Cours 8

Image restoration in large dimension

Elisa Riccietti and Theo Mary

LIP-ENS Lyon

Inverse problems in imaging

Inverse problems in imaging: various applications

Astronomy

SPHERE/IRDIS

Outline

Model the problem

Data fidelity Regularization Quality metrics

Optimization

Applications

Neural networks in imaging

Direct model

Degraded image \boldsymbol{z}

Original image \overline{x}

Examples of degradation

Inpainting: A diagonal binary Delurring: A convolution with a blur kernel

Direct model: convolution

$$z = Ax \iff z = \phi \star x$$

- φ ★ x: convolution product with the Point Spread Function (PSF) φ of size Q₁ × Q₂.
- A is a block-circulant matrix with circulant blocks related to ϕ : $A = F^* \Lambda F$ where
 - Λ: diagonal matrix,
 - F: represents the discrete Fourier transform, * denotes here the transpose conjugate and F* = F⁻¹.
- Efficient computation of Ax by means of the Fourier transform of x:

$$A\bar{x} = F^*\Lambda F\bar{x} = F^*\Lambda \bar{X}$$

Direct model: convolution

Direct model: convolution

Direct model

- © A is known or can be approximated
- ☺ A is sparse
- A is ill-conditioned

The problem $z = A\bar{x}$ is said to be well-posed if it fulfils the **Hadamard conditions**:

- 1. existence of a solution: range(A) = \mathbb{R}^{M}
- 2. uniqueness of the solution: Ker(A) = 0
- 3. stability of the solution \hat{x} relatively to the observation: $\forall (z, z') \in \mathbb{R}^M$, $||z - z'|| \to 0 \implies ||\hat{x}(z) - \hat{x}(z')|| \to 0$

Inverse problem solving

Direct inversion

$$\hat{x} = A^{-1}z = A^{-1}(A\bar{x} + \epsilon) = \bar{x} + A^{-1}\epsilon$$

Noise amplification if A is ill-conditioned

1922 Maximum likelihood

$$\hat{x} \in \arg\min_{x} \frac{1}{2} ||Ax - z||_{2}^{2} = (A^{T}A)^{-1}A^{T}z$$

1963 Regularization

$$\hat{x} \in \arg\min_{x} \frac{1}{2} \|Ax - z\|_{2}^{2} + \theta \|Dx\|_{2}^{2}$$

2000 Sparsity

$$\hat{x} \in \arg\min_{x} \frac{1}{2} \|Ax - z\|_{2}^{2} + \theta \|Dx\|_{1}$$

2010 "End-to-end" neural networks

$$\hat{x} = NN_{\theta}(z)$$

2020 Model based neural networks: PnP or Unfolded

Variational problem formulation

Estimating \hat{x} close to \bar{x} from the observation z and the forward operator A. Optimization formulation:

$$\widehat{x} \in \underset{x}{\arg\min} \underbrace{\frac{1}{2} \|Ax - z\|_{2}^{2}}_{\text{data fidelity}} + \underbrace{\lambda \|Lx\|_{\star}}_{\text{regularization}}$$

with $||Lx||_{\star}$ usually sparsity inducing norm.

The regularization permits to cope with the ill-posed nature of the inverse problem by assuming a priori knowledge about the ground-truth solution.

Examples

- L_1 norm $||x||_1$ to enforce sparsity
- Total Variation ||Dx||₁ for promoting spacial smoothness (D differential operator)

Model the problem Data fidelity Regularization Quality metrics

Optimization

Applications

Neural networks in imaging

Maximum A Posteriori (MAP) estimation

Let x and z be realizations of random variables X and Z

$$x^{MAP} = \arg \max_{x} \underbrace{p_{X|Z=z}(x)}_{\text{posterior distribution}}$$

By Bayes formula, the posterior distribution is given by

$$p_{X|Z=z}(x) = \frac{p_X(x)p_{Z|X=x}(z|x)}{p_Z(z)}$$

and the MAP writes as

$$x^{MAP} = \arg\min_{x} \underbrace{-\log p_{Z|X=x}(z)}_{\text{Data-fidelity}} \underbrace{-\log p_X(x)}_{\text{A priori}} = \arg\min_{x} f(x) + g(x)$$

The MAP estimator relates the data-fidelity term to the conditional distribution $p_{Z|X}$ and the regularization term to the prior distribution p_X .

Data-fidelity: Gaussian noise

- $z = A\bar{x} + \epsilon$ with $\epsilon \sim N(0, \sigma)$
- Gaussian likelihood:

$$p_{Z|X=x}(z) = \prod_{n=1}^{M} \frac{1}{\sqrt{2\pi\sigma}} \exp(-((Ax)_n - z_n)^2/(2\sigma))$$

► *L*₂ data-fidelity:

$$f(x) = \sum_{n=1}^{M} \frac{1}{2\sigma} ((AX)_n - z_n)^2$$

Model the problem Data fidelity Regularization Quality metrics

Optimization

Applications

Neural networks in imaging

Total variation (TV)

$$[i,j] i,j+1$$

$$i+1,j i+1,j+1$$

g(x) = g(D(x)) contains the differences

$$\left\| \begin{bmatrix} x_{i,j} - x_{i,j+1} \\ x_{i,j} - x_{i+1,j} \end{bmatrix} \right\|$$

Non-local total variation (NLTV)

g(x) = g(D(x)) contains the differences in the patches

Wavelets

Wavelets

$$x = a_0 \rightarrow \begin{cases} a_{-1} = (a_0 \star \overbrace{g) \downarrow 2}^{G} \\ d_{-1} = (a_0 \star \overbrace{h) \downarrow 2}^{H} \end{cases}$$

$$a_{-1} \rightarrow \begin{cases} a_{-2} = (a_{-1} \star \overbrace{g) \downarrow 2}^{G} \\ H \\ d_{-2} = (a_{-1} \star \overbrace{h) \downarrow 2}^{G} \end{cases}$$

- g: low pass filter
- h: high pass filter

Comparison of regularizations

Original

 $\begin{array}{l} {\sf Degraded} \\ {\sf SNR} = 13.4 \ {\sf dB} \end{array}$

Tikhonov SNR = 16.4 dB

TVSNR = 18.8 dB

NLTVSNR = 19.4 dB

 $\begin{array}{l} \mathsf{DTT}\\ \mathsf{SNR}=16.6 \; \mathsf{dB} \end{array}$

Model the problem

Data fidelity Regularization Quality metrics

Optimization

Applications

Neural networks in imaging

Image quality metrics

- Visual quality of the reconstruction
- Mean Squared Error (MSE) (should be as low as possible):

$$MSE(x, \hat{x}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{x}_i - x_i)^2$$

 Signal-to-Noise Ratio (SNR): compares the energy of the original image to the energy of the noise (dB=decibel)

$$SNR_{dB}(x, \hat{x}) = 10 \log_{10} \frac{P_{\text{signal}}}{P_{\text{noise}}} = 10 \log_{10} \frac{\|\hat{x}\|^2}{\|\hat{x} - x\|^2}$$

should be as high as possible.

Peak Signal-to-Noise Ratio (PSNR):

$$PSNR(x, \hat{x}) = 10 \log_{10} \frac{N \max^2 x}{\|\hat{x} - x\|^2}$$

ratio between the maximum intensity and the mean squared error. It can be useful when images have high dynamic range (i.e., large differences in intensity).

Outline

Model the problem

Data fidelity Regularization Quality metrics

Optimization

Applications

Neural networks in imaging

Problem formulation

The image restoration problem can be generally stated as

 $\min_{x} f(x) + g(x)$

- f differentiable with Lipschitz gradient
- g possibly non-smooth but proximable

Classical solution methods:

Proximal methods

Proximal methods

 $\min_{x} f(x) + \lambda g(x)$

Assumptions:

- $f + \lambda g$ admits a minimizer
- ▶ f,g are convex
- f is L_f -smooth: $\|\nabla f(x) \nabla f(y)\| \le L_f \|x y\|$ for all x, y
- g is possibly non-differentiable

Smooth case

If g = 0

Gradient descent: $x_{k+1} = x_k + p_k := x_k - \frac{1}{L_f} \nabla f(x_k)$

Why?

Gradient step minimizes an upper bound on the function:

$$f(x) \leq f(y) + \nabla f(y)^{\mathsf{T}}(x-y) + \frac{L_f}{2} \|x-y\|^2, \quad \forall x, y$$

$$f(x_{k+1}) \leq f(x_k) + \nabla f(x_k)^T p_k + \frac{L_f}{2} \|p_k\|^2 \xrightarrow{\arg\min_{p_k}} p_k = -\frac{\nabla f(x_k)}{L_f}$$

Proximal methods

If there is g: add λg to the upper bound:

$$f(x) + \lambda g(x) \le f(y) + \nabla f(y)^T (x - y) + \frac{L_f}{2} \|x - y\|^2 + \lambda g(x), \quad \forall x, y$$

Can we minimize the upper bound?

$$\arg\min_{x} f(y) + \nabla f(y)^{T} (x - y) + \frac{L_{f}}{2} ||x - y||^{2} + \lambda g(x) =$$

$$\arg\min_{x} \nabla f(y)^{T} (x - y) + \frac{L_{f}}{2} ||x - y||^{2} + \lambda g(x) =$$

$$\arg\min_{x} \frac{1}{2} ||x - (y - \frac{1}{L_{f}} \nabla f(y))||^{2} + \frac{\lambda}{L_{f}} g(x) :=$$

$$\operatorname{prox}_{\frac{\lambda}{L_{f}}g} (y - \frac{1}{L_{f}} \nabla f(y)).$$

Proximal operator

If g is a proper, lower semi-continuous convex function from a Hilbert space X to [-∞, +∞] the proximal operator is defined as :

$$\operatorname{prox}_{\tau g}(y) = \arg\min_{x} \frac{1}{2} \|x - y\|^2 + \tau g(x)$$

The proximal operator can be seen as a generalization of the projection operator: if f is the characteristic function u_C of a nonempty, closed, convex set C

$$\operatorname{prox}_{\iota_{C}}(x) = \operatorname{argmin}_{y} \begin{cases} \frac{1}{2} \|x - y\|_{2}^{2} & \text{if } y \in C \\ +\infty & \text{if } y \notin C \end{cases}$$
$$= \operatorname{argmin}_{y \in C} \frac{1}{2} \|x - y\|_{2}^{2}$$

Example: Thresholding

$$H_t(x) = x \cdot I(|x| > t)$$
 $S_t(x) = sign(x)(|x| - t)_+$

are the Hard and soft thresholding functions.

• If $g(x) = ||x||_1$, $\operatorname{prox}_{\lambda g}(x) = S_{\lambda}(x)$ • If $h(x) = ||x||_0$, $\operatorname{prox}_{\lambda g}(x) = H_{\lambda}(x)$

Gradient methods

Differentiable case

Proximal gradient descent

$$x_{k+1} = x_k - \frac{1}{L_f} \nabla f(x_k)$$

$$x_{k+1} = \operatorname{prox}_{\lambda g/L_f}(x_k - 1/L_f \nabla f(x_k))$$

Convergence

If f is differentiable, L_f -smooth and convex:

$$f(x_{K}) - f(x^{*}) \leq \frac{2L_{f} ||x_{1} - x^{*}||}{K - 1}$$

Convergence

If f is differentiable, L_f -smooth, convex and g is convex:

$$f(x_{K}) - f(x^{*}) \leq \frac{L_{f} ||x_{1} - x^{*}||}{2K}$$

In both cases $f(x_K) - f(x^*) = O(\frac{1}{K})$.

Accelerated proximal methods: FISTA

ISTA (Iterative Shrinkage-Thresholding Algorithm):

$$x_{k+1} = \underbrace{\operatorname{prox}_{\tau g}}_{\text{step on } g} \underbrace{(x_k - \tau \nabla f(x_k))}_{\text{step on } f}$$

Rate: O(1/k) if $\tau \leq \frac{1}{L_f}$ FISTA (Fast ISTA):

$$x_{k+1} = \operatorname{prox}_{\tau g} (y_k - \tau \nabla f(y_k))$$
$$y_{k+1} = x_k + \alpha_k (x_{k+1} - x_k)$$

where α_k is chosen as $\alpha_k = \frac{t_k - 1}{t_{k+1}}$, with $t_{k+1} = \left(\frac{k+a}{a}\right)^d$. Rate: $O(1/k^2)$ if $\tau \leq \frac{1}{L_f}$

Limitations of proximal methods

- require prox computation (usually not available in closed form: TV, NLTV)
- suitable for problems of reasonable size: high dimensional problems → high computation time.

Main goal : provide acceleration for high dimensional problems.

Alternatives:

- FISTA [Beck & Teboulle, 2009],
- Preconditioning [Donatelli, 2019],
- Block methods [Liu, 1996],
- Exploit the problem structure with a multiresolution strategy

ML to leverage large dimensions?

Rappel: multilevel methods

ML approaches for nonlinear smooth problems

- S.G. Nash, MG/Opt (2000)
- S. Gratton, A. Sartenaer, and P. Toint, RMTR (2008)
Multilevel methods for imaging problems?

smooth ML approaches on smoothed image problems

- A. Javaherian and S. Holman, (tomography, 2017)
- S. W. Fung and Z. Wendy, (phase retrieval, 2020)
- J. Plier, F. Savarino, M. Kocvara, and S. Petra, (tomography, 2021)

Idea

$$\min_{x} f(x) + g(x) \sim \min_{x} f(x) + g_{\gamma}(x)$$

with g_{γ} differentiable \implies not SOTA reconstruction

Multilevel methods for imaging problems?

smooth ML approaches on smoothed image problems

- A. Javaherian and S. Holman, (tomography, 2017)
- S. W. Fung and Z. Wendy, (phase retrieval, 2020)
- J. Plier, F. Savarino, M. Kocvara, and S. Petra, (tomography, 2021)

Idea

$$\min_{x} f(x) + g(x) \sim \min_{x} f(x) + g_{\gamma}(x)$$

with g_γ differentiable \implies not SOTA reconstruction

Extension of ML to a non-smooth setting?

An iteration of a multilevel procedure

$$\min_{x} F(x) = f(x) + g(x)$$

An iteration of a multilevel procedure

$$\min_{x} F(x) = f(x) + g(x)$$

 $R(=I_h^H), P=(I_H^h)?$

 F_H ?

An iteration of a multilevel procedure

A hierarchy of images

Coarse model definition F_H

$$F(x) = \frac{1}{2} \|Ax - z\|_{2}^{2} + \lambda \|Lx\|_{1}$$

$$F_{H}(x) \stackrel{?}{=} \frac{1}{2} \|A_{H}x_{H} - z\|_{2}^{2} + \lambda \|L_{H}x_{H}\|_{1}$$

Coarse model definition F_H

$$F(x) = \frac{1}{2} \|Ax - z\|_{2}^{2} + \lambda \|Lx\|_{1}$$

$$F_{H}(x) \stackrel{?}{=} \frac{1}{2} \|A_{H}x_{H} - z\|_{2}^{2} + \lambda \|L_{H}x_{H}\|_{1}$$

Is this model useful in minimizing F?

Design of F_H in smooth context: First order coherence

Design of F_H in smooth context: First order coherence

Coarse model definition F_H

If g was smooth:

$$F(x) = \frac{1}{2} \|Ax - z\|_{2}^{2} + \lambda \|Lx\|_{1}$$

$$F_{H}(x_{H}) = \frac{1}{2} \|A_{H}x_{H} - z\|_{2}^{2} + \lambda \|L_{H}x_{H}\|_{1} + \langle v_{H}, x_{H} \rangle$$

$$v_{H} = I_{h}^{H} \nabla F(x) - \nabla F_{H}(I_{h}^{H}x)$$

Coarse model definition F_H

If g was smooth:

$$F(x) = \frac{1}{2} \|Ax - z\|_{2}^{2} + \lambda \|Lx\|_{1}$$

$$F_{H}(x_{H}) = \frac{1}{2} \|A_{H}x_{H} - z\|_{2}^{2} + \lambda \|L_{H}x_{H}\|_{1} + \langle v_{H}, x_{H} \rangle$$

$$v_{H} = I_{h}^{H} \nabla F(x) - \nabla F_{H}(I_{h}^{H}x)$$

But g is nonsmooth \rightarrow smoothing! [Parpas 2017]

Smoothed convex function

Definition [Beck 2012, Definition 2.1]

Let g be a convex, l.s.c., and proper function on \mathbb{R}^N . For every $\gamma > 0$, g_{γ} is a smoothed convex function if there exist scalars η_1, η_2 satisfying $\eta_1 + \eta_2 > 0$ such that the following holds:

$$(\forall y \in \mathbb{R}^N)$$
 $g(y) - \eta_1 \gamma \leq g_\gamma(y) \leq g(y) + \eta_2 \gamma.$

Example: the Moreau envelope

$$g_{\gamma}(\cdot) = \inf_{y} g(y) + \frac{1}{2\gamma} \| \cdot -y \|^2$$

First-order coherence in non-smooth case

$$F_{H}(x_{H}) = f_{H}(x_{H}) + g_{H,\gamma_{H}}(x_{H}) + \langle v_{H}, x_{H} \rangle$$
$$v_{H} = I_{h}^{H} \nabla \left(f_{h} + g_{h,\gamma_{h}} \right) (x_{h}) - \nabla \left(f_{H} + g_{H,\gamma_{H}} \right) (I_{h}^{H} x_{h}).$$

Smooth coarse model: allows for smooth optimizers at coarse level

Fine level function decrease

Lemma

Assume that $I_{H}^{h} = \alpha (I_{h}^{H})^{T}$, $\alpha > 0$. If $x_{H,m} - x_{H,0}$ is a descent direction for the coarse model and the first-order coherence holds, $I_{H}^{h}(x_{H,m} - x_{H,0})$ is a descent direction for $F_{h,\gamma_{h}} := f_{h} + g_{h,\gamma_{h}}$. Proof.

???

What happens to non-smooth objective function?

Lemma

Under the same assumptions as in the previous lemma,

$$F_h(x_h + \bar{\tau}I_h^H(x_{H,m} - x_{H,0})) \le F_h(x_h) + (\eta_1 + \eta_2)\gamma_h$$

for $\bar{\tau} > 0$.

Proof. ???

To summarize: a multilevel method for non-smooth problems

Fine function:

$$F_h = f_h + g_h$$

with g_h non-smooth.

Coarse model:

$$F_{H}(x_{H}) = f_{H}(x_{H}) + g_{H,\gamma_{H}}(x_{H}) + \langle v_{H}, x_{H} \rangle$$
$$v_{H} = I_{h}^{H} \nabla \left(f_{h} + g_{h,\gamma_{h}} \right) (x_{h}) - \nabla \left(f_{H} + g_{H,\gamma_{H}} \right) (I_{h}^{H} x_{h}).$$

Iterations:

$$\begin{aligned} x_{k+1} &= \operatorname{prox}_{\tau g} \left(\bar{x}_k - \tau \nabla f(\bar{x}_k) \right) \\ \bar{x}_k &= ML(x_k) \Longleftrightarrow \min F_H(\text{ smooth}) \end{aligned}$$

IML FISTA: inertial multilevel FISTA with inexact prox

•
$$g(x) = \varphi(Lx)$$

 Inexact proximal steps to handle state-of-the-art regularization: TV, NLTV

$$x_{k+1} \sim \operatorname{prox}_{\tau\varphi\circ L} \left(\overline{y}_k - \tau \nabla f(\overline{y}_k) \right)$$
$$y_{k+1} = x_{k+1} + \alpha_k (x_{k+1} - x_k)$$

- FISTA acceleration
 - FISTA: $\overline{y}_k = y_k$
 - IML FISTA: $\overline{y}_k = ML(y_k) \iff \min F_H$
- Obtain state-of-the-art convergence guarantees (rate O(1/k²)) plus dimension reduction

Multilevel algorithm for nonsmooth optimization

1: Set
$$x_{h,0}, y_{h,0} \in \mathbb{R}^N$$
, $t_{h,0} = 1$
2: while Stopping criterion is not met do
3: if Descent condition and $r < p$ then
4: $r = r + 1$,
5: $x_{H,0} = l_h^H y_{h,k}$ Projection
6: $x_{H,m} = \Phi_H \circ ... \circ \Phi_H(x_{H,0})$ Coarse minimization
7: Set $\overline{\tau}_h > 0$,
8: $\overline{y}_{h,k} = y_{h,k} + \overline{\tau}_h l_h^H (x_{H,m} - x_{H,0})$ Coarse step update
9: else
10: $\overline{y}_{h,k} = y_{h,k}$
11: end if
12: $x_{h,k+1} = \Phi_i^{\epsilon_{h,k}}(\overline{y}_{h,k})$ Inexact Forward-backward step
13: $t_{h,k+1} = (\frac{k+a}{a})^d$, $\alpha_{h,k} = \frac{t_{h,k}-1}{t_{h,k+1}}$
14: $y_{h,k+1} = x_{h,k+1} + \alpha_{h,k}(x_{h,k+1} - x_{h,k})$. Inertial step
15: end while=0

Inexact proximal step

The ϵ -subdifferential of g at $z \in \text{dom } g$ is defined as:

$$\partial_{\epsilon}g(z) = \{ y \in \mathbb{R}^{N} \mid g(x) \ge g(z) + \langle x - z, y \rangle - \epsilon, \forall x \in \mathbb{R}^{N} \}.$$

Type 0 **approximation** [Combettes, Wajs, 2005] $z \in \mathbb{R}^N$ is a type 0 approximation of $\operatorname{prox}_{\gamma g}(y)$ with precision ϵ , and we write $z \simeq_0 \operatorname{prox}_{\gamma g}(y)$, if and only if $||z - \operatorname{prox}_{\gamma g}(y)|| \le \sqrt{2\gamma\epsilon}$.

Type 1 approximation [Villa et al., 2013] $z \in \mathbb{R}^N$ is a type 1 approximation of $\operatorname{prox}_{\gamma g}(y)$ ith precision ϵ , and we write $z \simeq_1 \operatorname{prox}_{\gamma g}(y)$, if and only if $0 \in \partial_{\epsilon} \left(g(z) + \frac{1}{2\gamma} ||z - y||^2 \right)$.

Type 2 **approximation** [Villa et al., 2013] $z \in \mathbb{R}^N$ is a type 2 approximation of $\operatorname{prox}_{\gamma g}(y)$ with precision ϵ , and we write $z \simeq_2 \operatorname{prox}_{\gamma g}(y)$, if and only if $\frac{y-z}{\gamma} \in \partial_{\epsilon}g(z)$.

Example

$$\operatorname{prox}_{\tau g}(y) = \arg\min_{x} \frac{1}{2} \|x - y\|^2 + \tau g(x)$$

Inexact solution via an iterative method

Convergence analysis

Theorem 1

Considering $\forall k \in \mathbb{N}^*$, $\alpha_{h,k} = 0$ and the sequence $(\epsilon_{h,k})_{k \in \mathbb{N}}$ is such that $\sum_{k \in \mathbb{N}} \sqrt{\|\epsilon_{h,k}\|} < +\infty$. Set $x_{h,0} \in \mathbb{R}^{N_h}$ and choosing approximation of Type 0, the sequence $(x_{h,k})_{k \in \mathbb{N}}$ generated by IML FISTA converges to a minimizer of F_h .

Theorem 2

Let $\forall k \in \mathbb{N}^*$, $t_{h,k+1} = \left(\frac{k+a}{a}\right)^d$, with (a,d) satisfying the conditions in [Aujol, Dossal, 2015 – Definition 3.1]. Moreover, if we assume that:

- $\sum_{k=1}^{+\infty} k^d \sqrt{\epsilon_{h,k}} < +\infty$ in the case of Type 1 approximation,
- $\sum_{k=1}^{+\infty} k^{2d} \epsilon_{h,k} < +\infty$ in the case of Type 2 approximation.

Let $(x_{h,k})_{k\in\mathbb{N}}$ the sequence generated by IML FISTA, then

- The sequence $(k^{2d} (F_h(x_{h,k}) F_h(x^*)))_{k \in \mathbb{N}}$ belongs to $\ell_{\infty}(\mathbb{N})$.
- The sequence $(x_{h,k})_{k\in\mathbb{N}}$ converges to a minimizer of F_h .

Outline

Model the problem

Data fidelity Regularization Quality metrics

Optimization

Applications

Neural networks in imaging

Hyperspectral images

How to build the coarse approximations?

Objective function evolution

2 iterations

end of optimization

Dimension bottleneck: number of observations

Coarse measurements

Coarser measurements

Reconstruction in log-scale of a region of the M31 galaxy

Outline

Model the problem

Data fidelity Regularization Quality metrics

Optimization

Applications

Neural networks in imaging

How to exploit the great power of neural networks in imaging? Basically three approaches:

- 1. End-to-end
- 2. Plug and Play
- 3. Unrolled algorithms

Example

Original

Degraded SNR = 13.4 dB

TV NLTV SNR = 18.8 dBSNR = 19.4 dB

DTT SNR = 16.6 dB

PnP-ScCP SNR = 20.2 dB

Tikhonov SNR = 16.4 dB

1) End-to-end approaches

Problem: $z = A\bar{x} + \epsilon$

Idea: model \hat{x} by a neural network

- Build a dataset $\mathcal{D} = \{(\bar{x}^i, z^i)\}\ i = 1, \dots, m$, from the model $z = A\bar{x} + \epsilon$
- Model $\hat{x} = F_{\theta}(z)$ or $\hat{x} = F_{\theta}((A^{T}A)^{-1}A^{T}z)$ (CNN, Unet)
- Train F_{θ} on \mathcal{D} (loss: $\ell(\bar{x}^i, z^i)$)
- Feed F_{θ} a noisy image, get the denoised approximation
- © Very good denoising performance
- © Expensive, need new training for every model

2) Plug-and-Play (PnP)

Idea: replace proximal step by a trained denoiser

$$x_{k+1} = \operatorname{prox}_{\tau g}(x_k - \tau \nabla f(x_k)) \to x_{k+1} = \mathcal{D}(x_k - \tau \nabla f(x_k))$$

- Build a dataset D = {(xⁱ, yⁱ)} i = 1,..., m, from the model y = x̄ + ϵ
- Train a denoiser D (loss: $\ell(\bar{x}^i, y^i)$)
- Perform optimization steps $x_{k+1} = D(x_k \tau \nabla f(x_k))$

No need of retraining *D* on your problem, works for general problems. Theoretical results
Less good results than end-to-end (but better than classical methods)

Convergence of PnP

$$x_{k+1} = \operatorname{prox}_{\tau g}(x_k - \tau \nabla f(x_k)) \to x_{k+1} = D(x_k - \tau \nabla f(x_k))$$

- From monotone operator theory, if f convex, provided that $\tau < \frac{2}{L_f}$, FB is guaranteed to converge to a solution of f + g.
- If f non-convex, provided that $\tau < \frac{1}{L_f}$, FB is guaranteed to converge to a solution of f + g.
- If D is trained to be a firmly non-expansive operator (by regularizing the training loss) the algorithm converges

MMSE interpretation of PnP

By definition

$$\hat{x}_{MMSE} = \arg\min_{x} \mathbb{E}(x|Z=z)$$

If we train D_{θ} to minimize

$$\frac{1}{m} \sum_{i=1}^{m} \|D_{\theta}(y^{i}) - \bar{x}^{i}\|^{2}$$

we can see that

 $D_{\theta^*} \sim \hat{x}_{MMSE}$

Background: structure of a neural network

$$F_{\theta}(x) = \eta_k (W_k \eta_{k-1} (W_{k-1} ... \eta_1 (W_1 x + b_1) ..) + b_k)$$

Most activation functions are proximity operators : $\eta_k = prox\Phi$ https://proximity-operator.net/

3) Unrolled algorithms

Problem formulation:

$$\arg\min_{\alpha} \frac{1}{2} \|AD^{T}\alpha - z\|^{2} + \lambda \|\alpha\|_{1}$$

Iterations:

$$\alpha_{k+1} = \operatorname{prox}_{\tau \parallel \cdot \parallel_{1}} (\alpha_{k} - \tau DA^{T} (AD\alpha_{k} - z))$$
$$= \underbrace{\operatorname{prox}_{\tau \parallel \cdot \parallel_{1}}}_{\eta_{k}} [\underbrace{(I - \tau DA^{T} AD^{T})}_{W_{k}} \alpha_{k} + \underbrace{\tau DA^{T} z}_{b_{k}})]$$

 $F_{\theta}(x) = \eta_k (W_k \eta_{k-1} (W_{k-1} ... \eta_1 (W_1 x + b_1) ..) + b_k)$

Towards multilevel PnP

$$f(x) = \frac{1}{2} ||Ax - b||^2$$

Fine level:

$$x_{k+1}^h = D^h(x_k^h - \tau \nabla f^h(x_k^h))$$

Coarse level:

• Reduce the image size: $x_{k+1}^H = D(x_k^H - \tau \nabla f^H(x_k^H))$

Towards multilevel PnP

$$f(x) = \frac{1}{2} ||Ax - b||^2$$

Fine level:

$$x_{k+1}^h = D^h(x_k^h - \tau \nabla f^h(x_k^h))$$

Coarse level:

- Reduce the image size: $x_{k+1}^H = D(x_k^H \tau \nabla f^H(x_k^H))$
- Reduce the network size: $x_{k+1}^H = D^H(x_k^H \tau \nabla f^H(x_k^H))$

Towards multilevel PnP

$$f(x) = \frac{1}{2} ||Ax - b||^2$$

Fine level:

$$x_{k+1}^h = \mathbf{D}^h(x_k^h - \tau \nabla f^h(x_k^h))$$

Coarse level:

- Reduce the image size: $x_{k+1}^H = D(x_k^H \tau \nabla f^H(x_k^H))$
- Reduce the network size: $x_{k+1}^H = D^H(x_k^H \tau \nabla f^H(x_k^H))$
- Simplify coarse iterations: $x_{k+1}^H = \operatorname{prox}_g(x_k^H \tau \nabla f^H(x_k^H))$

Numerical tests: inpainting

Numerical tests: inpainting

Exercise

- 1. Complete the ??? proofs and type them in latex
- 2. Complete the notebook