
Harnessing inexactness
in scientific computing

Lecture 6:
direct methods for Ax = b

Theo Mary (CNRS)
theo.mary@lip6.fr

https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon)
elisa.riccietti@ens-lyon.fr

https://perso.ens-lyon.fr/elisa.

riccietti/

M2 course at ENS Lyon, 2024–2025
Slides available on course webpage

18

17

16

20

9

8

7

15

11

12

3

2

1 25

26

27

42

34

35

36

28

29

30

41

37

38

39

22

23

24

40

31

32

33

43

44

45

46

47

48

49

4

5

6

21

13

14

10

19

18

17

16

20

9

8

7

15

11

12

3

2

1 25

26

27

42

34

35

36

28

29

30

41

37

38

39

22

23

24

40

31

32

33

43

44

45

46

47

48

49

4

5

6

21

13

14

10

19

theo.mary@lip6.fr
https://perso.lip6.fr/Theo.Mary/
elisa.riccietti@ens-lyon.fr
https://perso.ens-lyon.fr/elisa.riccietti/
https://perso.ens-lyon.fr/elisa.riccietti/

Dense systems

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

2/59

Dense systems

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

3/59

LU factorization

• Objective: given A ∈ Rn×n, compute A = LU where U is upper triangular and L is
unit lower triangular

• ∀i , j aij =
∑min(i ,j)

k=1 ℓikukj

• Doolittle’s formula:

for k = 1: n do
for j = k : n do

ukj = akj −
∑k−1

i=1 ℓkiuij
end for
for i = k + 1: n do

ℓik =
(
aik −

∑k−1
j=1 ℓijujk

)
/ukk

end for
end for

4/59

In-place LU factorization

• Overwrite upper triangular part of A with U (including diagonal) and lower
triangular part (excluding diagonal) with L

for k = 1: n do
for i = k + 1: n do

aik = aik/akk
end for
for i = k + 1: n do

for j = k + 1: n do
aij ← aij − aikakj

end for
end for

end for

• flops(LU) =
n−1∑
k=1

(
n − k + 2(n − k)2

)
≈ 2

n−1∑
k=1

(n − k)2 ≈ 2n3

3
5/59

Backward/forward errors and conditioning

Given a system Ax = b and a computed solution x̂ , we have

ηfwd =
∥x̂ − x∥
∥x̂∥

ηbwd = min {ε > 0 : ∃∆A, (A+∆A)x̂ = b, ∥∆A∥ ≤ ε∥A∥} .

κ(A) = ∥A∥∥A−1∥

ηfwd ≤ κ(A)ηbwd

6/59

Backward error formula

ηbwd = min {ε > 0 : ∃∆A, (A+∆A)x̂ = b, ∥∆A∥ ≤ ε∥A∥} .

We have the following formula

Rigal et Gaches, 1967

ηbwd =
∥Ax̂ − b∥
∥A∥∥x̂∥

Proof :

• ∥Ax̂−b∥
∥A∥∥x̂∥ ≤ ηbwd

• ηbwd ≤ ∥Ax̂−b∥
∥A∥∥x̂∥ (using ∆A = (b−Ax̂)x̂T

∥x̂∥22
)

7/59

Backward error bound (LU)

aij + δaij =

min(i ,j)∑
k=1

ℓ̂ik ûkj , |aij | ≤ γn

min(i ,j)∑
k=1

|ℓ̂ik ûkj |

Theorem 9.3, Higham

A+∆A = L̂Û, |∆A| ≤ γn|L̂||Û|

Proof uses this more general result of the fundamental lemma:

Fundamental lemma

Let δk , k = 1 : n, such that |δk | ≤ u and nu < 1. Then for ρi = ±1
n∏

k=1

(1 + δk)
ρi = 1 + θn, |θn| ≤ γn :=

nu

1− nu
.

8/59

Backward error bound (LU)

aij + δaij =

min(i ,j)∑
k=1

ℓ̂ik ûkj , |aij | ≤ γn

min(i ,j)∑
k=1

|ℓ̂ik ûkj |

Theorem 9.3, Higham

A+∆A = L̂Û, |∆A| ≤ γn|L̂||Û|

Proof uses this more general result of the fundamental lemma:

Fundamental lemma

Let δk , k = 1 : n, such that |δk | ≤ u and nu < 1. Then for ρi = ±1
n∏

k=1

(1 + δk)
ρi = 1 + θn, |θn| ≤ γn :=

nu

1− nu
.

8/59

Backward error bound (Ax = b)

Let Ax = b be solved via the factorization A = LU and the substitutions Ly = b and
Ux = y . We have the following results.

Theorem 8.5, Higham

(L̂+∆L)ŷ = b, |∆L| ≤ γn|L̂|

(Û +∆U)x̂ = ŷ , |∆U| ≤ γn|Û|

Theorem 9.4, Higham

(A+∆A)x̂ = b, |∆A| ≤ γ3n|L̂||Û| ⇒ ∥∆A∥ ≤ γ3n∥|L̂||Û|∥

9/59

Stability of LU and pivoting

• Solving Ax = b via LU factorization is therefore stable as long as ∥|L̂||Û|∥ ≈ ∥A∥.
• Is that a reasonable assumption? In general, NO!

ℓik =

(
aik −

k−1∑
j=1

ℓijujk

)
/ukk

⇒ ukk (= akk) should not be too small!

⇒ use pivoting: PAQ = LU, where P and Q are permutation matrices

10/59

LU factorization with pivoting

for k = 1: n do
Select next pivot arc
Swap rows r and k
Swap columns c and k
for i = k + 1: n do

aik = aik/akk
end for
for i = k + 1: n do

for j = k + 1: n do
aij ← aij − aikakj

end for
end for

end for

How to choose pivot arc at step k?

• Complete pivoting: choose maximum in the
entire trailing matrix
|arc | = maxi=k+1:n, j=k+1:n |aij |
⇒ too expensive

• Partial column pivoting: choose maximum in the
kth column |arc | = |ark | = maxi=k+1:n |aik |
⇒ widely used, in practice the ratio

ρn = ∥|L̂||Û|∥
∥A∥ is almost always small (≲ 10).

However there exists pathological matrices for
which ρn ∝ 2n

11/59

Arithmetic intensity LU factorization

for k = 1: n do
for i = k + 1: n do

aik = aik/akk
end for
for i = k + 1: n do

for j = k + 1: n do
aij ← aij − aikakj

end for
end for

end for

• Arithmetic intensity: #flops
memory accesses

• aij ← aij − aikakj ⇒ n3/3 entries loaded from
memory to cache ⇒ arithmetic intensity not so
good!

⇒ use blocking: Aij ← Aij − AikAkj where Axy are
b × b blocks

⇒ n3

3b entries loaded ⇒ intensity increased by a
factor b

• Take b as large as possible such that 3 b × b
blocks fit into the cache

• Side-effect: if update is evaluated as
Temp = AikAkj , Aij ← Aij − Temp, then the
constant in the error bound is reduced from n to
n/b + b (Lecture 2!)

12/59

Arithmetic intensity LU factorization

for k = 1: n/b do
Factorize LkkUkk = Akk

for i = k + 1: n/b do
Solve Aik = AijU

−1
kk

Solve Aki = L−1
kk Aki

end for
for i = k + 1: n/b do

for j = k + 1: n/b do
Aij ← Aij − AikAkj

end for
end for

end for

• Arithmetic intensity: #flops
memory accesses

• aij ← aij − aikakj ⇒ n3/3 entries loaded from
memory to cache ⇒ arithmetic intensity not so
good!

⇒ use blocking: Aij ← Aij − AikAkj where Axy are
b × b blocks

⇒ n3

3b entries loaded ⇒ intensity increased by a
factor b

• Take b as large as possible such that 3 b × b
blocks fit into the cache

• Side-effect: if update is evaluated as
Temp = AikAkj , Aij ← Aij − Temp, then the
constant in the error bound is reduced from n to
n/b + b (Lecture 2!)

12/59

Arithmetic intensity LU factorization

for k = 1: n/b do
Factorize LkkUkk = Akk

for i = k + 1: n/b do
Solve Aik = AijU

−1
kk

Solve Aki = L−1
kk Aki

end for
for i = k + 1: n/b do

for j = k + 1: n/b do
Aij ← Aij − AikAkj

end for
end for

end for

• Arithmetic intensity: #flops
memory accesses

• aij ← aij − aikakj ⇒ n3/3 entries loaded from
memory to cache ⇒ arithmetic intensity not so
good!

⇒ use blocking: Aij ← Aij − AikAkj where Axy are
b × b blocks

⇒ n3

3b entries loaded ⇒ intensity increased by a
factor b

• Take b as large as possible such that 3 b × b
blocks fit into the cache

• Side-effect: if update is evaluated as
Temp = AikAkj , Aij ← Aij − Temp, then the
constant in the error bound is reduced from n to
n/b + b (Lecture 2!)

12/59

Dense systems

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

13/59

Gaussian elimination and sparsity

• At step k , for i , j > k : a′ij = aij − aikakj

• If aik ̸= 0 and akj ̸= 0 then a′ij ̸= 0

• If aij was zero → non-zero a′ij must be stored: fill-in

 k j

k

i

x

x

x

x

 k j

k

i

x

x

x

0

Interest of
permuting
a matrix:

X X X X X
X X 0 0 0
X 0 X 0 0
X 0 0 X 0
X 0 0 0 X

 1 ↔ 5

X 0 0 0 X
0 X 0 0 X
0 0 X 0 X
0 0 0 X X
X X X X X

Challenges:

• How to predict where fill-in will occur?

• How to reduce the amount of fill-in? What is the complexity of the factorization?

• Knowing the fill-in, how to efficiently factorize the matrix? How to parallelize it?

14/59

Dense systems

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

15/59

Modeling fill-in: adjacency graphs

• The rows/columns and nonzeros of a given sparse matrix correspond (with natural
labelling) to the vertices and edges, respectively, ofA a graph, called the adjacency
graph.

• We will only consider on matrices with a symmetric pattern (numerical values can
be unsymmetric), which means the adjacency graph is undirected.

• Matrices with unsymmetric pattern can still be handled by considering the pattern
of A+ AT

A =

1 2 3

1 ×
2 × × ×
3 × ×

v2 3v

1v

16/59

Fill-in characterization

Fill path theorem (Rose, Tarjan, Lueker, 1976)

Let A be a symmetric pattern matrix, G (A) its associated graph, and L the matrix of
factors. Then ℓij ̸= 0 iff there is a path in G (A) between i and j such that all nodes in
the path have indices smaller than both i and j .

i

j

p
1 p2

pk

p
1

p2

pk

j

i

j

i

17/59

Fill-in characterization

Fill path theorem (Rose, Tarjan, Lueker, 1976)

Let A be a symmetric pattern matrix, G (A) its associated graph, and L the matrix of
factors. Then ℓij ̸= 0 iff there is a path in G (A) between i and j such that all nodes in
the path have indices smaller than both i and j .

i

j

p
1 p2

pk

p
1

p2

pk

j

i

j

i

17/59

Fill-in characterization

Fill path theorem (Rose, Tarjan, Lueker, 1976)

Let A be a symmetric pattern matrix, G (A) its associated graph, and L the matrix of
factors. Then ℓij ̸= 0 iff there is a path in G (A) between i and j such that all nodes in
the path have indices smaller than both i and j .

i

j

p
1 p2

pk

p
1

p2

pk

j

i

j

i

17/59

Fill-in characterization

Fill path theorem (Rose, Tarjan, Lueker, 1976)

Let A be a symmetric pattern matrix, G (A) its associated graph, and L the matrix of
factors. Then ℓij ̸= 0 iff there is a path in G (A) between i and j such that all nodes in
the path have indices smaller than both i and j .

i

j

p
1 p2

pk

p
1

p2

pk

j

i

j

i

Fill(i,j) !!!

Fill(i,j) !!!

17/59

The elimination process in the graphs

GU(V ,E)← undirected graph of A
for k = 1 : n − 1 do

V ← V − {k} ▷ remove vertex k
E ← E − {(k , ℓ) : ℓ ∈ adj(k)} ∪ {(x , y) : x ∈ adj(k) and y ∈ adj(k)}
Gk ← (V ,E) ▷ for definition

end for

Gk are the so-called elimination graphs.

4

321

6 5

1
2

3
4

5
6

H0 =G0 :

18/59

A sequence of elimination graphs

4

321

6 5

4

32

6 5

6 5

34

6 5

4

A0=

A1=

A2=

A3=

G0:

G1:

G2:

G3:

1

5
4

3
2

6

5
4

3
2

6

5
4

3

6

5
4

6

Filled graph G (F) = G (L+ U)

5

1

6

2

34

+
G (A) = G(F) F = L + L

T

1

5
4

3
2

6

19/59

Dependencies

Dependency

If i > j and ℓij ̸= 0 then the elimination of variable j modifies column i . Therefore i
cannot be eliminated before j and we say that i depends on j : j → i

How to represent dependencies in a
compact way? Remove all redundant
dependencies in G (F) via transitive
reduction.

Assume i → j and j → k ; then i → k , if it
exists, is redundant because it is implicitly
carried by the chain i → j → k. a c g

h f

d j

i e b

a c g

h f

d j

i e b

20/59

Dependencies

How can we easily identify redundant dependencies?

Proposition

Let i > j > k ; if k → j and k → i , necessarily j → i

Assume that ℓik ̸= 0 and ℓjk ̸= 0 with i > j > k ; because we know that ℓij must
necessarily be nonzero, we can suppress ℓik because the dependency k → i is indirectly
represented by the chain of dependencies k → j → i .

ℓkk

ℓjj

ℓii

ℓjk

ℓik ℓij

ℓkk

ℓjj

ℓii

ℓjk

ℓik ℓij

As a consequence of this observation, all the subdiagonal coefficients of L except the
first express redundant dependencies.21/59

The elimination tree

The graph obtained by removing from the filled graph the edges associated with the
subdiagonal coefficients in each column except the first is an ordered tree with root n
(where n is the matrix order).

The Elimination Tree (Schreiber, 1982)

Let A be a sparse symmetric pattern matrix of order n with factor L. The elimination
tree is defined to be the structure with n nodes {1, 2, ..., n} such that the node p is the
parent of node j if and only if

p = min{i > j | ℓij ̸= 0}.

22/59

The elimination tree

138 JOSEPH W. H. LIU

a

d

fa

o

o o h
0

o oo

d

I

oj

FIG. 2.1. An example of matrix structures.

3 10

8
4

G(A
G(F)

G(Ft)= T(A

FIG. 2.2. Graph structures of the example in Fig. 2.1.

a c g

h f

d j

i e b

a c g

h f

d j

i e b
j

i

e h d

b g

c f

a23/59

The elimination tree

Topological order

A topological order of a directed graph is an ordering of its vertices such that for each
directed edge (i , j), j > i .

A topological traversal of the elimination tree is such that a node is always visited after
its child nodes (i.e., bottom-up).
The elimination tree

• expresses the order in which variables can be eliminated: the elimination of a
variable only affects (directly or indirectly) its ancestors and only depends on its
descendants
Therefore, any topological order of the elimination tree leads to a correct result and
to the same fill-in

• expresses concurrence: because variables in separate subtrees do not affect each
other, they can be eliminated in parallel (more on this later).

24/59

Dense systems

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

25/59

The Multifrontal method (Duff and Reid, 1983)

REMEMBER: each time a pivot is eliminated, a clique is formed in the graph. A clique
is a set of nodes fully connected, i.e., a graph associated to a dense submatrix

A
k

L

U

The nonzero values concerned by an elimination step can be stored in a dense matrix
and, thus, operations can be carried on by means of BLAS operation

26/59

Extend-add operation

Assume a matrix A with index set IA and a matrix B with index set IB , the extend-add
operation ↕↔ produces a matrix C with index set IC = IA ∪ IB obtained by
extending A and B with zeros to make them conform to IC and summing them:

A =

1 3 6
1 a11 a13 a16

3 a31 a33 a36

6 a61 a63 a66

B =

2 3 5
2 b22 b23 b25

3 b32 b33 b35

5 b52 b53 b55

C = A ↕↔ B =

1 2 3 5 6

1 a11 0 a13 0 a16
2 0 0 0 0 0
3 a31 0 a33 0 a36
5 0 0 0 0 0
6 a61 0 a63 0 a66

+

1 2 3 5 6

1 0 0 0 0 0
2 0 b22 b23 b25 0
3 0 b32 b33 b35 0
5 0 b52 b53 b55 0
6 0 0 0 0 0

27/59

Frontal matrix assembly

A dense matrix, called frontal matrix, is associated with each node of the elimination
tree. The Multifrontal method consists in a topological order traversal of the tree
where at each node two operations are done:

1 Frontal Matrix Assembly:

Fi =

 f11 f12 · · · f1m
f21 f22 f2m
...

. . .
...

fm1 fm2 · · · fmm

 = A(i : n, i) ↕↔ CB1 ↕↔ · · · ↕↔ CBj

where Fi is the frontal matrix at node i of index set IFi
= {struct(L(i : n, i))}, j is

the number of children of i in the elimination tree and CB1, · · · ,CBj are the
Contribution Blocks (Schur complements) produced when processing the children
(see next slide).

28/59

Frontal matrix factorization

2 Frontal matrix factorization

Fi =

 f11 f12 · · · f1m
f21 f22 f2m
...

. . .
...

fm1 fm2 · · · fmm

→
 u11 u12 · · · u1m

ℓ21 cb22 · · · cb2m
...

. . .
...

ℓm1 cbm2 · · · cbmm

where u11

...
u1m

 =

 f11
...

f1m

 and

 ℓ21
...

ℓm1

 =

 f21
...

fm1

 /u11

CBi =

 cb22 cb2m
. . .

...
...

cbm2 · · · cbmm

 =

 f22 f2m
. . .

...
...

fm2 · · · fmm

−
 ℓ21

...
ℓm1

 ·
 u12

...
u1m

T

29/59

The Multifrontal Method: example

The elimination tree can be regarded as a graph of dependencies which defines
where/how to assemble the elimination blocks and which variable to eliminate at each
step.

1 2

3

4 5

6

7

8

9

6
7
8
9

4
6
7

5
6
9

30/59

The Multifrontal Method: example

The elimination tree can be regarded as a graph of dependencies which defines
where/how to assemble the elimination blocks and which variable to eliminate at each
step.

1 2

3

4 5

6

7

8

9

6
7
8
9

4
6
7

5
6
9

 a44 a46 a47
a64 0 0
a74 0 0

 →

 u44 u46 u47
ℓ64 b66 b67
ℓ74 b76 b77

30/59

The Multifrontal Method: example

The elimination tree can be regarded as a graph of dependencies which defines
where/how to assemble the elimination blocks and which variable to eliminate at each
step.

1 2

3

4 5

6

7

8

9

6
7
8
9

4
6
7

5
6
9

 a55 a56 a59
a65 0 0
a95 0 0

 →

 u55 u56 u59
ℓ65 c66 c69
ℓ95 c96 c99

30/59

The Multifrontal Method: example

The elimination tree can be regarded as a graph of dependencies which defines
where/how to assemble the elimination blocks and which variable to eliminate at each
step.

1 2

3

4 5

6

7

8

9

6
7
8
9

4
6
7

5
6
9

a66 0 a68 0
0 0 0 0
a86 0 0 0
0 0 0 0

+

b66 b67 0 0
b76 b77 0 0
0 0 0 0
0 0 0 0

+

c66 0 0 c69
0 0 0 0
0 0 0 0
c96 0 0 c99

 →

u66 u67 u68 u69
ℓ76 d77 d78 d79
ℓ86 d87 d88 d89
ℓ86 d97 d98 d99

30/59

Tree Amalgamation

The whole factorization is recast into a sequence of partial dense factorizations of the
type:

 u11
...

u1m

 =

 f11
...

f1m

 and

 ℓ21
...

ℓm1

 =

 f21
...

fm1

 /u11

CBi =

 cb22 cb2m
. . .

...
...

cbm2 · · · cbmm

 =

 f22 f2m
. . .

...
...

fm2 · · · fmm

−
 ℓ21

...
ℓm1

 ·
 u12

...
u1m

T

This is still only Level-2 BLAS operations. How to get the efficiency of Level-3 BLAS?

31/59

Tree Amalgamation

L=

1

3

4

5 6

7

8

9

2

3
4

9
8

4

9
8

3
4

9
8

Amalgamation without fill-in consists in merging all the frontal matrices related to
pivots whose columns in the factor L have the same structure. The subset of nodes
containing this pivots is called a supernode. All the pivots in a supernode can thus be
eliminated at once within the same frontal matrix

32/59

Tree Amalgamation

L=

1

3

4

5 6

7

8

9

2

3
4

9
8

2
3

8
4

2
3

8
4

9

Amalgamation with fill-in is based on the same principle except that it groups together
pivots whose column structure in L is not exactly the same. If the generated fill-in does
not exceed a certain threshold, the extra cost is overcome by efficiency

33/59

Tree Amalgamation

After amalgamation:

+...+ =

A12

A22

A11

A21 CB

L11
U11

L21

U12

L11U11 = A11

L21 = A21U
−1
11

U12 = L−1
11 A12

CB = A22 − L21U12

All the operations related to the frontal matrix can be done through Level-3 BLAS
routines

34/59

Dense systems

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

35/59

Nested dissection

Remember, in the elimination graphs, when a node is eliminated, new edges are added
that connect all its neighbors to each other.
Assume a separator S is identified that partitions the domain into two subdomains D1

and D2. All the neighbors of nodes in D1 (D2) are either in D1 (D2) or in S . Thus, if
D1 is eliminated before D2 and S , there cannot be any ℓij where vi ∈ D1 and vj ∈ D2

18

17

16

20

9

8 15

7

11

12

3

2

1

25

26

27

42

34

35

36

28

29

30

41

37

38

39

22

23

24

40

31

32

33

43

44

45

46

47

48

49

4

5

6

21

13

14

10

19

36/59

ND of a regular square mesh

The nested dissection method aims at partitioning the domain so that the fill-in is only
generated internally on each subdomain and on the interface by recursively computing
bisectors.

18

17

16

20

9

8

7

15

11

12

3

2

1 25

26

27

42

34

35

36

28

29

30

41

37

38

39

22

23

24

40

31

32

33

43

44

45

46

47

48

49

4

5

6

21

13

14

10

19

37/59

Nested dissection and elimination/assembly trees

The nested dissection method also produces an elimination tree: all the L columns of
variables within the same separator have the same structure and can, therefore, be
amalgamated into a supernode.

For this reason the nested dissection method provides an assembly tree implicitly
defined by the tree of separators.

38/59

Complexity of the factorization with ND

2D ND assumptions (George, 1973)

• 2D, square grid of size N × N and cross-shaped separators.

• The size of the separators/fronts is divided by 2 at every level starting at 2N

• The number of nodes is multiplied by 4 at every level

39/59

Complexity of the factorization with ND

2D ND assumptions (George, 1973)

• 2D, square grid of size N × N and cross-shaped separators.

• The size of the separators/fronts is divided by 2 at every level starting at 2N

• The number of nodes is multiplied by 4 at every level

39/59

Complexity of the factorization with ND

2D ND assumptions (George, 1973)

• 2D, square grid of size N × N and cross-shaped separators.

• The size of the separators/fronts is divided by 2 at every level starting at 2N

• The number of nodes is multiplied by 4 at every level

39/59

Complexity of the factorization with ND

2D ND assumptions (George, 1973)

• 2D, square grid of size N × N and cross-shaped separators.

• The size of the separators/fronts is divided by 2 at every level starting at 2N

• The number of nodes is multiplied by 4 at every level

39/59

Complexity of the factorization with ND

Flops

The factorization cost for a front of order m is C(m) = O(m3)

Cmf =

log2 N∑
ℓ=0

4ℓC
(
2N

2ℓ

)
= O

log2 N∑
ℓ=0

4ℓ
(
N

2ℓ

)3
 = O(N3)

Factors size

The size of factors at a front of order m is F(m) = O(m2)

Fmf =

log2 N∑
ℓ=0

4ℓF
(
2N

2ℓ

)
= O

log2 N∑
ℓ=0

4ℓ
(
N

2ℓ

)2
 = O(N2 logN)

40/59

Complexity of the factorization with ND

Regular problems 2D 3D

(nested dissection) N × N grid N × N × N grid

Nonzeros in original matrix O(N2) ???

Nonzeros in factors O(N2 logN) ???

Floating-point ops O(N3) ???

• The complexities are naturally much better than if the system is handled as dense
(e.g., N6 flops) but still remain superlinear (i.e., more than N2)

• The same analysis can be done on a 3D cubic domain of size N × N × N, with
hypercross separators (union of two orthogonal planes)

41/59

Dense systems

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

42/59

Parallelization: two sources of parallelism

tree parallelism arising from sparsity, it is formalized
by the fact that nodes in separate
subtrees of the elimination tree can be
eliminated at the same time

node parallelism within each node: parallel dense
factorization

In
cr

ea
si

ng
 n

od
e

pa
ra

lle
lis

m
D

ec
re

as
in

g
tr

ee
 p

ar
al

le
lis

m

L
U

L
L

U U

Using both sources of parallelism is crucial because they are complementary:

• Tree parallelism decreases going up because the tree gets more and more narrow

• Node parallelism grows going up because nodes become bigger and bigger
43/59

Bound on parallelism

What is the best possible speedup we can achieve in the multifrontal method? Let’s
model this problem as follows:

1. We have an infinite number of processes

2. We have a regular 2D geometry partitioned with ND

3. The time is proportional to the flops.

Under this assumption the sequential multifrontal factorization time is O(N3).

44/59

Bound on node parallelism

for k = 1: n/b do
Factorize LkkUkk = Akk → task Fkk
for i = k + 1: n/b do

Solve Aik = AijU
−1
kk → task Sik

Solve Aki = L−1
kk Aki → task Ski

end for
for i = k + 1: n/b do

for j = k + 1: n/b do
Aij ← Aij −AikAkj → task Ukij

end for
end for

end for

• Time sequential ∝ flops ∝ O(m3)

• Time parallel ∝ flops on critical path
∝ O(mb3) = O(m)

3× 3 example:

45/59

Bound on tree parallelism

• When tree parallelism is used all the branches are traversed concurrently; the
minimum required time is the time needed to traverse the longest (heaviest)
branch. Because, in our case, all the branches are equal, we will measure the time
needed for any branch.

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

46/59

Bound on parallelism

Execution time bounds:

• Case 1: only tree parallelism

Cpmf = O

log2 N∑
ℓ=0

(
N

2ℓ

)3
 = O(N3)

• Case 2: only node parallelism

Cpmf = O

log2 N∑
ℓ=0

4ℓ
N

2ℓ

 = O(N2)

• Case 3: tree and node parallelism

Cpmf = O

log2 N∑
ℓ=0

N

2ℓ

 = O(N)

47/59

Bound on parallelism

Regular problems 2D 3D

(nested dissection) N × N grid N × N × N grid

Sequential O(N3) ???

Tree parallelism O(N3) ???

Node parallelism O(N2) ???

Tree and node parallelism O(N) ???

Remarks:

• Tree parallelism brings no asymptotic improvement if no node parallelism !!!

• It is crucial to use both sources of parallelism to achieve good parallel efficiency

• Note that in practice in practice we are quite far from the assumptions we have
made (no infinite number of processors, time ̸= flops, etc.)

48/59

Dense systems

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

49/59

Equivalent orderings: postorder

Postorder

A postorder is a topological order where all the nodes in each subtree are numbered
consecutively.

Among all the topological orders, the postorder has a very favorable property: a node is
visited as soon as all of its children have been visited. This has a twofold advantage:

• In a sequential execution, a stack data structure can be used to store the
contribution blocks. A contribution block is pushed on top of the stack when it is
produced (i.e., upon factorization of the corresponding front) and popped from the
top of the stack when it is assembled into the parent front

• It allows for a better data locality because the contribution locks that are used for
an assembly operations are on top of the stack and thus have been produced
recently.

50/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

Factors
Active
frontal
matrix

Stack of
contribution
blocks

Active storage

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

The multifrontal method: memory handling

1 2 3 4 5
1
2
3
4
5

1 2 3 4 5
1
2
3
4
5

A= L+U-I=

Storage is divided into two parts:

• Factors

• Active memory

5

5
4

1
4
5

3
4

2
3

Elimination tree
51/59

Postorder traversals: memory

Postorder provides a good data locality and better memory consumption that a general
topological order since father nodes are assembled as soon as its children have been
processed.
But there are still many postorders of the same tree. Which one to choose? the one
that minimizes memory consumption

a b ab

c

d f

e

g

h

c

d

e

f

g

h

ii

Best (abcdefghi) Worst (hfdbacegi)

Leaves

Root

52/59

Problem model

• Mi : memory peak for complete subtree rooted at i ,

• CBi : (temporary) contribution block produced at node i ,

• mi : memory for storing frontal matrix i ,

• nci : number of children of node i .
M2 M3

M(parent)

M1

temp3temp2

temp1

Mi = max

 max
j=1:nci

(
Mj +

j−1∑
k=1

CBk

)
︸ ︷︷ ︸

children

,mi +

nci∑
j=1

CBj︸ ︷︷ ︸
assembly

 (1)

Objective: order the children to minimize Mparent

53/59

Problem model

• Mi : memory peak for complete subtree rooted at i ,

• CBi : (temporary) contribution block produced at node i ,

• mi : memory for storing frontal matrix i ,

• nci : number of children of node i .
M2 M3

M(parent)

M1

temp3temp2

temp1

Mi = max

 max
j=1:nci

(
Mj +

j−1∑
k=1

CBk

)
︸ ︷︷ ︸

children

,mi +

nci∑
j=1

CBj︸ ︷︷ ︸
assembly

 (1)

Objective: order the children to minimize Mparent

53/59

Memory-minimizing schedules

Theorem (Liu 1986)

The minimum of maxj(xj +
∑j−1

i=1 yi) is obtained when the sequence (xi , yi) is sorted in
decreasing order of xi − yi .

Proof. Assume a sequence S is optimal with xj − yj < xj+1 − yj+1 for some j . Let the
sequence S ′ be obtained by interchanging j and j + 1. Let Mk and M ′

k be the peaks at
step k of S and S ′. Then

• Mk = M ′
k for k ̸= j , j + 1

• M ′
j < Mj+1 and M ′

j+1 < Mj+1

Corollary

An optimal child sequence is obtained by rearranging the children nodes in decreasing
order of Mi − CBi .

Interpretation: At each level of the tree, child with relatively large peak of memory in
its subtree (Mi large with respect to CBi) should be processed first.

54/59

Memory-minimizing schedules

Theorem (Liu 1986)

The minimum of maxj(xj +
∑j−1

i=1 yi) is obtained when the sequence (xi , yi) is sorted in
decreasing order of xi − yi .

Proof. Assume a sequence S is optimal with xj − yj < xj+1 − yj+1 for some j . Let the
sequence S ′ be obtained by interchanging j and j + 1. Let Mk and M ′

k be the peaks at
step k of S and S ′. Then

• Mk = M ′
k for k ̸= j , j + 1

• M ′
j < Mj+1 and M ′

j+1 < Mj+1

Corollary

An optimal child sequence is obtained by rearranging the children nodes in decreasing
order of Mi − CBi .

Interpretation: At each level of the tree, child with relatively large peak of memory in
its subtree (Mi large with respect to CBi) should be processed first.54/59

Memory consumption in parallel

In parallel, different memory regions scale in different ways:

• Factor: the factors produced upon factorization of the frontal matrices can be
evenly distributed among the processors and, therefore, the associated memory
scales perfectly, i.e., it does not increase globally and each process stores an equal
share.

• Active memory: In parallel multiple branches have to be traversed at the same time
(tree parallelism).This means that a higher number of CBs will have to be stored in
memory which means that the global active memory increases.

In order to asses the memory scalability we will use a metric called memory efficiency:

e(p) =
Sseq

p × Smax(p)

where we denote Sseq = Mn the peak of memory consumption in a sequential execution
and Smax(p) the maximum peak memory consumption over all the p processes.
Ideally, we would like e(p) ≃ 1, i.e. Sseq/p on each processor.

55/59

Example 1: all-to-all mapping

All-to-all mapping: postorder traversal of the tree, where all the processors work at every node:

64

646464

64

64 64

64 64

6464

646464

Optimal memory scalability (Smax(p) = Sseq/p) but no tree parallelism and prohibitive amounts

of communications.
56/59

Example 2: proportional mapping

Proportional mapping: assuming that the sequential peak is 5 GB,

Smax(p) ⩾ max

{
4GB

26
,
1GB

6
,
5GB

32

}
= 0.16 GB⇒ e(p) ⩽

5

64× 0.16
⩽ 0.5

64

32626
4GB 1GB 5GB

5GB

57/59

Dense systems

Sparse systems
Fill-in characterization
The multifrontal method
Nested dissection and complexity
Parallelism
Memory
Exercise

58/59

Exercise

• No MATLAB today! Just pen & paper (and then LATEX!)

• Fill the ??? in the tables on slides 41 and 48

• Show your reasoning and calculations!

• Write it all up in LATEX

• Bonus: assuming a regular 2D or 3D geometry partitioned with ND, how can we
improve the constant γn in the backward error bound of LU factorization (slide 8) ?

59/59

	Dense systems
	Sparse systems
	Fill-in characterization
	The multifrontal method
	Nested dissection and complexity
	Parallelism
	Memory
	Exercise

