
Harnessing inexactness
in scientific computing

Lecture 15:
numerical computing on GPUs

Theo Mary (CNRS)
theo.mary@lip6.fr

https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon)
elisa.riccietti@ens-lyon.fr

https://perso.ens-lyon.fr/elisa.

riccietti/

M2 course at ENS Lyon, 2024–2025
Slides available on course webpage

theo.mary@lip6.fr
https://perso.lip6.fr/Theo.Mary/
elisa.riccietti@ens-lyon.fr
https://perso.ens-lyon.fr/elisa.riccietti/
https://perso.ens-lyon.fr/elisa.riccietti/

Introduction

Rounding error analysis

Iterative refinement

Multiword matrix multiplication

Randomized LRA

2/51

Introduction

Rounding error analysis

Iterative refinement

Multiword matrix multiplication

Randomized LRA

3/51

NVIDIA GPUs

Top 20 accelerators in TOP500

4/51

NVIDIA GPUs

NVIDIA stock price history

4/51

Lower precisions

number of bits

signif. (t) exp. range u = 2−t

fp128 quadruple 113 15 10±4932 1× 10−34

fp64 double 53 11 10±308 1× 10−16

fp32 single 24 8 10±38 6× 10−8

fp16 11 5 10±5 5× 10−4

bfloat16
half

8 8 10±38 4× 10−3

fp8 (e4m3) 4 4 10±2 6× 10−2

fp8 (e5m2)
quarter

3 5 10±5 1× 10−1

5/51

Lower precisions on NVIDIA GPUs

Peak performance (TFLOPS)

Pascal Volta Ampere Hopper Blackwell

2016 2018 2020 2022 2025

fp64 5 8 20 67 40

fp32 10 16 20 67 80

tfloat32 -- -- 160 495 2,200

fp16/bfloat16 20 125 320 990 4,500

fp8 -- -- -- 2,000 9,000

fp4 -- -- -- -- 18,000

NVIDIA Hopper (H100) GPU

fp64/fp16 speed ratio:

• Hopper (2022): 15×
• Blackwell (2025): 112×

6/51

NVIDIA GPU tensor cores

Tensor cores units available on NVIDIA GPUs carry out a mixed precision matrix
multiply–accumulate (uhigh ≡ fp32 and ulow ≡ fp16/fp8/fp4)

D = A B + C
× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

uhigh

=


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

ulow


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

ulow

+


× × × ×
× × × ×
× × × ×
× × × ×


︸ ︷︷ ︸

uhigh

Element-wise multiplication of matrix A and B is performed with at least single precision. When
.ctype or .dtype is .f32, accumulation of the intermediate values is performed with at least single
precision. When both .ctype and .dtype are specified as .f16, the accumulation is performed
with at least half precision.
The accumulation order, rounding and handling of subnormal inputs is unspecified.

7/51

Tensor core precisions

sign
exponent
(8 bits)

fraction
(23 bits)

fp32

Range 10±38, u = 6× 10−8

sign
exponent
(5 bits)

fraction
(10 bits)

fp16

Range 10±5, u = 5× 10−4

sign
exponent
(8 bits)

fraction
(7 bits)

bfloat16
Range 10±38, u = 4× 10−3

sign

exp.
(5 bits)

frac.
(2 bits)

fp8 (e5m2)

Range 10±5, u = 0.125

sign

exp.
(4 bits)

frac.
(3 bits)

fp8 (e4m3)
Range [0.015, 448], u = 6× 10−2

sign
exp.

frac.

fp4 (e2m1)
Range [1, 6], u = 0.258/51

tfloat32

sign
exponent
(8 bits)

fraction
(23 bits)

fp32

Range 10±38, u = 6× 10−8

sign
exponent
(5 bits)

fraction
(10 bits)

fp16

Range 10±5, u = 5× 10−4

sign
exponent
(8 bits)

fraction
(7 bits)

bfloat16
Range 10±38, u = 4× 10−3

sign
exponent
(8 bits)

fraction
(10 bits)

tfloat32
Range 10±38, u = 5× 10−4

9/51

tfloat32

sign
exponent
(8 bits)

fraction
(10 bits)

tfloat32
Range 10±38, u = 5× 10−4

1 + 8 + 10 = 19 bits, why is it called tfloat32 ??

TF32 uses the same 10-bit mantissa as the half-precision (FP16) math, shown to have more than
sufficient margin for the precision requirements of AI workloads. And TF32 adopts the same
8-bit exponent as FP32 so it can support the same numeric range. The combination makes
TF32 a great alternative to FP32 for crunching through single-precision math. To validate the
accuracy of TF32, we used it to train a broad set of AI networks. All of them have the same
convergence-to-accuracy behavior as FP32.

source: blogs.nvidia.com

9/51

Introduction

Rounding error analysis

Iterative refinement

Multiword matrix multiplication

Randomized LRA

10/51

Matrix multiplication with tensor cores

This algorithm computes C = AB using tensor cores, where A,B,C ∈ Rn×n, and
returns C in precision uhigh

Ã← f llow(A) and B̃ ← f llow(B) (if necessary)
for i = 1: n/b1 do

for j = 1: n/b2 do
Cij = 0
for k = 1: n/b do

Compute Cij = Cij + Ãik B̃kj using tensor cores
end for

end for
end for

11/51

Matrix multiplication: error analysis

First, we convert A and B to low precision:

Ã = fllow(A) = A+∆A, |∆A| ≤ ulow|A|,

B̃ = fllow(B) = B +∆B, |∆B| ≤ ulow|B|.
Second, we compute the product:

Ĉ = ÃB̃ +∆C , |∆C | ≲ nuhigh|Ã||B̃|,
= AB +∆AB + A∆B +∆A∆B +∆C

= AB + E , |E | ≲
(

2ulow︸ ︷︷ ︸
Conversion

+ nuhigh︸ ︷︷ ︸
Accumulation

)
|A||B|

Evaluation method Bound

Standard in precision ulow nulow
Standard in precision uhigh nuhigh
Tensor cores 2ulow + nuhigh

� Blanchard, Higham, Lopez, M., Pranesh (2020)

⇒ reduction by a factor
min

(
n/2, ulow/uhigh

)

12/51

https://epubs.siam.org/doi/10.1137/19M1289546

Matrix multiplication: error analysis

First, we convert A and B to low precision:

Ã = fllow(A) = A+∆A, |∆A| ≤ ulow|A|,

B̃ = fllow(B) = B +∆B, |∆B| ≤ ulow|B|.
Second, we compute the product:

Ĉ = ÃB̃ +∆C , |∆C | ≲ nuhigh|Ã||B̃|,
= AB +∆AB + A∆B +∆A∆B +∆C

= AB + E , |E | ≲
(

2ulow︸ ︷︷ ︸
Conversion

+ nuhigh︸ ︷︷ ︸
Accumulation

)
|A||B|

Evaluation method Bound

Standard in precision ulow nulow
Standard in precision uhigh nuhigh
Tensor cores 2ulow + nuhigh

� Blanchard, Higham, Lopez, M., Pranesh (2020)

⇒ reduction by a factor
min

(
n/2, ulow/uhigh

)
12/51

https://epubs.siam.org/doi/10.1137/19M1289546

Matrix multiplication with tensor cores

104 105 106 107

10−7

10−5

10−3

10−1

101

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16
tensor cores

fp32

Warning!

• NVIDIA tensor cores do not conform to the IEEE standard

• The additions in the product AB are performed with the round-towards-zero
rounding mode � Fasi, Higham, Mikaitis, Pranesh (2021)

13/51

https://peerj.com/articles/cs-330/

Matrix multiplication with tensor cores

104 105 106 107

10−7

10−5

10−3

10−1

101

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16
tensor cores

fp32

Warning!

• NVIDIA tensor cores do not conform to the IEEE standard

• The additions in the product AB are performed with the round-towards-zero
rounding mode � Fasi, Higham, Mikaitis, Pranesh (2021)

13/51

https://peerj.com/articles/cs-330/

Introduction

Rounding error analysis

Iterative refinement

Multiword matrix multiplication

Randomized LRA

14/51

Reminder: LU-IR

Factorize A = LU in precision uf
Solve Ax0 = b via x0 = U−1(L−1b) in precision uf
repeat

ri = b − Axi in precision ur
Solve Adi = ri via di = U−1(L−1ri) in precision uf
xi+1 = xi + di in precision u

until converged

e.g., with uf ≡ fp16, u ≡ fp32, and ur ≡ fp64
or uf ≡ fp16, u ≡ fp64, and ur ≡ fp128

� Carson and Higham (2018)

• Convergence speed: ϕ = O(κ(A)uf)

• Attainable accuracy: O(u+ κ(A)ur)

15/51

https://doi.org/10.1137/17M1140819

Block LU factorization

with tensor cores

• Block version to use matrix–matrix operations

• O(n3) part of the flops done with tensor cores

for k = 1: n/b do
Factorize LkkUkk = Akk (with unblocked alg.)
for i = k + 1: n/b do

Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki

L̃ik ← fl16(Lik) and Ũki ← fl16(Uki)

end for
for i = k + 1: n/b do

for j = k + 1: n/b do
Aij ← Aij − LikUkj

using tensor cores

end for
end for

end for

16/51

Block LU factorization with tensor cores

• Block version to use matrix–matrix operations

• O(n3) part of the flops done with tensor cores

for k = 1: n/b do
Factorize LkkUkk = Akk (with unblocked alg.)
for i = k + 1: n/b do

Solve LikUkk = Aik and LkkUki = Aki for Lik and Uki

L̃ik ← fl16(Lik) and Ũki ← fl16(Uki)
end for
for i = k + 1: n/b do

for j = k + 1: n/b do
Aij ← Aij − L̃ik Ũkj using tensor cores

end for
end for

end for

16/51

LU factorization with tensor cores

Error analysis for LU follows from matrix multiplication analysis and gives same bounds
to first order � Blanchard, Higham, Lopez, M., Pranesh (2020)

Standard fp16 Tensor cores Standard fp32

nu16 2u16 + nu32 nu32

10,000 20,000 30,000 40,000

10−7

10−6

10−5

10−4

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16
tensor cores

fp32

17/51

https://epubs.siam.org/doi/10.1137/19M1289546

Impact on iterative refinement

Results from � Haidar et al. (2018)

• TC accuracy boost can be critical!

• TC performance suboptimal here ⇒ why?
18/51

https://ieeexplore.ieee.org/abstract/document/8665777

LU factorization is memory bound

• LU factorization is traditionally a compute-bound operation. . .

• With Tensor Cores, flops are O(10×) faster
• Matrix is stored in fp32 ⇒ data movement is unchanged

⇒ LU with tensor cores becomes memory-bound !

10,000 20,000 30,000 40,000 50,000

0

10

20

30

40

50

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

fp16

tensor cores (A in fp32)

10,000 20,000 30,000 40,000 50,000
10−7

10−6

10−5

10−4

10−3

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16

tensor cores (A in fp32)

• Idea: store matrix in fp16

• Problem: huge accuracy loss, tensor cores accuracy boost completely negated

19/51

LU factorization is memory bound

• LU factorization is traditionally a compute-bound operation. . .

• With Tensor Cores, flops are O(10×) faster
• Matrix is stored in fp32 ⇒ data movement is unchanged

⇒ LU with tensor cores becomes memory-bound !

10,000 20,000 30,000 40,000 50,000

0

10

20

30

40

50

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

10,000 20,000 30,000 40,000 50,000
10−7

10−6

10−5

10−4

10−3

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

• Idea: store matrix in fp16

• Problem: huge accuracy loss, tensor cores accuracy boost completely negated19/51

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking → left-looking factorization

Matrix after 2 steps:

fp16

fp32

O(n3) fp32 + O(n2) fp16 → O(n2) fp32 + O(n3) fp16

20/51

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking → left-looking factorization

Matrix after 2 steps:

fp16

fp32

O(n3) fp32 + O(n2) fp16 → O(n2) fp32 + O(n3) fp16

20/51

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking → left-looking factorization

Matrix after 2 steps:

fp16

fp32

read

write

for k = 1 to p do
Factor:
Compute the LU fac. LkkUkk = Akk .
for i = k + 1 to p do

Solve LikUkk = Aik for Lik .
Solve LkkUki = Aki for Uki .

end for
Update:
for i = k + 1 to p do

for j = k + 1 to p do
Aij ← Aij − LikUkj

end for
end for

end for

O(n3) fp32 + O(n2) fp16 → O(n2) fp32 + O(n3) fp16

20/51

Reducing data movement

Two ingredients to reduce data movement with no accuracy loss:

1. Mixed fp16/fp32 representation

2. Right-looking → left-looking factorization

Matrix after 2 steps:

fp16

fp32

read

write

for k = 1 to p do
Update:
Akk ← Akk −

∑k−1
j=1 LkjUjk .

for i = k + 1 to p do
Aik ← Aik −

∑k−1
j=1 LijUjk

Aki ← Aki −
∑k−1

j=1 LkjUji

end for
Factor:
Compute the LU fac. LkkUkk = Akk .
for i = k + 1 to p do

Solve LikUkk = Aik for Lik .
Solve LkkUki = Aki for Uki .

end for
end for

O(n3) fp32 + O(n2) fp16 → O(n2) fp32 + O(n3) fp1620/51

Experimental results

10,000 20,000 30,000 40,000 50,000

0

10

20

30

40

50

Matrix size: n

P
er
fo
rm

a
n
ce

(T
F
L
O
P
S
)

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

left-looking tensor cores

10,000 20,000 30,000 40,000 50,000
10−7

10−6

10−5

10−4

10−3

Matrix size: n

B
a
ck
w
a
rd

er
ro
r

fp16

tensor cores (A in fp32)

tensor cores (A in fp16)

left-looking tensor cores

• Nearly 50 TFLOPS without significantly impacting accuracy
� Lopez and M. (2023)

• Even more critical on A100:
50 TFLOPS (A in fp32) → 175 TFLOPS (A in fp16+left-looking)21/51

https://doi.org/10.1177/10943420221136848

Power consumption of IR

� Haidar et al. (2020)

22/51

https://doi.org/10.1098/rspa.2020.0110

IR on GPUs with little fp64 support

� Haidar et al. (2020)

23/51

https://doi.org/10.1098/rspa.2020.0110

Introduction

Rounding error analysis

Iterative refinement

Multiword matrix multiplication

Randomized LRA

24/51

Double-half arithmetic with tensor cores

• � Markidis et al. (2018) propose “precision refinement”:

A32B32 ≈ A16B16 + A16RB + RAB16 + RARB

where RA = fp16(A32 − A16) and RB = fp16(B32 − B16)

• Reminiscent of multiword arithmetic (ex: double-double)
◦ Represent high precision number as the unevaluated sum of lower precision numbers
◦ Double-double arithmetic:

x = x1︸︷︷︸
fp64

+ x2︸︷︷︸
fp64

⇒ x has up to 2× 53 = 106 significand bits ≈ 10−32 precision
◦ Less than fp128 (113 significand bits), but much faster, because computations rely on

fp64 arithmetic
◦ Need for error-free transformations makes it much slower than fp64 ⇒ double-single

arithmetic not meaningful on most processors

25/51

https://doi.org/10.1109/IPDPSW.2018.00091

Double–half and triple–half arithmetics

Signif. bits Exp. bits Range Unit roundoff u

fp32 24 8 10±38 6× 10−8

fp16 11 5 10±5 5× 10−4

bfloat16 8 8 10±38 4× 10−3

Let x ∈ R and us = 2−24

x = x1︸︷︷︸
fp16

+ x2︸︷︷︸
fp16

+ ϵ |ϵ| ≤ 4us

x = x1︸︷︷︸
bfloat16

+ x2︸︷︷︸
bfloat16

+ x3︸︷︷︸
bfloat16

+ ϵ |ϵ| ≤ us

26/51

Double–half arithmetic with tensor cores

Apply this elementwise to A ∈ Rm×n and B ∈ Rn×p:

A = A1 + A2, B = B1 + B2

and compute C = AB as

C ≈
∑
i ,j

AiBj using tensor cores

GPU tensor cores provide a new perspective:

• Intermediate computations are done in fp32 ⇒ no need for error-free
transformations!

• Double–fp16 ⇒ 4× more flops (can be reduced to 3×)
• Triple–bfloat16 ⇒ 9× more flops (can be reduced to 6×)
• Tensor cores 8×–16× faster than fp32

⇒ Multiword half arithmetic potentially faster at same accuracy!27/51

General error analysis

Step 1: build

Ai = fllow

(
A−

i−1∑
k=1

Ak

)
, Bj = fllow

(
B −

j−1∑
k=1

Bk

)
.

to obtain

A =

p∑
i=1

Ai +∆A, |∆A| ≤ uplow|A|,

B =

p∑
j=1

Bj +∆B, |∆B| ≤ uplow|B|.

Step 2: compute the p2 products AiBj by chaining calls to the block FMA:

Ĉ = C +∆C , |∆C | ≲ (n + p2)uhigh|A||B|.

Overall
Ĉ = AB + E , |E | ≲

(
2uplow + u2plow + (n + p2)uhigh

)
|A||B|.

28/51

Ak = fllow
(
A−

∑k−1
i=1 Ai

)
is the approximation residual from the first k − 1 words

|Ai | ≤ ui−1
low (1 + ulow)|A|

|Bj | ≤ uj−1
low (1 + ulow)|B|

|Ai ||Bj | ≤ ui+j−2
low (1 + ulow)

2|A||B|

⇒ Not all p2 products AiBj need be computed! Skipping any product AiBj such that

i + j ≥ p + 2 only adds O(uplow) error terms: Ĉ = AB + E ,

|E | ≤
(
2uplow + u2plow + (n + p2)uhigh +

p−1∑
i=1

(p − i)up+i−1
low (1 + ulow)

2

)
|A||B|.

• number of products: p2 → p(p + 1)/2

• error to order uplow: constant 2→ p + 1

29/51

Summary of theory

Ĉ = AB + E , |E | ≲
(
(p + 1)uplow + nuhigh

)
|A||B|.

uhigh ulow Error bound

2−24 (fp32)

2−11 (fp16)
p = 1 2× 2−11 + n × 2−24

p ≥ 2 n × 2−24

2−8 (bfloat16)

p = 1 2× 2−8 + n × 2−24

p = 2 3× 2−16 + n × 2−24

p ≥ 3 n × 2−24

� Fasi, Higham, Lopez, M., Mikaitis (2023)

In the following we focus on double-fp16 arithmetic:
AB ≈ A1B1 + A1B2 + A2B1

computed via three tensor core products

30/51

https://doi.org/10.1137/21M1465032

Summary of theory

Ĉ = AB + E , |E | ≲
(
(p + 1)uplow + nuhigh

)
|A||B|.

uhigh ulow Error bound

2−24 (fp32)

2−11 (fp16)
p = 1 2× 2−11 + n × 2−24

p ≥ 2 n × 2−24

2−8 (bfloat16)

p = 1 2× 2−8 + n × 2−24

p = 2 3× 2−16 + n × 2−24

p ≥ 3 n × 2−24

� Fasi, Higham, Lopez, M., Mikaitis (2023)

In the following we focus on double-fp16 arithmetic:
AB ≈ A1B1 + A1B2 + A2B1

computed via three tensor core products
30/51

https://doi.org/10.1137/21M1465032

From theory to practice

• Double-fp16 2–7× faster than fp32

• Similar backward error for matrices with random [−1, 1] uniform entries (decreasing
error is expected)

• [0, 1] uniform entries!!

31/51

From theory to practice

• Double-fp16 2–7× faster than fp32

• Similar backward error for matrices with random [−1, 1] uniform entries (decreasing
error is expected)

• [0, 1] uniform entries!!

31/51

From theory to practice

• Double-fp16 2–7× faster than fp32

• Similar backward error for matrices with random [−1, 1] uniform entries (decreasing
error is expected)

• [0, 1] uniform entries!!
31/51

The issue

The explanation: the culprit is round to zero (RZ)

• fp32 uses the standard RTN, but tensor cores only support RZ � Fasi et al. (2020)

• With data of nonzero mean and RZ, most rounding errors happen in the same
direction

⇒ Worst-case bound nu32 is attained with RZ, whereas with RTN we can usually
replace it by

√
nu32

• Same error bound ̸= same error !

• A possible cure? The worst-case accumulation bound nu32 is attained ⇒ need to
reduce the bound ⇒ use blocked summation!

32/51

https://peerj.com/articles/cs-330/

The issue

The explanation: the culprit is round to zero (RZ)

• fp32 uses the standard RTN, but tensor cores only support RZ � Fasi et al. (2020)

• With data of nonzero mean and RZ, most rounding errors happen in the same
direction

⇒ Worst-case bound nu32 is attained with RZ, whereas with RTN we can usually
replace it by

√
nu32

• Same error bound ̸= same error !

• A possible cure? The worst-case accumulation bound nu32 is attained ⇒ need to
reduce the bound ⇒ use blocked summation!

32/51

https://peerj.com/articles/cs-330/

A cure

• Flexible and advantageous tradeoff between speed and accuracy33/51

Introduction

Rounding error analysis

Iterative refinement

Multiword matrix multiplication

Randomized LRA

34/51

Reminder: randomized LRA

• The following algorithm computes a rank-k LRA by using mainly matrix products
� Halko, Martinsson, Tropp (2011)

Input: A ∈ Rm×n, k, p
Output: X ∈ Rm×k , Y ∈ Rn×k such that A ≈ XY T

Ω← randn(n, k + p)
B ← AΩ
Q ← qr(B)
C ← QTA
ZY T ← LRA(C , k)
X ← QZ

• In the following, we consider p = 0 which simplifies the GPU implementation by
replacing the last two lines by X = Q and Y = CT

35/51

https://doi.org/10.1137/090771806

Randomized LRA with tensor cores

randLRA on GPU with tgemm16|32.

Input: A32 ∈ Rm×n, the target rank k .
Output: X16 ∈ Rm×k and Y16 ∈ Rn×k such that A32 ≈ X16Y

T
16.

1: Ω16 = randn(n, k)
2: A16 = fp16(A32)
3: B32 = tgemm16|32(A16,Ω16)
4: Q32 = qr(B32)
5: X16 = fp16(Q32)
6: Y32 = tgemm16|32(A

T
16,X16)

7: Y16 = fp16(Y32)

36/51

Performance of randomized LRA with tensor cores

0 256 512 768 1024

0

10

20

30

40

50

60

70

Performance of randLRA on A100, m = n = 35840

• randLRA with tgemm16|32 is up to ×3 faster than with sgemm.

• Yet the theoretical peak is 312 Tflop/s.
37/51

Performance of randomized LRA with tensor cores

0 256 512 768 1024

0

10

20

30

40

50

60

70

Performance of randLRA on A100, m = n = 35840

• randLRA with tgemm16|32 is up to ×3 faster than with sgemm.

• Yet the theoretical peak is 312 Tflop/s.⇒ Why is it not attained?
37/51

Randomized LRA with tensor cores

randLRA on GPU with tgemm16|32.

Input: A32 ∈ Rm×n, the target rank k
Output: X16 ∈ Rm×k and Y16 ∈ Rn×k such that A32 ≈ X16Y

T
16.

1: Ω16 = randn(n, k)
2: A16 = fp16(A32)
3: B32 = tgemm16|32(A16,Ω16)
4: Q32 = qr(B32)←− Bottleneck now!
5: X16 = fp16(Q32)
6: Y32 = tgemm16|32(A

T
16,X16)

7: Y16 = fp16(Y32)

38/51

Reminder: Householder QR and Cholesky QR

Householder QR :
� Stable.
� Slow, especially on GPU.

Cholesky QR kernel

Input: A ∈ Rm×n.
Output: Orthonormal factor Q ∈ Rm×n of A.

1: B = ATA
2: R = chol(B)
3: Q = AR−1

Cholesky QR :
� Based on GEMM ⇒ very efficient on GPU.
� Unstable, loss of orthogonality ∝ κ(B) = κ(A)2.

39/51

Performance of Cholesky QR

0 256 512 768 1024

0

2

4

6

8

10

12

14
• Cholesky QR vs. Householder QR (sgeqrf):

� much faster.
� same accuracy.
� 14% of breakdowns in fp32.

• Switching from fp32 to fp64 removes
breakdowns and maintains almost the same
performance.

• Some variants of Cholesky QR without
breakdown exist (see Lecture 11), but on
A100 fp64 and fp32 achieve the same
performance peak ⇒ using fp64 is more
efficient

40/51

Performance of Cholesky QR

0 256 512 768 1024

0

2

4

6

8

10

12

14
• Cholesky QR vs. Householder QR (sgeqrf):

� much faster.
� same accuracy.
� 14% of breakdowns in fp32.

• Switching from fp32 to fp64 removes
breakdowns and maintains almost the same
performance.

• Some variants of Cholesky QR without
breakdown exist (see Lecture 11), but on
A100 fp64 and fp32 achieve the same
performance peak ⇒ using fp64 is more
efficient

40/51

Randomized LRA with tensor cores and Cholesky QR

randLRA on GPU with tgemm16|32 and Cholesky QR.

Input: A32 ∈ Rm×n, the target rank k .
Output: X16 ∈ Rm×k and Y16 ∈ Rn×k such that A32 ≈ X16Y

T
16.

1: Ω16 = randn(n, k)
2: A16 = fp16(A32)
3: B32 = tgemm16|32(A16,Ω16)
4: B64 = fp64(B32)
5: C64 = BT

64B64

6: R64 = chol(C64)
7: Q64 = B64R

−1
64

8: X16 = fp16(Q64)
9: Y32 = tgemm16|32(A

T
16,X16)

10: Y16 = fp16(Y32)

41/51

Performance and accuracy of randomized LRA

0 256 512 768 1024
0

20

40

60

80

100

120

140

160

180

0 256 512 768 1024

10
-6

10
-4

10
-2

10
0

Very fast, but only ∼ 10−2 accuracy ⇒ how can we improve it?

42/51

Mixed precision low-rank approximations

Three approaches to combine mixed precision and low-rank approximations:

• Adaptive precision: adapt the precision to the matrix at hand, taking advantage
of the possibly rapid decay of singular values

• Multiword arithmetic: use multiword arithmetic to accelerate matrix products, by
combining randomized methods with fast hardware such as NVIDIA tensor cores

• Iterative refinement: compute a low precision LRA and refine its accuracy
iteratively, drawing inspiration from IR for Ax = b

43/51

Randomized LRA with multiword arithmetic

Input: A ∈ Rm×n, k, p
Output: X ∈ Rm×k , Y ∈ Rn×k such that A ≈ XY T

Ω← randn(n, k + p)
Compute the MW decomp. A ≈ A1 + A2.
Compute the MW decomp. Ω ≈ Ω1 +Ω2.
B ← A1Ω1 + A2Ω1 + A1Ω2

Q ← qr(B)
Compute the MW decomp. Q ≈ Q1 + Q2.
C ← AT

1 Q1 + AT
2 Q1 + AT

1 Q2

ZY T ← LRA(C , k)
X ← QZ

• If the fp16/fp32 speed ratio is s, then for m→∞ this algorithm is s/3 faster
compared with the uniform fp32 one.

44/51

Randomized LRA with multiword arithmetic

• The expectation of the approximation error remains unchanged if Ω ∼ N (0, σ) as
long as σ ≈ 1. � Ootomo and Yokota (2023)

• Generating Ω in a t-bit arithmetic yields σ ≈ 1 + 2−t ⇒ can store Ω in low
precision and reduce the cost of the AΩ product!

Input: A ∈ Rm×n, k, p
Output: X ∈ Rm×k , Y ∈ Rn×k such that A ≈ XY T

Ω1 ← randn(n, k + p) in fp16.
Compute the MW decomp. A ≈ A1 + A2.
B ← A1Ω1 + A2Ω1 +A1Ω2

Q ← qr(B)
Compute the MW decomp. Q ≈ Q1 + Q2.
C ← AT

1 Q1 + AT
2 Q1 + AT

1 Q2

ZY T ← LRA(C , k)
X ← QZ

If the fp16/fp32 speed ratio is s,
then for m→∞ this algorithm
is 2s/5 faster compared with
the uniform fp32 one.

45/51

https://doi.org/10.1145/3592979.3593413

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

1. Apply method to input in low precision

2. Compute residual error in high precision

3. Apply method to residual error in low precision

4. Combine result of (1) and (3) to obtain refined result in high precision

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

� Baboulin, Kaya, M., Robeyns (2023)

46/51

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

� Baboulin, Kaya, M., Robeyns (2023)

46/51

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

A

→

X0Y
T
0

r

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

� Baboulin, Kaya, M., Robeyns (2023)

46/51

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

E

rank(E)

=

≤

A

rank(A)

−

+

X0Y
T
0

r

r

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

� Baboulin, Kaya, M., Robeyns (2023)

46/51

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

E

→

XEY
T
E

2r

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

� Baboulin, Kaya, M., Robeyns (2023)

46/51

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

X1Y
T
1

3r

=

X0Y
T
0

r

+

XEY
T
E

2r

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

� Baboulin, Kaya, M., Robeyns (2023)

46/51

https://inria.hal.science/hal-04115337

Iterative refinement for LRA

Can we refine a low precision LRA into a higher precision one?

Input: a matrix A
Output: its low-rank factors X1Y

T
1

1: Compute LRA X0Y
T
0 ≈ A in precision ulow.

2: Compute E = A− X0Y
T
0 in precision uhigh.

3: Compute LRA XEY
T
E ≈ E in precision ulow.

4: X1 = [X0 XE] and Y1 = [Y0 YE].

• Can recompress X1Y
T
1 from rank 3r to rank r

• Achieves u2low accuracy with most of the work done in precision ulow
• Can repeat process: after i iterations, the computed XiY

T
i satisfies

∥A− XiY
T
i ∥ ≤ (ϕi+1 + ξ + O(ulowuhigh))∥A∥

◦ ϕ = O(ulow) is the convergence speed
◦ ξ = O(uhigh) is the attainable accuracy

� Baboulin, Kaya, M., Robeyns (2023)46/51

https://inria.hal.science/hal-04115337

LRA-IR experiments (MATLAB)

0 2 4 6

Number of IR steps

10
-15

10
-10

10
-5

10
0

E
rr

o
rs

51

Double

47/51

LRA-IR experiments (MATLAB)

0 2 4 6

Number of IR steps

10
-15

10
-10

10
-5

10
0

E
rr

o
rs

51

16

46

Double

Single

47/51

LRA-IR experiments (MATLAB)

0 2 4 6

Number of IR steps

10
-15

10
-10

10
-5

10
0

E
rr

o
rs

51

16

46

7

13

25

41

Double

Single

Half

47/51

LRA-IR experiments (MATLAB)

0 2 4 6

Number of IR steps

10
-15

10
-10

10
-5

10
0

E
rr

o
rs

51

16

46

7

13

25

41

4

7

14

23

33

46

Double

Single

Half

Bfloat

47/51

Cost analysis of LRA-IR

IR faster than standard high precision LRA in two scenarios:

• If the ranks ri at the early iterations are much smaller than the final rank: ri ≪ r ⇒
requires rapid decay of singular values

• If the low precision is much faster than high precision, such as with GPU tensor
cores!

LRA-IR therefore bridges the gap between adaptive precision LRA and multiword LRA!

• Large singular values are computed with low precision but high accuracy, as in the
multiword approach

• Small singular values are computed with low precision and low accuracy as in the
adaptive precision approach

48/51

Randomized LRA with iterative refinement

randLRA with iterative refinement.
Input: A32 ∈ Rm×n, the target rank k .
Output: X16 ∈ Rm×3k and Y16 ∈ Rn×3k such that A32 ≈ X16Y

T
16.

1: [X16,Y16] = randLRA(A32, k)
2: E32 = A32 − tgemm16|32(X16,Y

T
16)

3: [X ′
16,Y

′
16] = randLRA(E32, 2k)

4: X16 = [X16,X
′
16]

5: Y16 = [Y16,Y
′
16]

• Since input of tcgemm is already in fp16, can use tensor cores to compute E32 with
fp32 accuracy!

49/51

Performance and accuracy of randLRA with refinement

0 256 512 768 1024
0

50

100

150

0 256 512 768 1024

10
-6

10
-4

10
-2

10
0

• randLRA with tgemm and refinement is ×2.1 faster than with SGEMM.

• Also, more accurate than with SGEMM.
� Baboulin, Donfack, Kaya, M., Robeyns (2024)

50/51

https://doi.org/10.1007/978-3-031-69583-4_3

Discussion

• Adaptive precision LRA
▲ Can be applied to a wide range of LRA methods
▲ Rigorous control of the accuracy via adaptive criterion
▼ Performance gains conditioned on rapid decay of singular values

• Randomized LRA with multiword arithmetic
▲ Conceptually very simple and transparent for the user
▲ Rigorous control of the accuracy via emulation
▼ Restricted to randomized methods and to fast “tensor core” hardware

• Iterative refinement for LRA
▲ Unifies both previous methods: can take advantage of both fast hardware and rapid

decay of singular values
▲ Rigorous control of the accuracy via refinement
▼ Requires more flops than either of the two previous methods

Take-away: mixed precision, low-rank approximations, and randomization
synergize well together!

51/51

	Introduction
	Rounding error analysis
	Iterative refinement
	Multiword matrix multiplication
	Randomized LRA

