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Sparse matrix factorization

Given a dense matrix A, find multiple factors S (1),S (2), . . . ,S (J) such that:

A ≈ S (1)S (2) . . . S (J)

where S (i) are sparse matrices.

Motivations
Fast matrix vector products:

A︸︷︷︸
dense

≈ S (1)S (2) . . . S (J)︸ ︷︷ ︸
sparse

⇒ Ax ≈ S (1)(S (2)(. . . (S (J)x)))

Reduce time + memory complexity
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Applications

Fast Fourier Transform, Fast Hadamard Transform, etc.

Dictionary learning
A = XY>, A data, X a base (words in a dictionary), Y representation
of each sample using the dictionary.

[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]

Sparse (linear) neural networks (NN)
Toward interpretable NN?

[T. Dao & all. Learning fast algorithms for linear transforms using butterfly factorizations, PMLR, 2019]
[B. Chen & all. Pixelated butterfly: Simple and efficient sparse training for neural network models, PMLR, 2022]
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A general formulation for sparse matrix factorization

Sparse Matrix Factorization Problem

Given a matrix A, J ∈ N and Ej some sets of sparse matrices, solve:

min
S(1),...,S(J)

‖A−
J∏

j=1

S (j)‖2F subject to: S (j) ∈ Ej , ∀j ∈ {1, . . . , J}

E = family of allowed supports / sparsity patterns:
Ekrow = {S : |supp(Si )| ≤ k}: at most k nonzero entries per row.
Ekcol = {S : |supp(Si )| ≤ k}: at most k nonzero entries per column.
Ektot = {S : |supp(S)| ≤ k}: at most k nonzero entries in total.

Known to be NP-hard (covers sparse PCA, sparse dictionary learning)
[Malik, NP-hardness and inapproximability of sparse PCA, IPL, 2017]
[S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, ANHA, 2013]

→ A challenging problem, how to deal with it?
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The simplest nontrivial setting

Two factors matrix factorization:

Given A, minimize
X ,Y

‖A− XY>‖2F subject to: X ,Y sparse matrices
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A classical related problem: sparse linear inverse problem

Given a ∈ Rm,X ∈ Rm×n, min
y∈Rn

‖a−Xy‖22 subject to: ‖y‖0 ≤ s, s � n

Special case of sparse dictionary learning: compressed sensing.
Compressed sensing is a signal processing technique for efficiently
acquiring and reconstructing a signal, by finding solutions to
underdetermined linear systems.
A high-dimensional signal y (n ≥ m) can be recovered with only a few
measurements a, provided that the signal is sparse.
Since not all signals satisfy this condition, it is crucial to find a sparse
representation of that signal such as the wavelet transform
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Examples

Audio signal:
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A classical related problem: sparse linear inverse problem

Given a ∈ Rm,X ∈ Rm×n, min
y∈Rn

‖a−Xy‖22 subject to: ‖y‖0 ≤ s, s � n

1) Support identification

Finding a set I ⊆ JnK such that |I | = s.
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A classical related problem: sparse linear inverse problem

Given a ∈ Rm,X ∈ Rm×n, min
y∈Rn

‖a−Xy‖22 subject to: ‖y‖0 ≤ s, s � n

1) Support identification

Finding a set I ⊆ JnK such that |I | = s.

2) Linear regression problem

Minimize
ỹ∈R|I |

‖a− XI ỹ‖22
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Two sub-problems of two factors matrix factorization

Minimize
X ,Y

‖A− XY>‖2F subject to: X ,Y sparse matrices

1) Support identification

Find two sets SX ⊆ JmK× JrK and SY ⊆ JnK× JrK satisfying E
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A comparison between two problems

Linear inverse problem Sparse matrix factorization
Pb Minimize ‖a − Xy‖2, a,X

are known, y is sparse
Minimize ‖A− XY>‖2F , A
is known, X ,Y are sparse

1) Hard due to exponential growth of combinations
2) Easy - Linear regression

problem
??

Fixed support matrix factorization

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2F

Subject to: supp(X ) ⊆ SX

supp(Y ) ⊆ SY

(FSMF)
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FSMF: motivation (I)

FSMF covers:
Low rank matrix decomposition
LU decomposition
Hierarchical H and BLR matrices
Butterfly factorization
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FSMF: motivation (II)

Neural network compression through butterfly structure
It is expressive: the composition of matrices with a butterfly structure
can accurately approximate any given matrix
In neural networks faster training and inference time without harming
the performance

log(N) factors
Each factor has 2 NNZ per row/column
From O(N2) to O(N log(N))

[T. Dao & all. Kaleidoscope: An efficient, learnable representation for all structured linear maps, ICLR, 2020]
[B. Chen & all. Pixelated butterfly: Simple and efficient sparse training for neural network models, PMLR, 2022]
[T. Dao & all. Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations , PMLR, 2019]
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What do we know about the problem?

1 The problem is NP-hard.

2 The problem has an essentially unique solution in the exact case

3 There is a family of polynomially solvable instances and an efficient
algorithm to solve them

4 Some properties of the landscape of the function
L(X ,Y ) = ‖A− XY>‖2 under the support constraints are known,
which help to understand how well gradient descent tackles the problem
of FSMF
→

[L. Le Magoarou and R. Gribonval, Chasing butterflies: In search of efficient dictionaries, ICASSP, 2015]
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NP-hardness

FSMF can be reduced to rank-one matrix completion
→ Sparse matrix factorization is NP-hard even with fixed support !

In contrast to classical least squares
In line with recent results on matrix factorization:

non-negative matrix factorization (NMF)
weighted low rank
matrix completion

[N. Gillis, F. Glineur, Low-rank matrix approximation with weights or missing data is NP-hard. SIAM JMAA, 2010]

[S. A. Vavasis, On the complexity of nonnegative matrix factorization, SIOPT, 2010]

16 / 71



Matrix completion

Let W ∈ {0, 1}m×n be a binary matrix. Given A ∈ Rm×n, s ∈ N, the matrix
completion problem (MCP) is:

Minimize
X∈Rm×s ,Y∈Rn×s

‖A− XY>‖2W = ‖(A− XY>)�W ‖2. (MCP)

This problem is NP-hard even when s = 1

? ? ?

? ? 0

1???

5 ? 2 9 ?

2 1

2 4

9

925

1
=

×

[N. Gillis, F. Glineur, Low-rank matrix approximation with weights or missing data is NP-hard. SIAM JMAA, 2010]
[R. Peeters, The maximum edge biclique problem is NP-complete, Discrete Appl Math, 131 (2000)].
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NP-hardness of matrix completion with noise

Given a binary weighting matrix W ∈ {0, 1}m×n and A ∈ [0, 1]m×n, the
optimization problem

Minimize
x∈Rm,y∈Rn

‖A− xy>‖2W (MCPO)

is called rank-one matrix completion problem (MCPO). Denote p∗ the
infimum of (MCPO) and let ε = 2−12(mn)−7. It is NP-hard to find an
approximate solution with objective function accuracy less than ε, i.e. with
objective value p ≤ p∗ + ε.
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The following lemma gives a reduction from (MCPO) to (FSMF).

Lemma

For any W ∈ {0, 1}m×n, there exist an integer r and two sets SX and SY
such that for all A ∈ Rm×n, (MCPO) and (FSMF) share the same infimum.
The sets can be constructed in polynomial time. If one of the problems has
a known solution that provides objective function accuracy ε, we can find a
solution with the same accuracy for the other one in polynomial time.

Proof sketch.
Up to a transposition, we can assume without loss of generality that m ≥ n.
Let r = n + 1 = min(m, n) + 1. We define SX ∈ {0, 1}m×(n+1) and
SY ∈ {0, 1}n×(n+1) as follows:

SX i ,j =

{
1−Wi ,j if j 6= n

1 if j = n + 1
, SY i ,j =

{
1 if j = i or j = n + 1
0 otherwise

This construction can be made in polynomial time. We can then show that
the two problems share the same infimum. [Q.-T. Le & all. 2023]
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LU decomposition and non-closedness

A special case of (FSMF): LU-decomposition:

A = ×

There exist square matrices that do not have an exact LU
decomposition.
Any square matrix is the limit of a sequence of matrices having an LU
decomposition.
−→ The set of matrices having LU decomposition is not closed
−→ For certain support constraints (SX , SY ) and matrices A, (FSMF)
does not have an optimal solution.

Open problem : characterize the instances that admit a solution
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Essential uniqueness

We consider the exact case:
Given a matrix A and a couple of feasible sets S = (SX , SY ), our problem is:

find (X ,Y ) such that A = XY> and supp(X ,Y ) ⊆ S (EMF)

Essential uniqueness
The solution (X ,Y ) to (EMF) is essentially uniquea if any other solution
(X̄, Ȳ) is equivalent to (X,Y), i.e., it exists D invertible diagonal matrix such
that (X̄, Ȳ) =

(
XD,YD−1). We write in this case (X̄, Ȳ) ∼ (X,Y)

awe do not consider permutation ambiguities
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Characterization of essential uniqueness

S = (SX ,SY ), U(S) the set of couples of essentially unique factors.

Lemma: necessary condition for identifiability
For any pair of supports S , we have: U(S) ⊆ ICS ∩MCS .

ICS →colsupp(X) = colsupp(Y)

i ∈ colsupp(X) =⇒ Xi 6= 0

MCS → colsupp(X) = colsupp(SX ),

colsupp(Y ) = colsupp(SY )},
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The lifting procedure

A = XY T , X ∈ Rn×r ,Y ∈ Rm×r

⇓

A =
r∑

i=1

xiy
T
i =

r∑
i=1

Mi︸︷︷︸
rank-one

[L. Le Magoarou, Matrices efficientes pour le traitement du signal et l’apprentissage automatique, PhD thesis, 2016]

Identifiability of (X,Y)
in S = (SX ,SY ) ↔
identifiability of
(Mi )

r
i=1 in

ϕ(S) = (S1, . . . ,Sr )

Proposition

U(S) = ICS ∩MCS ↔ the rank-one supports (Si )ri=1 are pairwise disjoint
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Examples

- Butterfly supports: S
(`)
B := I2`−1 ⊗

(
1 1
1 1

)
⊗ IN/2` , 1 ≤ ` ≤ J,N = 2J

Butterfly supports: block diagonal + 2-sparse by row and by column.

Application: common sparsity pattern for DCT, DST, DFT, Hadamard
- Hierarchically off-diagonal low-rank (HODLR) matrices
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The butterfly factorization

Product of J ≥ 2 butterfly factors. Example:

A := X(4)X(3)X(2)X(1) such that:
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Properties of the butterfly supports

If supp(X (j)) ⊆ S
(j)
B , then supp(X (p) . . .X (q)) ⊆ S

(p:q)
B := S

(p)
B ...S

(q)
B

(a) S (1:3)
B (b) S (1:2)

B (c) S (2:3)
B (d) S (3:4)

B

The rank-one contributions of (S
(p:`)
B ,S

(`+1:q)
B ) have disjoint rank-one

supports.
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Properties of the butterfly supports
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Polynomially solvable instances (2 factors)

Example (Unconstrained matrix factorization)
If SX = JmK× JrK, SY = JnK× JrK, i.e no constraints on the support of X
and Y :

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2F

A = ×

→ Solution: Use Singular Value Decomposition (SVD).
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SVD as a greedy algorithm

1) Decompose the problem:

A− XY> = A−
r∑

i=1

xiy
>
i = A−

r∑
i=1

Mi︸︷︷︸
rank-one

(Mi := xiy
>
i )

2) Finding the SVD:

bestRankOneApprox(A) → M1

bestRankOneApprox(A−M1) → M2

· · ·
bestRankOneApprox(A−M1 . . .−Mr−1) → Mr

→ SVD is a greedy algorithm in disguise

Algorithm 1 Algorithm for unconstrained matrix factorization

1: for i ∈ {1, . . . , r} do
2: Mi := best rank-one approximation of A−

∑i−1
k=1 Mk .

3: end for
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SVD as a greedy algorithm: the constrained case

How to generalize the greedy algorithm?

Decompose XY>:

XY> =
r∑

i=1

xiy
>
i =

r∑
i=1

Mi︸︷︷︸
rank-one

(Mi := xiy
>
i )

Finding optimal solution (X ,Y ) � Finding optimal entries in the
rank-one supports.

32 / 71



SVD as a greedy algorithm: the constrained case

How to generalize the greedy algorithm?
Decompose XY>:

XY> =
r∑

i=1

xiy
>
i =

r∑
i=1

Mi︸︷︷︸
rank-one

(Mi := xiy
>
i )

Finding optimal solution (X ,Y ) � Finding optimal entries in the
rank-one supports.

32 / 71



SVD as a greedy algorithm: the constrained case

How to generalize the greedy algorithm?
Decompose XY>:

XY> =
r∑

i=1

xiy
>
i =

r∑
i=1

Mi︸︷︷︸
rank-one

(Mi := xiy
>
i )

× × ×

XY > = M1 M3M2

× × ×I J>

I J>

No support
constraint

With support
constraint

+ +

Finding optimal solution (X ,Y ) � Finding optimal entries in the
rank-one supports.

32 / 71



SVD as a greedy algorithm: the constrained case

How to generalize the greedy algorithm?
Decompose XY>:

XY> =
r∑

i=1

xiy
>
i =

r∑
i=1

Mi︸︷︷︸
rank-one

(Mi := xiy
>
i )

× × ×

XY > = M1 M3M2

× × ×I J>

I J>

No support
constraint

zeros rank-one support

With support
constraint

+ +

Finding optimal solution (X ,Y ) � Finding optimal entries in the
rank-one supports.

32 / 71



Algorithm 2 Algorithm for fixed-support matrix factorization

1: for i ∈ {1, . . . , r} do
2: Si ← i-th rank-one support
3: Mi := best rank-one approximation of (A−

∑i−1
k=1 Mk)� Si

4: end for

A M1 M2 M3

+ +≈
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Polynomial solvability characterized by rank-one supports

The solution will always satisfy the constraints
It may NOT be optimal

Theorem (Sufficient condition for tractability)
If the rank-one supports are pairwise disjoint or identical the greedy
algorithm gives an optimal solution, even in the non-exact case

34 / 71



An even more general result exists

A more general condition for tractability is introduced in our paper that
allows for partial overlapping

A M1 M2 M3≈ + +

[QT. Le, E. Riccietti, R. Gribonval, Spurious Valleys, NP-hardness, and Tractability of Sparse Matrix Factorization

With Fixed Support, arxiv preprint, 2022.]
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Multiple-factors case: a greedy hierarchical algorithm

Extension
Use our algorithm as a building block to approximate a matrix by a product
of J ≥ 2 sparse factors

A greedy procedure
Use our algorithm to recover the
partial factors: solve a sequence of
two factors problems, if the supports
are known

Works also with different kind of trees
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An important application: the butterfly factorization

Theoretical guarantees?
In general we cannot guarantee optimality of the solution.

A special case: the butterfly factorization
Approximate any matrix by a product of J ≥ 2 butterfly factors

Let A := X(4)X(3)X(2)X(1) such that:
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Properties of the butterfly supports

Why the butterfly structure? Tractability conditions hold at each step

If supp(X (j)) ⊆ S
(j)
B , then supp(X (p) . . .X (q)) ⊆ S

(p:q)
B := S

(p)
B ...S

(q)
B

(a) S (1:3)
B (b) S (1:2)

B (c) S (2:3)
B (d) S (3:4)

B

The rank-one contributions of (S
(p:`)
B ,S

(`+1:q)
B ) have disjoint rank-one

supports.
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First step of the hierarchical factorization algorithm

min ‖Z − X (4)X (3)X (2)X (1)‖2F

Proposition
The rank-one matrices have pairwise disjoint supports. Consequently,
(FSMF) is polynomially solvable and admits an essentially unique solution.
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Butterfly factorization: theoretical guarantees

Exact setting

The exact factorization A = X (J) . . .X (1) into J butterfly factors is
essentially unique
These factors can be recovered by our algorithm.

Noisy setting
Our algorithm can approximate any matrix by a matrix having the
butterfly structure
Global optimality of the multi-layer factorization is not guaranteed
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Practical advantages

Bounded complexity
A controlled number of truncated SVDs
Complexity of the factorization algorihtm: O(N2), N = 2J → the cost
of few dense matrix-vector products
The factorization allows fast matrix-vector products in O(N log(N))

A direct algorithm
No hyper parameters tuning (learning rate or stopping criterion)
No sensitivity to initialization
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Numerical results: 2 factors

A the Hadamard matrix of size 2J × 2J , J = 10, two different supports
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Numerical results: J factors

Approximation of the DFT matrix by a product of J = 9 butterfly factors.

Faster and more accurate in the
noiseless setting

Ours

Gradient-based

Also more robust in the
noisy setting

Ours

Gradient-based
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Study of the landscape of the loss function

L(X ,Y ) = ‖A−XY T‖2F

Has been studied for:
linear and shallows neural networks
matrix sensing, phase retrieval, matrix completion ...

[Q. Li, Z. Zhu, G. Tang, The non-convex geometry of low-rank matrix optimization, Information and Inference, 2018]
[Z. Zhu & all. The global optimization geometry of shallow linear neural networks, JMIV, 2019]
[ L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-layer neural network optimization landscapes,
JMLR, 2019]

Never with support constraints!
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Undesirable spurious objects

Example of spurious local minimum and spurious local valley. Two undesirable
objects: may make the convergence of iterative methods difficult

Definition (Spurious local valley - Informal)

S ∈ Rd is a spurious local valley if for all x ∈ S , there does not exist any
continuous path connecting x and a global minimum x∗ without increasing
the loss function f .
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Landscape of full support matrix factorization

What makes the low rank matrix approximation special?

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2

The landscape of L(X ,Y ) is benign:
No spurious local minima.1

No spurious local valleys 2

1 [Z. Zhu & all. The global optimization geometry of shallow linear neural networks, JMIV, 2019]
2 [ L. Venturi, A. S. Bandeira, J. Bruna, Spurious valleys in one-hidden-layer neural network optimization

landscapes, JMLR, 2019]
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Landscape of L(X ,Y ) under sparsity constraints

Fixed support matrix factorization

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2

Subject to: supp(X ) ⊆ SX

supp(Y ) ⊆ SY

Theorem (Spurious local minima and valley)
If (SX , SY ) satisfy the condition of polynomial solvability, for all A, the
landscape of L(X ,Y ) does not contain any spurious local minimum and
spurious local valley.
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A tempting conjecture?

Conjecture (?)
FSMF is polynomially solvable iff its landscape has no spurious objects.

→ This conjecture is not true. There is a counter-example.

Example
Take n = m = r and consider the LU decomposition of the matrix A:

A =

(
A′ 0
0 0

)
, A′ =

(
1 1
1 0

)
∈ R2×2

For this A, L(X ,Y ) has a spurious local valley but it exists a polynomial
algorithm to solve FSMF
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Is the behaviour of GD good in a benign landscape?

Choice of the initial guess
Speed of convergence of GD is deeply affected by the choice of the
initial guess, even in absence of spurious objects in the landscape.
In case of spurious valleys, GD is not ensured to stay out of them, even
with a good initialisation
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Conclusions

Take home message

For Fixed support matrix factorization (FSMF), we have:
1) It is NP-hard to solve
2) Easy instances with effective direct algorithm exists, competitive

with gradient descent
3) Those easy instances have benign landscape
4) Any matrix having the butterfly structure admits an essentially

unique factorization. The factors can be recovered by a
hierarchical factorization method
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Quantization of a sparse factorization

Aim: approximate dense A by product of quantized sparse factors:

A ∼ Ŝ1 . . . ŜL
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Motivation

Growing size of models and datasets → approximate computing

Quantization to low precision floating-point arithmetic

fp8 (e5m2)

fp8 (e4m3)

bfloat16

fp16

mantissa

exponent
sign

Low-rank, structured, data sparse matrices

BLR matrix H-matrix Butterfly matrix
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Let us focus on butterfly matrices

Butterfly matrices are extremely sparse yet highly expressive, they
appear in many fast linear transforms
Butterfly factorization: decompose dense n × n matrix as B1 . . .BL,
with L = log2 n⇒ O(n log n) complexity
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Optimal two-factor quantization

Remember our key property: for any partial product XY T of
consecutive factors

B1 . . .Bj Bj+1 . . .Bk︸ ︷︷ ︸
X

Bk+1 . . .B`︸ ︷︷ ︸
Y T

B`+1 . . .BL

XY T =
n∑

i=1

xiy
T
i

where the rank-one matrices
xiy

T
i have disjoint support.

We can optimally quantize two factors X and Y by quantizing each
xiy

T
i optimally and independently
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Quantization of rank-one matrices

Goal: quantize the rank-one matrix

xyT → x̂ ŷT (x ∈ Rm, y ∈ Rn)

where the coefficients of x̂ , ŷ have t bits of mantissa

The standard approach uses round-to-nearest (RTN) and leads to an
error of order u = 2−t : if x̂ = round(x), ŷ = round(y) then

‖x̂ − x‖ ≤ u‖x‖
‖ŷ − y‖ ≤ u‖y‖

⇒ ‖x̂ ŷT − xyT‖ ≤ (2u + u2)‖x‖‖y‖

We will show this is far from optimal!
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x̂i

ŷj

âij

t bits

t bits

What we really care about is the accuracy of âij = x̂i ŷj , not of the two
separately
What about a = xy? (Which x̂ ,ŷ yields the best approximation x̂ ŷ?)
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The simplest case: m = n = 1

Let Ft be the set of t-bit floating-point numbers. We are interested in
the set

FtFt = {a = xy , x ∈ Ft , y ∈ Ft}

1 1.2 1.4 1.6 1.8 2

Ft FtFt F2t

No closed form expression of its elements, but we can simply enumerate
all of them for small t
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The simplest case: m = n = 1

4 6 8 10 12 14 16 18
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ε(S) = supz 6=0
d(z,S)
|z| : the worst-case relative error of quantizing an

element z ∈ R on S

ε(Ft) = 2−t

1+2−t

⇒ ε(FtFt) error of order 2−1.6t
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A constrained combinatorial problem

x̂i

ŷj

âij ∈ FtFt

t bits

t bits

We don’t just have one scalar, but a rank-one matrix ⇒ two issues:
We have constraints: x̂i must be the same in âij = x̂i ŷj and âik = x̂i ŷk
How can we find the optimal quantization? Combinatorial problem!

min
x̂∈Fm

t ,ŷ∈Fn
t

‖xyT − x̂ ŷT‖
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Intuition

In exact arithmetic:
xyT = (λx)(

1
λ
y)T

In floating point arithmetic

round(xyT ) 6= round(λx) round(
1
λ
y)T

Can we find the optimal scaling λ∗?
Can we reduce the problem to a scalar problem?
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Characterization of the optimum

Theorem

min
x̂∈Fm

t ,ŷ∈Fn
t

‖xyT − x̂ ŷT‖ = min
λ∈R
‖xyT − round(λx) round(µ(λ)y)T‖

The optimal quantization x̂ ŷT is given by

x̂ = round(λx)

ŷ = round(µ(λ)yT )

where λ ∈ R and µ(λ) = xT x̂
‖x̂‖2 .

It suffices to find the optimal λ to find the optimal x̂ ŷT !
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Finding λ

How do we find the optimal λ ∈ R ?
The optimum is stable under sign flip and multiplication by powers of
two → restrict the search to λ ∈ [1, 2]

Only a finite number of values of λ change the value of round(λx).
Denoting these “breakpoints” as λj , we can enumerate the midpoints
λj+1/2 = (λj + λj+1)/2

1 1.2 1.4 1.6 1.8 2
6

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

Quantization error
6j+1=2 (midpoints)

Algorithm:

Build the set of midpoints

For each midpoint λj+1/2:

Build x̂ = round(λj+1/2x)
Compute µ(x̂) = xT x̂/‖x̂‖2
Build ŷ = round(µy)
Test the accuracy of x̂ ŷT
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Complexity of the algorithm

O(mn2t) complexity ⇒ tractable for large matrices and low precisions

Alternative: Approximation of the optimum via (1D) derivative free
optimization

min
λ∈R
‖xyT − round(λx) round(µ(λ)y)T‖
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Back to butterfly quantization: optimal two-factor
quantization

We use the key property: for any partial product XY T of consecutive
factors

B1 . . .Bj Bj+1 . . .Bk︸ ︷︷ ︸
X

Bk+1 . . .B`︸ ︷︷ ︸
Y T

B`+1 . . .BL

XY T =
n∑

i=1

xiy
T
i

where the rank-one matrices
xiy

T
i have disjoint support.

We can optimally quantize two factors X and Y by quantizing each
xiy

T
i optimally and independently: x̂i = round(λixi ), ŷi = round(µiyi )

yields

X̂ = round(XΛ), Λ = diag(λi )

Ŷ = round(YM), M = diag(µi )
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Heuristics for the L-factor butterfly quantization

When L > 2, need heuristics to decide how to order/group the factors
Pairwise heuristic:

B1 B2 B3 B4 . . .BL

Left-to-right heuristic:

L2R more expensive because it densifies the factors
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Experimental results

Randomly generated butterfly factors

Significant accuracy improvement. . .
. . . or, equivalently, can reduce storage by about 30% with no loss of
accuracy
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Conclusion

Key results:
Characterized optimal quantization of xyT as round(λx) round(µy)T

Proposed algorithm to find the optimal λ in O(mn2t) complexity
Proposed two heuristics to apply method to butterfly factorization and
obtained storage reductions of 30% with no loss of accuracy

Butterfly matrices are only one possible application, many other perspectives:
rank-r matrices, tensors, DNNs, . . .
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In practice: the FAµST library

FAµST library: an implementation of the hierarchical algorithm, fast GPU
matrix vector multiplication of butterfly matrices, quantization algorithm in
C++ via Python and Matlab wrappers FAµST 3.25 toolbox at
https://faust.inria.fr/.

To know more:

R. Gribonval, T. Mary, E. Riccietti (2024), Optimal quantization of rank-one
matrices in floating point arithmetic - with applications to butterfly factorizations, in
revision for SISC.

Q.-T. Le, E. Riccietti, and R. Gribonval (2023), Spurious Valleys, Spurious Minima
and NP-hardness of Sparse Matrix Factorization With Fixed Support, SIMAX.

L. Zheng, E. Riccietti, and R. Gribonval (2023), Efficient Identification of Butterfly
Sparse Matrix Factorizations, SIMODS.

Q.-T. Le, L. Zheng, E. Riccietti, and R. Gribonval (2022), Fast learning of fast
transforms, with guarantees, ICASSP 2022
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