
Harnessing inexactness
in scientific computing

Lecture 1: introduction

Theo Mary (CNRS)
theo.mary@lip6.fr

https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon)
elisa.riccietti@ens-lyon.fr

https://perso.ens-lyon.fr/elisa.

riccietti/

M2 course at ENS Lyon, 2024–2025
Slides available on course webpage

theo.mary@lip6.fr
https://perso.lip6.fr/Theo.Mary/
elisa.riccietti@ens-lyon.fr
https://perso.ens-lyon.fr/elisa.riccietti/
https://perso.ens-lyon.fr/elisa.riccietti/

Unpacking the course

Approximate computing, vue d’avion

Ad break

Practical organization

2/66

Unpacking the course

Approximate computing, vue d’avion

Ad break

Practical organization

3/66

Let’s unpack the title (1/3)

Harnessing inexactness
in scientific computing

What is scientific computing ?

4/66

Let’s unpack the title (1/3)

Harnessing inexactness
in scientific computing

What is scientific computing ?

4/66

From traditional science to scientific computing

Traditional science

Come up with a theory, then test it experimentally in “real life”

• too difficult

• too costly (planes, cars)

• too slow (climate science)

• too dangerous (defense, drugs)

Scientific computing

5/66

Current tendency: scale everything up!

Increasingly Increasingly Increasingly

large datasets complex models powerful computers

6/66

Let’s unpack the title (2/3)

Harnessing inexactness
in scientific computing

What is inexactness ?

7/66

Let’s unpack the title (2/3)

Harnessing inexactness
in scientific computing

What is inexactness ?

7/66

Sources of error in computing

1. Model errors

2. Errors for model deployment

3. Rounding errors

8/66

1. Model errors: classical scientific computing models

Models guided by the physical knowledge

Physical phenomenon←→ Mathematical equation

Heat propagation :
∂u

∂t
= ∆u

9/66

1. Model errors: modern scientific computing models

Models guided by data

Available measurements←→ model fitting

Neural networks :

10/66

The best of both worlds: scientific machine learning

1

1From the course of Alfio Quarteroni11/66

2. Errors for classical models deployment: discretization

k time step, h space step, r = k
h2

unj : solution approximation at time instant n and spatial location j

un+1
j − unj

k
=

un+1
j+1 − 2un+1

j + un+1
j−1

h2

⇒ (1 + 2r)un+1
j − run+1

j−1 − run+1
j+1 = unj

⇒ Aun+1 = f (un) Linear system

Small k , h: large linear system → accurate , but expensive /

12/66

2. Errors for modern models deployment: generalization

13/66

3. Rounding errors

Floating-point numbers are represented by

x = ±m × βe−t , m ∈ [βt−1, βt − 1]

where

• β is the base (usually 2)

• t is the precision

• the sign ± is encoded on 1 bit

• the mantissa m is a t-bit integer with leading bit 1 (normalized)

• e is the exponent, satisfying e ∈ [emin, emax]

Example: β = 2, t = 3, [emin, emax] = [−1, 3]

14/66

3. Rounding errors

Example: β = 2, t = 3, [emin, emax] = [−1, 3]

The unit roundoff u = β1−t/2 (= 2−t in base 2) determines the relative accuracy any
number in the representable range can be approximated with:

If x ∈ R belongs to [emin, emax], then fl(x) = x(1 + δ), |δ| ≤ u

Moreover the standard model of arithmetic is

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u , for op ∈ {+,−,×,÷}

14/66

Double and single precision

Number of bits
Range Unit roundoff u

Sign Mantissa Exponent

fp64 1 53 11 10±308 1× 10−16

fp32 1 24 8 10±38 6× 10−8

Double (fp64) and single (fp32) precision both widely supported in hardware

Even though 10−16 is tiny, rounding errors accumulate:
n operations ⇒ n roundings errors!
Bounds of order nu can become problematic with large scale computations

15/66

Let’s unpack the title (3/3)

Harnessing inexactness
in scientific computing

What do we mean by harnessing inexactness ?

16/66

Let’s unpack the title (3/3)

Harnessing inexactness
in scientific computing

What do we mean by harnessing inexactness ?

16/66

Approximate computing

Conclusion: today’s computing is already approximate!
Since errors are part of scientific computing, let’s embrace them: how can we harness
inexactness?

4. Approximation errors
◦ Rounding errors from use of low precision arithmetic
◦ Compression/sparsification errors
◦ Randomization
◦ Errors from unstable algorithms
◦ . . .

17/66

Lower precisions: an opportunity

number of bits

signif. (t) exp. range u = 2−t

fp128 quadruple 113 15 10±4932 1× 10−34

fp64 double 53 11 10±308 1× 10−16

fp32 single 24 8 10±38 6× 10−8

fp16 11 5 10±5 5× 10−4

bfloat16
half

8 8 10±38 4× 10−3

fp8 (e4m3) 4 4 10±2 6× 10−2

fp8 (e5m2)
quarter

3 5 10±5 1× 10−1

• Great benefits:
◦ Reduced storage, data movement, and communications
◦ Increased speed thanks to increasing hardware support
◦ Reduced energy consumption

• However, low precision ≡ low accuracy

18/66

Lower precisions: a necessity?

Peak performance (TFLOPS)

Pascal Volta Ampere Hopper Blackwell

2016 2018 2020 2022 2025

fp64 5 8 20 67 40

fp32 10 16 20 67 80

tfloat32 -- -- 160 495 2,200

fp16/bfloat16 20 125 320 990 4,500

fp8 -- -- -- 2,000 9,000

fp4 -- -- -- -- 18,000

NVIDIA Hopper (H100) GPU

fp64/fp16 speed ratio:

• Hopper (2022): 15×
• Blackwell (2025): 112×

19/66

Pros and cons of low precisions

, Storage, data movement and communications are all proportional to total number
of bits (mantissa + exponent)
lower precision ⇒ lighter computations

, Speed of computations at least proportional
◦ on most architectures, fp32 is 2× faster than fp64
◦ on some architectures, fp16/bfloat16 can be 10-100× faster than fp32

lower precision ⇒ faster computations

, Power consumption is proportional to the square of the number of mantissa bits
◦ fp16 (11 bits) consumes 5× less energy than fp32 (24 bits)
◦ bfloat16 (8 bits) consumes 9× less energy than fp32

lower precision ⇒ greener computations

/ Errors are proportional to the unit roundoff
lower precision ⇒ lower accuracy

20/66

Mixed precision algorithms

Mix several precisions in the same code with the goal of

• Getting the performance benefits of low precisions

• While preserving the accuracy and stability of the high precision

• Want to use as much as possible low precisions, as little as possible high precisions

• Goal (compared with uniform precision)
◦ improve accuracy for a small extra cost
◦ improve performance at a controlled loss of accuracy
⇒ in both cases, we seek an improved performance–accuracy tradeoff

p
er
fo
rm

an
ce

accuracy

uniform
precision

alg.

,

21/66

Adaptive precision algorithms

• Adaptive precision algorithms: a subclass of mixed precision algorithms which
dynamically adapt the precision of each variable/instruction depending on the data

• Example:

a
+ b

64 bits

Unimportant bits

⇒ Opportunity for mixed precision: adapt the precisions to the data at hand by
storing and computing “less important” (which usually means smaller) data in lower
precision

22/66

Accuracy in iterative processes

• Many of the applications require iterative processes to be solved

• High accuracy ↔ high cost

• Do we need the same accuracy along all the process?

→ several ways of reducing the accuracy

23/66

Hierarchical representations of problems

Exploit the structure to build approximated subproblems of reduced size

• How to built the subproblems?

• When to use them?

24/66

Exploit redundancy

Large datasets → redundancy → subsampled methods

• How to select subsampled sets?

• How large sets?

• How to vary this size?

25/66

Structured matrices

Examples of matrices with a special structure:

• Sparse matrices

• Numerically sparse matrices

• Low-rank matrices

• Data sparse matrices

• . . .

Two challenges:

• Given an unstructured matrix, find a good structured approximation

• Given a structured matrix, develop specialized algorithms to take advantage of
its structure

26/66

Sparse matrices


4 0 0 0
0 7 0 3
−2 0 0 0
0 0 5 0

 ⇒

ROW IND COL IND VAL
1
2
4
5




1
2
4
1
3




4
7
3
−2
5


Storage cost:

• Dense: n2 floating-point entries

• Sparse: nnz floating-point entries and nnz + n integer indices

27/66

Butterfly matrices

• Extremely sparse matrices

• Highly expressive

• Structured sparsity (allows for GPU acceleration)

• Basis for fast transforms: Hadamard, Fourier...

• Used also in machine learning to compress neural networks or to speed up training
(2x faster)

28/66

Sparse Gaussian elimination

Gaussian elimination (LU factorization): aij ← aij − aikakj
⇒ aij becomes nonzero if aik and akj are nonzero: fill-in
Example: dwt 592.rua, structural computing on a submarine.

Original matrix Factorized matrix

0 100 200 300 400 500

0

100

200

300

400

500

nz = 5104
0 100 200 300 400 500

0

100

200

300

400

500

nz = 58202

Computational costs heavily dependent on matrix structure and permutation. For
regular 3D problems (PDE discretized on a cube):

• LU flops: O(n3)→ O(n2)

• LU storage: O(n2)→ O(n4/3)
29/66

Incomplete factorizations

• “Numerically sparse” matrix: a matrix that becomes sparse by dropping its entries
smaller than a threshold ϵ (in absolute value)

• Incomplete factorizations: drop entries < ϵ from LU factors

• Alternatively, do not update aij ← aij − aikakj if aij is zero (i.e., enforce same
sparsity pattern for LU as for A)

• Can work well for some matrices, but lacks subtility: matrices are usually only
numerically sparse for large ϵ

30/66

Low-rank matrices

= · ·A U Σ V T

A = U1Σ1V
T
1 + U2Σ2V

T
2 with Σ1(k, k) = σk > ε, Σ2(1, 1) = σk+1 ≤ ε

If Ã = U1Σ1V
T
1 then ∥A− Ã∥2 = ∥U2Σ2V

T
2 ∥2 = σk+1 ≤ ε

If k < mn/(m + n), Ã requires less storage than A ⇒ low-rank matrix.

SVD cost: O(mnmin(m, n)) flops ⇒ too expensive for large matrices. Other
(suboptimal) methods are used in practice.

31/66

Low-rank matrices

= · ·A U2 Σ2 V T
2

U1

Σ1 V T
1

A = U1Σ1V
T
1 + U2Σ2V

T
2 with Σ1(k, k) = σk > ε, Σ2(1, 1) = σk+1 ≤ ε

If Ã = U1Σ1V
T
1 then ∥A− Ã∥2 = ∥U2Σ2V

T
2 ∥2 = σk+1 ≤ ε

If k < mn/(m + n), Ã requires less storage than A ⇒ low-rank matrix.

SVD cost: O(mnmin(m, n)) flops ⇒ too expensive for large matrices. Other
(suboptimal) methods are used in practice.

31/66

Low-rank matrices

= · ·A U1

Σ1 V T
1

A = U1Σ1V
T
1 + U2Σ2V

T
2 with Σ1(k, k) = σk > ε, Σ2(1, 1) = σk+1 ≤ ε

If Ã = U1Σ1V
T
1 then ∥A− Ã∥2 = ∥U2Σ2V

T
2 ∥2 = σk+1 ≤ ε

If k < mn/(m + n), Ã requires less storage than A ⇒ low-rank matrix.

SVD cost: O(mnmin(m, n)) flops ⇒ too expensive for large matrices. Other
(suboptimal) methods are used in practice.

31/66

Low-rank matrices

= · ·A U1

Σ1 V T
1

A = U1Σ1V
T
1 + U2Σ2V

T
2 with Σ1(k, k) = σk > ε, Σ2(1, 1) = σk+1 ≤ ε

If Ã = U1Σ1V
T
1 then ∥A− Ã∥2 = ∥U2Σ2V

T
2 ∥2 = σk+1 ≤ ε

If k < mn/(m + n), Ã requires less storage than A ⇒ low-rank matrix.

SVD cost: O(mnmin(m, n)) flops ⇒ too expensive for large matrices. Other
(suboptimal) methods are used in practice.

31/66

Low-rank matrices

= · ·A U1

Σ1 V T
1

A = U1Σ1V
T
1 + U2Σ2V

T
2 with Σ1(k, k) = σk > ε, Σ2(1, 1) = σk+1 ≤ ε

If Ã = U1Σ1V
T
1 then ∥A− Ã∥2 = ∥U2Σ2V

T
2 ∥2 = σk+1 ≤ ε

If k < mn/(m + n), Ã requires less storage than A ⇒ low-rank matrix.

SVD cost: O(mnmin(m, n)) flops ⇒ too expensive for large matrices. Other
(suboptimal) methods are used in practice.

31/66

Block low-rank (BLR) approximations

hig
h r

an
k

low rank

complete domain

σ

τ

Bi

Xi

Y T
i

32/66

Block low-rank (BLR) approximations

Many different block partitionings possible

BLR matrix H-matrix

• Simple, flat structure

• Superlinear complexity

• Complex, hierarchical structure

• Near-optimal loglinear complexity

33/66

Let’s unpack the illustration

34/66

Unpacking the course

Approximate computing, vue d’avion

Ad break

Practical organization

35/66

Vue d’avion: the scientific computing stack

Applications

Methods

Software

Hardware

ideally everything below is a black box for end-users

mathematical pen & paper algorithms

libraries provide standard building blocks (BLAS, LAPACK)

should follow some standard rules (e.g., IEEE 754)
vendors provide optimized software implementations

performance–accuracy tradeoffs can only be meaningfully
assessed on an application-by-application basis

application-specific methods (PINNs, compression)
hardware-aware methods (mixed precision, randomization,
communication avoidance)

specialized hardware (TPUs, tensor cores, . . .),
non-standard arithmetics (bfloat16, fp8 and lower, . . .)

• In an ideal world, each layer would be independent.

• With traditional scientific computing, this separation mostly holds.

• With approximate computing, things become much more interconnected!

36/66

Vue d’avion: the scientific computing stack

Applications

Methods

Software

Hardware

ideally everything below is a black box for end-users

mathematical pen & paper algorithms

libraries provide standard building blocks (BLAS, LAPACK)

should follow some standard rules (e.g., IEEE 754)
vendors provide optimized software implementations

performance–accuracy tradeoffs can only be meaningfully
assessed on an application-by-application basis

application-specific methods (PINNs, compression)
hardware-aware methods (mixed precision, randomization,
communication avoidance)

specialized hardware (TPUs, tensor cores, . . .),
non-standard arithmetics (bfloat16, fp8 and lower, . . .)

• In an ideal world, each layer would be independent.

• With traditional scientific computing, this separation mostly holds.

• With approximate computing, things become much more interconnected!

36/66

Vue d’avion: the scientific computing stack

Applications

Methods

Software

Hardware

ideally everything below is a black box for end-users

mathematical pen & paper algorithms

libraries provide standard building blocks (BLAS, LAPACK)

should follow some standard rules (e.g., IEEE 754)
vendors provide optimized software implementations

performance–accuracy tradeoffs can only be meaningfully
assessed on an application-by-application basis

application-specific methods (PINNs, compression)
hardware-aware methods (mixed precision, randomization,
communication avoidance)

specialized hardware (TPUs, tensor cores, . . .),
non-standard arithmetics (bfloat16, fp8 and lower, . . .)

• In an ideal world, each layer would be independent.

• With traditional scientific computing, this separation mostly holds.

• With approximate computing, things become much more interconnected!
36/66

Vue d’avion: the scientific computing pipeline

37/66

Seismic imaging in geophysics

0
1
2
3
4D

ep
th

 (k
m

)

0
Dip (km)

5

10

15

20

Cros
s (

km
)

5 10 15 20

3000 4000 5000 6000m/s

(3D EAGE/SEG overthrust model)

(credits: SEISCOPE project)

=⇒

Frequency domain FWI (Full-Wave Inversion)

Helmholtz equations

Complex Unsym. sparse matrix A

Multiple (very) sparse B

Required accuracy < 10−4

freq flops LU Factor Storage Peak memory

2 Hz 9.0E+11 3 GB 4 GB

4 Hz 1.6E+13 22 GB 25 GB

8 Hz 5.8E+14 247 GB 283 GB

10 Hz 2.7E+15 728 GB 984 GB

Higher frequency leads to refined model
38/66

Seismic imaging in geophysics

39/66

Seismic imaging in geophysics

• Adastra MUMPS4FWI project led by WIND team

• Application: Gorgon Model, reservoir 23km x 11km x 6.5km,
grid size 15m, Helmholtz equation, 25-Hz

• Complex matrix, 531 Million dofs, storage(A)=220 GBytes;

• FR cost: flops for one LU factorization= 2.6× 1018;
Estimated storage for LU factors= 73 TBytes (25-Hz Gorgon FWI velocity model)

FR (Full-Rank); BLR with ε = 10−5; 48 000 cores (500 MPI × 96 threads/MPI)
FR: fp32; Mixed precision BLR: 3 precisions (32bits, 24bits, 16bits) for storage

LU size (TBytes) Flops Time BLR + Mixed (sec) Scaled Resid.

FR BLR +mixed FR BLR+mixed Analysis Facto Solve BLR+mixed

73 34 26 2.6× 1018 0.5× 1018 446 5500 27 7× 10−4

in practice: hundreds to thousands of Solve steps (sparse right hand sides (sources))

40/66

https://www.geoazur.fr/WIND/bin/view

Seismic imaging in geophysics

• Adastra MUMPS4FWI project led by WIND team

• Application: Gorgon Model, reservoir 23km x 11km x 6.5km,
grid size 15m, Helmholtz equation, 25-Hz

• Complex matrix, 531 Million dofs, storage(A)=220 GBytes;

• FR cost: flops for one LU factorization= 2.6× 1018;
Estimated storage for LU factors= 73 TBytes (25-Hz Gorgon FWI velocity model)

FR (Full-Rank); BLR with ε = 10−5; 48 000 cores (500 MPI × 96 threads/MPI)
FR: fp32; Mixed precision BLR: 3 precisions (32bits, 24bits, 16bits) for storage

LU size (TBytes) Flops Time BLR + Mixed (sec) Scaled Resid.

FR BLR +mixed FR BLR+mixed Analysis Facto Solve BLR+mixed

73 34 26 2.6× 1018 0.5× 1018 446 5500 27 7× 10−4

in practice: hundreds to thousands of Solve steps (sparse right hand sides (sources))

40/66

https://www.geoazur.fr/WIND/bin/view

Structural mechanics

A RIS pump (circuit d’injection de sécurité)
under internal pressure

Real sym. indefinite sparse matrix A

One dense right-hand side b

Required accuracy > 10−9

n nnz flops LU LU Storage

5.4E+6 2.1E+8 1.8E+13 56 GB

Number of delayed pivots = 79k

41/66

Structural mechanics

• thmgaz matrix (n = 5M)
◦ multi-physics (thermo-hydro-mechanics)
◦ 2 MPI × 18 threads
◦ MUMPS solver � Amestoy, Buttari, L’Excellent, M. (2019)

(from code aster)

Facto. time (s) Memory (GB)

Full-rank double 98 192

BLR (ε = 10−8) double 81 131

Full-rank single + LU-IR 65 98

BLR (ε = 10−8) single + LU-IR 59 67

BLR (ε = 10−6) single + GMRES-IR 71 61

� Amestoy, Buttari, Higham, L’Excellent, M., Vieublé (2023)
42/66

https://dl.acm.org/doi/10.1145/3242094
https://doi.org/10.1137/23M1549079

Image compression

With ε = 0.04 the rank is 191 but only 13 steps are done in fp32 and the rest in bf16
(original size is 1057× 1600)

orig.

fp32/bf16

fp32

bf16

43/66

Spectral image restoration

The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image
of a scene, with the purpose of finding objects, identifying materials, or detecting
processes

Rés
ol

ut
io

n
sp

ec
tra

le

Résolution spatiale

Réduction de la dimension : réduction spectrale ou réduction spatiale

44/66

Spectral image restoration

x̄ (SNR) x2,FISTA (7 dB) xend,FISTA (21 dB)

z (3 dB) x2,IML FISTA (19 dB) xend,IML FISTA (35 dB)45/66

Weather forecasting

Reduction up to 60% with subsampling strategies

46/66

Study of atmospheric flows

Navier-Stokes equation on Ω

Figure: Ω

47/66

Some fundamental research problems

These case studies illustrate the high stakes behind approximate computing, and
industrial interests that it attracts. . .

. . . however, approximate computing also raises fundamental research problems

• What is the impact of approximations? How to measure and control it?
◦ Rounding error bounds, convergence rate analysis, attainable accuracy, . . .

• What kind of problems/data are amenable to approximations?
◦ What happens if we try approximations on a non-amenable case? A priori estimators, a

posteriori checks, complexity bounds. . .

• How can we efficiently translate approximations into performance?
◦ Performance optimization, parallel scalability, communication avoidance, . . .

48/66

National projects involving approximate computing

The combination of industrial stakes and fundamental research problems has led to the
creation of several large national projects:

49/66

PEPR NumPEx

• Exascale computing: ability to perform 1018

floating-point operations per second. Such
capability will allow for technological
breakthroughs in all societal domains.

• June 2022: Frontier achieves 1.1 ExaFlops/s and
becomes the world’s first exascale computer

• Exascale computers expected soon in Europe
and France. Are we ready to exploit them?

• Goals of NumPEx: designing and developing
software components that will equip future
exascale machines

50/66

PEPR NumPEx (ExaMA)

Exascale computing offers great promises. . . but do we have methods able to exploit
such computational power?!

Key challenges:

• Huge amounts of parallelism/concurrency

• High heterogeneity in the computing units: CPUs, GPUs, other accelerators

• Large gap between speed of computations and communications

• Expensive power consumption

Possible solutions:

• Scalable, parallel methods

• Mixed precision methods

• Randomized methods

• Communication-avoiding methods
51/66

PEPR IA SHARP

• Explore the mathematical and
algorithmic foundations of sparse deep
learning (sparse factorization,
dimension-reduction techniques,
quantization principles)

• Optimally combine traditional learning
with knowledge in symmetries, prior
probabilistic models, and representation
learning, to reduce the dimension of
models and the amount of data
required.

52/66

PEPR Composants pour l’IA

NVIDIA Hopper GPU

NVIDIA currently has a monopoly on hardware special-
ized for AI workloads with GPU tensor cores. Monopolies
are never a good idea, especially when held by a foreign,
private company.

• Goal of the project: design a sovereign alternative for AI hardware, from the
hardware itself to the software stack on top of it

• What features of the hardware (matrix multiply–accumulate, stochastic rounding,
extended precision . . .) should we aim for and how can we leverage them if
available?

• What is the impact of such features on AI applications, in particular the training
and inference of neural networks?

53/66

Unpacking the course

Approximate computing, vue d’avion

Ad break

Practical organization

54/66

Internship positions, i.e., open research problems :-)

Title Location

Adaptive precision iterative solvers LIP6 (Paris)

Domain decomposition block low-rank preconditioners ONERA (Paris)

Composable error analyses for linear algebra Inria Bordeaux

Probabilistic error analysis of matrix factorizations LIP6 (Paris)

Certified fast transforms LIP (ENS Lyon)

Error analysis of fast transforms for deep learning LIP (ENS Lyon)

Optimal quantization of neural networks LIP (ENS Lyon)

Quantized butterfly matrices LIP (ENS Lyon)

Mixed precision domain decomposition training methods IRIT (Toulouse)

See course webpage for details!
https://perso.ens-lyon.fr/elisa.riccietti/stages

55/66

https://perso.ens-lyon.fr/elisa.riccietti/stages

Internship: adaptive precision iterative solvers

• Goal: efficiently solve large sparse linear systems with mixed precision iterative
methods

• Lecture 2: adaptive precision matrix–vector product: vary the precisions across
different coefficients of the matrix, based on their magnitude

• Lecture 9: relaxed Krylov methods: decrease the precision across the iterations,
based on the residual decrease

⇒ combine both!

• Can these theoretical reductions be translated
into actual performance gains?

• Study on large scale problems and parallel
computers needed

⇒ See here for details

56/66

https://www-pequan.lip6.fr/~tmary/stages/Internship_LIP6_InriaBordeaux.pdf

Internship: domain decomposition block low-rank preconditioners

ONERA problems: computational fluid dynamics for
aerospatial applications
Goal: solve very large sparse linear systems. Direct
methods (Lecture 6) too costly (OOM), iterative
ones (Lecture 9) do not converge ⇒ need
lightweiht yet robust preconditioners

• Current solution: domain decomposition methods, with either ILU0 or exact LU
local solvers
◦ Exact LU ⇒ expensive, memory consumption is the limiting factor
◦ ILU0 ⇒ very slow convergence

• Goal 1: add block low-rank LU (Lecture 14) as an alternative for local solvers,
with a better tradeoff between memory compression and preconditioner quality

• Goal 2: develop adaptive strategies that use different solvers (ILU, BLR, exact)
for different domains57/66

Internship: probabilistic error analysis of matrix factorizations

• Traditional worst-case error bounds for linear algebra computations involving
matrices of order n in precision u are proportional to nu

• Very unsatisfactory if n and/or u are large

• Lecture 4: can reduce nu to
√
nu thanks to statistical effets / stochastic rounding

• . . . yet, some computations remain inexplicably even more accurate

10 1 10 2 10 3 10 4

n

2

3

4

5

6

7

8

9
10
11
12

B
ac

k
w
ar

d
er

ro
r

#10 -8

• Error for matrix factorization (here,
A = LLT) does not grow with n at all!
Why?

• Impact on TOP500? Accuracy criterion
to accept a given benchmark

⇒ See here for details

58/66

https://www-pequan.lip6.fr/~tmary/stages/Internship_FPT4.pdf

Internship: optimal quantization of neural networks

59/66

Internship: quantized butterfly matrices

60/66

Unpacking the course

Approximate computing, vue d’avion

Ad break

Practical organization

61/66

Outline

Number Date Time Lecturer Title

1 Nov 18 10:00 TM+ER Introduction

2 Nov 22 13:30 TM Summation methods

3 Nov 25 10:00 ER Stochastic optimization methods

4 Nov 29 13:30 TM Probabilistic error analysis

5 Dec 2 10:00 ER Multigrid and multilevel methods

6 Dec 6 13:30 TM Direct linear solvers

7 Dec 9 10:00 no lecture

8 Dec 13 13:30 ER Image restoration

9 Dec 16 10:00 TM Iterative linear solvers

10 Dec 20 13:30 ER PINNs: physics informed neural networks

11 Jan 6 10:00 TM Low-rank approximations

12 Jan 10 13:30 ER Neural networks and low precision arithmetic

13 Jan 13 10:00 no lecture

14 Jan 17 13:30 TM Block low-rank matrices

15 Jan 20 10:00 ER Sparse approximation

16 Jan 24 13:30 TM GPU numerical computing

17 Jan 27 10:00 TM+ER Bonus session (TBD)

18 Jan 31 13:30 TM+ER Oral evaluation
62/66

Evaluation

Evaluation will be composed of two parts:

• Practical exercises at home/between lectures → mark M1

• Oral evaluation → mark M2

→ Final mark: M = (M1 +M2)/2

63/66

Evaluation: practical exercises

• Timeline:
◦ Given at the end of some lectures
◦ To be sent by email to the lecturer before the next lecture by the same lecturer
◦ Corrected at the beginning of that lecture
◦ Example: at the end of lecture 2 (summation), TM presents the exercise; solutions

should be sent to TM before the beginning of the next lecture by TM, lecture 4
(probabilistic), at the beginning of which, TM will correct the exercise.

• Questions/help can be asked by email, we will try to respond if we can.

• Barème (scale):
◦ A correct solution is worth 4 points; a non-trivial (but incorrect) attempt is worth 2

points.
◦ There should be around 8 exercises (but you only need 5 exercises to get the full mark).

• The exercises will be in MATLAB (TM) and Python (ER).
◦ MATLAB student licenses can be obtained for free here:
https://fr.mathworks.com/academia/tah-portal/ens-lyon-31067144.html

64/66

https://fr.mathworks.com/academia/tah-portal/ens-lyon-31067144.html

Evaluation: oral presentation

• Goal: read a research article and present a critical commentary of it

• Oral presentation, with slides (beamer strongly recommended), duration TBD

• Presentation should not be restricted to a mere summary but should provide critical
commentary : what is the originality/novelty of the work? Why is it important, and
why now? What are its strengths? Its weaknesses or limitations? What perspectives
does it open and what future work should be considered?

• You should be equipped with the skills to do so by the end of the course: we will
not just present some cool methods but also go look under the hood and discuss all
the difficulties that arise in practice

• List of research articles with PDFs available on course webpage

65/66

Theo Mary (CNRS)
theo.mary@lip6.fr

https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon)
elisa.riccietti@ens-lyon.fr

https://perso.ens-lyon.fr/elisa.

riccietti/

Slides available on course webpage

Thanks!
Questions?

theo.mary@lip6.fr
https://perso.lip6.fr/Theo.Mary/
elisa.riccietti@ens-lyon.fr
https://perso.ens-lyon.fr/elisa.riccietti/
https://perso.ens-lyon.fr/elisa.riccietti/

	Unpacking the course
	Approximate computing, vue d'avion
	Ad break
	Practical organization

