi

Xi

Y T
i

∥Bi − XiY
T
i ∥ ≤ ε∥A∥ Block Low Rank
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Block low-rank (BLR) matrices

Example of a BLR matrix (Schur

complement of a 643 Poisson problem

with block size 128)

• Diagonal blocks are full rank

• Off-diagonal ones are stored in low rank form if
their ε-rank is small enough

• ε = 10−15 → 50% entries kept

• ε = 10−12 → 36% entries kept

• ε = 10−9 → 23% entries kept
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BLR LU factorization: FSCU variant

• How to adapt block LU factorization to exploit BLR structure?

• FSCU variant:

Factor,

Solve,

Compress,

Update

++

• Computed LU factors satisfy L̂Û = A+∆A, ∥∆A∥ ≤ cnu∥|L̂||Û|∥+ ε∥A∥
� Higham and M. (2021)

7/58

https://doi.org/10.1093/imanum/drab020


BLR LU factorization: FSCU variant

• How to adapt block LU factorization to exploit BLR structure?

• FSCU variant: Factor,

Solve,

Compress,

Update

++

• Computed LU factors satisfy L̂Û = A+∆A, ∥∆A∥ ≤ cnu∥|L̂||Û|∥+ ε∥A∥
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Combining sparsity and data sparsity

⇒
Elimination tree

B

BLR clustering to build 2D block

structure

⇒
B ≈ X

Y T

SVD or RRQR ⇒ X and Y s. t. ∥B − XY T∥ ≤ ε
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Structural mechanics: wind turbines (ALYA code)

• structure subject to compression load

• matrix of order 10M

• BLR backward error is in very good accordance
with ε

L = 600

W = 250 
Mesh detail

Clamped end 
(ux = uy = uz =0)
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Surface topography

3D mesh (220k cells, 20×20×10 km3)

- surface topography: small cells

- below: larger cells and high order

Solution vz at 3 Hz using Full-Rank (top) or BLR
ε=10−5 (bottom)
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Matrix size (elastic equations, f=3 Hz, 3 ≤ p ≤ 6): N=25M, NZ=5 859M

BLR compression:
Full-Rank BLR (ε=10−5)

flops 1.1× 1016 3.6× 1015 (34%)

Time compression:

(HLRS cluster Stuttgart, using 40 nodes, 80 MPI, 32 threads/MPI)

Time (seconds) Analysis Facto. Solve

MUMPS Full-Rank 11.7 2894 8.3

MUMPS BLR (ε = 10−5) 13.2 1798 6.0
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Helioseismology

Mesh and solution at 2 mHz for r=0.99.

Cells near surface are very small (ex-

treme properties)

Experiment with entire solar ball, rmax=1.0008, f=1 mHz
• required 40 nodes, 1 MPI per node (256 GB, 24 threads per node)
• BLR solver used, with ε = 10−7

• Full-Rank estimate (12M, p=2-4): 3× 1016 flops, memory > 9 TiB

#cells p #dofs BLR flops (% of FR) ana fac sol Mem

12M 2-4 374M 4.7× 1014 (2.0%) 500 s. 773 s. 20 s. 5.3 TiB

12M 3-4 381M 5.8× 1014 (1.7%) 506 s. 999 s. 20 s. 5.3 TiB

• 50x BLR compression
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Full-Waveform Inversion

• Adastra MUMPS4FWI project led by WIND team

• Application: Gorgon Model, reservoir 23km x 11km x 6.5km,
grid size 15m, Helmholtz equation, 25-Hz

• Complex matrix, 531 Million dofs, storage(A)=220 GBytes;

• FR cost: flops for one LU factorization= 2.6× 1018;
Estimated storage for LU factors= 73 TBytes (25-Hz Gorgon FWI velocity model)

FR (Full-Rank); BLR with ε = 10−5; 48 000 cores (500 MPI × 96 threads/MPI)
FR: fp32; Mixed precision BLR: 3 precisions (32bits, 24bits, 16bits) for storage

LU size (TBytes) Flops Time BLR + Mixed (sec) Scaled Resid.

FR BLR +mixed FR BLR+mixed Analysis Facto Solve BLR+mixed

73 34 26 2.6× 1018 0.5× 1018 446 5500 27 7× 10−4

in practice: hundreds to thousands of Solve steps (sparse right hand sides (sources))

13/58
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Structural mechanics: pump of nuclear plant

• Matrix from aero-acoustics, complex unsymmetric
N=4.1M, NZ=353M, flops(LU)= 2.6 × 1014 pivots: 4 delayed, 415 off-diag

8 MPIx18 threads Full-Rank BLR (ε = 10−8)

Pivoting std off

relaxed

std off

relaxed

Factor. time (s.) 273 241

241

164 114

127

Scaled residual 7x10−13 1x10−11

1x10−12

6x10−8 2x10−7

1x10−7

Pivoting off → improved BLR performance, residual still OK

Relaxed pivoting: based on � Duff and Pralet

• Matrix from structural mechanics, real symmetric: pump (code aster, EDF)
N=5.4M, NZ=208M, flops(LDLT )= 1.8 × 1013 pivots: 79k delayed, 37k 2×2, 74k negative

1MPIx18 threads Full-Rank BLR (ε = 10−9)

Pivoting std off

relaxed

std off

relaxed

Factor. time (s.) 59.5
KO

47.7

43.9
KO

31.4

Scaled residual 1.9x10−15

1.9x10−15

1.1x10−10

1.3x10−10

std
DL

T

21

21
L

L
11

T

11
L

Fully summed
rows

Contrib. Block

rows

(GEMMT/GEMM)

off
L

11

21
L

DL
T

21Fully summed
rows

Contrib. Block

rows

L
T

11

(TRSM)

(GEMMT/GEMM)

relaxed
DL

T

21

21
L

L
11

T

11
L

MAX (L    )
21

Fully summed
rows

Contrib. Block

rows

(TRSM)

(GEMMT/GEMM)

BLAS2&3

large BLAS 3
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BLR as a preconditioner

• Application in structural mechanics (ANSYS): highly nonlinear materials,
3D solid elements, matrix Rubber RVE

N=3M, NZ=70M, flops(LDLT )= 9.8× 1014

• Conjugate Gradient preconditioned BLR LU:
◦ Convergence criterion is scaled residual ≤ 10−10, time for analysis ≈ 45sec
◦ CG with simple block-Jacobi preconditioner did not converge
◦ Target computer: cluster with 28-core nodes based on Xeon E5-2690 v4-14 cores, 512GB

1e-04 1e-06 1e-08 1e-10 1e-12 1e-14 FR
0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

Rubber RVE (8MPIx14threads)

Total Solve

Factorization

Solver(ε) Size of L Total (nbiter)

CG-BLR(10−4) 30GB 192(92)

CG-BLR(10−6) 51GB 173(13)

CG-BLR(10−8) 78GB 210 (4)

CG-BLR(10−10) 109GB 279 (3)

CG-BLR(10−12) 136GB 383 (1)

CG-BLR(10−14) 153GB 467 (1)

Full-Rank (FR) 157GB 417(0)
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BLR in a multigrid solver

Mantle convection simulation:

−div
(ν
2
(∇u+ (∇u)⊤))

)
+∇p = f in Ω,

div(u) = 0 in Ω,

u = g on ∂Ω,

• HHG (Hierarchical Hybrid Grids) geometric multigrid
solver

• 6 levels with V -cycle and Uzawa smoother

→ compare BLR vs. PMINRES as coarse grid solvers
� Buttari, Huber, Leleux, M., Ruede, Wohlmuth
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BLR in a multigrid solver

n-fine n-coarse

1.21 · 1011 1.94 · 106

Time on the fine grid: 1200 s. (43200 cores, HLRS cluster Stuttgart)

Time on the coarse grid:

PMINRES 162.5 s. ⇒ not negligible

MUMPS Full-Rank 184.7 s.

MUMPS BLR, ε = 10−5 91.4 s.

MUMPS BLR, ε = 10−5

83.6 s. ⇒ 2× speedup
+ single precision

• PMINRES converges slowly ⇒ coarse grid solution not negligible

• 2× speedup on the coarse grid ⇒ ∼ 6% overall gain
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Cost analysis of the involved steps

Let us consider two blocks A and B of size b × b and of rank bounded by r .

step type operation cost

Factor FR A← LU O(b3)
Solve FR-FR B ← BU−1 O(b3)
Compress LR A← Ã O(b2r)
Update FR-FR C ← AB O(b3)
Update LR-FR C ← ÃB O(b2r)
Update FR-LR C ← AB̃ O(b2r)
Update LR-LR C ← ÃB̃ O(b2r)

This is not enough to compute the complexity ⇒ we need to bound the number of FR
blocks!
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Admissible block partitions

Admissibility of a block

An block σ × τ is admissible if dist(σ, τ) ≥ ηmax(diam(σ), diam(τ)).

Admissibility of a block partition

A block partion P is admissible if there exists q = O(1) such that{
#{σ, σ × τ ∈ P is not admissible} ≤ q
#{τ, σ × τ ∈ P is not admissible} ≤ q

Non-Admissible Admissible20/58



Admissible block partitions

Key result

For any matrix, an admissible P can be built geometrically
� Amestoy, Buttari, L’Excellent, M. (2017)

What about algebraic partitions?
For sparse problems, use the adjacency graph!

Root separator of a 1283 Poisson problem
clustered with SCOTCH via k-means � Weisbecker (2015)

21/58
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Memory complexity of the dense BLR factorization

We consider a dense m ×m matrix with m = pb

The memory complexity to store the matrix can be computed as
Mtotal(b, p, r) =MFR(b, p) +MLR(b, p, r)

• Step 1: we have

MFR(b, p) = O(pb2)
MLR(b, p, r) = O(p2br)

• Step 2: assuming b = O(mx) and r = O(mα), we have

Mtotal(m, x , α) = O(m1+x +m2−x+α)

• Step 3: the optimal block size is b∗ = m(1+α)/2 and the resulting optimal
complexity is

Mopt(m, r) =Mtotal(m, x∗, α) = O(m3/2r1/2)

22/58
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Flop complexity of the dense BLR factorization

We consider a dense m ×m matrix with m = pb

step type cost number Cstep(b, p, r)

Cstep(m, x , α)

Factor FR O(b3) O(p)

O(pb3) O(m1+2x)

Solve FR-FR O(b3) O(p2)

O(p2b3) O(m2+x)

Compress LR O(b2r) O(p2)

O(p2b2r) O(m2+α)

Update FR-FR O(b3) O(p)

O(pb3) O(m1+2x)

Update LR-FR O(b2r) O(p2)

O(p2b2r) O(m2+α)

Update LR-LR O(b2r) O(p3)

O(p3b2r) O(m3−x+α)

• Step 1: compute Cstep(b, p, r) = cost × number

• Step 2: compute Cstep(m, x , α) with b = O(mx) and r = O(mα).

• Step 3: compute the total complexity (sum of all steps)

Ctotal(m, x , α) = O(m3−x+α +m2+x)

• Step 4: the optimal block size is b∗ = m(1+α)/2 and the resulting optimal
complexity is Copt(m, r) = Ctotal(m, x∗, α) = O(m5/2r1/2)
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Complexity of the sparse multifrontal BLR factorization

For a dense complexity Copt(m, r), the sparse complexity is computed as

N × N grid: Cmf =

log2 N∑
ℓ=0

22ℓCopt
(N
2ℓ
)
,

N × N × N grid: Cmf =

log4 N
2∑

ℓ=0

23ℓCopt
(N2

22ℓ
)
.

operations (OPC) factor size (NNZ)

N × N grid

FR O(N3) O(N2 logN)

BLR O(N5/2r1/2) O(N2)

N × N × N grid

FR O(N6) O(N4)

BLR O(N5r1/2) O(N3max
(
r1/2, logN

)
)
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Experimental complexity on Poisson problem

Flop complexity

Mesh size N

64 96 128 160 192 224256 320

F
lo

p
c
o
u
n
t

1012

1014

FR

-t: 5n2:02

BLR (FSCU)

-t: 2105n1:45

Factor size complexity

Mesh size N

64 96 128 160 192 224256 320

F
a
c
to

rs
si

z
e

108

1010

FR

-t: 3n1:40

BLR

-t: 12n1:05 log n
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Influence of the block size b on the complexity

Block size b
128 192 256 320 384 448 512 576 640

N
o
rm

a
li
z
e
d
.
o
p
s

1

1.2

1.4

1.6

1.8

m = 1282

m = 1922

m = 2562

Analysis on the root node (of size
m = N2):

• large range of acceptable block sizes
around the optimal b∗ ⇒ flexibility to
tune block size for performance

• that range increases with the size of the
matrix ⇒ necessity to have variable
block sizes
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Introduction

Applications

Complexity

High performance implementation

Mixed precision

Multilevel BLR

Two exercises
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Sequential result

FR BLR

N
or

m
al

iz
ed

 fl
op

s
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100 LAI parts
Factor+Solve
Update
Compress

Normalized Flops

FR BLR

N
or

m
al
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ed

 ti
m

e

0

20

40

60

80

100 LAI parts
Factor+Solve
Update
Compress

Normalized Time

7.7 gain in flops only translated to a 3.3 gain in time: why?

• lower granularity of the Update

• higher relative weight of the FR parts

• inefficient Compress28/58



Multithreaded result on 24 threads

FR BLR

N
or

m
al

iz
ed

 ti
m

e
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100 LAI parts
Factor+Solve
Update
Compress

Normalized Time (Seq.)

FR BLR

N
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ed
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e

0

20

40

60

80

100 LAI parts
Factor+Solve
Update
Compress

Normalized Time (MT)

3.3 gain in sequential becomes 1.7 in multithreaded: why?

• LAI parts have become critical

• Update and Compress are memory-bound
29/58



Exploiting tree-based multithreading in MF solvers

thr0-3 thr0-3 thr0-3 thr0-3

Node

parallelism

L0 layer

thr0-3 thr0-3

thr0-3

� L’Excellent and Sid-Lakhdar (2014)

⇒ how big an impact can tree-based multithreading make?

30/58
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Impact of tree-based multithreading on BLR (24 threads)

%hai

%lai

Higher AI

Lower AI

node only node + tree

time %lai time %lai

FR 509 21%

424 13%

BLR

307 35% 221 24%

• In FR, top of the tree is dominant

⇒ tree MT brings little gain

• In BLR, bottom of the tree compresses less, becomes important

⇒ 1.7 gain becomes 1.9 thanks to tree-based multithreading

Theoretical speedup

tree only node only node + tree

N × N × N grid
FR O(1) O(N3) O(N4)

BLR O(1) O(N2r1/2) O(N3r1/2)
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Right-looking Vs. Left-looking analysis (24 threads)

FR time BLR time

RL LL RL LL

Update 338 336 110 67

Total 424 421 221 175

read once

written at each step

RL
factorization

read at each step

written once

LL
factorization

⇒ Lower volume of memory transfers in LL (more critical in MT)

Update is now less memory-bound: 1.9 gain becomes 2.4 in LL

32/58



Right-looking Vs. Left-looking analysis (24 threads)

FR time BLR time

RL LL RL LL

Update 338 336 110 67

Total 424 421 221 175

read once

written at each step

RL
factorization

read at each step

written once

LL
factorization

⇒ Lower volume of memory transfers in LL (more critical in MT)

Update is now less memory-bound: 1.9 gain becomes 2.4 in LL

32/58



Right-looking Vs. Left-looking analysis (24 threads)

FR time BLR time

RL LL RL LL

Update 338 336 110 67

Total 424 421 221 175

read once

written at each step

RL
factorization

read at each step

written once

LL
factorization

⇒ Lower volume of memory transfers in LL (more critical in MT)

Update is now less memory-bound: 1.9 gain becomes 2.4 in LL

32/58



Right-looking Vs. Left-looking analysis (24 threads)

FR time BLR time

RL LL RL LL

Update 338 336 110 67

Total 424 421 221 175

read once

written at each step

RL
factorization

read at each step

written once

LL
factorization

⇒ Lower volume of memory transfers in LL (more critical in MT)

Update is now less memory-bound: 1.9 gain becomes 2.4 in LL32/58



LUAR variant: accumulation and recompression

+

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR

◦ Better granularity in Update operations
◦ Potential recompression ⇒ asymptotic complexity reduction?
⇒ Designed and compared several recompression strategies
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Performance of Outer Product with LUA(R) (24 threads)

LL LUA LUAR∗

average size of Outer Product 16.5

61.0 32.8

flops (×1012) Outer Product 3.8

3.8 1.6

Total 10.2

10.2 8.1

time (s)
Outer Product 21

14 6

Total 175

167 160
∗ All metrics include the Recompression overhead

Higher granularity and lower flops in Update:
⇒ 2.4 gain becomes 2.6

Outer Product benchmark

Size of Outer Product
0 20 40 60 80 100

G
flo

ps
/s

0

10

20

30

40

50

b=256
b=512
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Impact of machine properties on BLR: roofline model

specs time (s) for

peak bw BLR factorization

(GF/s) (GB/s) RL LL LUA

grunch (28 threads) 37 57 248 228 196

brunch (24 threads) 46 102 221 175 167

Arithmetic Intensity in BLR:

• LL > RL (lower volume of memory
transfers)

• LUA > LL (higher granularities ⇒ more
efficient cache use)
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FCSU variant: compress before solve

• FSCU (Factor, Solve, Compress, Update)

• FSCU+LUAR
◦ Better granularity in Update operations
◦ Potential recompression ⇒ asymptotic complexity reduction?
⇒ Designed and compared several recompression strategies

• FCSU(+LUAR)

◦ Compress performed before Solve
◦ Low-rank Solve ⇒ asymptotic complexity reduction?
◦ On previous matrix: 160→ 111s ⇒ 2.6 gain becomes 3.7
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Complexity of the variants

FCSU+LUAR improves asymptotic
complexity! (see slide 57 for a proof ,)

FSCU → FCSU+LUAR

dense O(m5/2r1/2) → O(m2r)

sparse (3D) O(N5r1/2) → O(N4r)

Experimental complexity

Mesh size N

64 96 128 160 192 224256 320

F
lo

p
c
o
u
n
t

FSCU

-t: 1068n1:50

FSCU+LUAR

-t: 2235n1:42

FCSU+LUAR

-t: 6175n1:33
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Multicore performance results (24 threads)

5Hz 7Hz 10Hz E3 E4 S3 S4 p8d p8ar p8cr

N
or
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ed

 ti
m

e 
(F

R
=

1)

0

0.2

0.4

0.6

0.8

1
FR BLR

BLR+

• “BLR”: FSCU, right-looking, node only multithreading

• “BLR+”: FCSU+LUAR, left-looking, node+tree multithreading
� Amestoy, Buttari, L’Excellent, M. (2019)
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Combining (data) sparsity and low precisions

Two approaches: coarse and fine grain mixed precision

• Coarse grain mixed precision: Run baseline algorithm in low precision, refine the
result to high precision

, Simple and efficient, can rely on optimized libraries
/ Extra work for the refinement, not always guaranteed to work

• Fine grain mixed precision: Adapt the precision of each instruction/operation to
achieve a given accuracy target

, Optimal use of low precision, with guaranteed target accuracy
/ Much more intrusive, may be less efficient
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Iterative refinement with BLR LU (coarse grain)

Error analysis: replace uf by uf + ε in the convergence conditions

Example on tminlet3M matrix
fp64 LU reference: time → 295.5 memory → 241.1

time (s) memory (GB)
LU-IR GMRES-IR LU-IR GMRES-IR

FR 136.2 157.9 121.0 169.9

ε = 10−8 149.7 165.3 114.0 161.9
ε = 10−6 88.3 98.8 82.4 93.8
ε = 10−4 — 105.6 — 70.9

• GMRES-IR allows to push BLR further!
� Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2023)
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Adaptive precision low rank compression

U1U2 U3

V T
1

V T
2

V T
3

precision u1
precision u2

precision u3

Σ∥Aij∥

ε

ε/u2

ε/u3

• Adaptive precision compression: partition U and V into q groups of decreasing
precisions u1 ≤ ε < u2 < . . . < uq

• With p precisions and a partitioning such that ∥Σk∥ ≤ ε∥A∥/uk ,
∥Aij − ÛεΣεV̂ε∥ ≲ (2p − 1)ε∥A∥

• If ∥Aij∥/∥A∥ ≪ 1, Σ1 may be empty!
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Adaptive precision BLR matrices

• If ∥Aij∥ ≤ ε∥A∥/ulow, block can be stored in precision ulow

(Poisson, ε = 10−10)

• fp64

• fp32

• fp16
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Adaptive precision BLR compression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized storage cost of each block

100% entries in fp64

→


13% in fp64
53% in fp32
33% in bfloat16

⇒ 2× storage reduction

Matrix perf009d
(RIS pump from EDF)

Low-rank admissibility condition
k(m + n) ≤ mn becomes

(ω1k1 + ω2k2 + . . .+ ωpkp)(m + n) ≤ mn

in mixed precision !
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Adaptive precision BLR LU factorization

Stability of LU factorization: L̂Û = A+∆A

• Standard LU : ∥∆A∥ ≲ cnu1∥A∥
• BLR LU : ∥∆A∥ ≲ c ′n(ε+ u1)∥A∥
• Adaptive precision BLR LU : ∥∆A∥ ≲ c ′′n (ε+ u1)∥A∥

� Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L’Excellent, M. (2022)

Example of kernel: LR × matrix multiplication:

× = × + ×

Compute in fp64 Compute in fp32

fp64/fp32 fp64 fp64 fp64 fp32 fp64
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Adaptive precision BLR LU factorization

nd24k audikw_1 perf009d Transport Poisson64 nlpkkt80 Fault_639 Geo_1438 Serena Cube_Coup_dt0
0
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)

32%

48%

41% 46% 47% 39%
33% 34% 35% 34%

fp64 fp32 bfloat16

ε = 10−12

Top of the bars: cost w.r.t. fp64 BLR, assuming
1 flop(fp64) = 2 flops(fp32) = 4 flops(bfloat16)
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Adaptive precision BLR LU factorization
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H and BLR matrices

H matrix � Hackbusch (2015) BLR matrix

• Theoretical complexity can be as low as
O(n)

• Complex, hierarchical structure

• Theoretical complexity can be as low as
O(n4/3)

• Simpler structure

BLR makes easier to preserve the numerical features of a direct solver and compromises
well complexity, accuracy and performance
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Nested dissection complexity formulas

2D: Csparse =

logN∑
ℓ=0

4ℓCdense(
N

2ℓ
)

→ common ratio 22−α

3D: Csparse =

logN∑
ℓ=0

8ℓCdense(
N2

4ℓ
)

→ common ratio 23−2α

Assume Cdense = O(mα). Then:

2D 3D

Csparse(n) Csparse(n)
α > 2 O(nα/2) α > 1.5 O(n2α/3)
α = 2 O(n log n) α = 1.5 O(n log n)
α < 2 O(n) α < 1.5 O(n)
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Bridging the gap between flat and hierarchical formats

Cdense = O(mα)⇒ Csparse = O(nβ)

Storage

1 1.5 2 2.5 3

1

1.2

1.4

1.6

1.8

2
Flops

1 1.5 2 2.5 3

1

1.2

1.4

1.6

1.8

2

Key motivation: Cdense < O(m2) (2D) or O(m1.5) (3D)
is enough to get O(n) sparse complexity!
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Complexity of the two-level BLR format

Storage = costLR ∗ nbLR + costBLR ∗ nbBLR
= O(br) ∗ O((

m

b
)2) + O(b3/2r1/2) ∗ O(

m

b
)

= O(m2r/b +m(br)1/2)

= O(m4/3r2/3) for b = (m2r)1/3

Similarly, we can prove:

FlopLU = O(m5/3r4/3) for b = (m2r)1/3

FR BLR 2-BLR ... H

storage
dense O(m2) O(m1.5) O(m1.33) ... O(m logm)
sparse O(n1.33) O(n log n) O(n) ... O(n)

flop LU
dense O(m3) O(m2) O(m1.66) ... O(m log3m)
sparse O(n2) O(n1.33) O(n1.11) ... O(n)
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Multilevel BLR complexity

Main result

For b = mℓ/(ℓ+1)r1/(ℓ+1), the ℓ−level complexities are:

Storage = O(m(ℓ+2)/(ℓ+1)rℓ/(ℓ+1))

FlopLU = O(m(ℓ+3)/(ℓ+1)r2ℓ/(ℓ+1))

Proof: by induction. � Amestoy, Buttari, L’Excellent, M. (2019)

• Simple way to finely control the desired complexity

• Block size b ∝ O(m1−1/(ℓ+1))≪ O(m)
⇒ larger blocks that can be efficiently processed in shared-memory
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Influence of the number of levels ℓ

Storage

2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Flop LU

2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

• If r = O(1), can achieve O(n) storage complexity with only two levels and
O(n log n) flop complexity with three levels

• For higher ranks, improvement rate rapidly decreases:
the first few levels achieve most of the asymptotic gain
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Experimental MBLR complexity (Poisson)

Storage Flop LU

• Experimental complexity in relatively good agreement with theoretical one

• Asymptotic gain decreases with levels
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The BLR2 format

• Solve: only involves the common pivotal row and
column bases

• Update: only involves the common pivotal row
and column bases and coupling matrices

• Common basis of size s ≥ r for all the blocks in a row/column

• If s = O(1) storage complexity is O(n) and flops complexity is O(n1.2)
• In practice s is usually larger

• Keep high-rank blocks off the common basis → substantial storage gains but
complex factorization

• � Ashcraft, Buttari, M. (2021) (one of the possible research papers to be read for the
evaluation)
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Pen & paper exercise (4 points)

• Goal: prove the reduced O(m2r) complexity of the FCSU+LUAR variant given on
slide 37

• The accumulated updates always recompress to rank r no matter how many
updates have been accumulated

• Suggested steps:
◦ What is the cost of the FR-LR solve operation? How many times do we perform it?
◦ What is the cost of the Recompress operation? How many times do we perform it?
◦ Add these two new operations in the table on slide 23. What else changes in the table?
◦ Recompute the optimal complexity as previously.
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Practical exercise (4 points)

• Goal: implement BLR LU factorization and assess storage, flops and time gains
w.r.t. matrix size and ε accuracy

• Already provided:
◦ FR factorization (FR factorization.m)
◦ Basic kernels and utilitary routines
◦ Main test launcher (test.m)
◦ BLR factorization template, initialized identical to FR factorization

(BLR factorization.m) ⇒ this is the file you need to modify

• 3 test matrices given, root separator of a 3D Poisson problem of dimensions
N × N × N. Can change value of N (30, 50, or 70) in test.m

• Choice of BLR LU variant left up to you (vanilla FSCU is certainly the simplest)
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