Harnessing inexactness
in scientific computing

Lecture 6:
direct methods for Ax = b

Theo Mary (CNRS)
theo.mary@lip6.fr

https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon)
elisa.riccietti@ens-lyon.fr
https://perso.ens-1lyon.fr/elisa.
riccietti/

M2 course at ENS Lyon, 2024-2025
Slides available on course webpage

theo.mary@lip6.fr
https://perso.lip6.fr/Theo.Mary/
elisa.riccietti@ens-lyon.fr
https://perso.ens-lyon.fr/elisa.riccietti/
https://perso.ens-lyon.fr/elisa.riccietti/

N

59

Dense systems

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

Dense systems

LU factorization

e Objective: given A € R™" compute A = LU where U is upper triangular and L is
unit lower triangular

° Vi,j ajj = Z?i:nl(iJ) E,-kukj

e Doolittle’s formula:

for k=1: ndo
for j=k: ndo
ugj = aj — Y210y Lhiu
end for
fori=k+1: ndo
lik = (ai — Zf;ll eijujk) / Uik
end for
end for

4/59

In-place LU factorization

e Overwrite upper triangular part of A with U (including diagonal) and lower
triangular part (excluding diagonal) with L

for k=1: ndo
fori=k+1:ndo
aik:aik/akk
end for
fori=k+1: ndo
for j=k+1: ndo
ajj < ajj — ajkakj

end for
end for
end for
n—1 n—1 2/’13
e flops(LU) = (n—k+2(n— k)2) ~2) (n—k)?~ S
k=1 k=1

5/59

Backward /forward errors and conditioning

Given a system Ax = b and a computed solution X, we have

Nfwd =

Mowd = Min{e > 0: JAA, (A+ AA)x = b, ||AA] < ¢||All}.

k(A) = [AlIA7

Newd < K(A)bwd

6/59

Backward error formula

Mowd = Min{e > 0: JAA, (A+ AAR = b, |AA|| < e||Al}.

We have the following formula

Rigal et Gaches, 1967

Az
W - o~

IA[[lIX]|
Proof:

1A%—b|
* TATRN < Mbwd
AX—b . b—AR)XT

* Mowa < ey (using AA = BLEFE)

7/59

Backward error bound (LU)

min(ij) min(i.j)
aj+0a5 = Y lily, |agl <vo D [lilik]
k=1 =1

Theorem 9.3, Higham

A+DA=LU, |AA|<7|L||U]

8/59

min(/,j) min(i,f)
ajj + daj = Z Cictpj, il < vn Z ik Ui
=1 k=1

Theorem 9.3, Higham

A+DA=LU, |AA| <7|L||U]

Proof uses this more general result of the fundamental lemma:

Fundamental lemma
Let 0k, k =1 : n, such that |dx| < v and nu < 1. Then for p; = +1
n

H(l +0)" =140, |0n] <n:=
k=1

nu

1—nu’

Let Ax = b be solved via the factorization A = LU and the substitutions Ly = b and
Ux = y. We have the following results.

Theorem 8.5, Higham

(L+ALy=b, |AL| <L)
(U+a0)x=7, |AU|<7|0l

Theorem 9.4, Higham

(A+AA)x = b, [AA] < 3n[L||U] = [[AA]] < yaall[LI U]

Stability of LU and pivoting

o Solving Ax = b via LU factorization is therefore stable as long as |||L||U]||| ~ ||A].

e |s that a reasonable assumption? In general, NO!

k-1
i = (aik - Zeijujk) / Uik
=1

= ukk (= akk) should not be too small!
= use pivoting: PAQ = LU, where P and @ are permutation matrices

10/59

LU factorization with pivoting

for k=1: ndo
Select next pivot a,c
Swap rows r and k
Swap columns ¢ and k
fori=k+1: ndo
ajk = ajk/ akk
end for
fori=k+1: ndo
forj=k+1:ndo
ajj < ajj — djkakj
end for
end for
end for

11/59

How to choose pivot a,. at step k?

e Complete pivoting: choose maximum in the
entire trailing matrix
|arc| = MaXj—k41:n, j—k+1:n ||
= too expensive

e Partial column pivoting: choose maximum in the
kth column |arc| = |a,k] = MaXj=k+1:n |a,-k|

= widely used, in practice the ratio

Pn = W is almost always small (< 10).

However there exists pathological matrices for
which p, & 2"

Arithmetic intensity LU factorization

e Arithmetic intensity: memjré}fk;e:f:esses

® ajj < aj — ajkak] = n3/3 entries loaded from

for k=1: ndo memory to cache = arithmetic intensity not so
fori=k+1:ndo good!
ajk = ajk/akk
end for

fori=k+1: ndo
forj=k+1: ndo
ajj < ajj — adjkakj
end for
end for
end for

12/59

Arithmetic intensity LU factorization

for k=1:n/b do
Factorize Ly Ui = Axk
for i=k+1:n/bdo
Solve Ay = AUt
Solve Ay = L;klAk,'
end for
fori=k+1:n/bdo
for j=k+1:n/bdo
A,j — AU — AikAkj
end for
end for
end for

12/59

#flops
Ory acCesses

Arithmetic intensity: mam

ajj < ajj — aiaK; = n3/3 entries loaded from
memory to cache = arithmetic intensity not so
good!

use blocking: A;; <— A;j — AjxAyj where A, are
b x b blocks

g—z entries loaded = intensity increased by a
factor b

Take b as large as possible such that 3 b x b
blocks fit into the cache

Arithmetic intensity LU factorization

for k=1:n/b do
Factorize Ly Ui = Axk
fori=k+1:n/bdo
Solve Ay = AUt
Solve Ay = L;klAk,'
end for
fori=k+1:n/bdo
for j=k+1:n/bdo
AU — AU — AikAkj
end for
end for
end for

12/59

Arithmetic intensity: memﬁjlggiesses

ajj < ajj — aiaK; = n3/3 entries loaded from
memory to cache = arithmetic intensity not so
good!

use blocking: A;; <— A;j — AjxAyj where A, are
b x b blocks

g—z entries loaded = intensity increased by a
factor b

Take b as large as possible such that 3 b x b
blocks fit into the cache

Side-effect: if update is evaluated as

Temp = AjAyj, Ajj < Ajj — Temp, then the
constant in the error bound is reduced from n to
n/b+ b (Lecture 2!)

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

13/59

Gaussian elimination and sparsity

.. k k
o At step k, for i,j > k: af-j = ajj — ajkakj
Olfa,-k;éOandakj;«éOthenaf-j;éO k k
2 -
e If ajj was zero — non-zero af-j must be stored: fill-in ! g
X X X X X X 0 0 0 X
Interest of X X 0 0 0 0 X 0 0 X
permuting X 0 X 0 0| 145 [0 0o x o X
a matrix: X 0 0 X o 0 0 0 X X
X 0 0 0 X X X X X X
Challenges:

e How to predict where fill-in will occur?
e How to reduce the amount of fill-in? What is the complexity of the factorization?

e Knowing the fill-in, how to efficiently factorize the matrix? How to parallelize it?

14/59

Dense systems

Sparse systems
Fill-in characterization

15/59

Modeling fill-in: adjacency graphs

e The rows/columns and nonzeros of a given sparse matrix correspond (with natural
labelling) to the vertices and edges, respectively, ofA a graph, called the adjacency
graph.

e We will only consider on matrices with a symmetric pattern (numerical values can
be unsymmetric), which means the adjacency graph is undirected.

e Matrices with unsymmetric pattern can still be handled by considering the pattern

of A+ AT
1 2 3
1 X G
A= 2] x x X
3 X X Q @

16/59

Fill-in characterization

Fill path theorem (Rose, Tarjan, Lueker, 1976)

Let A be a symmetric pattern matrix, G(A) its associated graph, and L the matrix of
factors. Then £;; # 0 iff there is a path in G(A) between / and j such that all nodes in

the path have indices smaller than both i and j.

X FoX
N
. KPP X
P X
Nk
. (— j\
Y Do |
AN

17/59

Fill-in characterization

Fill path theorem (Rose, Tarjan, Lueker, 1976)

Let A be a symmetric pattern matrix, G(A) its associated graph, and L the matrix of
factors. Then £;; # 0 iff there is a path in G(A) between / and j such that all nodes in

the path have indices smaller than both i and j.

P X, FX
N
. X P2ovoX
X : Py X
N
x
: N\
i D |
4 AN

17/59

Fill-in characterization

Fill path theorem (Rose, Tarjan, Lueker, 1976)

Let A be a symmetric pattern matrix, G(A) its associated graph, and L the matrix of
factors. Then £;; # 0 iff there is a path in G(A) between / and j such that all nodes in

the path have indices smaller than both i and j.

X FoX
AN
X P2 X
X ka
N
X 7
RN
i D |
. AN

17/59

Fill-in characterization

Fill path theorem (Rose, Tarjan, Lueker, 1976)

Let A be a symmetric pattern matrix, G(A) its associated graph, and L the matrix of
factors. Then £;; # 0 iff there is a path in G(A) between / and j such that all nodes in

the path have indices smaller than both i and j.

X FoX
X P X
X Pk ><
Fill(i,j) 1! x\ J
i X‘ i
‘_"AFiII(i,j) N\

17/59

The elimination process in the graphs

Gy(V, E) < undirected graph of A
fork=1:n—1do

V—V—{k} > remove vertex k

E <« E—{(k,0):¢eadj(k)} U{(x,y): x € adj(k) and y € adj(k)}

Gk < (V,E) > for definition
end for

Gy are the so-called elimination graphs.

18/59

® 00000

eeine

—~ [BN IS N]

> emeeoe

+ e~eeo o

=2 —e °
1

©

I

©

©

Iml

o ()

[e11)]

D @ &

TR\

m * [) _Nr.o [) ® © —

Q [] < [) ne ® 0 0O —
m o m]) <t L) n e ® 0
o 2e°° o, Ao e, mese, <ee
n L] L I L] L |
Ke) I I I n

+ < < < <

=

£

o ®

- @ @—@ ©
S oo | oo ' &

3 o —© © @ ©
c

v 5 T & i

= U] O O O

(o

(D)

(7]

<

19/59

Dependencies

Dependency

If i > j and /;; # 0 then the elimination of variable j modifies column i. Therefore i
cannot be eliminated before j and we say that / dependson j : j — i

How to represent dependencies in a
compact way? Remove all redundant
dependencies in G(F) via transitive
reduction.

Assume i — j and j — k; then i — k, if it
exists, is redundant because it is implicitly
carried by the chain i — j — k.

20/59

Dependencies

How can we easily identify redundant dependencies?

Proposition

Leti>j >k, ifk— j and k — i, necessarily j — i

Assume that /j # 0 and £ # 0 with i > j > k; because we know that /;; must
necessarily be nonzero, we can suppress ¢;; because the dependency k — i is indirectly
represented by the chain of dependencies k — j — /.

Lik Lk
U
1o
b i L >< Ly — i
~_

As a consequence of this observation, all the subdiagonal coefficients of L except the
21/59first express redundant dependencies.

The elimination tree

The graph obtained by removing from the filled graph the edges associated with the
subdiagonal coefficients in each column except the first is an ordered tree with root n
(where n is the matrix order).

The Elimination Tree (Schreiber, 1982)

Let A be a sparse symmetric pattern matrix of order n with factor L. The elimination
tree is defined to be the structure with n nodes {1, 2, ..., n} such that the node p is the
parent of node j if and only if

p=min{i > j | {; # 0}.

22/59

The elimination tree

b b
d d
e
F= fe F= f e
o g e go
heooe o h
i o .
oj J

23/59 @

The elimination tree

Topological order

A topological order of a directed graph is an ordering of its vertices such that for each
directed edge (i,)), j > i.

A topological traversal of the elimination tree is such that a node is always visited after
its child nodes (i.e., bottom-up).
The elimination tree

e expresses the order in which variables can be eliminated: the elimination of a
variable only affects (directly or indirectly) its ancestors and only depends on its
descendants
Therefore, any topological order of the elimination tree leads to a correct result and
to the same fill-in

e expresses concurrence: because variables in separate subtrees do not affect each
other, they can be eliminated in parallel (more on this later).
24/59

Dense systems

Sparse systems

The multifrontal method

25/59

The Multifrontal method (Duff and Reid, 1983)

REMEMBER: each time a pivot is eliminated, a clique is formed in the graph. A clique
is a set of nodes fully connected, i.e., a graph associated to a dense submatrix

U
X (XXTXXTTX
L
K Xk & K
C e o
XX XX X

The nonzero values concerned by an elimination step can be stored in a dense matrix
and, thus, operations can be carried on by means of BLAS operation
26/59

Extend-add operation

Assume a matrix A with index set Z4 and a matrix B with index set Zg, the extend-add
operation % produces a matrix C with index set Z¢ = Z5 U Zg obtained by
extending A and B with zeros to make them conform to Z¢ and summing them:

1 3 6 2 3 5
1 |ai1 a3z a 2 |bxn b b
A= 3 |a; a; asp B= 3 |by b3 bss
6 [as1 a3 ae6 5 |bs2 bss bss
1 2 3 5 6 1 2 3 5 6
1 all 0 ais 0 aie 1 0 0 0 0 0
210 0 0 0 O 2 |0 bx by bs 0
C=A<-B= 3 |an 0 a3 0 ax|+ 3 |0 bz bz by 0
5 0 0 0 0 0 5 |0 bsp bss bss O
6 Lass 0 a3 O a6 6 L0 O 0 0 o

27/59

Frontal matrix assembly

A dense matrix, called frontal matrix, is associated with each node of the elimination
tree. The Multifrontal method consists in a topological order traversal of the tree
where at each node two operations are done:

1 Frontal Matrix Assembly:

it o2 fim
1 2 fom . _

Fi= : . : =A(i:n,i) < CBy <> -+ < CB;
fn‘11 2 f,,;,,,

where F; is the frontal matrix at node i of index set Zr, = {struct(L(i : n,i))}, j is
the number of children of i in the elimination tree and CB1,--- , CB; are the
Contribution Blocks (Schur complements) produced when processing the children
(see next slide).

28/59

Frontal matrix factorization

2 Frontal matrix factorization

i 2 - fim u1 o U s Ulp
1 f fom b1 cbyp -+ chyp
Fi= —
fm1 fm2 -+ fom b1 Cbmp -+ Cbmm
where
u11 fi1 £ f1
=1 : and S e N
Uim fim L1 1
-
cb cbam f22 fom £ u12
cbmy -+ Cbmm fm2 -+ fom L1 Uim

29/59

The Multifrontal Method: example

The elimination tree can be regarded as a graph of dependencies which defines
where/how to assemble the elimination blocks and which variable to eliminate at each
step.

woNoO

9
8
7
/

—
~No b

=
N
rd
N
ul
~
oou

30/59

The Multifrontal Method: example

The elimination tree can be regarded as a graph of dependencies which defines
where/how to assemble the elimination blocks and which variable to eliminate at each

step.

woNoO

9
8
7
/

[]
r s ¢
1 2 V4 57 7 |_ 9 |_
S__7
a4 ase aay Usq Use Ua7
as O 0 — | flea bes ber
aza O 0 b7z brs bt

30/59

The Multifrontal Method: example

The elimination tree can be regarded as a graph of dependencies which defines
where/how to assemble the elimination blocks and which variable to eliminate at each
step.

woNoO

9
8
7
/

. -
i 4 5
T 2on\% %, Sl s

\~’/

30/59

The Multifrontal Method: example

The elimination tree can be regarded as a graph of dependencies which defines
where/how to assemble the elimination blocks and which variable to eliminate at each

step.
9
[] o 8 6
7 8
® < 9
/ N
([] \ >
r 6 8
1 20\ "4 57 7 |_ 9 |_
S__7
as 0 ass O bes bz 0 O 6 O 0 coo Uss Us7 Ues Ug9
0 0 0 0 I bz b7 0 O I 0O 0 O 0 N l76 d77 dig d7o
ags 0 0 O 0 0O 0 O 0O 0 0 O lgs dg7 dgg dso
0 0 0 0 0 0 0 O cs 0 0 co9 lgs do7 dog dog

30/59

Tree Amalgamation

The whole factorization is recast into a sequence of partial dense factorizations of the
type:

u11 fi U 1
= and = | /m
Ulm fim L1 fm1
cb cbam fao fom 3 u12 T
CBi=1| .+ = |=]" - .
cbmy -+ cbmm fm2 fmm Cm1 Uim

This is still only Level-2 BLAS operations. How to get the efficiency of Level-3 BLAS?

31/59

Tree Amalgamation

_| &,
1",

Amalgamation without fill-in consists in merging all the frontal matrices related to
pivots whose columns in the factor L have the same structure. The subset of nodes
containing this pivots is called a supernode. All the pivots in a supernode can thus be

32/59eliminated at once within the same frontal matrix

O A

L

0w

O 00w

Tree Amalgamation

O~ Ww
OoohWN

oL WN

Amalgamation with fill-in is based on the same principle except that it groups together
pivots whose column structure in L is not exactly the same. If the generated fill-in does
not exceed a certain threshold, the extra cost is overcome by efficiency

33/59

Tree Amalgamation

After amalgamation:
-) |:> . .

LiyUnn = An
Lyy = AnU;!
U = LA
CB = Ax—Lxln
All the operations related to the frontal matrix can be done through Level-3 BLAS

routines
34/59

Dense systems

Sparse systems

Nested dissection and complexity

35/59

Nested dissection

Remember, in the elimination graphs, when a node is eliminated, new edges are added
that connect all its neighbors to each other.

Assume a separator S is identified that partitions the domain into two subdomains Dy
and Ds. All the neighbors of nodes in Dy (D) are either in Dy (D;) orin S. Thus, if
Dy is eliminated before D, and S, there cannot be any £;; where v; € Dy and v; € D>

36/59

ND of a regular square mesh

The nested dissection method aims at partitioning the domain so that the fill-in is only
generated internally on each subdomain and on the interface by recursively computing
bisectors.

37/59

Nested dissection and elimination/assembly trees

The nested dissection method also produces an elimination tree: all the L columns of
variables within the same separator have the same structure and can, therefore, be
amalgamated into a supernode.

For this reason the nested dissection method provides an assembly tree implicitly

defined by the tree of separators.
38/59

Complexity of the factorization with ND

2D ND assumptions (George, 1973)

e 2D, square grid of size N x N and cross-shaped separators.
e The size of the separators/fronts is divided by 2 at every level starting at 2N

e The number of nodes is multiplied by 4 at every level

39/59

Complexity of the factorization with ND

2D ND assumptions (George, 1973)

e 2D, square grid of size N x N and cross-shaped separators.
e The size of the separators/fronts is divided by 2 at every level starting at 2N

e The number of nodes is multiplied by 4 at every level

39/59

Complexity of the factorization with ND

2D ND assumptions (George, 1973)

e 2D, square grid of size N x N and cross-shaped separators.
e The size of the separators/fronts is divided by 2 at every level starting at 2N

e The number of nodes is multiplied by 4 at every level

39/59

Complexity of the factorization with ND

2D ND assumptions (George, 1973)

e 2D, square grid of size N x N and cross-shaped separators.
e The size of the separators/fronts is divided by 2 at every level starting at 2N

e The number of nodes is multiplied by 4 at every level

! 181
i

39/59

Complexity of the factorization with ND

The factorization cost for a front of order m is C(m) = O(m?)

Cont = IogiNMc (22_’;’) _o (Iogzz’vy (2_’\2)3) _ o)

£=0 =0

Factors size

The size of factors at a front of order m is F(m) = O(m?)

log, N N log, N N 2
F= 3 47 () =0 S #(5)) = owriesn)
/=0 =0

40/59

Complexity of the factorization with ND

Regular problems 2D 3D
(nested dissection) NxN grid NxNx N grid
Nonzeros in original matrix O(N?) 777
Nonzeros in factors O(N?log N) 777
Floating-point ops O(N3) 777

e The complexities are naturally much better than if the system is handled as dense
(e.g., N® flops) but still remain superlinear (i.e., more than N?)

e The same analysis can be done on a 3D cubic domain of size N x N x N, with
hypercross separators (union of two orthogonal planes)

41/59

Dense systems

Sparse systems

Parallelism

42/59

Parallelization: two sources of parallelism

U

L

/

“ U

/ I\

L
/
HE 8 M &

tree parallelism arising from sparsity, it is formalized
by the fact that nodes in separate
subtrees of the elimination tree can be
eliminated at the same time

e

node parallelism within each node: parallel dense
factorization

Decreasing tree parallelism
Increasing node parallelism

Using both sources of parallelism is crucial because they are complementary:
e Tree parallelism decreases going up because the tree gets more and more narrow

e Node parallelism grows going up because nodes become bigger and bigger
43/59

Bound on parallelism

What is the best possible speedup we can achieve in the multifrontal method? Let's
model this problem as follows:

1. We have an infinite number of processes
2. We have a regular 2D geometry partitioned with ND
3. The time is proportional to the flops.

Under this assumption the sequential multifrontal factorization time is O(N?3).

44/59

Bound on node parallelism

3 x 3 example:

for k=1: n/b do
Factorize L Ui = Ak — task Fyy
fori=k+1:n/bdo
Solve Ay = A,JUIQ(l — task Sy
Solve Ay = LitAy — task Sy
end for
fori=k+1:n/bdo L
for j=k+1:n/bdo
A,j — A,:,' —A,-kAkj — task Uk,'j
end for

end for v
end for

U132

e Time sequential o flops oc O(m?)

e Time parallel flops on critical path
45/59 X O(mb?®) = O(m)

Bound on tree parallelism

e When tree parallelism is used all the branches are traversed concurrently; the
minimum required time is the time needed to traverse the longest (heaviest)

branch. Because, in our case, all the branches are equal, we will measure the time
needed for any branch.

46/59

Bound on parallelism

Execution time bounds:
e Case 1: only tree parallelism

e Case 2: only node parallelism

log, N N
[
Chr=0 D_ 4% | =0V
=0
e Case 3: tree and node parallelism
log, N
N
cP.=0 = | = O(N)
2
£=0

47/59

Bound on parallelism

Regular problems 2D 3D
(nested dissection) NxN grid NxNxN grid
Sequential O(N?3) 777
Tree parallelism O(N3) 777
Node parallelism O(N?) 777
Tree and node parallelism O(N) 777

Remarks:
e Tree parallelism brings no asymptotic improvement if no node parallelism !!!
e |t is crucial to use both sources of parallelism to achieve good parallel efficiency
¢ Note that in practice in practice we are quite far from the assumptions we have

made (no infinite number of processors, time # flops, etc.)

48/59

Dense systems

Sparse systems

Memory

49/59

Equ

ivalent orderings: postorder

Postorder
A postorder is a topological order where all the nodes in each subtree are numbered
consecutively.

50/59

Among all the topological orders, the postorder has a very favorable property: a node is
visited as soon as all of its children have been visited. This has a twofold advantage:
¢ |n a sequential execution, a stack data structure can be used to store the
contribution blocks. A contribution block is pushed on top of the stack when it is
produced (i.e., upon factorization of the corresponding front) and popped from the
top of the stack when it is assembled into the parent front

e |t allows for a better data locality because the contribution locks that are used for
an assembly operations are on top of the stack and thus have been produced

recently.

The multifrontal method: memory handling

1 [1 |
2 2
A= 3 — L+U-1=3
4| | 4| | % 4
5 5 %, 5
Storage is divided into two parts:
e Factors 1 3
. 4 4
e Active memory 5
2
Factors
3

] Elimination tree
51/59 Active storage

The multifrontal method: memory handling

12345 12345 5

— L+U-I=

s WN =

>
Il
g W R

Storage is divided into two parts:
e Factors 1 3
. 4 4]
e Active memory 5 \

Elimination tree
51/59

The multifrontal method: memory handling

>
Il
oA W N -
|
AW R
|
(€2

— L+U-I=
Storage is divided into two parts: \
1 3
e Factors
4 4
e Active memory 5 K
2

Elimination tree
51/59

The multifrontal method: memory handling

12345 12345 5

— L+U-I=

s WN =

>
Il
g wWN R

Storage is divided into two parts: \

e Factors 411 z |—
e Active memory 5

Elimination tree
51/59

The multifrontal method: memory handling

— L+U-I=

Gl W N -
o

>
Il
g wWN R

Storage is divided into two parts: \

e Factors

[a—y
w

—

e Active memory 5

Elimination tree
51/59

The multifrontal method: memory handling

1 I 1 I
2 2
A= 3 — L+U-1=3 4
4 | 4 |
5 5 5 []
Storage is divided into two parts:
e Factors 1 3
: 4 4
e Active memory 5
2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 I 1 I
2 2
A= 3 — L+U-1=3 4
4 | 4 |
5 5 5 []
Storage is divided into two parts:
e Factors 1 3
: 4 4
e Active memory 5

Elimination tree
51/59

The multifrontal method: memory handling

— L+U-I=

>
Il
oA W N -
|
AW R
|
(€2

Storage is divided into two parts:

e Factors 411 2
e Active memory 5

Elimination tree
51/59

The multifrontal method: memory handling

— L+U-I=

>
Il
Os W R
|
GR W R
|
(€2 BN =N

Storage is divided into two parts:

e Factors 411 z
e Active memory 5

Elimination tree
51/59

The multifrontal method: memory handling

— L+U-I=

>
Il
oA W N -
|
AW R
|
(€2

Storage is divided into two parts:

1 3
e Factors
4 4
e Active memory 5 \

Elimination tree
51/59

The multifrontal method: memory handling

12345 12345 5

— L+U-I=

s WN =

>
Il
g wWN R

[| || 5

Storage is divided into two parts:
e Factors 1 3
. 4 4]
e Active memory 5 \

Elimination tree
51/59

The multifrontal method: memory handling

1 I 1 I
2 2
A= 3 — L+U-1=3
al] al] 4
5 5 [5
Storage is divided into two parts:
e Factors 1 3
. 4 4]
e Active memory 5 \

Elimination tree
51/59

The multifrontal method: memory handling

12345 12345 5
1 [1 |
2 2
A= 3 — L+U-1=3
4 al] 4
5 5 || 5 []
Storage is divided into two parts: / \
e Factors 1 3
. 4 4]
e Active memory 5 \

Elimination tree
51/59

The multifrontal method: memory handling

12345 12345 5
1 I 1 I
2 2
A= 3 — L+U-1=3 4
4| 4| | ’
5 5 % 5 []
Storage is divided into two parts: / \
e Factors 1 3
. 4 4l []
e Active memory 5 \

Elimination tree
51/59

Postorder traversals: memory

Postorder provides a good data locality and better memory consumption that a general
topological order since father nodes are assembled as soon as its children have been

processed.
But there are still many postorders of the same tree. Which one to choose? the one

that minimizes memory consumption

Best (abcdefghi) Worst (hfdbacegi)
i Root i
& g
€ e
¢ c
Leaves
a b d f h h f d b a

52/59

Problem model

M(parent)
e M;: memory peak for complete subtree rooted at /, O
e CB;: (temporary) contribution block produced at node i, et/
e m;: memory for storing frontal matrix i, tempZT wmk
e nc;: number of children of node J. / \ O
M1 M2 M3

M; = max | max (I\/l + Z CBk> m; + Z CB; (1)

J/

chlldren assembly

53/59

Problem model

M(parent)
e M;: memory peak for complete subtree rooted at i, O
e CB;: (temporary) contribution block produced at node i, et/
e m;: memory for storing frontal matrix i, tempZT temk
e nc;: number of children of node J. / \ O
M1 M2 M3

nc;

M; = max max <I\/l + Z CBk> mj + Z CB; (1)

Jj=1l:nc;

J/

chlldren assembly

Objective: order the children to minimize Mparent
53/59

Memory-minimizing schedules

Theorem (Liu 1986)

The minimum of max;(x; + Z{;i yi) is obtained when the sequence (x;, y;) is sorted in
decreasing order of x; — y;.

54/59

Proof. Assume a sequence S is optimal with x; — y; < xj;1 — yj11 for some j. Let the
sequence S’ be obtained by interchanging j and j + 1. Let M, and M, be the peaks at
step k of S and S’. Then

o M= M, for k#j,j+1

° MJ/ < Mj+1 and A/’J{-i—l < Mj+1

Memory-minimizing schedules

Theorem (Liu 1986)

The minimum of max;(x; + Z{;} yi) is obtained when the sequence (x;, y;) is sorted in
decreasing order of x; — y;.

Proof. Assume a sequence S is optimal with x; — y; < xj;1 — yj11 for some j. Let the
sequence S’ be obtained by interchanging j and j + 1. Let M, and M, be the peaks at
step k of S and S’. Then

o M= M, for k#j,j+1

° Mjl < Mj_|_1 and MJ{+1 < Mj+1

Corollary

An optimal child sequence is obtained by rearranging the children nodes in decreasing
order of M; — CB;.

Interpretation: At each level of the tree, child with relatively large peak of memory in
54/50its subtree (M large with respect to CB;) should be processed first.

Memory consumption in parallel

In parallel, different memory regions scale in different ways:

e Factor: the factors produced upon factorization of the frontal matrices can be
evenly distributed among the processors and, therefore, the associated memory
scales perfectly, i.e., it does not increase globally and each process stores an equal
share.

e Active memory: In parallel multiple branches have to be traversed at the same time
(tree parallelism). This means that a higher number of CBs will have to be stored in
memory which means that the global active memory increases.

In order to asses the memory scalability we will use a metric called memory efficiency:

Sseq

e(p) = P X Smax(p)

where we denote Sseq = M, the peak of memory consumption in a sequential execution
and Spax(p) the maximum peak memory consumption over all the p processes.

55/59Ideally, we would like e(p) ~ 1, i.e. Seeq/p on each processor.

Example 1: all-to-all mapping

All-to-all mapping: postorder traversal of the tree, where all the processors work at every node:

64

64 64 64
64 64 64
64 64 \ 64
64 64 64 64

Optimal memory scalability (Smax(p) = Sseq/p) but no tree parallelism and prohibitive amounts

of communications.
56/59

Example 2: proportional mapping

Proportional mapping: assuming that the sequential peak is 5 GB,

4GB’1GB,5GB < 5 <05
26 6 32 64 % 0.16

Smax(p) = max{ } =0.16 GB = e(p)

5GB 64

57/59

Dense systems

Sparse systems

Exercise

58/59

Exercise

No MATLAB today! Just pen & paper (and then IATEX!)
Fill the 777 in the tables on slides 41 and 48

Show your reasoning and calculations!

Write it all up in IATEX

e Bonus: assuming a regular 2D or 3D geometry partitioned with ND, how can we
improve the constant 7y, in the backward error bound of LU factorization (slide 8) ?

59/59

	Dense systems
	Sparse systems
	Fill-in characterization
	The multifrontal method
	Nested dissection and complexity
	Parallelism
	Memory
	Exercise

