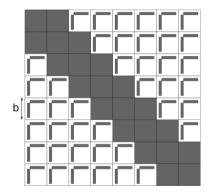
Harnessing inexactness in scientific computing

Lecture 14: block low-rank matrices

Theo Mary (CNRS) theo.mary@lip6.fr https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon) elisa.riccietti@ens-lyon.fr https://perso.ens-lyon.fr/elisa. riccietti/

M2 course at ENS Lyon, 2024–2025 Slides available on course webpage



Introduction

Applications

Complexity

High performance implementation

Mixed precision

Multilevel BLR

Two exercises

Introduction

Applications

Complexity

High performance implementation

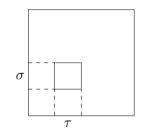
Mixed precision

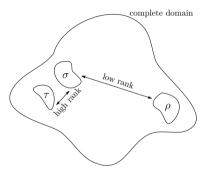
Multilevel BLR

Two exercises

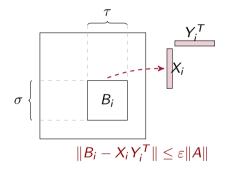
Data sparse matrices

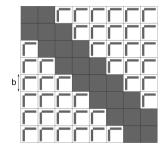
Data sparse matrices are not sparse but can be well approximated by "sparse data":



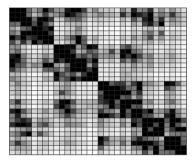


A block *B* represents the interaction between two subdomains σ and τ . Large distance \Leftrightarrow low numerical rank



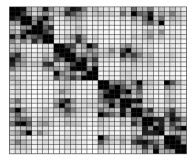


Block Low Rank



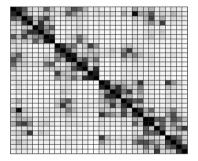
Example of a BLR matrix (Schur complement of a 64³ Poisson problem with block size 128)

- Diagonal blocks are full rank
- Off-diagonal ones are stored in low rank form if their ε -rank is small enough
- $\varepsilon = 10^{-15}
 ightarrow 50\%$ entries kept



Example of a BLR matrix (Schur complement of a 64³ Poisson problem with block size 128)

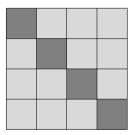
- Diagonal blocks are full rank
- Off-diagonal ones are stored in low rank form if their ε -rank is small enough
- $arepsilon = 10^{-15}
 ightarrow 50\%$ entries kept
- $\varepsilon = 10^{-12} \rightarrow 36\%$ entries kept



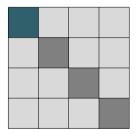
Example of a BLR matrix (Schur complement of a 64³ Poisson problem with block size 128)

- Diagonal blocks are full rank
- Off-diagonal ones are stored in low rank form if their ε -rank is small enough
- $arepsilon = 10^{-15}
 ightarrow 50\%$ entries kept
- $arepsilon = 10^{-12}
 ightarrow 36\%$ entries kept
- $arepsilon = 10^{-9}~
 ightarrow 23\%$ entries kept

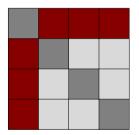
- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant:



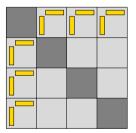
- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor,



- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve,

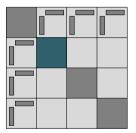


- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress,

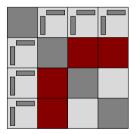


- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update

- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update

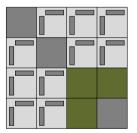


- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update

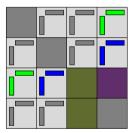


- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update

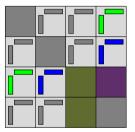
- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update

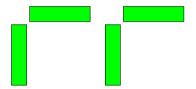


- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update

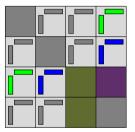


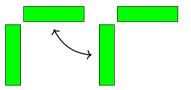
- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update



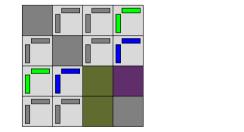


- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update





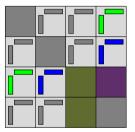
- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update



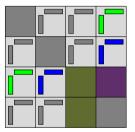


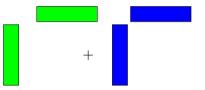
- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update

- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update

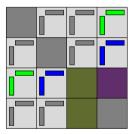


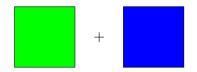
- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update



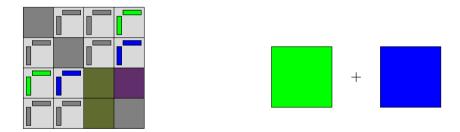


- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update

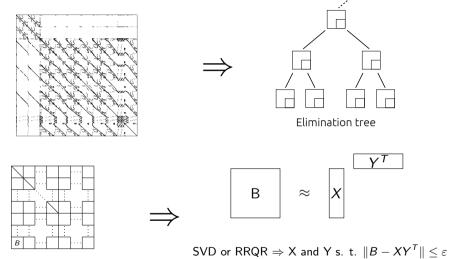




- How to adapt block LU factorization to exploit BLR structure?
- FSCU variant: Factor, Solve, Compress, Update



Combining sparsity and data sparsity



BLR clustering to build 2D block

structure

Introduction

Applications

Complexity

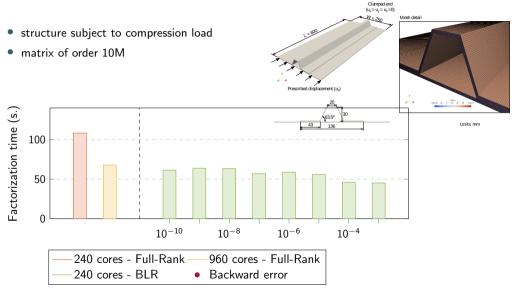
High performance implementation

Mixed precision

Multilevel BLR

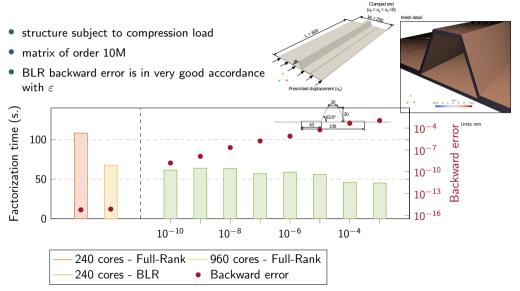
Two exercises

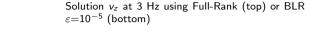
Structural mechanics: wind turbines (ALYA code)

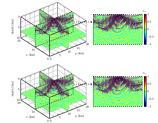


10/58

Structural mechanics: wind turbines (ALYA code)







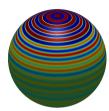
3D mesh (220k cells, $20 \times 20 \times 10$ km³)

- surface topography: small cells
- below: larger cells and high order

Matrix size (elastic equations, f=3 Hz, $3 \le p \le 6$): N=25M, NZ=5 859M

BLR compression:	Full-Rank			BLR (ε =1			
DER compression.	flops	$1.1 imes10^{16}$	3	$.6 imes10^{15}$	(34%)		
	(HLRS cluster Stuttgart, using 40 nodes, 80 MPI, 32 threads/MPI)						
Time compression:	Time (seconds)			Analysis	Facto	o. Solve	
rime compression.	MUMPS Full-Rank			11.7	289	94 8.3	
	MUMPS	BLR ($arepsilon=10^{-5}$)	13.2	179	98 6.0	

Mesh and solution at 2 mHz for r=0.99. Cells near surface are very small (extreme properties)



Experiment with entire solar ball, $r_{max}=1.0008$, f=1 mHz

- required 40 nodes, 1 MPI per node (256 GB, 24 threads per node)
- BLR solver used, with $\varepsilon = 10^{-7}$
- Full-Rank estimate (12M, p=2-4): 3×10^{16} flops, memory > 9 TiB

#cells	p	#dofs	BLR flops (% of FR)	ana	fac	sol	Mem
			$4.7 imes 10^{14}$ (2.0%)				
12M	3-4	381M	$5.8 imes 10^{14}$ (1.7%)	506 s.	999 s.	20 s.	5.3 TiB

• 50x BLR compression

Full-Waveform Inversion

- Adastra MUMPS4FWI project led by WIND team
- Application: Gorgon Model, reservoir 23km × 11km × 6.5km, grid size 15m, Helmholtz equation, 25-Hz
- Complex matrix, 531 Million dofs, storage(A)=220 GBytes;
- FR cost: flops for one *LU* factorization= 2.6 × 10¹⁸; Estimated storage for LU factors= 73 TBytes

(25-Hz Gorgon FWI velocity model)

FR (Full-Rank); BLR with $\varepsilon = 10^{-5}$; 48 000 cores (500 MPI × 96 threads/MPI)								
FR: fp32; Mixed precision BLR: 3 precisions (32bits, 24bits, 16bits) for storage					s) for storage			
LU	size	(TBytes)	FI	ops	Time BLR	+ Mixed	(sec)	Scaled Resid.
FR	BLR	+mixed	FR	BLR+mixed	Analysis	Facto	Solve	BLR+mixed
73	34	26	$2.6 imes10^{18}$	$0.5 imes10^{18}$	446	5500	27	$7 imes 10^{-4}$

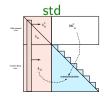
in practice: hundreds to thousands of Solve steps (sparse right hand sides (sources))

Structural mechanics: pump of nuclear plant

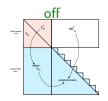
• Matrix from aero-acoustics, complex unsymmetric

N=4.1M, NZ=353M, flops(<i>LU</i>	$J = 2.6 \times 10^{14}$ pivots: 4 delayed, 415 off-c	liag		
8 MPIx18 threads	Full-Rank	BLR ($arepsilon=10^{-8}$)		
Pivoting	std off	std off		
Factor. time (s.)	273 241	164 114		
Scaled residual	7×10 ⁻¹³ 1×10 ⁻¹¹	6×10^{-8} 2×10^{-7}		
Direction off improved DLD newformenes residual still O				

Pivoting off \rightarrow improved BLR performance, residual still OK



14/58



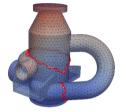
BLAS2&3 large BLAS 3

Structural mechanics: pump of nuclear plant

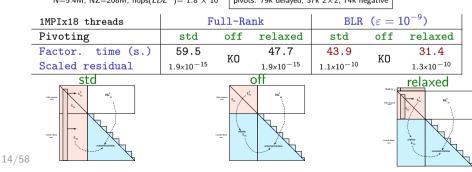
14/58

- Matrix from structural mechanics, real symmetric: pump (code_aster, EDF) N=5.4M, NZ=208M, flops(LDL^{T})= 1.8 × 10¹³ pivots: 79k delayed, 37k 2×2, 74k negative BLR ($\varepsilon = 10^{-9}$) 1MPIx18 threads Full-Rank Pivoting std off std off Factor. time (s.) 59.5 43.9 KO KO 1.9×10^{-15} Scaled residual 1.1×10^{-10} std off Fally second Carris Rick Camib. Rivel

BLAS2&3 large BLAS 3 Relaxed pivoting: based on 📑 Duff and Pralet



 Matrix from structural mechanics, real symmetric: pump (code_aster, EDF) N=5.4M, NZ=208M, flops(LDL^T)= 1.8 × 10¹³ pivots: 79k delayed, 37k 2×2, 74k negative



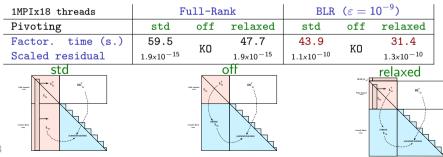
Structural mechanics: pump of nuclear plant

• Matrix from aero-acoustics, complex unsymmetric

N=4.1M, NZ=353M, flops(LU)= 2.6 × 10¹⁴ pivots: 4 delayed, 415 off-diag

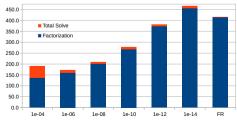
8 MPIx18 threads		Full-Rai	nk	BL	.R ($arepsilon=1$	LO ⁻⁸)
Pivoting	std	off	relaxed	std	off	relaxed
Factor. time (s.)	273	241	241	164	114	127
Scaled residual	7×10 ⁻¹³	1×10^{-11}	1×10^{-12}	6×10 ⁻⁸	2×10^{-7}	1×10 ⁻⁷

 Matrix from structural mechanics, real symmetric: pump (code_aster, EDF) N=5.4M, NZ=208M, flops(LDL^T)= 1.8 × 10¹³ pivots: 79k delayed, 37k 2×2, 74k negative



BLR as a preconditioner

- Application in structural mechanics (ANSYS): highly nonlinear materials, 3D solid elements, matrix Rubber RVE N=3M, NZ=70M, flops(LDL^{T})= 9.8 × 10¹⁴
- Conjugate Gradient preconditioned BLR LU:
 - Convergence criterion is scaled residual $\leq 10^{-10}$, time for analysis ≈ 45 sec
 - CG with simple block-Jacobi preconditioner did not converge
 - Target computer: cluster with 28-core nodes based on Xeon E5-2690 v4-14 cores, 512GB

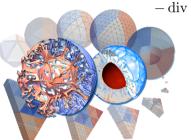


$Solver(\varepsilon)$	Size of L	Total (nbiter)
$CG-BLR(10^{-4})$	30GB	192(92)
$CG-BLR(10^{-6})$	51GB	173 (13)
$CG-BLR(10^{-8})$	78GB	210 (4)
$CG-BLR(10^{-10})$	109GB	279 (3)
$CG-BLR(10^{-12})$	136GB	383 (1)
$CG-BLR(10^{-14})$	153GB	467 (1)
Full-Rank (FR)	157GB	417(0)

Rubber RVE (8MPIx14threads)

BLR in a multigrid solver

Mantle convection simulation:



$$\begin{split} \operatorname{liv} \left(\frac{\nu}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{\top})) \right) + \nabla \mathbf{p} &= \mathbf{f} \quad \text{in } \Omega, \\ \operatorname{div}(\mathbf{u}) &= \mathbf{0} \quad \text{in } \Omega, \\ \mathbf{u} &= \mathbf{g} \quad \text{on } \partial \Omega, \end{split}$$

- HHG (Hierarchical Hybrid Grids) geometric multigrid solver
- 6 levels with V-cycle and Uzawa smoother

 \rightarrow compare BLR vs. PMINRES as coarse grid solvers Buttari, Huber, Leleux, M., Ruede, Wohlmuth

<i>n</i> -fine	<i>n</i> -coarse
$1.21\cdot 10^{11}$	$1.94\cdot 10^6$

Time on the fine grid: 1200 s. (43200 cores, HLRS cluster Stuttgart)

	PMINRES	162.5 s.	\Rightarrow not negligible	
Time on the coarse grid:	MUMPS Full-Rank	184.7 s.		
	MUMPS BLR, $arepsilon=10^{-5}$	91.4 s.		
	MUMPS BLR, $arepsilon=10^{-5}$	93 6 g	\Rightarrow 2× speedup	
	+ single precision	00.0 8.	→ 2× speedup	

- PMINRES converges slowly \Rightarrow coarse grid solution not negligible
- $2\times$ speedup on the coarse grid $\Rightarrow \sim 6\%$ overall gain

Introduction

Applications

Complexity

High performance implementation

Mixed precision

Multilevel BLR

Two exercises

Let us consider two blocks A and B of size $b \times b$ and of rank bounded by r.

type	operation	cost
FR	$A \leftarrow LU$	$\mathcal{O}(b^3)$
FR-FR	$B \leftarrow BU^{-1}$	$\mathcal{O}(b^3)$
LR	$A \leftarrow \widetilde{A}$	$\mathcal{O}(b^2 r)$
FR-FR	$C \leftarrow AB$	$\mathcal{O}(b^3)$
LR-FR	$C \leftarrow \widetilde{A}B$	$\mathcal{O}(b^2 r)$
FR-LR	$C \leftarrow A\widetilde{B}$	$\mathcal{O}(b^2 r)$
LR-LR	$C \leftarrow \widetilde{A}\widetilde{B}$	$\mathcal{O}(b^2 r)$
	FR FR-FR LR FR-FR LR-FR FR-LR	FR $A \leftarrow LU$ FR-FR $B \leftarrow BU^{-1}$ LR $A \leftarrow \widetilde{A}$ FR-FR $C \leftarrow AB$ LR-FR $C \leftarrow \widetilde{AB}$ FR-LR $C \leftarrow A\widetilde{B}$

This is not enough to compute the complexity \Rightarrow we need to bound the number of FR blocks!

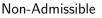
Admissibility of a block

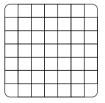
An block $\sigma \times \tau$ is admissible if dist $(\sigma, \tau) \ge \eta \max(\operatorname{diam}(\sigma), \operatorname{diam}(\tau))$.

Admissibility of a block partition

A block partion ${\mathcal P}$ is admissible if there exists q=O(1) such that

$$\left\{\begin{array}{ll} \#\{\sigma, \ \ \sigma \times \tau \in \mathcal{P} \text{ is not admissible}\} \leq q \\ \#\{\tau, \ \ \sigma \times \tau \in \mathcal{P} \text{ is not admissible}\} \leq q \end{array}\right.$$





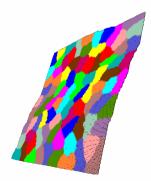
Key result

For any matrix, an admissible \mathcal{P} can be built geometrically

Amestoy, Buttari, L'Excellent, M. (2017)

Key result

For any matrix, an admissible \mathcal{P} can be built geometrically Amestoy, Buttari, L'Excellent, M. (2017)



What about algebraic partitions? For sparse problems, use the adjacency graph! Root separator of a 128³ Poisson problem

clustered with SCOTCH via k-means 🖹 Weisbecker (2015)

We consider a dense $m \times m$ matrix with m = pb

The memory complexity to store the matrix can be computed as $\mathcal{M}_{total}(b, p, r) = \mathcal{M}_{FR}(b, p) + \mathcal{M}_{LR}(b, p, r)$

We consider a dense $m \times m$ matrix with m = pb

The memory complexity to store the matrix can be computed as $\mathcal{M}_{total}(b, p, r) = \mathcal{M}_{FR}(b, p) + \mathcal{M}_{LR}(b, p, r)$

• Step 1: we have

$$\mathcal{M}_{FR}(b,p) = \mathcal{O}(pb^2)$$

 $\mathcal{M}_{LR}(b,p,r) = \mathcal{O}(p^2br)$

We consider a dense $m \times m$ matrix with m = pb

The memory complexity to store the matrix can be computed as $\mathcal{M}_{total}(b, p, r) = \mathcal{M}_{FR}(b, p) + \mathcal{M}_{LR}(b, p, r)$

• Step 1: we have

$$\mathcal{M}_{FR}(b,p) = \mathcal{O}(pb^2)$$

 $\mathcal{M}_{LR}(b,p,r) = \mathcal{O}(p^2br)$

• Step 2: assuming $b = \mathcal{O}(m^{x})$ and $r = \mathcal{O}(m^{\alpha})$, we have

$$\mathcal{M}_{total}(m, x, \alpha) = \mathcal{O}(m^{1+x} + m^{2-x+\alpha})$$

We consider a dense $m \times m$ matrix with m = pb

The memory complexity to store the matrix can be computed as $\mathcal{M}_{total}(b, p, r) = \mathcal{M}_{FR}(b, p) + \mathcal{M}_{LR}(b, p, r)$

• Step 1: we have

$$\mathcal{M}_{FR}(b,p) = \mathcal{O}(pb^2)$$

 $\mathcal{M}_{LR}(b,p,r) = \mathcal{O}(p^2br)$

• Step 2: assuming $b = \mathcal{O}(m^{x})$ and $r = \mathcal{O}(m^{\alpha})$, we have

$$\mathcal{M}_{total}(m, x, \alpha) = \mathcal{O}(m^{1+x} + m^{2-x+\alpha})$$

• Step 3: the optimal block size is $b^* = m^{(1+\alpha)/2}$ and the resulting optimal complexity is

$$\mathcal{M}_{opt}(m,r) = \mathcal{M}_{total}(m,x^*,\alpha) = \mathcal{O}(m^{3/2}r^{1/2})$$

We consider a dense $m \times m$ matrix with m = pb

step	type	cost	number	$C_{step}(b, p, r)$
Factor	FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p)$	
Solve	FR-FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p^2)$	
Compress	LR	$\mathcal{O}(b^2 r)$	$\mathcal{O}(p^2)$	
Update	FR-FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p)$	
Update	LR-FR	$\mathcal{O}(b^2 r)$	$\mathcal{O}(p^2)$	
Update	LR-LR	$\mathcal{O}(b^2r)$	$\mathcal{O}(p^3)$	

We consider a dense $m \times m$ matrix with m = pb

step	type	cost	number	$C_{step}(b, p, r)$
Factor	FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p)$	$\mathcal{O}(pb^3)$
Solve	FR-FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^3)$
Compress	LR	$\mathcal{O}(b^2r)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^2r)$
Update	FR-FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p)$	$\mathcal{O}(pb^3)$
Update	LR-FR	$\mathcal{O}(b^2 r)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^2r)$
Update	LR-LR	$\mathcal{O}(b^2 r)$	$\mathcal{O}(p^3)$	$\mathcal{O}(p^3b^2r)$

• Step 1: compute $C_{step}(b, p, r) = \text{cost} \times \text{number}$

We consider a dense $m \times m$ matrix with m = pb

step	type	cost	number	$\mathcal{C}_{step}(b, p, r)$	$\mathcal{C}_{step}(m, x, \alpha)$
Factor	FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p)$	$\mathcal{O}(pb^3)$	$\mathcal{O}(m^{1+2x})$
Solve	FR-FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^3)$	$\mathcal{O}(m^{2+x})$
Compress	LR	$\mathcal{O}(b^2r)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^2r)$	$\mathcal{O}(m^{2+lpha})$
Update	FR-FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p)$	$\mathcal{O}(pb^3)$	$\mathcal{O}(m^{1+2x})$
Update	LR-FR	$\mathcal{O}(b^2 r)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^2r)$	$\mathcal{O}(\textit{m}^{2+lpha})$
Update	LR-LR	$\mathcal{O}(b^2r)$	$\mathcal{O}(p^3)$	$\mathcal{O}(p^3b^2r)$	$\mathcal{O}(m^{3-x+lpha})$

• Step 1: compute $C_{step}(b, p, r) = \text{cost} \times \text{number}$

• Step 2: compute $C_{step}(m, x, \alpha)$ with $b = O(m^{x})$ and $r = O(m^{\alpha})$.

We consider a dense $m \times m$ matrix with m = pb

step	type	cost	number	$\mathcal{C}_{step}(b, p, r)$	$\mathcal{C}_{step}(m, x, \alpha)$
Factor	FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p)$	$\mathcal{O}(pb^3)$	$\mathcal{O}(m^{1+2x})$
Solve	FR-FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^3)$	$\mathcal{O}(m^{2+x})$
Compress	LR	$\mathcal{O}(b^2r)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^2r)$	$\mathcal{O}(m^{2+lpha})$
Update	FR-FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p)$	$\mathcal{O}(pb^3)$	$\mathcal{O}(m^{1+2x})$
Update	LR-FR	$\mathcal{O}(b^2 r)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^2r)$	$\mathcal{O}(\textit{m}^{2+lpha})$
Update	LR-LR	$\mathcal{O}(b^2r)$	$\mathcal{O}(p^3)$	$\mathcal{O}(p^3b^2r)$	$\mathcal{O}(m^{3-x+lpha})$

• Step 1: compute $C_{step}(b, p, r) = \text{cost} \times \text{number}$

- Step 2: compute $C_{step}(m, x, \alpha)$ with $b = O(m^{x})$ and $r = O(m^{\alpha})$.
- Step 3: compute the total complexity (sum of all steps)

$$C_{total}(m, x, \alpha) = \mathcal{O}(m^{3-x+\alpha} + m^{2+x})$$

We consider a dense $m \times m$ matrix with m = pb

step	type	cost	number	$\mathcal{C}_{step}(b, p, r)$	$\mathcal{C}_{step}(m, x, \alpha)$
Factor	FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p)$	$\mathcal{O}(pb^3)$	$\mathcal{O}(m^{1+2x})$
Solve	FR-FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^3)$	$\mathcal{O}(m^{2+x})$
Compress	LR	$\mathcal{O}(b^2 r)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^2r)$	$\mathcal{O}(\textit{m}^{2+lpha})$
Update	FR-FR	$\mathcal{O}(b^3)$	$\mathcal{O}(p)$	$\mathcal{O}(pb^3)$	$\mathcal{O}(m^{1+2x})$
Update	LR-FR	$\mathcal{O}(b^2 r)$	$\mathcal{O}(p^2)$	$\mathcal{O}(p^2b^2r)$	$\mathcal{O}(\textit{m}^{2+lpha})$
Update	LR-LR	$\mathcal{O}(b^2r)$	$\mathcal{O}(p^3)$	$\mathcal{O}(p^3b^2r)$	$\mathcal{O}(m^{3-x+lpha})$

• Step 1: compute $C_{step}(b, p, r) = \text{cost} \times \text{number}$

- Step 2: compute $C_{step}(m, x, \alpha)$ with $b = O(m^{x})$ and $r = O(m^{\alpha})$.
- Step 3: compute the total complexity (sum of all steps)

$$C_{total}(m, x, \alpha) = \mathcal{O}(m^{3-x+\alpha} + m^{2+x})$$

• Step 4: the optimal block size is $b^* = m^{(1+\alpha)/2}$ and the resulting optimal complexity is $C_{opt}(m, r) = C_{total}(m, x^*, \alpha) = O(m^{5/2}r^{1/2})$

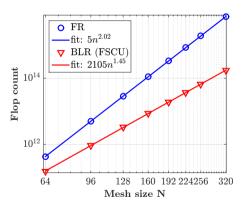
Complexity of the sparse multifrontal BLR factorization

For a dense complexity $C_{opt}(m, r)$, the sparse complexity is computed as

$$\begin{split} N \times N \text{ grid:} \quad \mathcal{C}_{mf} &= \sum_{\ell=0}^{\log_2 N} 2^{2\ell} \mathcal{C}_{opt} \big(\frac{N}{2^{\ell}} \big), \\ N \times N \times N \text{ grid:} \quad \mathcal{C}_{mf} &= \sum_{\ell=0}^{\log_4 N^2} 2^{3\ell} \mathcal{C}_{opt} \big(\frac{N^2}{2^{2\ell}} \big). \\ \hline \text{operations (OPC) factor size (NNZ)} \\ \hline N \times N \text{ grid} \\ \hline FR \quad \mathcal{O}(N^3) \qquad \mathcal{O}(N^2 \log N) \\ \hline BLR \quad \mathcal{O}(N^{5/2} r^{1/2}) \qquad \mathcal{O}(N^2) \\ \hline N \times N \times N \text{ grid} \\ \hline FR \quad \mathcal{O}(N^6) \qquad \mathcal{O}(N^4) \\ \hline BLR \quad \mathcal{O}(N^5 r^{1/2}) \qquad \mathcal{O}(N^3 \max (r^{1/2}, \log N))) \end{split}$$

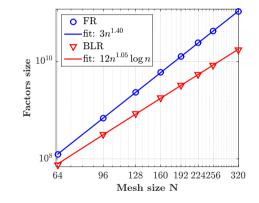
24/58

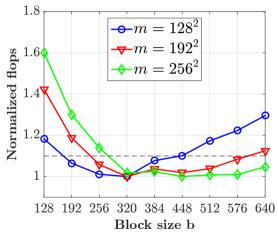
Experimental complexity on Poisson problem



Flop complexity

Factor size complexity





Analysis on the root node (of size $m = N^2$):

- large range of acceptable block sizes around the optimal b^{*} ⇒ flexibility to tune block size for performance
- that range increases with the size of the matrix ⇒ necessity to have variable block sizes

Introduction

Applications

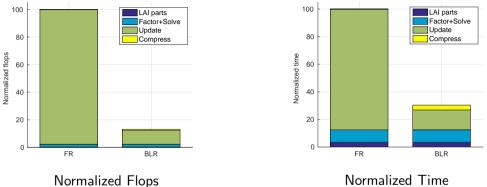
Complexity

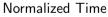
High performance implementation

Mixed precision

Multilevel BLR

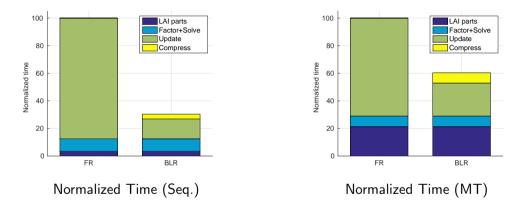
Two exercises





- 7.7 gain in flops only translated to a 3.3 gain in time: why?
 - lower granularity of the Update
 - higher relative weight of the FR parts
- inefficient Compress 28/58

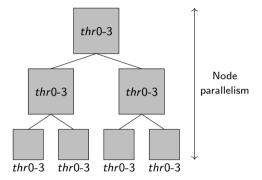
Multithreaded result on 24 threads



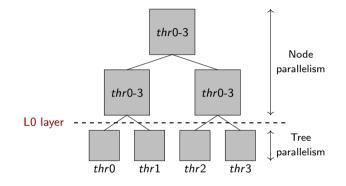
3.3 gain in sequential becomes 1.7 in multithreaded: why?

- LAI parts have become critical
- Update and Compress are memory-bound

Exploiting tree-based multithreading in MF solvers

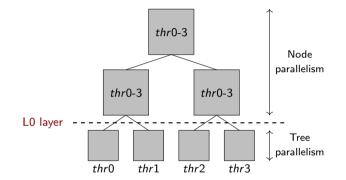


Exploiting tree-based multithreading in MF solvers



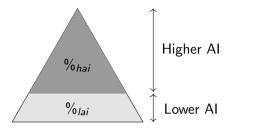
L'Excellent and Sid-Lakhdar (2014)

Exploiting tree-based multithreading in MF solvers



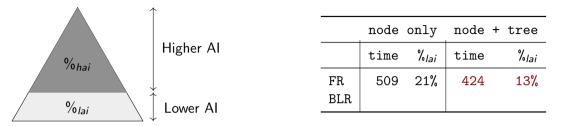
L'Excellent and Sid-Lakhdar (2014)

 \Rightarrow how big an impact can tree-based multithreading make?



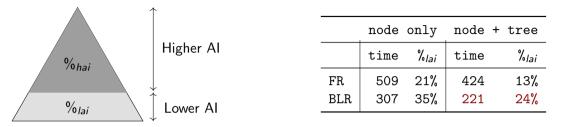
	node	only	node –	+ tree
	time	% _{lai}	time	% _{lai}
FR BLR	509	21%		

• In FR, top of the tree is dominant

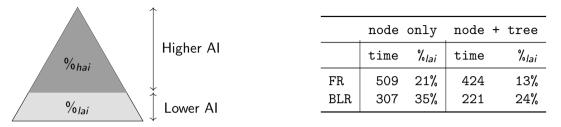


• In FR, top of the tree is dominant \Rightarrow tree MT brings little gain

- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important



- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important
- \Rightarrow 1.7 gain becomes 1.9 thanks to tree-based multithreading

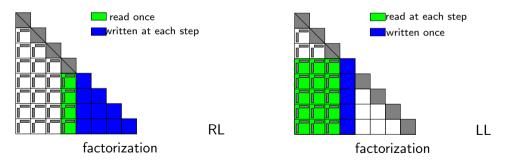


- In FR, top of the tree is dominant \Rightarrow tree MT brings little gain
- In BLR, bottom of the tree compresses less, becomes important
- **1.7** gain becomes **1.9** thanks to tree-based multithreading \Rightarrow

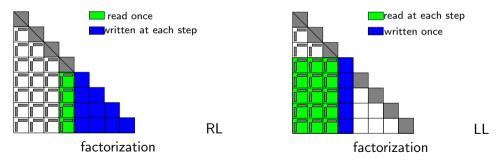
Theoretical speedup				
		tree only	node only	node + tree
N imes N imes N grid	FR BLR	$\mathcal{O}(1)$ $\mathcal{O}(1)$	$\mathcal{O}(N^3)$ $\mathcal{O}(N^2r^{1/2})$	$\mathcal{O}(N^4)$ $\mathcal{O}(N^3r^{1/2})$

	FR time		BLR time	
	RL	LL	RL	LL
Update Total	338	336	110	67
Total	424	421	221	175

	FR time		BLR	time
	RL	LL	RL	LL
Update Total	338	336	110	67
Total	424	421	221	175

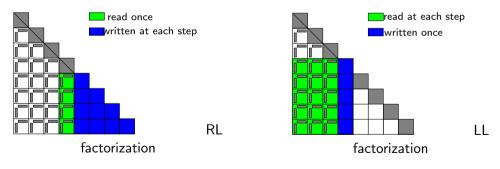


	FR time		BLR time	
	RL	LL	RL	LL
Update Total	338	336	110	67
Total	424	421	221	175



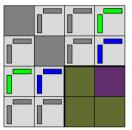
 \Rightarrow Lower volume of memory transfers in LL (more critical in MT)

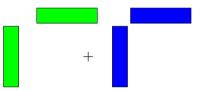
	FR time		BLR	time
	RL	LL	RL	LL
Update	338	336	110	67
Total	424	421	221	175



 \Rightarrow Lower volume of memory transfers in LL (more critical in MT) Update is now less memory-bound: **1.9** gain becomes **2.4** in LL

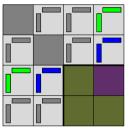
LUAR variant: accumulation and recompression

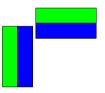




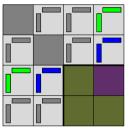
- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR

LUAR variant: accumulation and recompression



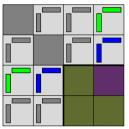


- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations

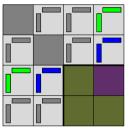


- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow asymptotic complexity reduction?
 - \Rightarrow Designed and compared several recompression strategies

LUAR variant: accumulation and recompression



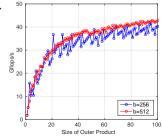
- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow asymptotic complexity reduction?
 - \Rightarrow Designed and compared several recompression strategies



- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - Potential recompression \Rightarrow asymptotic complexity reduction?
 - \Rightarrow Designed and compared several recompression strategies

		LL	LUA	LUAR*
average size o	f Outer Product	16.5		
flops ($\times 10^{12}$)	Outer Product Total	3.8 10.2		
time (s)	Outer Product Total	21 175		

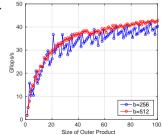
Outer Product benchmark



		LL	LUA	LUAR*
average size o	f Outer Product	16.5	61.0	
flops ($\times 10^{12}$)	Outer Product Total		3.8 10.2	
time (s)	Outer Product Total	21 175	14 167	



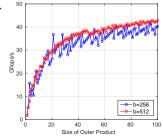
ス



		LL	LUA	LUAR*
average size o	f Outer Product	16.5	61.0	32.8
flops ($\times 10^{12}$)	Outer Product Total		3.8 10.2	1.6 8.1
time (s)	Outer Product Total	21 175	14 167	6 160

Outer Product benchmark

* All metrics include the Recompression overhead

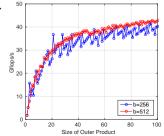


		LL	LUA	$LUAR^*$
average size o	f Outer Product	16.5	61.0	32.8
flops ($ imes 10^{12}$)	Outer Product Total		3.8 10.2	1.6 8.1
time (s)	Outer Product Total	21 175	14 167	6 160

Outer Product benchmark

* All metrics include the Recompression overhead

Higher granularity and lower flops in Update: \Rightarrow 2.4 gain becomes 2.6

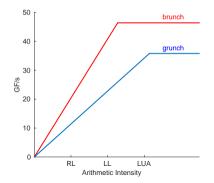


	spe	ecs	t	ime (s) for
	peak	bw	BLR	factor	ization
		(GB/s)	RL	LL	LUA
grunch (28 threads)	37	57	248	228	196
brunch (24 threads)	46	102	221	175	167

	spe	ecs	t	ime (s)) for
	peak	bw	BLR	factor	ization
	(GF/s)	(GB/s)	RL	LL	LUA
grunch (28 threads)	37	57	248	228	196
brunch (24 threads)	46	102	221	175	167

Arithmetic Intensity in BLR:

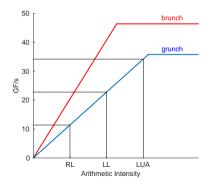
- LL > RL (lower volume of memory transfers)
- LUA > LL (higher granularities ⇒ more efficient cache use)



	spe	ecs	t	ime (s)) for
	peak	bw	BLR	factor	ization
	(GF/s)	(GB/s)	RL	LL	LUA
grunch (28 threads)	37	57	248	228	196
brunch (24 threads)	46	102	221	175	167

Arithmetic Intensity in BLR:

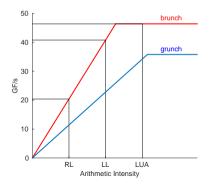
- LL > RL (lower volume of memory transfers)
- LUA > LL (higher granularities ⇒ more efficient cache use)

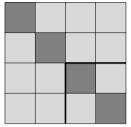


	spe			ime (s)	
	peak	bw	BLR	factor	ization
	(GF/s)	(GB/s)	RL	LL	LUA
grunch (28 threads)	37	57	248	228	196
brunch (24 threads)	46	102	221	175	167

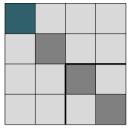
Arithmetic Intensity in BLR:

- LL > RL (lower volume of memory transfers)
- LUA > LL (higher granularities ⇒ more efficient cache use)

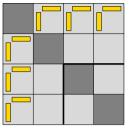




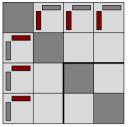
- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential recompression \Rightarrow asymptotic complexity reduction?
 - \Rightarrow Designed and compared several recompression strategies
- FCSU(+LUAR)



- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential recompression \Rightarrow asymptotic complexity reduction?
 - \Rightarrow Designed and compared several recompression strategies
- FCSU(+LUAR)



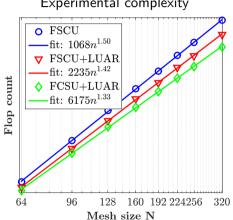
- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - Better granularity in Update operations
 - $\circ~$ Potential recompression \Rightarrow asymptotic complexity reduction?
 - \Rightarrow Designed and compared several recompression strategies
- FCSU(+LUAR)
 - Compress performed before Solve



- FSCU (Factor, Solve, Compress, Update)
- FSCU+LUAR
 - $\circ~$ Better granularity in Update operations
 - $\circ~$ Potential recompression \Rightarrow asymptotic complexity reduction?
 - \Rightarrow Designed and compared several recompression strategies
- FCSU(+LUAR)
 - Compress performed before Solve
 - $\circ~$ Low-rank Solve \Rightarrow asymptotic complexity reduction?
 - $\circ~$ On previous matrix: 160 \rightarrow 111s \Rightarrow 2.6 gain becomes 3.7

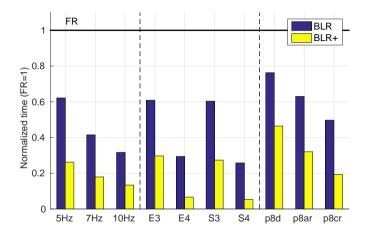
FCSU+LUAR improves asymptotic complexity! (see slide 57 for a proof \bigcirc)

$$\begin{array}{ccc} \mathsf{FSCU} & \to \mathsf{FCSU} + \mathsf{LUAR} \\ \mathsf{dense} & \mathcal{O}(m^{5/2}r^{1/2}) & \to \mathcal{O}(m^2r) \\ \mathsf{sparse} \ (\mathsf{3D}) & \mathcal{O}(N^5r^{1/2}) & \to \mathcal{O}(N^4r) \end{array}$$



Experimental complexity

Multicore performance results (24 threads)



- "BLR": FSCU, right-looking, node only multithreading
- "BLR+": FCSU+LUAR, left-looking, node+tree multithreading
 Amestoy, Buttari, L'Excellent, M. (2019)

Introduction

Applications

Complexity

High performance implementation

Mixed precision

Multilevel BLR

Two exercises

Two approaches: coarse and fine grain mixed precision

- **Coarse grain mixed precision:** Run baseline algorithm in low precision, refine the result to high precision
 - © Simple and efficient, can rely on optimized libraries
 - © Extra work for the refinement, not always guaranteed to work
- Fine grain mixed precision: Adapt the precision of each instruction/operation to achieve a given accuracy target
 - © Optimal use of low precision, with guaranteed target accuracy
 - [©] Much more intrusive, may be less efficient

Example on tminlet3M matrix fp64 LU reference: time \rightarrow 295.5 memory \rightarrow 241.1

	time (s)		memory (GB)	
	LU-IR	GMRES-IR	LU-IR	GMRES-IR
FR	136.2	157.9	121.0	169.9

Example on tminlet3M matrix fp64 LU reference: time \rightarrow 295.5 memory \rightarrow 241.1

	time (s)		memory (GB)	
	LU-IR	GMRES-IR	LU-IR	GMRES-IR
FR	136.2	157.9	121.0	169.9
$arepsilon=10^{-8}$	149.7	165.3	114.0	161.9

Example on tminlet3M matrix fp64 LU reference: time \rightarrow 295.5 memory \rightarrow 241.1

	time (s)		memory (GB)	
	LU-IR	GMRES-IR	LU-IR	GMRES-IR
FR	136.2	157.9	121.0	169.9
$arepsilon = 10^{-8}$	149.7	165.3	114.0	161.9
$arepsilon = 10^{-6}$	88.3	98.8	82.4	93.8

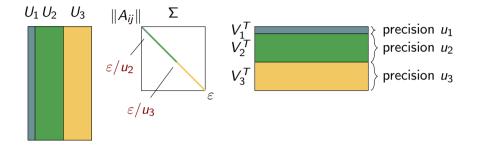
Example on tminlet3M matrix fp64 LU reference: time \rightarrow 295.5 memory \rightarrow 241.1

	time (s)		memory (GB)	
	LU-IR	GMRES-IR	LU-IR	GMRES-IR
FR	136.2	157.9	121.0	169.9
$arepsilon = 10^{-8}$	149.7	165.3	114.0	161.9
$arepsilon=10^{-6}$	88.3	98.8	82.4	93.8
$arepsilon = 10^{-4}$	—	105.6	—	70.9

• GMRES-IR allows to push BLR further!

Amestoy, Buttari, Higham, L'Excellent, M., Vieublé (2023)

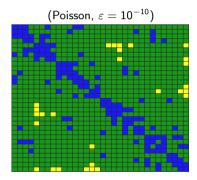
Adaptive precision low rank compression



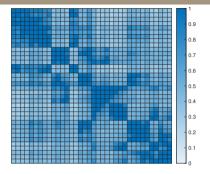
- Adaptive precision compression: partition U and V into q groups of decreasing precisions u₁ ≤ ε < u₂ < ... < u_q
- With p precisions and a partitioning such that $\|\Sigma_k\| \leq \varepsilon \|A\|/u_k$, $\|A_{ij} \widehat{U}_{\varepsilon}\Sigma_{\varepsilon}\widehat{V}_{\varepsilon}\| \lesssim (2p-1)\varepsilon \|A\|$
- If $\|A_{ij}\|/\|A\| \ll 1$, Σ_1 may be empty!

Adaptive precision BLR matrices

• If $||A_{ij}|| \le \varepsilon ||A|| / u_{\text{low}}$, block can be stored in precision u_{low}

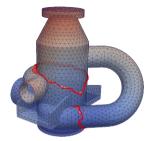


- fp32
- fp16

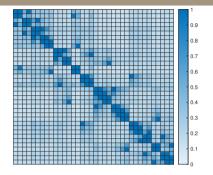


Normalized storage cost of each block

100% entries in fp64



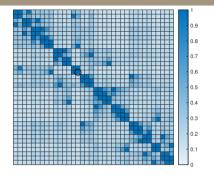
Matrix perf009d (RIS pump from EDF)



Normalized storage cost of each block

 $\begin{array}{l} 100\% \text{ entries in fp64} \\ \rightarrow \left\{ \begin{array}{l} 13\% \text{ in fp64} \\ 53\% \text{ in fp32} \\ 33\% \text{ in bfloat16} \\ \Rightarrow 2\times \text{ storage reduction} \end{array} \right. \end{array}$

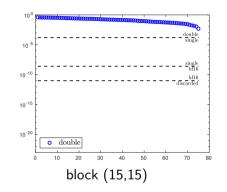
Matrix perf009d (RIS pump from EDF)

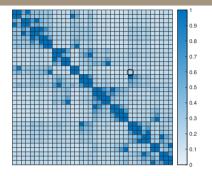


Normalized storage cost of each block

100% entries in fp64

- 13% in fp64
- $\rightarrow \begin{cases} 13\% \text{ in } \text{fp32} \\ 53\% \text{ in } \text{fp32} \\ 33\% \text{ in } \text{bfloat16} \end{cases}$
- \Rightarrow 2× storage reduction

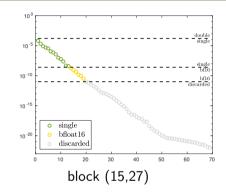


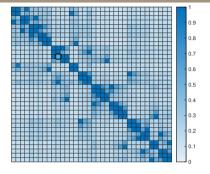


Normalized storage cost of each block

100% entries in fp64

- 13% in fp64
- $\rightarrow \begin{cases} 53\% \text{ in } \text{fp32} \\ 33\% \text{ in } \text{bfloat16} \end{cases}$
- $\Rightarrow 2 \times$ storage reduction



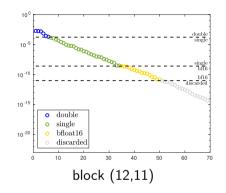


Normalized storage cost of each block

100% entries in fp64

 $\rightarrow \left\{ \begin{array}{l} 13\% \text{ in fp64} \\ 53\% \text{ in fp32} \\ 33\% \text{ in bfloat16} \end{array} \right.$

 \Rightarrow 2× storage reduction



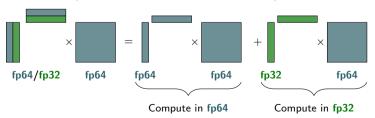
Low-rank admissibility condition $k(m+n) \le mn$ becomes

 $(\omega_1 k_1 + \omega_2 k_2 + \ldots + \omega_p k_p)(m + n) \le mn$ in mixed precision !

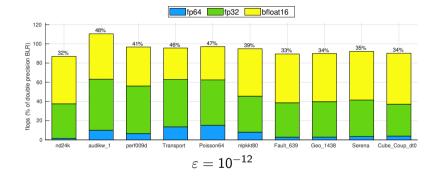
Stability of LU factorization: $\widehat{L}\widehat{U} = A + \Delta A$

- Standard LU : $\|\Delta A\| \lesssim c_n u_1 \|A\|$
- BLR LU : $\|\Delta A\| \lesssim c'_n(\varepsilon + u_1)\|A\|$
- Adaptive precision BLR LU : $\|\Delta A\| \lesssim c_n''(\varepsilon + u_1) \|A\|$

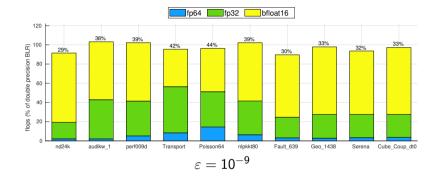
Amestoy, Boiteau, Buttari, Gerest, Jézéquel, L'Excellent, M. (2022)



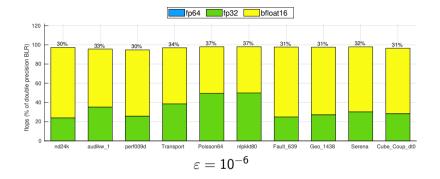
Example of kernel: LR \times matrix multiplication:



Top of the bars: cost w.r.t. fp64 BLR, assuming 1 flop(fp64) = 2 flops(fp32) = 4 flops(bfloat16)



Top of the bars: cost w.r.t. fp64 BLR, assuming 1 flop(fp64) = 2 flops(fp32) = 4 flops(bfloat16)



Top of the bars: cost w.r.t. fp64 BLR, assuming 1 flop(fp64) = 2 flops(fp32) = 4 flops(bfloat16)

Introduction

Applications

Complexity

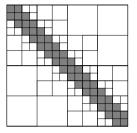
High performance implementation

Mixed precision

Multilevel BLR

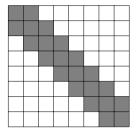
Two exercises

${\mathcal H}$ and BLR matrices



 \mathcal{H} matrix 📑 Hackbusch (2015)

- Theoretical complexity can be as low as O(n)
- Complex, hierarchical structure



BLR matrix

- Theoretical complexity can be as low as $O(n^{4/3})$
- Simpler structure

BLR makes easier to preserve the numerical features of a direct solver and compromises well complexity, accuracy and performance

Nested dissection complexity formulas

2D:
$$C_{sparse} = \sum_{\ell=0}^{\log N} 4^{\ell} C_{dense}(\frac{N}{2^{\ell}})$$

3D: $C_{sparse} = \sum_{\ell=0}^{\log N} 8^{\ell} C_{dense}(\frac{N^2}{4^{\ell}})$

Nested dissection complexity formulas

2D:
$$C_{sparse} = \sum_{\ell=0}^{\log N} 4^{\ell} C_{dense}(\frac{N}{2^{\ell}}) \rightarrow \text{common ratio } 2^{2-\alpha}$$

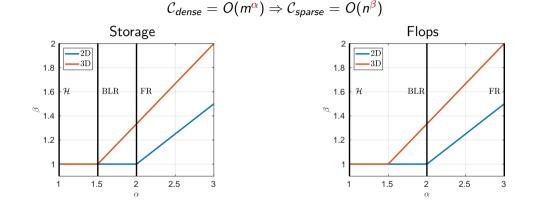
3D: $C_{sparse} = \sum_{\ell=0}^{\log N} 8^{\ell} C_{dense}(\frac{N^2}{4^{\ell}}) \rightarrow \text{common ratio } 2^{3-2\alpha}$

$$\frac{\text{Assume } C_{dense} = O(m^{\alpha}). \text{ Then:}}{2D \qquad 3D}$$

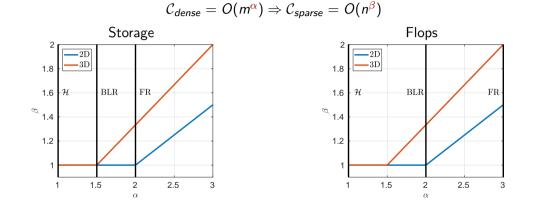
$$\frac{2D \qquad 3D}{C_{sparse}(n)} \qquad C_{sparse}(n) \qquad \alpha > 1.5 \qquad O(n^{2\alpha/3}) \qquad \alpha = 1.5 \qquad O(n \log n)$$

 $\alpha < 2$ O(n) $\alpha < 1.5$ O(n)

Bridging the gap between flat and hierarchical formats

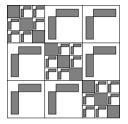


Bridging the gap between flat and hierarchical formats



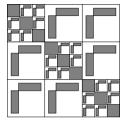
Key motivation: $C_{dense} < O(m^2)$ (2D) or $O(m^{1.5})$ (3D) is enough to get O(n) sparse complexity!

Complexity of the two-level BLR format



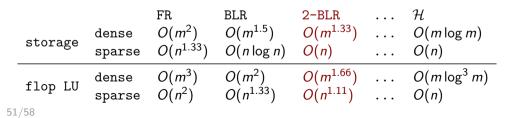
 $Storage = cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Complexity of the two-level BLR format



Storage = $cost_{LR} * nb_{LR} + cost_{BLR} * nb_{BLR}$ = $O(br) * O((\frac{m}{b})^2) + O(b^{3/2}r^{1/2}) * O(\frac{m}{b})$ = $O(m^2r/b + m(br)^{1/2})$ = $O(m^{4/3}r^{2/3})$ for $b = (m^2r)^{1/3}$

Similarly, we can prove: $FlopLU = O(m^{5/3}r^{4/3})$ for $b = (m^2r)^{1/3}$



Multilevel BLR complexity

Main result

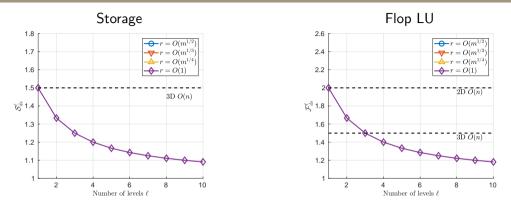
For $b = m^{\ell/(\ell+1)} r^{1/(\ell+1)}$, the ℓ -level complexities are:

$$\begin{aligned} & \textit{Storage} = O(m^{(\ell+2)/(\ell+1)}r^{\ell/(\ell+1)}) \\ & \textit{FlopLU} = O(m^{(\ell+3)/(\ell+1)}r^{2\ell/(\ell+1)}) \end{aligned}$$

Proof: by induction. 🖹 Amestoy, Buttari, L'Excellent, M. (2019)

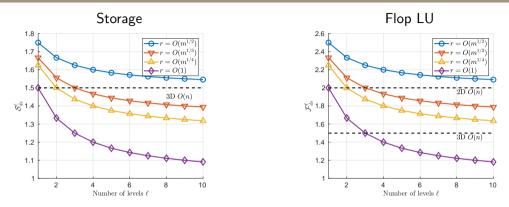
- Simple way to finely control the desired complexity
- Block size $b \propto O(m^{1-1/(\ell+1)}) \ll O(m)$ \Rightarrow larger blocks that can be efficiently processed in shared-memory

Influence of the number of levels ℓ



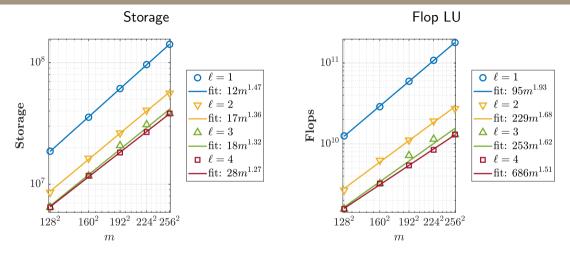
• If r = O(1), can achieve O(n) storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels

Influence of the number of levels ℓ



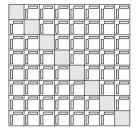
- If r = O(1), can achieve O(n) storage complexity with only two levels and $O(n \log n)$ flop complexity with three levels
- For higher ranks, improvement rate rapidly decreases: the first few levels achieve most of the asymptotic gain

Experimental MBLR complexity (Poisson)

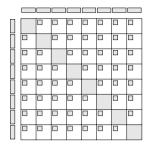


- Experimental complexity in relatively good agreement with theoretical one
- Asymptotic gain decreases with levels

The BLR² format



The BLR^2 format



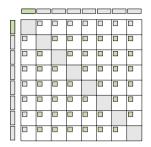
• Common basis of size $s \ge r$ for all the blocks in a row/column

The BLR² format

• Solve: only involves the common pivotal row and column bases

• Common basis of size $s \ge r$ for all the blocks in a row/column

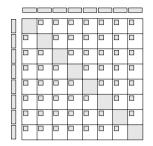
The BLR² format



- Solve: only involves the common pivotal row and column bases
- Update: only involves the common pivotal row and column bases and coupling matrices

• Common basis of size $s \ge r$ for all the blocks in a row/column

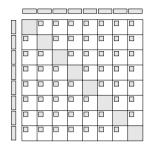
The BLR^2 format



- Solve: only involves the common pivotal row and column bases
- Update: only involves the common pivotal row and column bases and coupling matrices

- Common basis of size $s \ge r$ for all the blocks in a row/column
- If s = O(1) storage complexity is O(n) and flops complexity is $O(n^{1.2})$

The BLR^2 format



- Solve: only involves the common pivotal row and column bases
- Update: only involves the common pivotal row and column bases and coupling matrices

- Common basis of size $s \ge r$ for all the blocks in a row/column
- If $s = \mathcal{O}(1)$ storage complexity is $\mathcal{O}(n)$ and flops complexity is $\mathcal{O}(n^{1.2})$
- In practice s is usually larger

The BLR² format

- Solve: only involves the common pivotal row and column bases
- Update: only involves the common pivotal row and column bases and coupling matrices

- Common basis of size $s \ge r$ for all the blocks in a row/column
- If s = O(1) storage complexity is O(n) and flops complexity is $O(n^{1.2})$
- In practice s is usually larger
- Keep high-rank blocks off the common basis \rightarrow substantial storage gains but complex factorization
- Ashcraft, Buttari, M. (2021) (one of the possible research papers to be read for the evaluation)

Introduction

Applications

Complexity

High performance implementation

Mixed precision

Multilevel BLR

Two exercises

- Goal: prove the reduced $\mathcal{O}(m^2 r)$ complexity of the FCSU+LUAR variant given on slide 37
- The accumulated updates always recompress to rank *r* no matter how many updates have been accumulated
- Suggested steps:
 - $\circ~$ What is the cost of the FR-LR solve operation? How many times do we perform it?
 - $\circ~$ What is the cost of the Recompress operation? How many times do we perform it?
 - $\circ~$ Add these two new operations in the table on slide 23. What else changes in the table?
 - $\circ\;$ Recompute the optimal complexity as previously.

Practical exercise (4 points)

- Goal: implement BLR LU factorization and assess storage, flops and time gains w.r.t. matrix size and ε accuracy
- Already provided:
 - FR factorization (FR_factorization.m)
 - Basic kernels and utilitary routines
 - Main test launcher (test.m)
 - BLR factorization template, initialized identical to FR factorization (BLR_factorization.m) ⇒ this is the file you need to modify
- 3 test matrices given, root separator of a 3D Poisson problem of dimensions $N \times N \times N$. Can change value of N (30, 50, or 70) in test.m
- Choice of BLR LU variant left up to you (vanilla FSCU is certainly the simplest)