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Sparse direct methods complexity

Regular problems 2D 3D

(nested dissection) N × N grid N × N × N grid

Nonzeros in original matrix O(N2) O(N3)
Nonzeros in factors O(N2 logN) O(N4)
Floating-point ops O(N3) O(N6)

Highly superlinear complexities!2/51



Bound on parallelism

Regular problems 2D 3D

(nested dissection) N × N grid N × N × N grid

Sequential O(N3) O(N6)
Tree parallelism O(N3) O(N6)
Node parallelism O(N2) O(N3)
Tree and node parallelism O(N) O(N2)

Top of the tree dominates!
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Rounding error bound

• Dense systems:

Theorem 9.3, Higham

A+∆A = L̂Û, |∆A| ≤ γn|L̂||Û|

• Sparse systems: n should be replaced with the maximum number of operations a
given entry of the original matrix can be involved in → exploit independence of
operations in different branches!
◦ Regular 2D problem: n→ O(N) = O(

√
n)

◦ Regular 3D problem: n→ O(N2) = O(n2/3)
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Fixed-point iteration

• A fixed-point iteration to solve a linear system Ax = b is

x (k+1) = x (k) + C (b − Ax (k))

• Let e(k) = x (k) − x . Then e(k+1) = (I − CA)e(k) = Re(k). R is called the iteration
matrix.

• The following statements are equivalent:

1. The iteration converges when k →∞
2. limk→∞ Rk = 0
3. ρ(R) < 1, where ρ(R) = maxi |λi (R)| is the spectral radius of R

(proof: 2→ 3: λi (R)
k → 0 for all i ; 3→ 2: use Jordan normal form)

• How to choose C?
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Richardson method

• Take C = ωI
x (k+1) = x (k) + ω(b − Ax (k))

• If A is SPD, this method converges if

ρ(I − ωA) = max
i
|1− ωλi (A)| < 1

• For ω = 1/λmax(A),

ρ(I − ωA) = 1− 1

κ(A)

• Thus after n iterations, the initial error e(0) has been reduced by a factor

(1− 1

κ(A)
)n ≈ 1− n

κ(A)

→ excruciatingly slow convergence if κ(A) is large

• With optimal choice of ω, ρ(I − ωA) can be reduced to 1− 2
κ(A)+1 , which is still

very bad8/51



Matrix splitting

• Define the splitting A = M − N and the iteration Mx (k+1) = Nx (k) + b, i.e.,

x (k+1) = M−1Nx (k) +M−1b = x (k) +M−1(b − Ax (k))

• We thus have C = M−1 and the iteration matrix is R = I −M−1A

• How to choose C?
◦ Should contain as much information from A as possible
◦ Should be easy to invert

• Examples:
◦ Richardson: M = 1

ω I
◦ Jacobi: M = D → weighted Jacobi: M = 1

ωD
◦ Gauss-Seidel: M = D + L
◦ Block variants

• Convergence speed: ρ(R) ≈ 1− 1
κ(M−1A)

, still bad in general

• MATLAB demo (Richardson, Jacobi, weighted Jacobi)
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Link with gradient descent

• Consider solving minx F (x) =
1
2∥Ax − b∥22

• The gradient is ∇F (x) = AT (Ax − b) = ATAx − ATb = A′x − b′

• A step of gradient descent is

xk+1 = xk − t∇F (xk) = xk − t(A′xk − b′)

⇒ equivalent to Richardson method applied to A′x = b′ with t = ω
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Iterative refinement

while Not converged do
ri = b − Axi
Solve Adi = ri
xi+1 = xi + di

end while

• If Adi = ri is solved exactly, converges in 1 iteration

• But if knew how to solve Adi = ri exactly, we would rather solve Ax = b!
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Link with Newton’s method

• Consider solving minx F (x) =
1
2∥Ax − b∥22

• The gradient is ∇F (x) = AT (Ax − b) = ATAx − ATb = A′x − b′

• The Hessian is ∇2F (x) = ATA = A′

• A step of Newton’s method is

xk+1 = xk − t(∇2F (xk))
−1∇F (xk) = xk − t(A′)−1(A′xk − b′)

⇒ equivalent to iterative refinement applied to A′x = b′ with t = 1
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Convergence of iterative refinement

while Not converged do
ri = b − Axi
Solve Adi ≈ ri such that di = A−1ri + fi , ∥fi∥ ≤ ϕi∥di∥
xi+1 = xi + di

end while

• xi − x = fi ⇒ ∥xi − x∥ ≲ ϕi∥x0 − x∥
• If Adi = ri is solved with a backward error ε, then ϕ ≈ κ(A)ε ⇒ error reduced by
factor (κ(A)ε)i after i iterations

• Much faster than previous methods if ε≪ 1
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Convergence of iterative refinement, with rounding errors

while Not converged do
ri = b − Axi in precision ur
Solve Adi ≈ ri such that di = A−1ri + fi , ∥fi∥ ≤ ϕi∥di∥
xi+1 = xi + di in precision u

end while

Many variants over the years, depending on choice of precisions and solver for Adi = ri

Theorem (simplified from Carson and Higham, 2018)

Under the condition ϕi < 1, the forward error is reduced at each step by a factor ϕi

until it reaches its limiting value

∥x̂ − x∥
∥x∥

≲ 2nκ(A)ur + u
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Rounding errors in Newton’s method illustration
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Proof

Assuming

• r̂i = b − Ax̂i + ei , ∥ei∥ ≤ nur(∥A∥∥x̂i∥+ ∥b∥)
• ki = di + fi , ∥fi∥ ≤ ϕi∥di∥
• x̂i+1 = x̂i + ki + gi , ∥gi∥ ≤ u∥x̂i+1∥

we have x̂i+1 = x + A−1ei + fi + gi and thus

∥x − x̂i+1∥ ≲ (2nκ(A)ur + u)∥x∥+ ϕi∥x − x̂i∥
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LU-IR: IR with LU solver

Choice of solver determines ϕi :

• LU solver: di = U−1L−1ri

∥d̂i − di∥
∥d̂i∥

≲ f (n)∥|A−1||L̂||Û|∥uf ≲ f (n)ρnκ(A)uf

where ρn is the growth factor: the maximum magnitude of the elements appearing
during LU factorization

• For stable pivoting strategies (e.g., partial pivoting), ρn is almost always O(1)

⇒ ϕi < 1⇔ κ(A)uf ≪ 1
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LU-based refinement (LU-IR)

Factorize A = LU

in precision u

Solve Ax0 = b via x0 = U−1(L−1b)

in precision u

repeat
ri = b − Axi

in precision u2

Solve Adi = ri via di = U−1(L−1ri )

in precision u

xi+1 = xi + di

in precision u

until converged

 Wilkinson (1948)  Moler (1967)

• Convergence speed: ϕ = O(κ(A)u)

• Attainable accuracy: O(κ(A)u2) = O(u)

19/51
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Fixed precision LU-IR

Factorize A = LU in precision u
Solve Ax0 = b via x0 = U−1(L−1b) in precision u
repeat

ri = b − Axi in precision u
Solve Adi = ri via di = U−1(L−1ri ) in precision u
xi+1 = xi + di in precision u

until converged

 Jankowski and Wozniakowski (1977)  Skeel (1980)

• Convergence speed: ϕ = O(κ(A)u)

• Attainable accuracy: O(κ(A)u)

• Implemented in LAPACK and various sparse direct solvers

• Used to remedy unstable factorization, especially related to the use of relaxed
pivoting
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LU-IR with fp32 LU

Factorize A = LU in precision uf
Solve Ax0 = b via x0 = U−1(L−1b) in precision uf
repeat

ri = b − Axi in precision u
Solve Adi = ri via di = U−1(L−1ri ) in precision uf
xi+1 = xi + di in precision u

until converged

with uf ≡ fp32 and u ≡ fp64
 Langou et al (2006)  Buttari et al (2007)  Baboulin et al (2009)

• For n × n matrices:
◦ O(n3) flops in fp32
◦ O(n2) flops per iteration in fp64

• Convergence speed: ϕ = O(κ(A)uf)

• Attainable accuracy: O(κ(A)u)
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LU-IR with CELL processor

CELL processor (2006–2008)
fp64 peak: 21 GFLOPS
fp32 peak: 205 GFLOPS
⇒ 10× speedup!

 Langou et al (2006)
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Three-precision LU-IR

Factorize A = LU in precision uf
Solve Ax0 = b via x0 = U−1(L−1b) in precision uf
repeat

ri = b − Axi in precision ur
Solve Adi = ri via di = U−1(L−1ri ) in precision uf
xi+1 = xi + di in precision u

until converged

e.g., with uf ≡ fp16, u ≡ fp32, and ur ≡ fp64
or uf ≡ fp16, u ≡ fp64, and ur ≡ fp128

 Carson and Higham (2018)

• Convergence speed: ϕ = O(κ(A)uf)

• Attainable accuracy: O(u+ κ(A)ur)

• Three-precision LU-IR is as general (as modular) as possible
23/51
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LU-IR with GPU tensor cores

Results from  Haidar et al. (2018)

• GPU tensor cores use fp16 storage but fp32 accumulation, providing an accuracy
boost which can be critical! (more on this in Lecture 16)

24/51
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Scaling and shifting fp16 LU

Use of fp16 presents two risks:

• Overflow/underflow in the LU factors
◦ ∥|L||U|∥ ≤ f (n)ρn∥A∥ ⇒ even if A fits in the range, its LU factors may not
◦  Higham, Pranesh, Zounon (2019) : two-sided diagonal scaling A′ ← DrADc so that
∥A∥ ≤ c

◦ To minimize underflow and better utilize the range of fp16, helpful to take c as close as
possible to maximum safe value

• Loss of positive definiteness
◦ Rounding a posdef A to fp16 might make it indefinite ⇒ Cholesky factorization breaks

down
◦  Higham & Pranesh (2021) : factorize A+ σD instead (D = diag(A), σ = O(u16))

• MATLAB demo (LU-IR)
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Krylov subspace

• We define the Krylov subspace of dimension m associated with B and y as

Km(B, y) = span
{
y ,By ,B2y , . . . ,Bm−1y

}
.

• Fixed-point iterations build x by successive additive corrections: thus, x can be
expressed as a linear combination of vectors belonging to a certain Krylov subspace.

• Proof:
◦ xm = x0 +

∑m−1
k=0 Crk

◦ rk = (I − AC )k r0
◦ C (I − AC )k = (I − CA)kC

◦ xm = x0 +
∑m−1

k=0 (I − CA)kCr0

⇒ Conclusion: xm ∈ x0 +Km(CA,Cr0), where

Km(CA,Cr0) = span
{
Cr0,CACr0, (CA)

2Cr0, . . . , (CA)
m−1Cr0

}
.

• Hower, the combination computed fixed-point iteration is not optimal. Can we find
the optimal one?27/51



Arnoldi iteration

• The Arnoldi iteration. builds a basis for Km(B, y) by
repeated multiplication with B and
orthonormalization (here, MGS).

• We obtain the Arnoldi relation BVm = Vm+1Hm,
where
◦ Vm+1 ∈ Rn×(m+1) has orthonormal columns
◦ Hm ∈ R(m+1)×m is an Hessenberg matrix

β = ∥y∥2
v1 = y/β
for k = 1: m do

wk = Bvk
for j = 1: k do

hjk = wT
k vj

wk = wk − hjkvj
end for
hk+1,k = ∥wk∥2
If hk+1,k = 0, stop.
vk+1 = wk/hk+1,k

end for
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(Unpreconditioned) GMRES

The GMRES (generalized miminum residual)
method builds a basis for Km(A, r0) with the
Arnoldi iteration.

At iteration k :

• Step k of Arnoldi yields: AVk = Vk+1Hk

• Find xk ∈ x0 +Kk minimizing rk = Axk − b
◦ xk ∈ x0 +Kk ⇒ xk = x0 + Vkyk and thus

rk = b − Axk

= b − A(x0 + Vkyk)

= r0 − AVkyk

= βv1 − Vk+1Hkyk

= Vk+1(βe1 − Hkyk)

• Stop if ∥rk∥ is small enough

r0 = b − Ax0
β = ∥r0∥
v1 = r0/β
repeat

wk = Avk
for j = 1: k do

hjk = qTj wk

wk = wk − hjkvj
end for
hk+1,k = ∥wk∥
vk+1 = wk/hk+1,k

yk = argminy ∥βe1 − Hky∥.
until ∥rk∥ is small enough
xk = x0 + Vkyk

29/51



Stability of GMRES with rounding errors

MGS-GMRES is backward stable  Paige, Rozloznik, Strakos (2006)

Theorem

If unpreconditioned GMRES run in precision u, there exists an iteration k ≤ n at which
the iterate x̂k satisfies

(A+∆A)x̂k = b, ∥∆A∥ ≤ O(u)∥A∥

and so
∥x̂k − x∥ ≲ κ(A)u∥x∥.

This is an existence result: no guarantee that k will be small (might be as large as n!)
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Restarted GMRES
x = x0
r = b − Ax and β = ∥r∥
while β is not small enough do

v1 = r/β
for k = 1: m do

wk = Avk
for j = 1: k do

hjk = vTj wk

wk = wk − hjkvj
end for
hk+1,k = ∥wk∥
vk+1 = wk/hk+1,k

yk = argminy ∥βe1 − Hky∥.
end for
x = x + Vmym
r = b − Ax and β = ∥r∥

end while

• Cost of SpMV: nnz(A) per iteration

• Cost of building Km:
◦ O(nm2) flops
◦ O(nm) storage
⇒ unaffordable as m increases

• Restarted GMRES: limit size of Krylov
basis to small m
◦ Stop after m inner iterations
◦ Update x and restart
◦ Repeat until ∥r∥ is small enough

• Slower convergence but bounded cost
per iteration

• MATLAB demo (GMRES, restarted
GMRES)
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Preconditioned GMRES

• Convergence of GMRES strongly depends on matrix ⇒ preconditioning is needed

• Preconditioned GMRES: apply GMRES to

MAx = Mb (left preconditioning)

AMy = b, My = x (right preconditioning)

where M ≈ A−1

• Some examples of preconditioners:
◦ Jacobi: M = diag(A)−1, Gauss-Seidel, etc.
◦ LU preconditioner: M = U−1L−1 ⇒ requires triangular solves at each iteration. Exact

LU is expensive and would not require an iterative method. Use approximate LU
instead: low precision, incomplete factorization, block low-rank approximations (Lecture
14), etc.

• Right preconditioning does not change the residual and is thus often preferred:
∥MAy − b∥ = ∥Ax − b∥ ≠ ∥MAx −Mb∥

• MATLAB demo (preconditioned GMRES)32/51
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GMRES-based IR (GMRES-IR)

repeat
ri = b − Axi in precision ur
Solve Adi = ri with GMRES in precision ug
xi+1 = xi + di in precision u

until converged

• GMRES is stable ⇒ ϕ = κ(A)ug
• Can be interpreted as mixed precision restarted GMRES

• Inner GMRES is unpreconditioned ⇒ might take too many iterations!
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GMRES-LU-IR

Factorize A = LU in precision uf
Solve Ax0 = b via x0 = U−1(L−1b) in precision uf
repeat

ri = b − Axi in precision ur
Solve U−1L−1Adi = U−1L−1ri with GMRES in precision ug
xi+1 = xi + di in precision u

until converged

Rationale for replacing LU solver by preconditioned GMRES:

• GMRES can be asked to converge to accuracy ug ≪ uf

• κ(Ã) = κ(U−1L−1A) often smaller than κ(A)

• If Ãdi = r̃i were solved with accuracy ϕi = κ(Ã)ug, convergence condition would be

improved from κ(A)uf < 1 to κ(Ã)ug < 1. . .

• . . . but there is a catch!
35/51



Stability of preconditioned GMRES

• As mentioned previously unpreconditioned GMRES is stable. . . but what about
preconditioned GMRES?

• One key difference: the matrix–vector products are performed with Û−1, L̂−1, and

A separately, not directly with Ã (which is never formed)

◦ y = Ãx ⇒ ∥ŷ − y∥ ≤ nug∥Ã∥∥x∥
◦ y = Û−1L̂−1Ax ⇒ ∥ŷ − y∥ ≤ f (n)u∥A∥∥Û−1∥∥L̂−1∥∥x∥ ≲ κ(A)f (n)ug∥Ã∥∥x∥
⇒ extra κ(A) term appears, it is as if GMRES was run in “precision” κ(A)ug

• Overall: ϕi = κ(Ã)κ(A)ug

⇒ Potentially better than ϕ = κ(A)uf if κ(Ã) is small

• We have the (pessimistic) bound κ(Ã) ≤ uf
2κ(A)2
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Five-precision GMRES-IR

Factorize A = LU in precision uf
Solve Ax0 = b via x0 = U−1(L−1b) in precision uf
repeat

ri = b − Axi in precision ur
Solve U−1L−1Adi = U−1L−1ri with GMRES in precision ug

except products with U−1L−1A in precision up
xi+1 = xi + di in precision u

until converged

• Perform matvecs with Ã in precision up ≤ ug to reduce κ(A) dependence

• Convergence speed: ϕ = O(κ(Ã)(ug + κ(A)up)) = O(κ(A)2uf
2(ug + κ(A)up))

• Attainable accuracy: O(u+ κ(A)ur)

• Modular error analysis (parameterize every line by independent precisions) reveals
the numerical structure of the algorithm!
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Meaningful combinations

With five arithmetics (fp8, fp16, fp32, fp64, fp128) there are over 3000 different
combinations of GMRES-IR5!

They are not all relevant !

Meaningful combinations: those where none of the precisions can be lowered without
worsening either the limiting accuracy or the convergence condition.

Filtering rules

• u2 ≤ ur ≤ u ≤ uf
• up ≤ ug
• up < uf

• up < u, up = u, up > u all possible

• ug ≥ u

• ug < uf , ug = uf , ug > uf all possible
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Performance–robustness tradeoff

Meaningful combinations of GMRES-IR5 for uf ≡ fp16 and u ≡ fp64

ug up
Convergence Condition

max(κ(A))

LU-IR 2× 103

fp8 fp32 8× 103

fp16 fp32 4× 104

fp16 fp64 9× 104

fp32 fp64 8× 106

fp64 fp64 3× 107

fp64 fp128 2× 1011

Six meaningful combinations ⇒ flexible precisions choice to fit at best the hardware
constraints and the problem difficulty.
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Experimental results

Take 100 random matrices with specified κ(A) and measure the success rate: the
percentage of matrices for which GMRES-IR5 converges to a small forward error
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Memory consumption of IR

• Dense systems: cannot overwrite A with LU factors, need to keep A for evaluating
residuals ⇒ IR costs more memory

• Sparse systems: typically nnz(LU)≫ nnz(A), so original copy of A is negligible;
LU-IR allows for storing the LU factors in low precision and thus saves memory !

Original matrix Factorized matrix

0 100 200 300 400 500

0

100

200

300

400

500

nz = 5104
0 100 200 300 400 500

0

100

200

300

400

500

nz = 58202

• Same applies to the GMRES basis, which requires mn entries but can be stored in
low precision with GMRES-IR
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Comparison on industrial problems

A: fp64 LU B: fp32 LU + LU-IR C: fp32 LU + GMRES-IR

Matrix time (s) memory (GB)
A B C A B C

ElectroPhys10M 265.2 154.0 166.5 272.0 138.0 171.3
Bump 2911 205.4 129.3 144.5 135.7 68.4 77.8
DrivAer6M 91.8 67.6 77.9 81.6 41.7 52.9
Queen 4147 284.2 165.2 184.7 178.0 89.8 114.5
tminlet3M 294.5 136.2 157.9 241.1 121.0 169.9
perf009ar 46.1 57.5 52.0 55.6 28.9 38.1
elasticity-3d 156.7 — 118.6 153.0 — 103.6
lfm aug5M 536.2 254.5 269.3 312.0 157.0 187.5
Long Coup dt0 67.2 46.6 49.0 52.9 26.7 33.1
CarBody25M 62.9 — 109.8 77.6 — 54.3
thmgaz 97.6 65.4 79.8 192.0 97.7 141.7

• Up to 2× time and memory reduction, even for ill-conditioned problems
• GMRES-IR usually more expensive than LU-IR, but more robust ⇒ overall good
compromise on a wide range of matrices42/51



Fixed-point iterations

Iterative refinement

GMRES

GMRES-IR

Adaptive precision GMRES
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Adaptive precision GMRES

• So far, we have considered introducing mixed precision via restarts and
preconditioning, but not in GMRES itself

• Does it make sense to vary precisions within unpreconditioned, unrestarted GMRES?

• YES, both:
◦ Spatially: change precisions across different matrix coefficients
◦ Temporally: change precisions across different iterations
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Adaptive precision SpMV, reminder

In Lecture 2 we saw how to compute SpMV using p precisions u1 < ε < u2 < . . . < up
by partitioning A =

∑p
k=1 A

(k) where

a
(k)
ij =

{
flk(aij) if |aij | ∈ (ε∥A∥/uk , ε∥A∥/uk+1]

0 otherwise

⇒ the precision of each element is chosen inversely proportional to its magnitude

0 ϵ∥A∥ ϵ∥A∥/u3 ϵ∥A∥/u2 +∞

drop precision u3 precision u2 precision u1× ×
× ×
× ×

 =

d
d

d

+

 s

s

+

h
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GMRES-IR with adaptive precision SpMV

Build adaptive precision representation Ã
x = x0
r = b − Ax → high precision u
β = ∥r∥
while β is not small enough do

v1 = r/β
for k = 1: m do

wk = Avk → adaptive precision ug

for j = 1: k do
hjk = vT

j wk

wk = wk − hjkvj
end for
hk+1,k = ∥wk∥
vk+1 = wk/hk+1,k

yk = argminy ∥βe1 − Hky∥.
end for
x = x + Vmym
r = b − Ax → high precision u
β = ∥r∥

end while

Benefits of adaptive precision SpMV in a
GMRES context:

• SpMV is one of the most costly operations
so accelerating it is useful

• Adaptive representation Ã does not depend
on vector vk → only need to build Ã once
at the beginning

• As mentioned previously the inner GMRES
can be switched to low precision ug → can

build Ã at precision ug ≪ u

• Moreover Ã can target any accuracy εg not
necessarily corresponding to an available
arithmetic
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GMRES-IR with adaptive precision SpMV

ML Laplace (restart = 80, Jacobi preconditioner)
3 precisions (fp64, fp32, bfloat16) + dropping

500 1000 1500 2000 2500 3000 3500 4000
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

47/51



GMRES-IR with adaptive precision SpMV

ML Laplace (restart = 80, Jacobi preconditioner)
3 precisions (fp64, fp32, bfloat16) + dropping

500 1000 1500 2000 2500 3000 3500 4000
10

-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

47/51



Relaxed GMRES

• How much error can the SpMV wk = Avk at iteration k tolerate?

• Assume inexact SpMV satisfying a relaxed bound wk = (A+ Ek)vk (note that Ek

depends on vk and thus on k)

• Ignoring sources of inexactness other than the SpMV (e.g., rounding errors in
orthonormalization), we obtain a modified Arnoldi relation

ÃkVk = Vk+1Hk , where Ãk = A+ GkV
T
k and Gk = [E1v1, . . . ,Ekvk ]

• Therefore k steps of relaxed GMRES are equivalent to k steps of exact GMRES
applied to Ãk → since GMRES is monotone the relaxed residual r̃k = b − Ãkxk
decreases. . . but how far is it from the true residual rk = b − Axk?

• r̃k − rk = (Ãk − A)xk = GkV
T
k xk , where xk = Vkyk

⇒ r̃k − rk = Gkyk =
∑k

i=1 yk,iEivi
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Relaxed GMRES

• r̃k − rk = Gkyk =
∑k

i=1 yk,iEivi

• yk,i ∝ ∥r̃k−1∥ (intuition)
• Formal result:

Relaxed GMRES (Giraud, Gratton, Langou, 2009)

Stability up to O(ε) is maintained if, at each iteration k, the matvec is performed with
Ãk = A+ Ek such that

∥Ek∥
∥A∥

≤ 1

nκ(A)

∥b∥
∥r̃k−1∥

ε

• Matvec precision can be reduced to be inversely proportional to the residual norm
⇒ lower and lower precision as iterations progress

49/51



Relaxed GMRES with adaptive SpMV

Relaxed

Relaxed+adaptive

• Can switch to precision ug as soon as cε
∥r̃k−1∥ ≥ ug ⇒ the more precisions available,

the more fine tuning we can do

• Adaptive precision SpMV can allow continuous variations of accuracy εg!
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Relaxed GMRES with adaptive SpMV

Relaxed Relaxed+adaptive

• Need to reevaluate the potential of relaxed GMRES in light of evolutions in
hardware (more precisions) and algorithms (adaptive SpMV)

⇒ Internship/PhD available (see here for details)51/51

https://www-pequan.lip6.fr/~tmary/stages/Internship_LIP6_InriaBordeaux.pdf
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