Harnessing inexactness
in scientific computing

Lecture 9:
iterative methods for Ax = b

Theo Mary (CNRS)
theo.mary@lip6.fr

https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon)
elisa.riccietti@ens-lyon.fr
https://perso.ens-1lyon.fr/elisa.
riccietti/

M2 course at ENS Lyon, 2024-2025
Slides available on course webpage

Relative residual

10°

107°+

107101

1075 1

10

20 30 40
Iteration number

—©—Richardson
—#—Jacobi
LU-IR
——GMRES
—7— Restarted GMRES
Left-precond GMRES
—£— Right-precond GMRES
——Restarted right-precond GMRES

60

theo.mary@lip6.fr
https://perso.lip6.fr/Theo.Mary/
elisa.riccietti@ens-lyon.fr
https://perso.ens-lyon.fr/elisa.riccietti/
https://perso.ens-lyon.fr/elisa.riccietti/

Sparse direct methods complexity

P

% i I PR ”7
Regular problems 2D 3D
(nested dissection) NxN grid NxNx N grid
Nonzeros in original matrix O(N?) O(N3)
Nonzeros in factors O(N?log N) O(N*)
Floating-point ops O(N3) O(N®)

2/51 Highly superlinear complexities!

Bound on parallelism

Regular problems 2D 3D

(nested dissection) Nx N grid NxNxN grid
Sequential O(N?3) O(N®)

Tree parallelism O(N3) O(N®)

Node parallelism O(N?) O(N3)

Tree and node parallelism O(N) O(N?)

Top of the tree dominates!

3/51

Rounding error bound

e Dense systems:

Theorem 9.3, Higham

A+AA=1LU, |AA|<.|L]|U

e Sparse systems: n should be replaced with the maximum number of operations a
given entry of the original matrix can be involved in — exploit independence of
operations in different branches!

o Regular 2D problem: n — O(N) = O(y/n)
o Regular 3D problem: n — O(N?) = O(n?/3)

4/51

5/51

Fixed-point iterations

[terative refinement

GMRES

GMRES-IR

Adaptive precision GMRES

Fixed-point iterations

Fixed-point iteration

7/51

e A fixed-point iteration to solve a linear system Ax = b is

o Let e = x(K) — x. Then elkt1) = (] — CA)elk) = Re(k). R is called the iteration
matrix.
e The following statements are equivalent:

1. The iteration converges when k — oo

2. limy oo RK =0

3. p(R) < 1, where p(R) = max; |A;(R)| is the spectral radius of R
(proof: 2 — 3: \;(R)¥ — 0 for all i; 3 — 2: use Jordan normal form)

e How to choose C?

Richardson method

e Take C = wl
x(kH1) — (k) w(b — Ax(k))

If A'is SPD, this method converges if

p(l —wA) = max |1 —wi(A)| <1

For w = 1/Amax(A),
1

K(A)
Thus after n iterations, the initial error e(®) has been reduced by a factor
1 n
1—-—)"~1— ——
ST L Y

p(l —wA)=1-—

— excruciatingly slow convergence if k(A) is large
With optimal choice of w, p(/ — wA) can be reduced to 1 — W, which is still
8/51 very bad

Matrix splitting

o Define the splitting A= M — N and the iteration Mx(k+t1) = Nx(K) 1 p e,
X = M) 4 b = X - MY (b — Ax(K)

We thus have C = M1 and the iteration matrixis R =1 — M~ 1A
How to choose C?

o Should contain as much information from A as possible
o Should be easy to invert

Examples:
o Richardson: M = %I
Jacobi: M = D — weighted Jacobi: M = 1D
Gauss-Seidel: M =D + L
Block variants

o O O

Convergence speed: p(R) ~ 1 — still bad in general

1
k(M—1A)"
MATLAB demo (Richardson, Jacobi, weighted Jacobi)

9/51

Link with gradient descent

e Consider solving min, F(x) = ||Ax — b|[3
e The gradient is VF(x) = AT(Ax — b) = ATAx — ATh = A'x — b/
e A step of gradient descent is

Xk+1 = Xk — tVF(xx) = xx — t(A,Xk — bl)

= equivalent to Richardson method applied to A’x = b’ with t = w

10/51

[terative refinement

11/51

Iterative refinement

while Not converged do
ri = b— AX,'
Solve Ad; = r;
Xi41 = Xj + dj

end while

e If Ad; = r; is solved exactly, converges in 1 iteration

e But if knew how to solve Ad; = r; exactly, we would rather solve Ax = b!

12/51

Link with Newton's method

Consider solving miny F(x) = [|Ax — b]|3

The gradient is VF(x) = AT(Ax — b) = ATAx — ATbh= A'x — b/
The Hessian is V2F(x) = ATA= A

A step of Newton's method is

Xer1 = xi — t(V2F(x)) 'V F (i) = xi — t(A) 7 (A'xic — b))

= equivalent to iterative refinement applied to A'x = b/ with t =1

13/51

Convergence of iterative refinement

while Not converged do
ri = b— AX,'
Solve Ad; ~ rj such that o, — A~ 15 < olld)]
Xjiy1 = X; + d

end while

e xi—x=fi=|x—x| < ¢lx—x|

e If Ad; = r; is solved with a backward error ¢, then ¢ ~ k(A)e = error reduced by
factor (1(A)e)’ after i iterations

e Much faster than previous methods if ¢ < 1

14/51

Convergence of iterative refinement, with rounding errors

while Not converged do
ri = b — Ax; in precision u,
Solve Ad; ~ rj such that d; = A 'r, +
Xj+1 = Xj + d; in precision u

end while

fill < ¢illdill

Many variants over the years, depending on choice of precisions and solver for Ad; = r;

Theorem (simplified from Carson and Higham, 2018)

Under the condition ¢; <~ 1, the forward error is reduced at each step by a factor ¢;
until it reaches its limiting value

20 <2nk(A)u, +u

15/51

Rounding errors in Newton's method illustration

16/51

Assuming
e i=b—Axi+ei, el < nu([JAllIx] + [Ib]])
o ki=di+f;, |fill <olldi
* Xip1 =X +ki+gi, &l < ullXill

we have X, 1 = x + A le; + f; + g; and thus

Ix = Xigall S (2nr(A)ur +) |Ix]] + oflx =l

17/51

LU-IR: IR with LU solver

Choice of solver determines ¢;:
e LU solver: di = U111

[di — dil
I

where p, is the growth factor: the maximum magnitude of the elements appearing
during LU factorization

< FMIAHILI U us S F(n)par(A)ur

e For stable pivoting strategies (e.g., partial pivoting), p, is almost always O(1)
= ¢,’<1<=>,‘£(A)Uf<<1

18/51

LU-based refinement (LU-IR)

Factorize A= LU
Solve Axg = b via xg = U~L(L™1b)
repeat
ri = b— AX,'
Solve Ad; = r; via d; = U~Y(L™'r;)
Xi+1 =X+ d;
until converged

19/51

https://dl.acm.org/doi/abs/10.1145/321386.321394

LU-based refinement (LU-IR)

Factorize A= LU in precision u
Solve Axg = b via xg = U~Y(L™1b) in precision u
repeat
ri = b — Ax; in precision u
Solve Ad; = r; via d; = U~Y(L™1r;) in precision u
Xi+1 = Xj + d; in precision u
until converged
@ Wilkinson (1948) [Moler (1967)

2

e Convergence speed: ¢ = O(k(A)u)
e Attainable accuracy: O(x(A)u?) = O(u)

19/51

https://dl.acm.org/doi/abs/10.1145/321386.321394

Fixed precision LU-IR

Factorize A= LU in precision u
Solve Axg = b via xp = U~Y(L™1b) in precision u
repeat
ri = b — Ax; in precision u
Solve Ad; = r; via d; = U~(L™1r;) in precision u
Xj+1 = Xj + d; in precision u
until converged
[3) Jankowski and Wozniakowski (1977) [2 Skeel (1980)

Convergence speed: ¢ = O(k(A)u)
Attainable accuracy: O(k(A)u)

Implemented in LAPACK and various sparse direct solvers

Used to remedy unstable factorization, especially related to the use of relaxed

pivoting
20/51

https://link.springer.com/article/10.1007%2FBF01932150
https://www.ams.org/journals/mcom/1980-35-151/S0025-5718-1980-0572859-4/

LU-IR with fp32 LU

Factorize A= LU in precision ug
Solve Axp = b via xp = UL(L™1b) in precision ug
repeat
ri = b — Ax; in precision u
Solve Ad; = r; via d; = U™Y(L™1r;) in precision ug
Xj+1 = Xj + d; in precision u
until converged

with uf = fp32 and u = fp64
(3 Langou et al (2006) [3) Buttari et al (2007) [Baboulin et al (2009)

21/51

https://ieeexplore.ieee.org/abstract/document/4090224
https://doi.org/10.1177/1094342007084026
https://doi.org/10.1016/j.cpc.2008.11.005

LU-IR with fp32 LU

Factorize A= LU in precision ug
Solve Axp = b via xp = UL(L™1b) in precision ug
repeat
r; = b — Ax; in precision u
Solve Ad; = r; via d; = U™Y(L™1r;) in precision ug
Xj+1 = Xj + d; in precision u
until converged

with uf = fp32 and u = fp64
(3 Langou et al (2006) [3) Buttari et al (2007) [Baboulin et al (2009)

e For n x n matrices:
o O(n?) flops in fp32
o O(n?) flops per iteration in fp64
e Convergence speed: ¢ = O(x(A)uf)

- e Attainable accuracy: O(k(A)u)

https://ieeexplore.ieee.org/abstract/document/4090224
https://doi.org/10.1177/1094342007084026
https://doi.org/10.1016/j.cpc.2008.11.005

LU-IR with CELL processor

IBM Cell 3.2 GHz Ax = b Performance

200 == == === =00
=4=SP Peak

CELL processor (2006—2008) o | E%%%él:%lem
fp64 peak: 21 GFLOPS —=DP Ax-b IBM
fp32 peak: 205 GFLOPS

= 10x speedup! 50

GFlop/s

22/51

https://ieeexplore.ieee.org/abstract/document/4090224

Three-precision LU-IR

Factorize A= LU in precision ug
Solve Axp = b via xp = U~L(L™1b) in precision ug
repeat

ri = b — Ax; in precision u,

Solve Ad; = r; via d; = U™(L™1r;) in precision ug

Xj+1 = Xj + d; in precision u
until converged

e.g., with ug = fpl6, u = fp32, and u, = fp64
or us = fpl6, u = fpb4, and u, = fp128
[3) Carson and Higham (2018)

e Convergence speed: ¢ = O(rx(A)uf)
e Attainable accuracy: O(u + x(A)u,)

® Three-precision LU-IR is as general (as modular) as possible
23/51

https://doi.org/10.1137/17M1140819

LU-IR with GPU tensor cores

Results from [3 Haidar et al. (2018)
20 I1A

FP16-TC->64 dhgesv
18 -|=@=FP16->64 dhgesv

FP32->64 dsgesv 3
16 |-9-FP64 dgesv | —

14}
12

0

Tflop/s
o

o N B O
T

330/

2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k
Matrix size

e GPU tensor cores use fpl6 storage but fp32 accumulation, providing an accuracy

boost which can be critical! (more on this in Lecture 16)
24/51

https://ieeexplore.ieee.org/abstract/document/8665777

Scaling and shifting fp16 LU

Use of fpl6 presents two risks:
e Overflow/underflow in the LU factors

o NILI|UJII < f(n)pnl|All = even if A fits in the range, its LU factors may not
o [3 Higham, Pranesh, Zounon (2019) : two-sided diagonal scaling A’ < D,AD, so that
Al < ¢
o To minimize underflow and better utilize the range of fpl6, helpful to take c as close as
possible to maximum safe value
e Loss of positive definiteness

o Rounding a posdef A to fpl6 might make it indefinite = Cholesky factorization breaks
down
o [3 Higham & Pranesh (2021) : factorize A+ oD instead (D = diag(A), ¢ = O(u1s))

e MATLAB demo (LU-IR)

25/51

https://epubs.siam.org/doi/abs/10.1137/18M1229511
https://epubs.siam.org/doi/abs/10.1137/19M1298263

GMRES

26/51

Krylov subspace

e We define the Krylov subspace of dimension m associated with B and y as

Km(B.y) =span{y, By, B%,...,B™ 1y} .

e Fixed-point iterations build x by successive additive corrections: thus, x can be
expressed as a linear combination of vectors belonging to a certain Krylov subspace.
e Proof:
O Xm = Xo + kaz_ol Cry
re = (I — AC)¥r
C(I — AC)k = (I — CA)*C
Xm = Xo + Zrkn:_ol(l — CA)*Cro
= Conclusion: xm, € xg + Km(CA, Cry), where

o O O

Km(CA, Crg) = span { Cro, CACrg, (CA)*Cro, ..., (CA)" 1 Cro} .

e Hower, the combination computed fixed-point iteration is not optimal. Can we find
»7/51 the optimal one?

Arnoldi iteration

B=lyll
vi=y/B
o The Arnoldi iteration. builds a basis for Km(B, y) by for k =1)3’" do
repeated multiplication with B and :Vk L ‘1" K d
orthonormalization (here, MGS). Ori_ " r °
jk = Wy Vj
e We obtain the Arnoldi relation BV,, = V,, 1 Hm, Wk = Wk — hjkvj
where end for
0 Vi1 € R™(m+1) has orthonormal columns hig1k = || wil|2
o Hp € RMDXm is an Hessenberg matrix If hey1,6 =0, stop.
Vb1 = Wi/ hiy1k
end for

28/51

(Unpreconditioned) GMRES

The GMRES (generalized miminum residual)
method builds a basis for K,(A, rp) with the
Arnoldi iteration.

At iteration k:
e Step k of Arnoldi yields: AV = Vi1 1Hk

e Find xx € xg + Kk minimizing ry = Axx — b
o xx € xo+ Kk = xx = xo + Vkyk and thus

Iy = b— AXk
=b— A(xo + Viyx)
=ro — AViyx

= Bvi — Vier1 Hiey
= Vip1(Ber — Hiy)

e Stop if ||rg|| is small enough
29/51

= b— AXo
B =lrll
vi =ro/B
repeat
wy = Avy
for j=1: k do
hjx = q;FMVk
Wk = wx — hjkv;
end for
b1 = [wicl|
Vi1 = Wi/ hiya i
yk = argminy ||Ber — Hyy||.
until ||r|| is small enough
Xk = xo + Viyk

Stability of GMRES with rounding errors

MGS-GMRES is backward stable [3) Paige, Rozloznik, Strakos (2006)

Theorem
If unpreconditioned GMRES run in precision u, there exists an iteration k < n at which
the iterate xi satisfies

(A+AAx = b, [[AA]| < O(u)All

and so
%k = xI| < w(A)ullx]-

30/51

This is an existence result: no guarantee that k will be small (might be as large as n!)

https://epubs.siam.org/doi/10.1137/050630416

Restarted GMRES

31/

X = X
r=b—Axand g =|r|
while 3 is not small enough do
Vi = r/ﬁ
for k=1: mdo
wy, = Avy
for j=1: k do
hjx = VJ-TWk
Wi = Wi — hjij
end for
b1k = [lwil|
Vir1 = Wi/ hiya i

end for
X=X+ Vmym
r=b—Axand 8= ||

51 end while

Yk = argmin, ||Be; — Hyyl|.

Cost of SpMV: nnz(A) per iteration
Cost of building Kpy:

o O(nm?) flops

o O(nm) storage

= unaffordable as m increases
Restarted GMRES: limit size of Krylov
basis to small m

o Stop after m inner iterations

o Update x and restart

o Repeat until ||r|| is small enough
Slower convergence but bounded cost
per iteration

MATLAB demo (GMRES, restarted
GMRES)

Preconditioned GMRES

Convergence of GMRES strongly depends on matrix = preconditioning is needed
Preconditioned GMRES: apply GMRES to

MAx = Mb (left preconditioning)
AMy = b, My =x (right preconditioning)

where M ~ A~!
e Some examples of preconditioners:

o Jacobi: M = diag(A)~!, Gauss-Seidel, etc.

o LU preconditioner: M = U~'L~! = requires triangular solves at each iteration. Exact
LU is expensive and would not require an iterative method. Use approximate LU
instead: low precision, incomplete factorization, block low-rank approximations (Lecture
14), etc.

Right preconditioning does not change the residual and is thus often preferred:
[MAy — b|| = ||Ax — b|| # ||[MAx — Mb||
MATLAB demo (preconditioned GMRES)

32/51

GMRES-IR

33/51

GMRES-based IR (GMRES-IR)

repeat
ri = b — Ax; in precision u,
Solve Ad; = r; with GMRES 1 precision u.
Xi+1 = Xj + d; in precision u

until converged

* GMRES is stable = ¢ = k(A)u,
e Can be interpreted as mixed precision restarted GMRES

e Inner GMRES is unpreconditioned = might take too many iterations!

34/51

GMRES-LU-IR

Factorize A = LU in precision ug

Solve Axp = b via xo = U~L(L™1b) in precision ug

repeat
ri = b — Ax; in precision uy
Solve U™LL™1Ad; = U~1L~1r; with GMRES in precision ug
Xi+1 = Xj + d; in precision u

until converged

Rationale for replacing LU solver by preconditioned GMRES:

GMRES can be asked to converge to accuracy 1. < ug
k(A) = k(U"LL71A) often smaller than x(A)
If Ad; = F; were solved with accuracy ¢; = n(ﬁ)ug, convergence condition would be

improved from k(A)us < 1 to k(A)u. < 1...

... but there is a catch!

35/51

Stability of preconditioned GMRES

36/51

As mentioned previously unpreconditioned GMRES is stable. . . but what about
preconditioned GMRES?

One key difference: the matrix-vector products are performed with U‘l, Z‘l, and
A separately, not directly with A (which is never formed)

oy=Acs gyl <mglAllxl)

o y=UAx= |y =yl < F(n)ul|AHIUTHIIL xS m(A)F(n)ug | Allllx]
= extra k(A) term appears, it is as if GMRES was run in “precision” x(A)ug

Overall: ¢; = K(/Z)K(A)ug
Potentially better than ¢ = r(A)ur if (A) is small
We have the (pessimistic) bound x(A) < ug2k(A)2

Five-precision GMRES-IR

Factorize A= LU in precision ug
Solve Axp = b via xp = U~L(L™1b) in precision ug
repeat
ri = b — Ax; in precision u,
Solve U™'L™1Ad; = U~1L~1r; with GMRES i1 precision ug
except products with U~1L=1A in precision u,
Xi+1 = Xj + d; in precision u
until converged

Perform matvecs with A in precision u, < u, to reduce x(A) dependence
Convergence speed: ¢ = O(/<c(/3)(ug + k(A)up)) = O(k(A)?us?(uy + £(A)up))
Attainable accuracy: O(u + x(A)uy)

Modular error analysis (parameterize every line by independent precisions) reveals
the numerical structure of the algorithm!

37/51

Meaningful combinations

With five arithmetics (fp8, fp16, fp32, fp64, fp128) there are over 3000 different
combinations of GMRES-IR5!

They are not all relevant !

Meaningful combinations: those where none of the precisions can be lowered without
worsening either the limiting accuracy or the convergence condition.

Filtering rules

e ul<u <u<uf ® up, <u, up =u, up > u all possible
° up < ug ® ug>u
° up <ug * ug < uf, Ug = uf, ug > uy all possible

38/51

Performance—robustness tradeoff

Meaningful combinations of GMRES-IR5 for uf = fpl6 and u = fp64

Convergence Condition

max(x(A))

LU-IR 2 x 103
fp8 fp32 8 x 103
fpl6 fp32 4 x 10*
fpl6 fp64 9 x 10*
fp32 fp64 8 x 100
fp64 fp64 3 x 107
fp64 fp128 2 x 101!

Six meaningful combinations = flexible precisions choice to fit at best the hardware
constraints and the problem difficulty.
39/51

Experimental results

Take 100 random matrices with specified x(A) and measure the success rate: the
percentage of matrices for which GMRES-IR5 converges to a small forward error
up =H ug =D

Fan\
\v
10° 102 10* 106 108 100 1 4 106
K

40/51

Experimental results

Take 100 random matrices with specified x(A) and measure the success rate: the
percentage of matrices for which GMRES-IR5 converges to a small forward error
up =H ug =D

0 1 4 1016

0
\J

109 102 104 106 108 1
K

40/51

Experimental results

Take 100 random matrices with specified x(A) and measure the success rate: the
percentage of matrices for which GMRES-IR5 converges to a small forward error
up =H ug =D

2
2O

0 1 4 1016

109 102 104 106 108 1

40/51

Experimental results

Take 100 random matrices with specified x(A) and measure the success rate: the
percentage of matrices for which GMRES-IR5 converges to a small forward error
up =H ug =D

100 102 104 109 108 1010 1012 104 1016

40/51

Experimental results

Take 100 random matrices with specified x(A) and measure the success rate: the
percentage of matrices for which GMRES-IR5 converges to a small forward error
up=H ug =S

100 102 104 109 108 1010 1012 104 1016

40/51

Experimental results

Take 100 random matrices with specified x(A) and measure the success rate: the
percentage of matrices for which GMRES-IR5 converges to a small forward error
ur =H ug = H

100 102 104 109 108 1010 1012 104 1016

40/51

Memory consumption of IR

¢ Dense systems: cannot overwrite A with LU factors, need to keep A for evaluating
residuals = IR costs more memory

e Sparse systems: typically nnz(LU) > nnz(A), so original copy of A is negligible;
LU-IR allows for storing the LU factors in low precision and thus saves memory!

Original matrix Factorized matrix

8 H 8 8
g § 8 g

e Same applies to the GMRES basis, which requires mn entries but can be stored in
low precision with GMRES-IR

41/51

Comparison on industrial problems

A: fp64 LU B: fp32 LU + LU-IR C: fp32 LU + GMRES-IR

Matrix

ElectroPhys10M
Bump_2911
DrivAer6M
Queen_4147
tminlet3M
perf009ar
elasticity-3d
Ifm_augbM
Long_Coup_dt0
CarBody25M
thmgaz

e Up to 2x time and memory reduction, even for ill-conditioned problems
e GMRES-IR usually more expensive than LU-IR, but more robust = overall good
42/51 compromise on a wide range of matrices

Adaptive precision GMRES

43/51

Adaptive precision GMRES

e So far, we have considered introducing mixed precision via restarts and
preconditioning, but not in GMRES itself

e Does it make sense to vary precisions within unpreconditioned, unrestarted GMRES?
e YES, both:

o Spatially: change precisions across different matrix coefficients
o Temporally: change precisions across different iterations

44/51

Adaptive precision SpMV, reminder

In Lecture 2 we saw how to compute SpMV using p precisions u; < e < up < ... < Up
by partitioning A= >"%_, AK) where

S0) fCag) if agl € (EllAN/ u, ellAll/ e]
% 0 otherwise

= the precision of each element is chosen inversely proportional to its magnitude

9 6IIAH 6HAH/Us 6IIAII/Uz +00
R/—/ H/—/ N H/—/
drop precision u3 precision up precision up
X X d s
X X = d + + 1| h
X X d s

45/51

GMRES-IR with adaptive precision SpMV

Build adaptive precision representation A
X = Xo
r=b— Ax — high precision u Benefits of adaptive precision SpMV in a
B=|rl GMRES context:
while 3 is/“ﬂot small enough do ® SpMV is one of the most costly operations
vVi=1r . .
so accelerating it is useful
for k=1: mdo & _
wi = Avk — adaptive precision ug ® Adaptive representation A does not depend
for j=1: I;do on vector vi — only need to build A once
hje = v; wi at the beginning
Wi = Wi — hiwy; . . .
end for e As mentioned previously the inner GMRES
B,k = ||wl| can be switched to low precision 1, — can
Vir1 = Wi/ Pt i build A at precision 1, < u
Yk = argmin, [|Ser — Hyy||. -
end for ® Moreover A can target any accuracy -, not
X=X+ Vin¥Ym necessarily corresponding to an available
r = b — Ax — high precision u arithmetic
B =l
46/51 end while

GMRES-IR with adaptive precision SpMV

ML _Laplace (restart = 80, Jacobi preconditioner)

3 precisions (fp64 fp32, bfloat16) + dropping
100

—E—Unlform p32, cost 1
2 —o— Uniform bfloat16, cost=0.50
107 ¢ —+— Adaptive €y = 272, cost=0.88/3

10-4 L

Backward error

10-14 I I I I I I I e
500 1000 1500 2000 2500 3000 3500 4000

47/51 Iteration

GMRES-IR with adaptive precision SpMV

ML_Laplace (restart = 80, Jacobi preconditioner)
3 precisions (fp64, fp32, bfloatl6) + dropping

100 : ; ;
—a— Uniform fp32, cost=1
2 —e— Uniform bfloat16, cost=0.50
10°F —»— Adaptive ey = 272, cost=0.88|3
—v— Adaptive €y = 2’20, cost=0.80
10 40 —+— Adaptive €y = 2718, cost=0.68|]
g —o— Adaptive e = 2719, cost=0.61
S
-
5} 10 -6 L
o
-
£
Z 108,
3
m
10 -10 [
10 12 [
10 -14 I I I I I | |

500 1000 1500 2000 2500 3000 3500 4000
47/51 Iteration

Relaxed GMRES

48/51

How much error can the SpMV wj = Avy at iteration k tolerate?

Assume inexact SpMV satisfying a relaxed bound wy = (A + Ex)vk (note that Ey
depends on vi and thus on k)

Ignoring sources of inexactness other than the SpMV (e.g., rounding errors in
orthonormalization), we obtain a modified Arnoldi relation

/Zk Vk = Vk+1Hk, where /Z\Vk =A+ Gk VkT and Gk = [E1V1, ey Ekvk]

Therefore k steps of relaxed GMRES are equivalent to k steps of exact GMRES
applied to Ay — since GMRES is monotone the relaxed residual ¥, = b — Apxk
decreases. . . but how far is it from the true residual r, = b — Axx?

Fk — Iy = (Avk — A)Xk = Gk VkTXk, where Xk = Vk}/k

. K
rk — e = Gryk = Y i1 Y,iEivi

Relaxed GMRES

° I —rk = Gy = Z,l'(:1 Yk,iEivi
® yii o |fk—1] (intuition)
e Formal result:

Relaxed GMRES (Giraud, Gratton, Langou, 2009)

Stability up to O(e) is maintained if, at each iteration k, the matvec is performed with
Ax = A+ Ex such that

IEd 1 el
A= (A T

e Matvec precision can be reduced to be inversely proportional to the residual norm
= lower and lower precision as iterations progress

49/51

Relaxed GMRES with adaptive SpMV

11b— Ax]|
TTBIT+ TFATITIxIT

10° —— Backward error

~ =~ Double precision error
—— Maximal matrix error

1071 A=Al
—— Matrix error TAT

10744

10-6 4

10-8 4

10-10

0 100 200 300 400 500 600 700 800
Iterations
Relaxed

~C€
Pi—1ll

e Can switch to precision ug as soon as > ug = the more precisions available,

the more fine tuning we can do

50/51

Relaxed GMRES with adaptive SpMV

10° —— Backward error ||n\|\|b+_|\:)\(|l||\x|| —— Backward error |\b\|\“l-”:)\(|l|l\x||
~ =~ Double precision error 10714 ~ =~ Double precision error
10-24 —— Maximal matrix error —— Maximal matrix error
Matrix error ”‘”;—H‘” / o] —— Matrix error % - —
107 |
1075
1075 |
1077
107 |
107° 4
10710 R
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Iterations Iterations
Relaxed Relaxed+-adaptive
. .. ce .. .
¢ Can switch to precision ug as soon as == > ug = the more precisions available,

the more fine tuning we can do

e Adaptive precision SpMV can allow continuous variations of accuracy eg!
50/51

Relaxed GMRES with adaptive SpMV

NNZs for 1138_bus in fp precisions

NNZs for 1138_bus in adapt precisions
1.0 7

1.0 7

16 bits

081 24 bits 081
32 bits =0 bits
40 bits 8 bits
064 48 bits 064 = 16 bits
56 bits 24 bits
2 64 bits Y 32 bits
= = 40 bits
0.4 1 0.4 W 48 bits
56 bits
1 64 bits
02 02
004 004
400 400
Iterations Iterations
Relaxed Relaxed+-adaptive

e Need to reevaluate the potential of relaxed GMRES in light of evolutions in
hardware (more precisions) and algorithms (adaptive SpMV)

51/51= Internship/PhD available (see here for details)

https://www-pequan.lip6.fr/~tmary/stages/Internship_LIP6_InriaBordeaux.pdf

	Fixed-point iterations
	Iterative refinement
	GMRES
	GMRES-IR
	Adaptive precision GMRES

