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Direct model

OBSERVATION MODEL

Original signal

_/
Z=A X + €

Additive noise
Measurement operator

OBJECTIVE: Find an estimate £ € R" of x from z € RM

Degraded image z Original image X



Examples of degradation

X Inpainting Deblurring

Inpainting: A diagonal binary
Delurring: A convolution with a blur kernel



Direct model: convolution

Z=AXx <= z=¢*x

> ¢ x x: convolution product with the Point Spread Function
(PSF) ¢ of size Q1 x Qa.
» Ais a block-circulant matrix with circulant blocks related to
¢: A= F*N\F where
> A: diagonal matrix,
> F: represents the discrete Fourier transform, % denotes here
the transpose conjugate and F* = F~1.
» Efficient computation of Ax by means of the Fourier
transform of x:
Ax = F*AFX = F*AX



Direct model: convolution

X



Direct model: convolution

X




Direct model

OBSERVATION MODEL

Measurements Original signal

_/
ZI=AXx + €

/ Additive noise

Measurement operator

OBJECTIVE: Find an estimate £ € R" of x from z € R¥

© A is known or can be approximated
© Ais sparse
® A is ill-conditioned



Hadamard conditions (1902)

The problem z = Ax is said to be well-posed if it fulfils the
Hadamard conditions:

1. existence of a solution: range(A) = RM
2. uniqueness of the solution: Ker(A) =0

3. stability of the solution X relatively to the observation:
¥(z,2') R, |z-2'| > 0 = |%(2) - %(z")]| - 0



Inverse problem solving

Direct inversion
o a-l_ a1/ = - -1
X=ATz=A"(Ax+e)=Xx+A "¢

Noise amplification if A is ill-conditioned



1922 Maximum likelihood
R earg mXin %HAX —z|3=(ATA) AT
1963 Regularization
5 € arg min %”Ax _ 23+ 6| Dx|3

2000 Sparsity
1
X € argmin EHAX - z|3+ 0| Dx|1
X
2010 " End-to-end” neural networks
%= NNy(z)

2020 Model based neural networks: PnP or Unfolded



Variational problem formulation

Estimating X close to X from the observation z and the forward
operator A. Optimization formulation:

1
X € argmin EHAX —z|3+ \|Lx]|.
X

. regularization
data fidelity €

with | Lx|. usually sparsity inducing norm.

The regularization permits to cope with the ill-posed nature of the
inverse problem by assuming a priori knowledge about the
ground-truth solution.

Examples

» L3 norm |x|; to enforce sparsity

» Total Variation |Dx||; for promoting spacial smoothness (D
differential operator)



Model the problem
Data fidelity

Optimization

Applications

Neural networks in imaging



Maximum A Posteriori (MAP) estimation

Let x and z be realizations of random variables X and Z

MAP
X = argmax - pxz-z(x)
| —
posterior distribution

By Bayes formula, the posterior distribution is given by

PX(X)PZ\X:X(Z|X)

pX|Z=Z(X) = PZ(Z)
and the MAP writes as
xMAP — arg min - log Pzix-x(2) —log px(x) = argmin f(x) + g(x)
X X
Data-fidelity A priori

The MAP estimator relates the data-fidelity term to the
conditional distribution pzx and the regularization term to the
prior distribution px .



Data-fidelity: Gaussian noise

» z=AX+¢€ with e ~ N(0,0)
» Gaussian likelihood:

M

PZ\X:x(Z H

exp( ((Ax)n — )/ (20))

> L, data-fidelity:

M

F) = 3. 5 (AX)n - 20

n=1



Model the problem

Regularization

Optimization

Applications

Neural networks in imaging



Total variation (TV)

i, J i, +1

t+1,7 1+1,5+1

B S
g(x) = g(D(x)) contains the differences

Xij = Xij+1
Xij = Xi+l,j




Non-local total variation (NLTV)

g(x) = g(D(x)) contains the differences in the patches



Wavelets




Wavelets

G
——

~ a_lz(ao*g)l,2

X =49 —~> H
—
< d1= (a0 % h) )2

G
—

a_2z(a_l*g)i2
d-1 —> H

i
p——

d_2 = (a_l * h)\L2

g : low pass filter

h: high pass filter



Comparison of regularizations

5

Degraded Tikhonov
SNR =13.4dB  SNR =16.4 dB

*

NLTV DTT
SNR =188dB SNR=194dB SNR =16.6 dB



Model the problem

Quality metrics

Optimization

Applications

Neural networks in imaging



Image quality metrics

| 2

| 2

Visual quality of the reconstruction
Mean Squared Error (MSE) (should be as low as possible):

N
MSE (x, %) = % S (% - )2
i=1

Signal-to-Noise Ratio (SNR): compares the energy of the
original image to the energy of the noise (dB=decibel)

P‘i n 2
SNR4g(x,X) = 10logyq —= ol =10log;g —— I%] 5
Pnoise H X”

should be as high as possible.
Peak Signal-to-Noise Ratio (PSNR):

N max? x

PSNR(X,)?):].OlOg]_O ”A H2
ratio between the maximum intensity and the mean squared
error. It can be useful when images have high dynamic range

(i.e., large differences in intensity).



Outline

Optimization



Problem formulation

The image restoration problem can be generally stated as

mXin f(x)+g(x)

> f differentiable with Lipschitz gradient

» g possibly non-smooth but proximable

Classical solution methods:

» Proximal methods



Proximal methods

mXin f(x)+Ag(x)

Assumptions:
> f+ Ag admits a minimizer
> f,g are convex
» fis Lg-smooth: [VF(x) - VFf(y)| < L¢llx —y| for all x,y

» g is possibly non-differentiable



Smooth case

If g=0

Gradient descent: xx,1 = Xk + pi == Xk — Lifvf(xk)
Why?
Gradient step minimizes an upper bound on the function:
Lf
) <f(y) +VFW) (x=y) + S Ix=yI% vxy

i argminpk vf( )
~~ X
f(xs1) < FOa) + VF(Oa) T pic+ Ef”PkHz - pk= —Tk



Proximal methods
If there is g: add Ag to the upper bound:
() +Xg() S F)TF0) T (xy)+ ey P4 g (), ey
Can we minimize the upper bound?
argmin f(y) + TF()T(x~y) + e - y? 4 Ag(x) =
argmin V£ ()T (x = y) + L - v+ Ag(x) =
argmin 3 |x - (v = V)P + 00 =

1
pros s o (v = - VF(1)).



Proximal operator

> If g is a proper, lower semi-continuous convex function from a
Hilbert space X to [—-o0,+00] the proximal operator is defined
as :

1
prox.¢(y) = argmin - [lx - y|* + 7g(x)

» The proximal operator can be seen as a generalization of the
projection operator: if f is the characteristic function ¢¢ of a
nonempty, closed, convex set C

2 .
slx-yly ifyecC

rox, (x) = argmin
prox, (x) = arg y{+oo ifyecC

. 1 2
=argmin,.c > Ix - )/||2



Example: Thresholding

He(x) =x-1(|x| >t) St(x) = sign(x)(|x] - t)+
are the Hard and soft thresholding functions.

(it) Hard threshold (b} Soft threshaold
1¢ . . : 1 - - -

> 1f g(x) = Ix]1, Proxag(x) = Sy(x)
> IF (x) = [x]o, prox,g(x) = Ha(x)



Gradient methods

Differentiable case Proximal gradient descent
Xis1 = Xk — Llfvf(xk) Xpr] = prOX)\g/Lf(Xk—l/Lfo(Xk))
Convergence Convergence
If f is differentiable, L¢-smooth If f is differentiable, Lf-smooth,
and convex: convex and g is convex:
oy < 2Lelpa = x" o Lila—x"|
) ) <« 2P ) - ey < B2

In both cases f(xk) - f(x*) = O(%)



Accelerated proximal methods: FISTA

ISTA (Iterative Shrinkage-Thresholding Algorithm):

X1 = PrOox,g (i~ TV (k)
—_—
stepon g step on f

Rate: O(1/k) if 7 < Lif
FISTA (Fast ISTA):

Xk+1 = Prox,g (yk = TVF(yk))

Vie1 = Xk + g (Xke1 — Xk)

. _ . d
where ay is chosen as oy = ";"k—ll with ty,q = (ﬂ) .
+

a
Rate: O(1/k?) if 7 < Lif



Limitations of proximal methods

» require prox computation (usually not available in closed form:
TV, NLTV)

> suitable for problems of reasonable size: high dimensional
problems — high computation time.

Main goal : provide acceleration for high dimensional problems.

Alternatives:
» FISTA [Beck & Teboulle, 2009,
» Preconditioning [Donatelli, 2019],
» Block methods [Liu, 1996],

» Exploit the problem structure with a multiresolution strategy

ML to leverage large dimensions?



Rappel: multilevel methods

ML approaches for nonlinear smooth problems

» S.G. Nash, MG/Opt (2000)
» S. Gratton, A. Sartenaer, and P. Toint, RMTR (2008)



Multilevel methods for imaging problems?

smooth ML approaches on smoothed image problems

» A. Javaherian and S. Holman, (tomography, 2017)
» S. W. Fung and Z. Wendy, (phase retrieval, 2020)

» J. Plier, F. Savarino, M. Kocvara, and S. Petra, (tomography,
2021)

Idea
mXin f(x)+g(x)~ mXin f(x)+gy(x)

with g, differentiable == not SOTA reconstruction



Multilevel methods for imaging problems?

smooth ML approaches on smoothed image problems

» A. Javaherian and S. Holman, (tomography, 2017)
» S. W. Fung and Z. Wendy, (phase retrieval, 2020)

» J. Plier, F. Savarino, M. Kocvara, and S. Petra, (tomography,
2021)

Idea
mXin f(x)+g(x)~ mXin f(x)+gy(x)

with g, differentiable == not SOTA reconstruction

Extension of ML to a non-smooth setting?



An iteration of a multilevel procedure

mXin F(x)=1f(x)+g(x)

Fine level h

X, < X, + P(sy)

R P
Coarse level H

| JB S
minimize Fp(sy) _/

Sy




An iteration of a multilevel procedure

mXin F(x)=1f(x)+g(x)

Fine level h

X, < X, + P(sy)

R P
Coarse level H

| JB S
minimize Fp(sy) _/

Sy

R(=131),P=(Ip)?



An iteration of a multilevel procedure

min Fj,
thRNh

Th = Th + II};(xH,m — IL‘H’o)

min Fpy
ry ERNH

m+1 descent steps on Fg



A hierarchy of images

s | Leveld
Decimation /g 1/16 resolution
’ Level 3
1/8 resolution

2 Level 2
1/4 resolution

Decimation

Decimation

Level 1
1/2 resolution

Decimation

Level 0
Original
image




Coarse model definition Fy

1
Flx) = 5lAx - z[5+ Al Lx]a
?

FH(x)?§||AHxH = 2|3+ AlLpxua



Coarse model definition Fy

1
Flx) = 5lAx - z[5+ Al Lx]a
?

FH(X)?illAHXH =23+ AlLpxi

Is this model useful in minimizing F?



Design of Fy in smooth context: First order coherence

Fine level h fn+9n
V(fn + gn)(@hk)

Th,k

I

Coarse level H

b




Design of Fy in smooth context: First order coherence

Fine level h fn+on
V(fn+ gn)(@n,k)

I

Coarse level H

‘ fa +gu + (v, )
IJ}EI I V(fu +gu)@m ko) +ve




Coarse model definition Fy

If g was smooth:
1 2
F(x) = SIAx = z[z + Al Lx]x
1
FH(XH) = EHAHXH —Z||% + )\||LHXH||1+ < VH,XH >

vy = I,f’VF(X) - VFH(I:IX)



Coarse model definition Fy

If g was smooth:
1 2
F(x) = SIAx = z[z + Al Lx]x

1
FH(XH) = EHAHXH —Z||% + )\||LHXH||1+ < VH,XH >
vy = I,f’VF(X) - VFH(I:IX)

But g is nonsmooth — smoothing! [Parpas 2017]



Smoothed convex function

Definition [Beck 2012, Definition 2.1]

Let g be a convex, |.s.c., and proper function on RN. For every
v >0, gy is a smoothed convex function if there exist scalars 1,72

satisfying 171 + 172 > 0 such that the following holds:

(VyeRY)  g(y)-my<g(y) <gly) +m-

Example: the Moreau envelope

_ 1
g/() =infg(y)+ 5” —y?



First-order coherence in non-smooth case

Fr(xu) = fu(xu) + 8H., (Xt) + (VH, XH)

Smooth coarse model: allows for smooth optimizers at coarse level



Fine level function decrease

Lemma

Assume that I,f’, = a(/,f’)T, a>0. If Xy m—xHo is a descent
direction for the coarse model and the first-order coherence holds,
I (Xt,m = Xr,0) is a descent direction for Fp ., = iy + g, -

Proof.
77



What happens to non-smooth objective function?

Lemma
Under the same assumptions as in the previous lemma,

Fo(xp + 71 (Xet.m = X11.0)) < Fr(xn) + (01 +1m2)

for 7> 0.

Proof.
77



To summarize: a multilevel method for non-smooth
problems

» Fine function:
Fn=1,+gn

with gp non-smooth.

» Coarse model:
Fr(xu) = fru(xu) + 8H .y, (XH) + (VH, XH)

vy = If'v (o + 8oy ) %n) = V (Frr + 84 ) (1 xn).

» [terations:

Xk+1 = ProX; g ()_(k - va()_(k))

Xk = ML(xx) <= min Fy( smooth)



IML FISTA: inertial multilevel FISTA with inexact prox

v

g(x) = (Lx)
» Inexact proximal steps to handle state-of-the-art
regularization: TV, NLTV

Xk+1 ™ prOXT(poL ()71( - va(?k))

Yia1 = Xir1 + 0 (X1 — Xk )

v

FISTA acceleration

» FISTA: yx = v«

» IML FISTA: yx = ML(yx) <= min Fy
Obtain state-of-the-art convergence guarantees (rate
O(1/k?)) plus dimension reduction

v



Multilevel algorithm for nonsmooth optimization

1: Set Xh,0, Yh,0 € RN, tho = 1
2: while Stopping criterion is not met do
3:  if Descent condition and r < p then

4: r=r+1,

5: XH,0 = I,f’yhyk Projection

6: XH,m =P o..oPy(xyo) Coarse minimization

7 Set 7, > 0,

8: Vhk = Yhi+ ?hlf’," (XH’m - XH70) Coarse step update
9: else

10: Yhk = Yhk

11:  end if

120 Xpks1 = CDIE."’k (¥n,k) Inexact Forward-backward step
. _ (kxa\d _ il

130 thk+ —( 5 ) P Qhk = o

14: Yhk+1 = Xh k+1 T Oéh,k(Xh,kJrl - Xh,k)' Inertial step

15: end while=0




Inexact proximal step

The e-subdifferential of g at z€ dom g is defined as:
0.8(z) ={y e RN | g(x) > g(z) + (x - z,y) — ¢, Vx e RV},

Type 0 approximation [Combettes, Wajs, 2005]
ze RN is a type 0 approximation of prox,.(y) with precision e,
and we write z ~g prox,,(y), if and only if

|z = prox, (y)| < v/27e.

Type 1 approximation [Villa et al., 2013]
zeRN is a type 1 approximation of prox,.(y) ith precision ¢, and

we write z =~ prox,,(y), if and only if 0 € O (g(z) + %Hz —sz).

Type 2 approximation [Villa et al., 2013]
z e RN is a type 2 approximation of prox..(y) with precision e,
and we write z ~3 prox,,(y), if and only if )% €0.g(2).



Example

o1
prong(y) = argmin EHX —y||2 +71g(x)

Inexact solution via an iterative method



Convergence analysis

Theorem 1
Considering Vk € N*, ay , = 0 and the sequence (€ k) ken is such

that ¥ ey /[lenk] < +00. Set xpo € RV and choosing
approximation of Type 0, the sequence (X k)ken generated by IML
FISTA converges to a minimizer of Fp.

Theorem 2 J

Let Vk e N*, tp i1 = (%) , with (a, d) satisfying the conditions
in [Aujol, Dossal, 2015 — Definition 3.1]. Moreover, if we assume
that:

et k9. /€hk < +0o in the case of Type 1 approximation,
et kzdeh’k < +00 in the case of Type 2 approximation.
Let (xpk)ken the sequence generated by IML FISTA, then

» The sequence (k¢ (Fh(thk) - Fh(x*)))keN belongs to
loo (N).

> The sequence (xp k)ken converges to a minimizer of Fy,.



Outline

Applications



Hyperspectral images

g
. -



How to build the coarse approximations?

spectrale ou réduction spatiale

Résolution spatiale

56/77



Objective function evolution

F_ evolution with CPU time

10° " ‘ ‘
—+FISTA
—+IML FISTA Spec
—+—IML FISTA Spat
_ P 2 hours
(T
=~ 10 min / =~ 3 hours
W’ RS PP TP PYRPRRPOR SO ML Ao o o oo _/
B D

~ 15 min ~ " ‘ ‘ : et
~lomm g 2000 4000 6000 8000 10000 sec



19 dB

FISTA
24 dB )
IML
FISTA
Spectral

R iterations

end of optimization



Radio-interferometric imaging

Fourier measurements (mask) M31

Reconstruction

Dimension bottleneck: number of observations



Radio-interferometric imaging

Selection

Coarse measurements



Radio-interferometric imaging




Radio-interferometric imaging

— -
yeRN

z Ue = Yk + (Y — k)

b T

min Fy DS
yERN N ——— N ———

Yk sessssssssssssssssnssssnsnnns » Y+

m descent steps on Fp



Radio-interferometric imaging

3.49dB - 575s 8.29dB - 897s 11.26dB - 1187s 13.26dB - 1474s

FISTA

( '7.63dB - 300s 11.57dB - 458s 15.45dB - 769s 16.89dB - 1060s 17.83dB - 1497s

IML FISTA

Reconstruction in log-scale of a region of the M31 galaxy



Radio-interferometric imaging

F}, evolution with CPU time

——IML FISTA
FISTA
——FB

25 min

0 500 1000 1500
sec
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Neural networks in imaging



Neural networks in imaging

How to exploit the great power of neural networks in imaging?
Basically three approaches:

1. End-to-end
2. Plug and Play
3. Unrolled algorithms



Example

Degraded Tikhonov DTT
SNR=134dB SNR=164dB SNR =16.6dB
£ |

NLTV PnP-DRUnet PnP-ScCP
SNR=18.8dB SNR=194dB SNR=20.0dB SNR =20.2dB



1) End-to-end approaches

Problem: z=Ax+¢

Idea: model X by a neural network

» Build a dataset D = {(x',z')} i=1,...,m, from the model
z=AX+e€

» Model % = Fp(z) or X = Fo((ATA)AT z) (CNN, Unet)
» Train Fy on D (loss: (X', z"))

» Feed Fy a noisy image, get the denoised approximation

Very good denoising performance
® Expensive, need new training for every model



2) Plug-and-Play (PnP)

Idea: replace proximal step by a trained denoiser

Xk+1 = Prox, g (X = TV (xk)) = xks1 = D(xx = TV (xc))

» Build a dataset D = {(%',y")} i=1,..., m, from the model
y=X+e

» Train a denoiser D (loss: /(X',y"))

» Perform optimization steps xx1 = D(xx — TV (xk))

No need of retraining D on your problem, works for general
problems. Theoretical results
® Less good results than end-to-end (but better than classical
methods)



Convergence of PnP

Xk+1 = Prox, g (X = TV (xk)) = xk1 = D(x = TV (xc))

» From monotone operator theory, if f convex, provided that
T < L% FB is guaranteed to converge to a solution of f + g.

> If f non-convex, provided that 7 < Ll, FB is guaranteed to
converge to a solution of f + g.

» If D is trained to be a firmly non-expansive operator (by
regularizing the training loss) the algorithm converges



MMSE interpretation of PnP

By definition
Kmmse = argminE(x|Z = z)
X

If we train Dy to minimize
m

> 1Do(y") = x|

1
m;3

we can see that
Do+ ~ Xpmse



3) Unrolled algorithms

Background: structure of a neural network

F@(X) = nk(Wknk—l(Wk—l-mnl(Wlx + bl)) + bk)

Most activation functions are proximity operators : 7, = prox®
https://proximity-operator.net/


https://proximity-operator.net/

3) Unrolled algorithms

Problem formulation:
1
argmin =|ADTa - z|? + |1
a 2
Iterations:

A1 = pl"OX.,.”.Hl(Oék - TDAT(ADak -2z))

= prox, ., [(I - TDATADT) oy + TDA” 2)]
—

b
Mk Wi k

F@(X) = T]k(WkT]k_l(Wk_l....T]l(Wlx + bl)) + bk)



Towards multilevel PnP

1
(x) = 51 Ax - bl

Fine level:
Xer = D" (x¢ =TV ()
Coarse level:
> Reduce the image size: x}’; = D(x{! - 7vfH (x["))



Towards multilevel PnP

() = 51 Ax - b2
Fine level:
Xer = D" (x¢ =TV ()
Coarse level:
> Reduce the image size: x}’; = D(x{! - 7vfH (x["))
> Reduce the network size: x/’, = D" (x/' - 7" (x[))



Towards multilevel PnP

() = 51 Ax - b2
Fine level:
Xer = D" (x¢ =TV ()
Coarse level:
> Reduce the image size: x}’; = D(x{! - 7vfH (x["))
> Reduce the network size: x/’, = D" (x/' - 7" (x[))

» Simplify coarse iterations: x|, = proxg(xfj -7vfH(x["))



Numerical tests: inpainting

PSNR

ML it




Numerical tests: inpainting

DPIR 200it ML-PnP init
- . . -




Exercise

1. Complete the 7?77 proofs and type them in latex
2. Complete the notebook
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