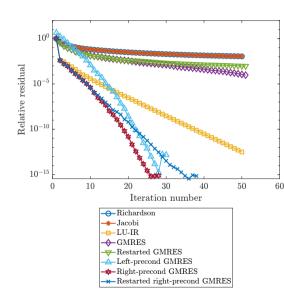
Harnessing inexactness in scientific computing

Lecture 9: iterative methods for Ax = b

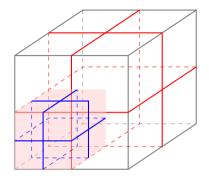
Theo Mary (CNRS) theo.mary@lip6.fr https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon) elisa.riccietti@ens-lyon.fr https://perso.ens-lyon.fr/elisa. riccietti/

M2 course at ENS Lyon, 2024–2025 Slides available on course webpage



Sparse direct methods complexity



Regular problems	2D	3D
(nested dissection)	N imes N grid	N imes N imes N grid
Nonzeros in original matrix	$O(N^2)$	<i>O</i> (<i>N</i> ³)
Nonzeros in factors	$O(N^2 \log N)$	$O(N^4)$
Floating-point ops	$O(N^3)$	$O(N^6)$

Highly superlinear complexities!

Regular problems (nested dissection)	2D $N imes N$ grid	3D N imes N imes N grid
Sequential Tree parallelism Node parallelism Tree and node parallelism	$O(N^3) \\ O(N^3) \\ O(N^2) \\ O(N)$	$O(N^6)$ $O(N^6)$ $O(N^3)$ $O(N^2)$

Top of the tree dominates!

• Dense systems:

Theorem 9.3, Higham

$$A + \Delta A = \widehat{L}\widehat{U}, \quad |\Delta A| \le \gamma_n |\widehat{L}| |\widehat{U}|$$

- Sparse systems: n should be replaced with the maximum number of operations a given entry of the original matrix can be involved in → exploit independence of operations in different branches!
 - **Regular 2D problem**: $n \to O(N) = O(\sqrt{n})$
 - Regular 3D problem: $n \to O(N^2) = O(n^{2/3})$

Fixed-point iterations

Iterative refinement

GMRES

GMRES-IR

Adaptive precision GMRES

Fixed-point iterations

Iterative refinement

GMRES

GMRES-IR

Adaptive precision GMRES

• A fixed-point iteration to solve a linear system Ax = b is

$$x^{(k+1)} = x^{(k)} + C(b - Ax^{(k)})$$

- Let $e^{(k)} = x^{(k)} x$. Then $e^{(k+1)} = (I CA)e^{(k)} = Re^{(k)}$. R is called the iteration matrix.
- The following statements are equivalent:
 - 1. The iteration converges when $k
 ightarrow \infty$
 - 2. $\lim_{k\to\infty} R^k = 0$
 - 3. $\rho(R) < 1$, where $\rho(R) = \max_i |\lambda_i(R)|$ is the spectral radius of R (proof: $2 \rightarrow 3$: $\lambda_i(R)^k \rightarrow 0$ for all i; $3 \rightarrow 2$: use Jordan normal form)
- How to choose C?

Richardson method

8/51

• Take $C = \omega I$

$$x^{(k+1)} = x^{(k)} + \omega(b - Ax^{(k)})$$

• If A is SPD, this method converges if

$$\rho(I - \omega A) = \max_i |1 - \omega \lambda_i(A)| < 1$$

• For
$$\omega = 1/\lambda_{
m max}(A)$$
, $ho(I-\omega A) = 1-rac{1}{\kappa(A)}$

• Thus after *n* iterations, the initial error $e^{(0)}$ has been reduced by a factor

$$(1-rac{1}{\kappa(A)})^npprox 1-rac{n}{\kappa(A)}$$

ightarrow excruciatingly slow convergence if $\kappa(A)$ is large

• With optimal choice of ω , $\rho(I - \omega A)$ can be reduced to $1 - \frac{2}{\kappa(A)+1}$, which is still very bad

Matrix splitting

• Define the splitting A = M - N and the iteration $Mx^{(k+1)} = Nx^{(k)} + b$, i.e.,

$$x^{(k+1)} = M^{-1}Nx^{(k)} + M^{-1}b = x^{(k)} + M^{-1}(b - Ax^{(k)})$$

- We thus have $C = M^{-1}$ and the iteration matrix is $R = I M^{-1}A$
- How to choose C?
 - $\circ~$ Should contain as much information from A as possible
 - Should be easy to invert
- Examples:
 - Richardson: $M = \frac{1}{\omega}I$
 - \circ Jacobi: $M = D \rightarrow weighted$ Jacobi: $M = \frac{1}{\omega}D$
 - Gauss-Seidel: M = D + L
 - Block variants
- Convergence speed: $ho(R) pprox 1 rac{1}{\kappa(M^{-1}A)}$, still bad in general
- MATLAB demo (Richardson, Jacobi, weighted Jacobi)

- Consider solving $\min_x F(x) = \frac{1}{2} ||Ax b||_2^2$
- The gradient is $\nabla F(x) = A^T(Ax b) = A^TAx A^Tb = A'x b'$
- A step of gradient descent is

$$x_{k+1} = x_k - t\nabla F(x_k) = x_k - t(A'x_k - b')$$

 \Rightarrow equivalent to Richardson method applied to A'x = b' with $t = \omega$

Fixed-point iterations

Iterative refinement

GMRES

GMRES-IR

Adaptive precision GMRES

while Not converged do $r_i = b - Ax_i$ Solve $Ad_i = r_i$ $x_{i+1} = x_i + d_i$ end while

- If $Ad_i = r_i$ is solved exactly, converges in 1 iteration
- But if knew how to solve $Ad_i = r_i$ exactly, we would rather solve Ax = b!

Link with Newton's method

- Consider solving $\min_x F(x) = \frac{1}{2} ||Ax b||_2^2$
- The gradient is $\nabla F(x) = A^T(Ax b) = A^TAx A^Tb = A'x b'$
- The Hessian is $\nabla^2 F(x) = A^T A = A'$
- A step of Newton's method is

$$x_{k+1} = x_k - t(\nabla^2 F(x_k))^{-1} \nabla F(x_k) = x_k - t(A')^{-1} (A' x_k - b')$$

 \Rightarrow equivalent to iterative refinement applied to A'x = b' with t = 1

while Not converged do $r_i = b - Ax_i$ Solve $Ad_i \approx r_i$ such that $d_i = A^{-1}r_i + f_i$, $||f_i|| \le \phi_i ||d_i||$ $x_{i+1} = x_i + d_i$ end while

- $x_i x = f_i \Rightarrow ||x_i x|| \lesssim \phi^i ||x_0 x||$
- If Ad_i = r_i is solved with a backward error ε, then φ ≈ κ(A)ε ⇒ error reduced by factor (κ(A)ε)ⁱ after i iterations
- Much faster than previous methods if $arepsilon\ll 1$

Convergence of iterative refinement, with rounding errors

while Not converged **do** $r_i = b - Ax_i$ in precision \mathbf{u}_r Solve $Ad_i \approx r_i$ such that $d_i = A^{-1}r_i + f_i$, $||f_i|| \le \phi_i ||d_i||$ $x_{i+1} = x_i + d_i$ in precision \mathbf{u} end while

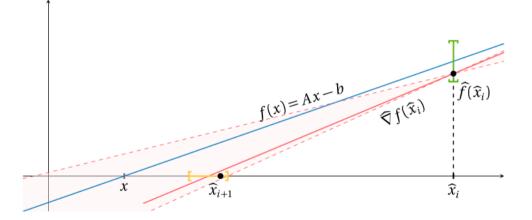
Many variants over the years, depending on choice of precisions and solver for $Ad_i = r_i$

Theorem (simplified from Carson and Higham, 2018)

Under the condition $\phi_i < 1$, the forward error is reduced at each step by a factor ϕ_i until it reaches its limiting value

$$rac{\|\widehat{x}-x\|}{\|x\|}\lesssim 2n\kappa(A)\mathbf{u_r}+\mathbf{u}$$

Rounding errors in Newton's method illustration



Assuming

- $\widehat{r}_i = b A\widehat{x}_i + e_i$, $||e_i|| \le nu_r(||A|| ||\widehat{x}_i|| + ||b||)$
- $k_i = d_i + f_i$, $||f_i|| \leq \phi_i ||d_i||$
- $\widehat{x}_{i+1} = \widehat{x}_i + k_i + g_i, \quad \|g_i\| \leq \mathbf{u} \|\widehat{x}_{i+1}\|$

we have $\widehat{x}_{i+1} = x + A^{-1}e_i + f_i + g_i$ and thus

$$\|x - \widehat{x}_{i+1}\| \lesssim (2n\kappa(A)\mathbf{u}_{\mathsf{r}} + \mathbf{u})\|x\| + \phi_i\|x - \widehat{x}_i\|$$

Choice of solver determines ϕ_i :

• LU solver: $d_i = U^{-1}L^{-1}r_i$

$$\frac{\|\widehat{d}_i - d_i\|}{\|\widehat{d}_i\|} \lesssim f(n) \||A^{-1}||\widehat{L}||\widehat{U}|\|\mathbf{u}_{\mathsf{f}} \lesssim f(n)\rho_n \kappa(A) \mathbf{u}_{\mathsf{f}}$$

where ρ_{n} is the growth factor: the maximum magnitude of the elements appearing during LU factorization

• For stable pivoting strategies (e.g., partial pivoting), ρ_n is almost always O(1)

 $\Rightarrow \phi_i < 1 \Leftrightarrow \kappa(A) \mathbf{u_f} \ll 1$

LU-based refinement (LU-IR)

```
Factorize A = LU
Solve Ax_0 = b via x_0 = U^{-1}(L^{-1}b)
repeat
r_i = b - Ax_i
Solve Ad_i = r_i via d_i = U^{-1}(L^{-1}r_i)
x_{i+1} = x_i + d_i
until converged
```

LU-based refinement (LU-IR)

```
Factorize A = LU in precision u
Solve Ax_0 = b via x_0 = U^{-1}(L^{-1}b) in precision u
repeat
r_i = b - Ax_i in precision \mathbf{u}^2
Solve Ad_i = r_i via d_i = U^{-1}(L^{-1}r_i) in precision u
x_{i+1} = x_i + d_i in precision u
until converged
```

🖹 Wilkinson (1948) 🛛 🖹 Moler (1967)

- Convergence speed: $\phi = O(\kappa(A)\mathbf{u})$
- Attainable accuracy: $O(\kappa(A)\mathbf{u}^2) = O(\mathbf{u})$

Fixed precision LU-IR

```
Factorize A = LU in precision u
Solve Ax_0 = b via x_0 = U^{-1}(L^{-1}b) in precision u
repeat
r_i = b - Ax_i in precision u
Solve Ad_i = r_i via d_i = U^{-1}(L^{-1}r_i) in precision u
x_{i+1} = x_i + d_i in precision u
until converged
```

🖹 Jankowski and Wozniakowski (1977) 🛛 🖹 Skeel (1980)

- Convergence speed: $\phi = O(\kappa(A)\mathbf{u})$
- Attainable accuracy: $O(\kappa(A)\mathbf{u})$
- Implemented in LAPACK and various sparse direct solvers
- Used to remedy unstable factorization, especially related to the use of relaxed pivoting

LU-IR with fp32 LU

```
Factorize A = LU in precision \mathbf{u}_{\mathbf{f}}

Solve Ax_0 = b via x_0 = U^{-1}(L^{-1}b) in precision \mathbf{u}_{\mathbf{f}}

repeat

r_i = b - Ax_i in precision \mathbf{u}

Solve Ad_i = r_i via d_i = U^{-1}(L^{-1}r_i) in precision \mathbf{u}_{\mathbf{f}}

x_{i+1} = x_i + d_i in precision \mathbf{u}

until converged

with \mathbf{u}_{\mathbf{f}} \equiv \mathbf{f}\mathbf{p}\mathbf{32} and \mathbf{u} \equiv \mathbf{f}\mathbf{p}\mathbf{64}

\blacksquare Langou et al (2006) \blacksquare Buttari et al (2007) \blacksquare Baboulin et al (2009)
```

21/51

LU-IR with fp32 LU

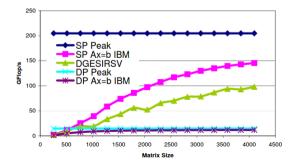
```
Factorize A = LU in precision \mathbf{u}_{\mathbf{f}}
Solve Ax_0 = b via x_0 = U^{-1}(L^{-1}b) in precision \mathbf{u}_{\mathbf{f}}
repeat
r_i = b - Ax_i in precision \mathbf{u}
Solve Ad_i = r_i via d_i = U^{-1}(L^{-1}r_i) in precision \mathbf{u}_{\mathbf{f}}
x_{i+1} = x_i + d_i in precision \mathbf{u}
until converged
with \mathbf{u}_{\mathbf{f}} \equiv \mathbf{f} \mathbf{p} \mathbf{32} and \mathbf{u} \equiv \mathbf{f} \mathbf{p} \mathbf{64}
```

🖹 Langou et al (2006) 📑 Buttari et al (2007) 📑 Baboulin et al (2009)

- For $n \times n$ matrices:
 - $O(n^3)$ flops in fp32
 - $O(n^2)$ flops per iteration in fp64
- Convergence speed: $\phi = O(\kappa(A)\mathbf{u_f})$
- Attainable accuracy: $O(\kappa(A)\mathbf{u})$

LU-IR with CELL processor

CELL processor (2006–2008) fp64 peak: 21 GFLOPS fp32 peak: 205 GFLOPS $\Rightarrow 10 \times$ speedup!



Three-precision LU-IR

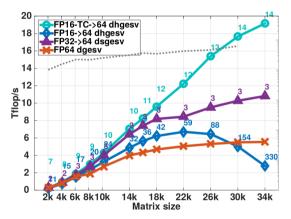
Factorize A = LU in precision $\mathbf{u}_{\mathbf{f}}$ Solve $Ax_0 = b$ via $x_0 = U^{-1}(L^{-1}b)$ in precision u_f repeat $r_i = b - Ax_i$ in precision \mathbf{u}_r Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ in precision $\mathbf{u}_{\mathbf{f}}$ $x_{i+1} = x_i + d_i$ in precision **u** until converged e.g., with $\mathbf{u}_{\mathbf{f}} \equiv \text{fp16}$, $\mathbf{u} \equiv \text{fp32}$, and $\mathbf{u}_{\mathbf{r}} \equiv \text{fp64}$ or $\mathbf{u}_{\mathbf{f}} \equiv \mathrm{fp16}$, $\mathbf{u} \equiv \mathrm{fp64}$, and $\mathbf{u}_{\mathbf{r}} \equiv \mathrm{fp128}$

Carson and Higham (2018)

- Convergence speed: $\phi = O(\kappa(A)\mathbf{u}_{\mathbf{f}})$
- Attainable accuracy: $O(\mathbf{u} + \kappa(A)\mathbf{u}_r)$
- Three-precision LU-IR is as general (as modular) as possible

LU-IR with GPU tensor cores

Results from 📑 Haidar et al. (2018)



• GPU tensor cores use fp16 storage but fp32 accumulation, providing an accuracy boost which can be critical! (more on this in Lecture 16)

Use of fp16 presents two risks:

- Overflow/underflow in the LU factors
 - $\circ ~ \||L||U|\| \leq f(n)\rho_n \|A\| \Rightarrow$ even if A fits in the range, its LU factors may not
 - Image: Higham, Pranesh, Zounon (2019) : two-sided diagonal scaling $A' \leftarrow D_r A D_c$ so that $\|A\| \le c$
 - $\circ\,$ To minimize underflow and better utilize the range of fp16, helpful to take c as close as possible to maximum safe value
- Loss of positive definiteness
 - $\circ~$ Rounding a posdef A to fp16 might make it indefinite \Rightarrow Cholesky factorization breaks down
 - Bigham & Pranesh (2021) : factorize $A + \sigma D$ instead $(D = \text{diag}(A), \sigma = O(u_{16}))$
- MATLAB demo (LU-IR)

Fixed-point iterations

Iterative refinement

GMRES

GMRES-IR

Adaptive precision GMRES

Krylov subspace

27/51

• We define the Krylov subspace of dimension m associated with B and y as

$$\mathcal{K}_m(B, y) = \operatorname{span}\left\{y, By, B^2y, \ldots, B^{m-1}y\right\}.$$

Fixed-point iterations build x by successive additive corrections: thus, x can be expressed as a linear combination of vectors belonging to a certain Krylov subspace.
Proof:

○
$$x_m = x_0 + \sum_{k=0}^{m-1} Cr_k$$

○ $r_k = (I - AC)^k r_0$
○ $C(I - AC)^k = (I - CA)^k C$
○ $x_m = x_0 + \sum_{k=0}^{m-1} (I - CA)^k Cr_0$

 \Rightarrow Conclusion: $x_m \in x_0 + \mathcal{K}_m(CA, Cr_0)$, where

$$\mathcal{K}_m(\mathit{CA}, \mathit{Cr}_0) = \operatorname{span}\left\{\mathit{Cr}_0, \mathit{CACr}_0, (\mathit{CA})^2 \mathit{Cr}_0, \ldots, (\mathit{CA})^{m-1} \mathit{Cr}_0\right\}.$$

• Hower, the combination computed fixed-point iteration is not optimal. Can we find the optimal one?

- The Arnoldi iteration. builds a basis for $\mathcal{K}_m(B, y)$ by repeated multiplication with B and orthonormalization (here, MGS).
- We obtain the Arnoldi relation $BV_m = V_{m+1}H_m$, where
 - $\circ V_{m+1} \in \mathbb{R}^{n imes (m+1)}$ has orthonormal columns
 - \circ $H_m \in \mathbb{R}^{(m+1) imes m}$ is an Hessenberg matrix

```
\beta = \|\mathbf{y}\|_2
v_1 = v/\beta
for k = 1: m do
    w_{\nu} = B v_{\nu}
    for i = 1: k do
         h_{ik} = w_k^T v_i
         w_k = w_k - h_{ik}v_i
    end for
    h_{k+1,k} = \|w_k\|_2
    If h_{k+1,k} = 0, stop.
    v_{k+1} = w_k / h_{k+1} k
end for
```

(Unpreconditioned) GMRES

The GMRES (generalized miminum residual) method builds a basis for $\mathcal{K}_m(A, r_0)$ with the Arnoldi iteration.

At iteration k:

- Step k of Arnoldi yields: $AV_k = V_{k+1}H_k$
- Find $x_k \in x_0 + \mathcal{K}_k$ minimizing $r_k = Ax_k b$

$$\circ x_k \in x_0 + \mathcal{K}_k \Rightarrow x_k = x_0 + V_k y_k$$
 and thus

$$r_{k} = b - Ax_{k}$$

= b - A(x_{0} + V_{k}y_{k})
= r_{0} - AV_{k}y_{k}
= $\beta v_{1} - V_{k+1}H_{k}y_{k}$
= $V_{k+1}(\beta e_{1} - H_{k}y_{k})$

• Stop if $||r_k||$ is small enough 29/51

 $r_0 = b - Ax_0$ $\beta = \|\mathbf{r}_0\|$ $v_1 = r_0/\beta$ repeat $w_{\mu} = A v_{\mu}$ for i = 1: k do $h_{ik} = q_i^T w_k$ $w_k = w_k - h_{ik}v_i$ end for $h_{k+1,k} = ||w_k||$ $v_{k+1} = w_k / h_{k+1,k}$ $y_k = \arg \min_{\mathbf{v}} \|\beta e_1 - H_k \mathbf{v}\|.$ **until** $||r_k||$ is small enough $x_k = x_0 + V_k v_k$

MGS-GMRES is backward stable Paige, Rozloznik, Strakos (2006)

Theorem

If unpreconditioned GMRES run in precision u, there exists an iteration $k \le n$ at which the iterate \hat{x}_k satisfies

$$(A + \Delta A)\widehat{x}_k = b, \quad \|\Delta A\| \leq O(u)\|A\|$$

and so

$$\|\widehat{x}_k - x\| \lesssim \kappa(A)u\|x\|.$$

This is an existence result: no guarantee that k will be small (might be as large as n!)

Restarted GMRES

 $x = x_0$ r = b - Ax and $\beta = ||r||$ while β is not small enough **do** $v_1 = r/\beta$ for k = 1: *m* do $w_k = A v_k$ for i = 1: k do $h_{ik} = v_i^T w_k$ $w_k = w_k - h_{ik}v_i$ end for $h_{k+1,k} = \|w_k\|$ $v_{k+1} = w_k / h_{k+1,k}$ $y_k = \arg \min_v \|\beta e_1 - H_k y\|.$ end for $x = x + V_m y_m$ r = b - Ax and $\beta = ||r||$ end while

- Cost of SpMV: nnz(A) per iteration
- Cost of building \mathcal{K}_m :
 - $O(nm^2)$ flops
 - O(nm) storage
 - \Rightarrow unaffordable as *m* increases
- Restarted GMRES: limit size of Krylov basis to small *m*
 - Stop after *m* inner iterations
 - \circ Update x and restart
 - \circ Repeat until $\|r\|$ is small enough
- Slower convergence but bounded cost per iteration
- MATLAB demo (GMRES, restarted GMRES)

31/51

Preconditioned GMRES

- Convergence of GMRES strongly depends on matrix \Rightarrow preconditioning is needed
- Preconditioned GMRES: apply GMRES to

MAx = Mb (left preconditioning) AMy = b, My = x (right preconditioning)

where $M \approx A^{-1}$

- Some examples of preconditioners:
 - Jacobi: $M = \text{diag}(A)^{-1}$, Gauss-Seidel, etc.
 - LU preconditioner: $M = U^{-1}L^{-1} \Rightarrow$ requires triangular solves at each iteration. Exact LU is expensive and would not require an iterative method. Use approximate LU instead: low precision, incomplete factorization, block low-rank approximations (Lecture 14), etc.
- Right preconditioning does not change the residual and is thus often preferred: $||MAy - b|| = ||Ax - b|| \neq ||MAx - Mb||$
- 32/51 MATLAB demo (preconditioned GMRES)

Fixed-point iterations

Iterative refinement

GMRES

GMRES-IR

Adaptive precision GMRES

repeat $r_i = b - Ax_i$ in precision \mathbf{u}_r Solve $Ad_i = r_i$ with GMRES in precision \mathbf{u}_g $x_{i+1} = x_i + d_i$ in precision \mathbf{u} until converged

- GMRES is stable $\Rightarrow \phi = \kappa(A) \mathbf{u_g}$
- · Can be interpreted as mixed precision restarted GMRES
- Inner GMRES is unpreconditioned \Rightarrow might take too many iterations!

GMRES-LU-IR

```
Factorize A = LU in precision \mathbf{u}_{\mathbf{f}}
Solve Ax_0 = b via x_0 = U^{-1}(L^{-1}b) in precision \mathbf{u}_{\mathbf{f}}
repeat
r_i = b - Ax_i in precision \mathbf{u}_{\mathbf{r}}
Solve U^{-1}L^{-1}Ad_i = U^{-1}L^{-1}r_i with GMRES in precision \mathbf{u}_{\mathbf{g}}
x_{i+1} = x_i + d_i in precision \mathbf{u}
until converged
```

Rationale for replacing LU solver by preconditioned GMRES:

- GMRES can be asked to converge to accuracy $u_g \ll u_f$
- $\kappa(\widetilde{A}) = \kappa(U^{-1}L^{-1}A)$ often smaller than $\kappa(A)$
- If *A*d_i = *r*_i were solved with accuracy φ_i = κ(*A*)u_g, convergence condition would be improved from κ(A)u_f < 1 to κ(*A*)u_g < 1...
- ... but there is a catch!

Stability of preconditioned GMRES

- As mentioned previously unpreconditioned GMRES is stable...but what about preconditioned GMRES?
- One key difference: the matrix-vector products are performed with \widehat{U}^{-1} , \widehat{L}^{-1} , and A separately, not directly with \widetilde{A} (which is never formed)

$$\circ y = \widetilde{A}x \Rightarrow \|\widehat{y} - y\| \le n\mathbf{u}_{\mathbf{g}}\|\widetilde{A}\|\|x\|$$

$$\circ y = \widehat{U}^{-1}\widehat{L}^{-1}Ax \Rightarrow \|\widehat{y} - y\| \le f(n)u\|A\|\|\widehat{U}^{-1}\|\|\widehat{L}^{-1}\|\|x\| \lesssim \kappa(A)f(n)\mathbf{u}_{\mathbf{g}}\|\widetilde{A}\|\|x\|$$

- \Rightarrow extra $\kappa(A)$ term appears, it is as if GMRES was run in "precision" $\kappa(A)\mathbf{u_g}$
- Overall: $\phi_i = \kappa(\widetilde{A})\kappa(A)\mathbf{u_g}$
- \Rightarrow Potentially better than $\phi = \kappa(A) u_{f}$ if $\kappa(\widetilde{A})$ is small
 - We have the (pessimistic) bound $\kappa(\widetilde{A}) \leq u_f^2 \kappa(A)^2$

Factorize A = LU in precision $\mathbf{u}_{\mathbf{f}}$ Solve $Ax_0 = b$ via $x_0 = U^{-1}(L^{-1}b)$ in precision $\mathbf{u}_{\mathbf{f}}$ repeat $r_i = b - Ax_i$ in precision $\mathbf{u}_{\mathbf{r}}$ Solve $U^{-1}L^{-1}Ad_i = U^{-1}L^{-1}r_i$ with GMRES in precision $\mathbf{u}_{\mathbf{g}}$ except products with $U^{-1}L^{-1}A$ in precision $\mathbf{u}_{\mathbf{p}}$ $x_{i+1} = x_i + d_i$ in precision \mathbf{u} until converged

- Perform matvecs with \widetilde{A} in precision $u_p \leq u_g$ to reduce $\kappa(A)$ dependence
- Convergence speed: $\phi = O(\kappa(\widetilde{A})(\mathbf{u}_{g} + \kappa(A)\mathbf{u}_{p})) = O(\kappa(A)^{2}\mathbf{u}_{f}^{2}(\mathbf{u}_{g} + \kappa(A)\mathbf{u}_{p}))$
- Attainable accuracy: $O(\mathbf{u} + \kappa(A)\mathbf{u}_r)$
- Modular error analysis (parameterize every line by independent precisions) reveals the numerical structure of the algorithm!

With five arithmetics (fp8, fp16, fp32, fp64, fp128) there are over **3000 different** combinations of GMRES-IR5!

They are not all relevant !

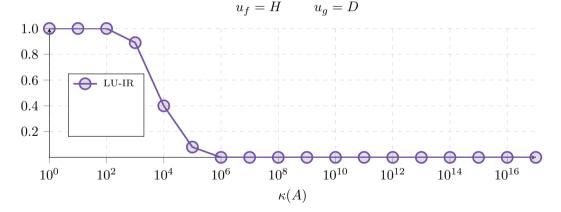
Meaningful combinations: those where none of the precisions can be lowered without worsening either the limiting accuracy or the convergence condition.

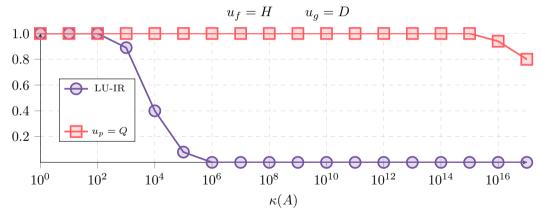
$$\label{eq:Filtering rules} \begin{split} & \text{Filtering rules} \\ & \bullet \ u^2 \leq u_r \leq u \leq u_f \\ & \bullet \ u_p \leq u_g \\ & \bullet \ u_p < u_f \end{split} \qquad \begin{array}{l} \bullet \ u_p < u, \ u_p = u, \ u_p > u \ \text{all possible} \\ & \bullet \ u_g \geq u \\ & \bullet \ u_g < u_f, \ u_g = u_f, \ u_g > u_f \ \text{all possible} \end{split}$$

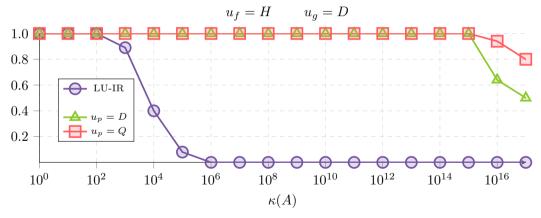
Meaningful combinations of	GMRES-IR5 for $u_f \equiv$	fp16 and $\mathbf{u} \equiv fp64$
----------------------------	----------------------------	-----------------------------------

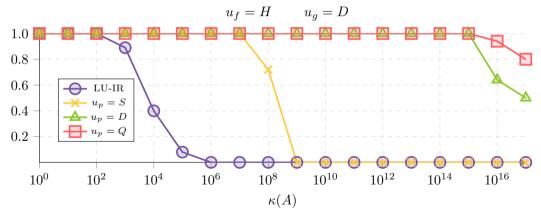
ug	u _p	Convergence Condition $\max(\kappa(A))$
LU	-IR	$2 imes 10^3$
fp8	fp32	$8 imes 10^3$
fp16	fp32	$4 imes 10^4$
fp16	fp64	$9 imes 10^4$
fp32	fp64	$8 imes 10^6$
fp64	fp64	$3 imes 10^7$
fp64	fp128	$2 imes 10^{11}$

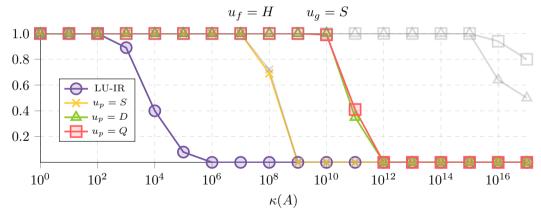
Six meaningful combinations \Rightarrow flexible precisions choice to fit at best the hardware constraints and the problem difficulty.

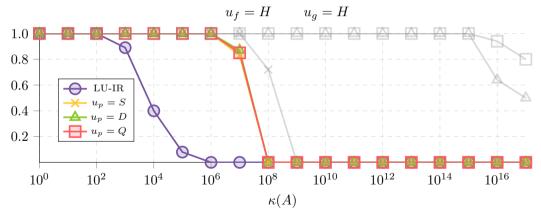




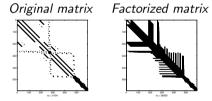








- **Dense systems:** cannot overwrite *A* with LU factors, need to keep *A* for evaluating residuals ⇒ IR costs *more* memory
- Sparse systems: typically nnz(LU) ≫ nnz(A), so original copy of A is negligible; LU-IR allows for storing the LU factors in low precision and thus saves memory!



• Same applies to the GMRES basis, which requires *mn* entries but can be stored in low precision with GMRES-IR

Comparison on industrial problems

42/51

Matrix	time (s)			memory (GB)		
	А	B	С	А	В	C
ElectroPhys10M	265.2	154.0	166.5	272.0	138.0	171.3
Bump_2911	205.4	129.3	144.5	135.7	68.4	77.8
DrivAer6M	91.8	67.6	77.9	81.6	41.7	52.9
Queen_4147	284.2	165.2	184.7	178.0	89.8	114.5
tminlet3M	294.5	136.2	157.9	241.1	121.0	169.9
perf009ar	46.1	57.5	52.0	55.6	28.9	38.1
elasticity-3d	156.7	—	118.6	153.0	—	103.6
lfm_aug5M	536.2	254.5	269.3	312.0	157.0	187.5
Long_Coup_dt0	67.2	46.6	49.0	52.9	26.7	33.1
CarBody25M	62.9	_	109.8	77.6		54.3
thmgaz	97.6	65.4	79.8	192.0	97.7	141.7

- Up to $2 \times$ time and memory reduction, even for ill-conditioned problems
- GMRES-IR usually more expensive than LU-IR, but more robust ⇒ overall good compromise on a wide range of matrices

Fixed-point iterations

Iterative refinement

GMRES

GMRES-IR

Adaptive precision GMRES

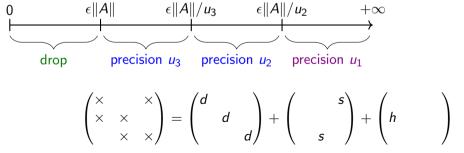
- So far, we have considered introducing mixed precision via restarts and preconditioning, but not in GMRES itself
- Does it make sense to vary precisions within unpreconditioned, unrestarted GMRES?
- YES, both:
 - Spatially: change precisions across different matrix coefficients
 - Temporally: change precisions across different iterations

Adaptive precision SpMV, reminder

In Lecture 2 we saw how to compute SpMV using p precisions $u_1 < \varepsilon < u_2 < \ldots < u_p$ by partitioning $A = \sum_{k=1}^{p} A^{(k)}$ where

$$a_{ij}^{(k)} = \begin{cases} \mathsf{fl}_k(a_{ij}) & \text{if } |a_{ij}| \in (\varepsilon ||A||/u_k, \varepsilon ||A||/u_{k+1}] \\ 0 & \text{otherwise} \end{cases}$$

 \Rightarrow the precision of each element is chosen inversely proportional to its magnitude



45/51

GMRES-IR with adaptive precision SpMV

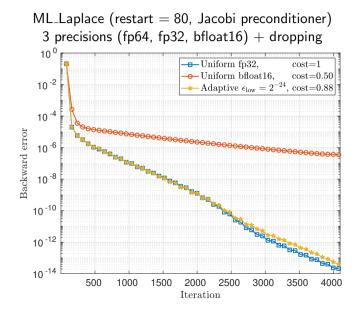
Build adaptive precision representation A $x = x_0$ $r = b - Ax \rightarrow \text{high precision } \mathbf{u}$ $\beta = \|\mathbf{r}\|$ while β is not small enough **do** $v_1 = r/\beta$ for k = 1: m do $w_k = Av_k \rightarrow adaptive precision \mathbf{u}_g$ for i = 1: k do $h_{ik} = v_i^T w_k$ $w_k = w_k - h_{ik} v_i$ end for $h_{k+1,k} = ||w_k||$ $v_{k+1} = w_k / h_{k+1,k}$ $y_k = \arg\min_v \|\beta e_1 - H_k v\|.$ end for $x = x + V_m v_m$ $r = b - Ax \rightarrow high precision u$ $\beta = ||r||$ end while

46/

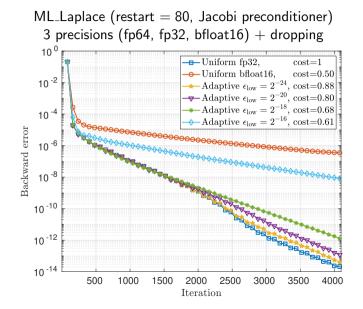
Benefits of adaptive precision SpMV in a GMRES context:

- SpMV is one of the most costly operations so accelerating it is useful
- Adaptive representation à does not depend on vector v_k → only need to build à once at the beginning
- As mentioned previously the inner GMRES can be switched to low precision $u_g \to$ can build \widetilde{A} at precision $u_g \ll u$
- Moreover *A* can target any accuracy ε_g not necessarily corresponding to an available arithmetic

GMRES-IR with adaptive precision SpMV



GMRES-IR with adaptive precision SpMV



Relaxed GMRES

- How much error can the SpMV $w_k = Av_k$ at iteration k tolerate?
- Assume inexact SpMV satisfying a relaxed bound $w_k = (A + E_k)v_k$ (note that E_k depends on v_k and thus on k)
- Ignoring sources of inexactness other than the SpMV (e.g., rounding errors in orthonormalization), we obtain a modified Arnoldi relation

$$\widetilde{A}_k V_k = V_{k+1} H_k$$
, where $\widetilde{A}_k = A + G_k V_k^T$ and $G_k = [E_1 v_1, \dots, E_k v_k]$

• Therefore k steps of relaxed GMRES are equivalent to k steps of exact GMRES applied to $\widetilde{A}_k \rightarrow \text{since GMRES}$ is monotone the relaxed residual $\widetilde{r}_k = b - \widetilde{A}_k x_k$ decreases... but how far is it from the true residual $r_k = b - A x_k$?

•
$$\widetilde{r}_k - r_k = (\widetilde{A}_k - A)x_k = G_k V_k^T x_k$$
, where $x_k = V_k y_k$
 $\Rightarrow \widetilde{r}_k - r_k = G_k y_k = \sum_{i=1}^k y_{k,i} E_i v_i$

Relaxed GMRES

•
$$\widetilde{r}_k - r_k = G_k y_k = \sum_{i=1}^k y_{k,i} E_i v_i$$

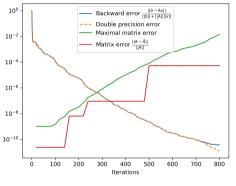
- $y_{k,i} \propto \|\widetilde{r}_{k-1}\|$ (intuition)
- Formal result:

Relaxed GMRES (Giraud, Gratton, Langou, 2009)

Stability up to $O(\varepsilon)$ is maintained if, at each iteration k, the matvec is performed with $\widetilde{A}_k = A + E_k$ such that

$$\frac{\|\boldsymbol{E}_{\boldsymbol{k}}\|}{\|\boldsymbol{A}\|} \leq \frac{1}{n\kappa(\boldsymbol{A})} \frac{\|\boldsymbol{b}\|}{\|\boldsymbol{\widetilde{r}}_{\boldsymbol{k}-1}\|} \varepsilon$$

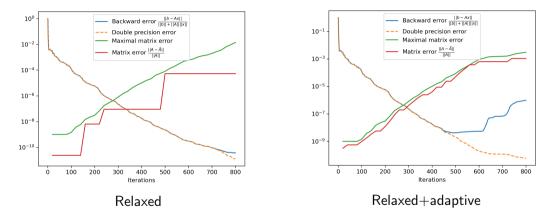
• Matvec precision can be reduced to be inversely proportional to the residual norm \Rightarrow lower and lower precision as iterations progress



Relaxed

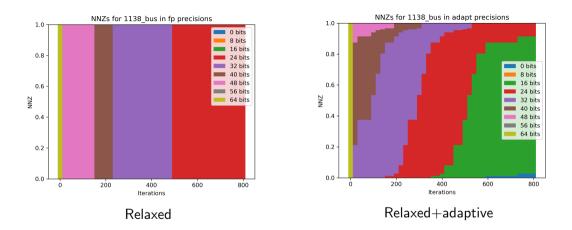
• Can switch to precision $\mathbf{u}_{\mathbf{g}}$ as soon as $\frac{c\varepsilon}{\|\tilde{r}_{k-1}\|} \ge \mathbf{u}_{\mathbf{g}} \Rightarrow$ the more precisions available, the more fine tuning we can do

Relaxed GMRES with adaptive SpMV



- Can switch to precision $\mathbf{u}_{\mathbf{g}}$ as soon as $\frac{c\varepsilon}{\|\tilde{r}_{k-1}\|} \ge \mathbf{u}_{\mathbf{g}} \Rightarrow$ the more precisions available, the more fine tuning we can do
- Adaptive precision SpMV can allow continuous variations of accuracy $\varepsilon_{\mathbf{g}}$!

Relaxed GMRES with adaptive SpMV



- Need to reevaluate the potential of relaxed GMRES in light of evolutions in hardware (more precisions) and algorithms (adaptive SpMV)
- $_{51/51}$ ⇒ Internship/PhD available (see here for details)