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Image restoration in large dimension
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Inverse problems in imaging
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Inverse problems in imaging: various applications

Medical imaging

Astronomy

Physics

SPHERE/IRDIS

@ L. Denneulin @ B. Pascal
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Direct model

A is deterministic (usually linear) and ε is stochastic (typically
Gaussian noise i.e., ε ∼ N(0, σ2Id)
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Examples of degradation

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Inpainting

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Deblurring

Inpainting: A diagonal binary
Delurring: A convolution with a blur kernel
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Direct model: convolution

z = Ax ⇐⇒ z = φ ⋆ x

▸ φ ⋆ x : convolution product with the Point Spread Function
(PSF) φ of size Q1 ×Q2.

▸ A is a block-circulant matrix with circulant blocks related to
φ: A = F ∗ΛF where
▸ Λ: diagonal matrix,
▸ F : represents the discrete Fourier transform, ∗ denotes here

the transpose conjugate and F ∗ = F−1.

▸ Efficient computation of Ax̄ by means of the Fourier
transform of x̄ :

Ax̄ = F ∗ΛF x̄ = F ∗ΛX̄
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Direct model: convolution
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Direct model: convolution
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Direct model

, A is known or can be approximated
, A is sparse
/ A is ill-conditioned
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Hadamard conditions (1902)

The problem z = Ax̄ is said to be well-posed if it fulfils the
Hadamard conditions:

1. existence of a solution: range(A) = RM

2. uniqueness of the solution: Ker(A) = 0

3. stability of the solution x̂ relatively to the observation:
∀(z , z ′) ∈ RM , ∥z − z ′∥→ 0 Ô⇒ ∥x̂(z) − x̂(z ′)∥→ 0
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Inverse problem solving

Direct inversion

x̂ = A−1z = A−1(Ax̄ + ε) = x̄ +A−1ε

Noise amplification if A is ill-conditioned
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1922 Maximum likelihood

x̂ ∈ arg min
x

1

2
∥Ax − z∥2

2 = (ATA)−1AT z

1963 Regularization

x̂ ∈ arg min
x

1

2
∥Ax − z∥2

2 + θ∥Dx∥2
2

2000 Sparsity

x̂ ∈ arg min
x

1

2
∥Ax − z∥2

2 + θ∥Dx∥1

2010 ”End-to-end” neural networks

x̂ = NNθ(z)

2020 Model based neural networks: PnP or Unfolded
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Variational problem formulation

Estimating x̂ close to x̄ from the observation z and the forward
operator A. Optimization formulation:

x̂ ∈ arg min
x

1

2
∥Ax − z∥2

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
data fidelity

+ λ∥Lx∥⋆
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

regularization

with ∥Lx∥⋆ usually sparsity inducing norm.
The regularization permits to cope with the ill-posed nature of the
inverse problem by assuming a priori knowledge about the
ground-truth solution.

Examples

▸ L1 norm ∥x∥1 to enforce sparsity

▸ Total Variation ∥Dx∥1 for promoting spacial smoothness (D
differential operator)
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Maximum A Posteriori (MAP) estimation

Let x and z be realizations of random variables X and Z

xMAP = arg max
x

pX ∣Z=z(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

posterior distribution

By Bayes formula, the posterior distribution is given by

pX ∣Z=z(x) =
pX (x)pZ ∣X=x(z ∣x)

pZ(z)

and the MAP writes as

xMAP = arg min
x
− log pZ ∣X=x(z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Data-fidelity

− log pX (x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A priori

= arg min
x

f (x) + g(x)

The MAP estimator relates the data-fidelity term to the
conditional distribution pZ ∣X and the regularization term to the
prior distribution pX .
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Data-fidelity: Gaussian noise

▸ z = Ax̄ + ε with ε ∼ N(0, σ)
▸ Gaussian likelihood:

pZ ∣X=x(z) =
M

∏
n=1

1√
2πσ

exp(−((Ax)n − zn)2/(2σ))

▸ L2 data-fidelity:

f (x) =
M

∑
n=1

1

2σ
((AX )n − zn)2
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Total variation (TV)

g(x) = g(D(x)) contains the differences

∥[xi ,j − xi ,j+1

xi ,j − xi+1,j
]∥
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Non-local total variation (NLTV)

g(x) = g(D(x)) contains the differences in the patches
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Wavelets
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Wavelets

x = a0 →

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a−1 = (a0 ⋆

G

g) ↓ 2

d−1 = (a0 ⋆

H

h) ↓ 2

a−1 →

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a−2 = (a−1 ⋆

G

g) ↓ 2

d−2 = (a−1 ⋆

H

h) ↓ 2

g ∶ low pass filter

h ∶ high pass filter
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Comparison of regularizations

Original Degraded Tikhonov
SNR = 13.4 dB SNR = 16.4 dB

TV NLTV DTT
SNR = 18.8 dB SNR = 19.4 dB SNR = 16.6 dB
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Image quality metrics
▸ Visual quality of the reconstruction
▸ Mean Squared Error (MSE) (should be as low as possible):

MSE(x , x̂) = 1

N

N

∑
i=1

(x̂i − xi)2

▸ Signal-to-Noise Ratio (SNR): compares the energy of the
original image to the energy of the noise (dB=decibel)

SNRdB(x , x̂) = 10 log10

Psignal

Pnoise
= 10 log10

∥x̂∥2

∥x̂ − x∥2

should be as high as possible.
▸ Peak Signal-to-Noise Ratio (PSNR):

PSNR(x , x̂) = 10 log10
N max2 x

∥x̂ − x∥2

ratio between the maximum intensity and the mean squared
error. It can be useful when images have high dynamic range
(i.e., large differences in intensity).
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Problem formulation

The image restoration problem can be generally stated as

min
x

f (x) + g(x)

▸ f differentiable with Lipschitz gradient

▸ g possibly non-smooth but proximable

Classical solution methods:

▸ Proximal methods
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Proximal methods

min
x

f (x) + λg(x)

Assumptions:

▸ f + λg admits a minimizer

▸ f ,g are convex

▸ f is Lf -smooth: ∥∇f (x) −∇f (y)∥ ≤ Lf ∥x − y∥ for all x , y

▸ g is possibly non-differentiable
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Smooth case

If g = 0

Gradient descent: xk+1 = xk + pk ∶= xk − 1
Lf
∇f (xk)

Why?

Gradient step minimizes an upper bound on the function:

f (x) ≤ f (y) +∇f (y)T (x − y) + Lf
2

∥x − y∥2, ∀x , y

f (xk+1) ≤ f (xk) +∇f (xk)Tpk +
Lf
2

∥pk∥2

arg minpk©→ pk = −
∇f (xk)

Lf
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Proximal methods

If there is g : add λg to the upper bound:

f (x)+λg(x) ≤ f (y)+∇f (y)T (x −y)+ Lf
2

∥x −y∥2+λg(x), ∀x , y

Can we minimize the upper bound?

arg min
x

f (y) +∇f (y)T (x − y) + Lf
2

∥x − y∥2 + λg(x) =

arg min
x
∇f (y)T (x − y) + Lf

2
∥x − y∥2 + λg(x) =

arg min
x

1

2
∥x − (y − 1

Lf
∇f (y))∥2 + λ

Lf
g(x) ∶=

prox λ
Lf

g(y −
1

Lf
∇f (y)).
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Proximal operator

▸ If g is a proper, lower semi-continuous convex function from a
Hilbert space X to [−∞,+∞] the proximal operator is defined
as :

proxτg(y) = arg min
x

1

2
∥x − y∥2 + τg(x)

▸ The proximal operator can be seen as a generalization of the
projection operator: if f is the characteristic function ιC of a
nonempty, closed, convex set C

proxιC (x) = argminy

⎧⎪⎪⎨⎪⎪⎩

1
2 ∥x − y∥2

2 if y ∈ C
+∞ if y ∉ C

= argminy∈C
1

2
∥x − y∥2

2
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Example: Thresholding

Ht(x) = x ⋅ I (∣x ∣ > t) St(x) = sign(x)(∣x ∣ − t)+
are the Hard and soft thresholding functions.

▸ If g(x) = ∥x∥1, proxλg(x) = Sλ(x)
▸ If h(x) = ∥x∥0, proxλg(x) = Hλ(x)
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Gradient methods

Differentiable case

xk+1 = xk −
1

Lf
∇f (xk)

Convergence

If f is differentiable, Lf -smooth
and convex:

f (xK) − f (x∗) ≤ 2Lf ∥x1 − x∗∥
K − 1

Proximal gradient descent

xk+1 = proxλg/Lf (xk−1/Lf∇f (xk))

Convergence

If f is differentiable, Lf -smooth,
convex and g is convex:

f (xK) − f (x∗) ≤ Lf ∥x1 − x∗∥
2K

In both cases f (xK) − f (x∗) = O ( 1
K
).
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Accelerated proximal methods: FISTA

ISTA (Iterative Shrinkage-Thresholding Algorithm):

xk+1 = proxτg
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
step on g

(xk − τ∇f (xk))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

step on f

Rate: O(1/k) if τ ≤ 1
Lf

FISTA (Fast ISTA):

xk+1 = proxτg (yk − τ∇f (yk))
yk+1 = xk + αk(xk+1 − xk)

where αk is chosen as αk = tk−1
tk+1

, with tk+1 = (k+a
a

)d .

Rate: O(1/k2) if τ ≤ 1
Lf
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Limitations of proximal methods

▸ require prox computation (usually not available in closed form:
TV, NLTV)

▸ suitable for problems of reasonable size: high dimensional
problems → high computation time.

Main goal : provide acceleration for high dimensional problems.

Alternatives:

▸ FISTA [Beck & Teboulle, 2009],

▸ Preconditioning [Donatelli, 2019],

▸ Block methods [Liu, 1996],

▸ Exploit the problem structure with a multiresolution strategy

ML to leverage large dimensions?
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Rappel: multilevel methods

ML approaches for nonlinear smooth problems

▸ S.G. Nash, MG/Opt (2000)

▸ S. Gratton, A. Sartenaer, and P. Toint, RMTR (2008)
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Multilevel methods for imaging problems?

smooth ML approaches on smoothed image problems

▸ A. Javaherian and S. Holman, (tomography, 2017)

▸ S. W. Fung and Z. Wendy, (phase retrieval, 2020)

▸ J. Plier, F. Savarino, M. Kocvara, and S. Petra, (tomography,
2021)

Idea
min
x

f (x) + g(x) ∼ min
x

f (x) + gγ(x)

with gγ differentiable Ô⇒ not SOTA reconstruction

Extension of ML to a non-smooth setting?
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An iteration of a multilevel procedure

min
x

F (x) = f (x) + g(x)

R(= IHh ),P = (I hH)? FH?
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An iteration of a multilevel procedure

min
x

F (x) = f (x) + g(x)

R(= IHh ),P = (I hH)? FH?
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An iteration of a multilevel procedure
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A hierarchy of images



41/77

Coarse model definition FH

F (x) = 1

2
∥Ax − z∥2

2 + λ∥Lx∥1

FH(x)
?
©= 1

2
∥AHxH − z∥2

2 + λ∥LHxH∥1

Is this model useful in minimizing F?



41/77

Coarse model definition FH

F (x) = 1

2
∥Ax − z∥2

2 + λ∥Lx∥1
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Design of FH in smooth context: First order coherence
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Design of FH in smooth context: First order coherence
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Coarse model definition FH
If g was smooth:

F (x) = 1

2
∥Ax − z∥2

2 + λ∥Lx∥1

FH(xH) = 1

2
∥AHxH − z∥2

2 + λ∥LHxH∥1+ < vH , xH >

vH = IHh ∇F (x) −∇FH(IHh x)

But g is nonsmooth → smoothing! [Parpas 2017]
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Smoothed convex function

Definition [Beck 2012, Definition 2.1]

Let g be a convex, l.s.c., and proper function on RN . For every
γ > 0, gγ is a smoothed convex function if there exist scalars η1, η2

satisfying η1 + η2 > 0 such that the following holds:

(∀y ∈ RN) g(y) − η1γ ≤ gγ(y) ≤ g(y) + η2γ.

Example: the Moreau envelope

gγ(⋅) = inf
y
g(y) + 1

2γ
∥ ⋅ −y∥2



45/77

First-order coherence in non-smooth case

FH(xH) = fH(xH) + gH,γH (xH) + ⟨vH , xH⟩

vH = IHh ∇ (fh + gh,γh) (xh) −∇ (fH + gH,γH) (I
H
h xh).

Smooth coarse model: allows for smooth optimizers at coarse level



46/77

Fine level function decrease

Lemma
Assume that I hH = α(IHh )T , α > 0. If xH,m − xH,0 is a descent
direction for the coarse model and the first-order coherence holds,
I hH(xH,m − xH,0) is a descent direction for Fh,γh ∶= fh + gh,γh .

Proof.
???
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What happens to non-smooth objective function?

Lemma
Under the same assumptions as in the previous lemma,

Fh(xh + τ̄ IHh (xH,m − xH,0)) ≤ Fh(xh) + (η1 + η2)γh

for τ̄ > 0.

Proof.
???
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To summarize: a multilevel method for non-smooth
problems

▸ Fine function:
Fh = fh + gh

with gh non-smooth.

▸ Coarse model:

FH(xH) = fH(xH) + gH,γH (xH) + ⟨vH , xH⟩

vH = IHh ∇ (fh + gh,γh) (xh) −∇ (fH + gH,γH) (I
H
h xh).

▸ Iterations:

xk+1 = proxτg (x̄k − τ∇f (x̄k))
x̄k =ML(xk)⇐⇒ minFH( smooth)
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IML FISTA: inertial multilevel FISTA with inexact prox

▸ g(x) = ϕ(Lx)
▸ Inexact proximal steps to handle state-of-the-art

regularization: TV, NLTV

xk+1 ∼ proxτϕ○L (ȳk − τ∇f (ȳk))
yk+1 = xk+1 + αk(xk+1 − xk)

▸ FISTA acceleration
▸ FISTA: ȳk = yk
▸ IML FISTA: ȳk =ML(yk)⇐⇒ minFH

▸ Obtain state-of-the-art convergence guarantees (rate
O(1/k2)) plus dimension reduction
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Multilevel algorithm for nonsmooth optimization

1: Set xh,0, yh,0 ∈ RN , th,0 = 1
2: while Stopping criterion is not met do
3: if Descent condition and r < p then

4: r = r + 1,
5: xH,0 = IHh yh,k Projection
6: xH,m = ΦH ○ .. ○ΦH(xH,0) Coarse minimization
7: Set τ̄h > 0,
8: ȳh,k = yh,k + τ̄hIHh (xH,m − xH,0) Coarse step update
9: else

10: ȳh,k = yh,k
11: end if
12: xh,k+1 = Φ

εh,k
i (ȳh,k) Inexact Forward-backward step

13: th,k+1 = (k+a
a

)d , αh,k =
th,k−1
th,k+1

14: yh,k+1 = xh,k+1 + αh,k(xh,k+1 − xh,k). Inertial step
15: end while=0
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Inexact proximal step

The ε-subdifferential of g at z ∈ dom g is defined as:

∂εg(z) = {y ∈ RN ∣ g(x) ≥ g(z) + ⟨x − z , y⟩ − ε,∀x ∈ RN}.

Type 0 approximation [Combettes, Wajs, 2005]
z ∈ RN is a type 0 approximation of proxγg(y) with precision ε,
and we write z ≃0 proxγg(y), if and only if
∥z − proxγg(y)∥ ≤

√
2γε.

Type 1 approximation [Villa et al., 2013]
z ∈ RN is a type 1 approximation of proxγg(y) ith precision ε, and

we write z ≃1 proxγg(y), if and only if 0 ∈ ∂ε (g(z) + 1
2γ ∥z − y∥2) .

Type 2 approximation [Villa et al., 2013]
z ∈ RN is a type 2 approximation of proxγg(y) with precision ε,
and we write z ≃2 proxγg(y), if and only if y−z

γ ∈ ∂εg(z).
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Example

proxτg(y) = arg min
x

1

2
∥x − y∥2 + τg(x)

Inexact solution via an iterative method
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Convergence analysis

Theorem 1
Considering ∀k ∈ N∗, αh,k = 0 and the sequence (εh,k)k∈N is such

that ∑k∈N
√

∥εh,k∥ < +∞. Set xh,0 ∈ RNh and choosing
approximation of Type 0, the sequence (xh,k)k∈N generated by IML
FISTA converges to a minimizer of Fh.

Theorem 2
Let ∀k ∈ N∗, th,k+1 = (k+a

a
)d , with (a,d) satisfying the conditions

in [Aujol, Dossal, 2015 – Definition 3.1]. Moreover, if we assume
that:

▸ ∑+∞k=1 k
d√εh,k < +∞ in the case of Type 1 approximation,

▸ ∑+∞k=1 k
2dεh,k < +∞ in the case of Type 2 approximation.

Let (xh,k)k∈N the sequence generated by IML FISTA, then

▸ The sequence (k2d (Fh(xh,k) − Fh(x∗)))k∈N belongs to
`∞(N).

▸ The sequence (xh,k)k∈N converges to a minimizer of Fh.
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Hyperspectral images
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How to build the coarse approximations?

Rés
ol

ut
io

n 
sp

ec
tra

le

Résolution spatiale

Réduction de la dimension  :  réduction spectrale ou réduction spatiale
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Objective function evolution
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Radio-interferometric imaging
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Radio-interferometric imaging
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Radio-interferometric imaging
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Radio-interferometric imaging
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Radio-interferometric imaging
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Neural networks in imaging

How to exploit the great power of neural networks in imaging?
Basically three approaches:

1. End-to-end

2. Plug and Play

3. Unrolled algorithms
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Example

Original Degraded Tikhonov DTT
SNR = 13.4 dB SNR = 16.4 dB SNR = 16.6 dB

TV NLTV PnP-DRUnet PnP-ScCP
SNR = 18.8 dB SNR = 19.4 dB SNR = 20.0 dB SNR = 20.2 dB
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1) End-to-end approaches

Problem: z = Ax̄ + ε

Idea: model x̂ by a neural network

▸ Build a dataset D = {(x̄ i , z i)} i = 1, . . . ,m, from the model
z = Ax̄ + ε

▸ Model x̂ = Fθ(z) or x̂ = Fθ((ATA)−1AT z) (CNN, Unet)

▸ Train Fθ on D (loss: `(x̄ i , z i))

▸ Feed Fθ a noisy image, get the denoised approximation

, Very good denoising performance
/ Expensive, need new training for every model
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2) Plug-and-Play (PnP)

Idea: replace proximal step by a trained denoiser

xk+1 = proxτg(xk − τ∇f (xk))→ xk+1 = D(xk − τ∇f (xk))

▸ Build a dataset D = {(x̄ i , y i)} i = 1, . . . ,m, from the model
y = x̄ + ε

▸ Train a denoiser D (loss: `(x̄ i , y i))

▸ Perform optimization steps xk+1 = D(xk − τ∇f (xk))

, No need of retraining D on your problem, works for general
problems. Theoretical results
/ Less good results than end-to-end (but better than classical
methods)
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Convergence of PnP

xk+1 = proxτg(xk − τ∇f (xk))→ xk+1 = D(xk − τ∇f (xk))

▸ From monotone operator theory, if f convex, provided that
τ < 2

Lf
, FB is guaranteed to converge to a solution of f + g .

▸ If f non-convex, provided that τ < 1
Lf

, FB is guaranteed to
converge to a solution of f + g .

▸ If D is trained to be a firmly non-expansive operator (by
regularizing the training loss) the algorithm converges
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MMSE interpretation of PnP

By definition
x̂MMSE = arg min

x
E(x ∣Z = z)

If we train Dθ to minimize

1

m

m

∑
i=1

∥Dθ(y i) − x̄ i∥2

we can see that
Dθ∗ ∼ x̂MMSE
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3) Unrolled algorithms

Background: structure of a neural network

Fθ(x) = ηk(Wkηk−1(Wk−1....η1(W1x + b1)..) + bk)

Most activation functions are proximity operators : ηk = proxΦ
https://proximity-operator.net/

https://proximity-operator.net/
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3) Unrolled algorithms

Problem formulation:

arg min
α

1

2
∥ADTα − z∥2 + λ∥α∥1

Iterations:

αk+1 = proxτ∥⋅∥1(αk − τDAT (ADαk − z))

= proxτ∥⋅∥1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

ηk

[(I − τDATADT )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Wk

αk + τDAT z
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

bk

)]

Fθ(x) = ηk(Wkηk−1(Wk−1....η1(W1x + b1)..) + bk)
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Towards multilevel PnP

f (x) = 1

2
∥Ax − b∥2

Fine level:
xhk+1 = Dh(xhk − τ∇f

h(xhk ))

Coarse level:

▸ Reduce the image size: xHk+1 = D(xHk − τ∇f H(xHk ))

▸ Reduce the network size: xHk+1 = DH(xHk − τ∇f H(xHk ))
▸ Simplify coarse iterations: xHk+1 = proxg(xHk − τ∇f H(xHk ))
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Numerical tests: inpainting
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Numerical tests: inpainting
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Exercise

1. Complete the ??? proofs and type them in latex

2. Complete the notebook
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