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The concept

AIM? Given a problem, reduce the computational cost of the
solution process
HOW? Exploit the structure to perform dimensionality reduction



The concept

AIM? Given a problem, reduce the computational cost of the
solution process
HOW? Exploit the structure to perform dimensionality reduction

Level 1
16 ¢

prolongation

restriction

Level 4

32 cells
43 o

coarsest (last) grid




The concept

AIM? Given a problem, reduce the computational cost of the
solution process
HOW? Exploit the structure to perform dimensionality reduction

Level 1

restriction
2

N g
e Es
AN
A
AN
A
TN
AN
AIARAY
A
AN
MY
..Hii

Level 4
32 cells
43 nox

coarsest (last) grid

Multilevel methods (ML)



Outline

Origins of multilevel methods



The problem

Numerical solution of partial differential equations (PDEs)
Given f: Q C R & R, g : 02 — R and a differential operator D,
find u: RY — R that solves

D(u(x)) = f(x) in Q
u(x) = g(x) in 9Q

Examples:

» Poisson’s equation: D(u(x)) = Au(x) = 27:1 621((_2)()

> Nonlinear equation: D(u(x)) = 329 a;(x) Pulx) | p(x)

ax’?

@ W. Briggs, V. Henson, S. McCormick. A Multigrid Tutorial, SIAM,
2000.



Our model test problem

A simple 1D example: 1D Poisson’s problem with Dirichlet
boundary conditions.
Given f:R— R and g: R — R find v : R — R such that

—u"(x) = f(x), x € (0,1)
u(0) = g(0) =0
u(1) = g(1) = 0



The numerical solution of PDEs: discretization

» Build a grid on Q.
Example: equispaced

points on each axis - .

» Discretize D on the chosen oo * fs 2
grid and obtain a discrete 1D: h = % x—jh0<j<n
problem

» The size of the grids
impacts the size of the
discrete problem and the "
accuracy of the solution
approximation

Example: 2D, Q =[0,1] x [0, 1]



Discretization of derivatives: the simple 1D case

letu: R—R

U/(X) — I!'[)no U(X) — Z(X + h)

Discretization: for fixed small h

o (x) ~ u(x) — :(x + h) o u(x — hi)) — u(x)
T u(x=h)—u(x) _ u(x)—u(x+h)
U”(X) — (UI)I(X) ~ u (X) : (X + h) ~ h - h

_ u(x — h) —2u(x) + u(x + h)
2




Discretization of the model test problem

g T1 X2 Tj Tn—-1 Tnp

ID:h=1 x=jh0<j<n

» The boundary conditions: u(xp) = g(x0) =0,
u(xn) = g(xn) =0

» On the interior points of the grid: —u”(x;) = f(x;)
j=1,...,n—1

» Solution approximation: (0, u1, ..., up,0)

» Discretization of

"o u(xi—h)=2u(x)+ulx+h) _ uj1—2u+ujn
u"(xj) ~ 2 = i




Matrix form:

2 1
1 2 -1
-1 2 -1 u(x1) f(x1)
: U(Xg) _ f(XQ)
h? : I
-1 2 -1 u(xp-1) f(xn-1)
1 2 -1
1 2

If the PDE is linear, we obtain a linear system

Au=f, AeRMxmHl



Fixed point methods

Au = f is solved using a fixed point method.

Fixed point scheme :

The true solution :
uv'=Ru*+b

To define R, we decompose the matrix:

A=L+D+U
1 2 3 0 0O 1 00 0 2 3
5 6| = 0 O[+]|0 5 0 0 0 6
9 0 0 0 9 0 00
A L D U



Examples of fixed-point schemes

» Jacobi:

ut*) = DL+ U)u®) + D7
| — ~—
5 b
> Gauss-Seidel:
u) = —(L+ D) U u® + (L+ D)7
R b



Fixed point: reduction of the error
Fixed point scheme :
The true solution :
u*=Ru*+b
The error :
elkt1) .= (k1) _ = Re(K)
After M iterations:
M) . (M) — Re(M=1) _ R2o(M=2) _ .
Convergence:

lim [[eM]| =0 < p(R) <1,
M— oo

where p(R) = max{|A1],...,|\n|} eigenvalues

. — RM0)



The Jacobi scheme: study of the convergence

Let us consider or test problem:

2 -1
-1 2 -1

We can see that




The Jacobi scheme: study of the convergence

Eigenvalues and eigenvectors

km
Ae(A) = 4sin? [ —
k(A) sin (2n

) ,1<k<n-1
P
(wi)j = sin <7”> 1<j<n-—1
n

Thus from (1)

1 k

M(R)=1—M(A)=1—2sin [~ ), 1<k<n-1

2 2n

Eigenvectors are the same as those of A: Rwy = A(R)wk

Notice that |A\¢(R)| < 1 for all k and thus the method converges,
but the rate of convergence will depend on how small |A(R)| are



Reduction of the error

The eigenvectors form a basis.

Initial error:
n—1
e(o) = E Ci Wy
k=1

After M iterations:

n—1 n—1
eM) .— (M) _ = RMe(0) — Z ccRMw,, = Z ck/\kM(R)Wk
k=1 k=1

» After M iterations, the kth components of the initial error
(modes) wy has been reduced by a factor of AY(R) < 1

> Modes are not mixed: the iteration can change the amplitude
of a mode, but it cannot convert that mode into different
modes



The Fourier modes

The vectors

Py
(Wk)j:Sin<7U>,1§j§n—1
n

are special vectors called the Fourier modes and k is the
frequency.

Vi(x) =sin(51), n =10

On a n-point grid:
» 1< k < 3 low frequencies .

» 7 < k < n—1 high frequencies




Limitation of iterative schemes: the smoothing property

o(M) _ (M) _ Z G AM(R

> M(R)~1
> | Ak(R )|< foralln/2<k<n-1

> 1 is the smoothlng factor (dumping coefficient of the
oscillatory components at each relaxation)

Hard to reduce the low frequency components of the error

k _
vk(x)=sin(x—”),05x5n e k=1
n

\; / S




How to make the methods efficient on all frequencies?

Frequency shift by coarsening!

» Fine grid Q" with n points: 1 < k<n—-1
» Coarse grid Q2" with n/2 points: 1 < k < n/2
Grid points of Q%" are the even-numbered points of Q.

Property: (ng)zj = (W,fh)j
Wavenumbers k < nh/2 in Q"— wavenumbers k < n2" in Q2h

Frequencies k

RN
—e




Accelerate convergence by considering multiple grids

» The smoothing rate (the convergence factor for the oscillatory
modes) for the standard relaxation schemes is small and
independent of the grid spacing h.

» The smooth error modes, which remain after relaxation on
one grid, appear more oscillatory on the coarser grids.

> Moving to successively coarser grids, all of the error
components on the original fine grid eventually appear
oscillatory and are reduced by relaxation.

» The overall convergence factor for a good multigrid scheme is
small and independent of h.
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Multigrid methods



Multigrid methods

After removing all the oscillatory components, when relaxation
begins to stall, signaling the predominance of smooth error modes,
it is advisable to move to a coarser grid; there, the smooth error
modes appear more oscillatory and relaxation will be more effective.

P> Fine scales: eliminate
high frequency
components of the
error

finest (principal) grid
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» Coarse scales:
eliminate low

Levas frequency

‘ components of the
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error



Ingredients of a two-level multigrid methods

Consider a PDE:

Au="f

. . L 2h
Consider two discretizations: "
» Fine grid: APuh = fh

Ly

» Coarse grid: A%My?h = £2h




Transfer operators: how do we move between two grids 7

From fine to coarse: /2" (restriction)

» Injection:

> Full weighting

Figure 3.4: Restriction by full weighting of o fine-grid veclor to the course grid.



Transfer operators: how do we move between two grids 7

From coarse to fine: IJ, (prolongation)

> Interpolation

h 2h
Vaj = Vj
o1
Voj+1 = 2( _H-l)

/\ /\ o

0 1 2 \/ 4 5 & N
/° /\°\\ _'/ /\\ s

oo 2 3 4 ;\./r

E 9 0 u

Figure 3.2: Interpolation of a vector en coarse grid 1°" to fine grid Q7.



How to define the coarse level operator A%"?

» Galerkin approximation:
2h 2h ahth

» Discretization of differential operator on the coarse grid



Two-level multigrid methods
Consider a PDE:
Au=f

Consider two discretizations:
» Fine grid: APuh = fh

» Coarse grid: A2My?h = £2h

Idea: write the solution u as the
sum of a fine and a coarse term:
h 2h
un~ v P(e ™).
\/—’— (v)
ER" E]R2h
and update the two components
in an alternate fashion.

00

BP Byt




Two-level multigrid methods

Update the two components in an alternate fashion:

ur~v-+4e

> Fine level: get vh by iterating on APy = "
>
>
>



Two-level multigrid methods

Update the two components in an alternate fashion:

u~v+4e
r=f—Av

> Fine level: get v/ by iterating on Ahu = £

» Compute r" = f — Av" and project r?h = Rrh
>

>



Two-level multigrid methods

Update the two components in an alternate fashion:

u~v+4e

Ae = r residual equation

> Fine level: get v/ by iterating on Afu = f"
» Compute r" = f — Av" and project r?h = Rr"
» Coarse level: compute correction: A2Me2h = r2h

>



Two-level multigrid methods

Update the two components in an alternate fashion:

u~v+4e

» Fine level: get vI by iterating on A"y = "
» Compute r" = f — Av" and project r?" = Rr"
» Coarse level: compute correction: A2he2h = r2h

» Correct: v « v + P(e?h)

Link to iterative refinement, see



General multigrid methods - V-cycle

V-Cycle Scheme
vll P Vh(vh fll)
o Relax on A"u" = f" | times with initial guess v".
o Compute f2h = [2hrh
o Relax on A?"u?" = 2! 1y times with initial guess v?" =
o Compute £ = I&12",
o Relax on A**u* = f*" y, times with initial guess v** = 0.
o Compute £ = I§firéh.

o Solve ALhulh = fLh,

o Correct vi « v 4 [ifivsh,
e Relax on A%"u* = f*" v, times with initial guess v*".
o Correct v2* « v 4 [2hy4h,
e Relax on A?*u?" = 2" 1, times with initial guess v2".
o Correct vF v + I v2h.
o Relax on A"u" = % v, times with initial guess v".



General multigrid methods - V-cycle

V-Cycle Scheme (Recursive Definition)
vl — VR ).

1. Relax v; times on A"u” = f* with a given initial guess v".

2. If Q" = coarsest grid, then go to step 4.
Else
£2h — I (Eh — Ahvh),
v — 0,
V2h — VZh(VZh, f2h)_
3. Correct v — vh + 1% v2h.

4. Relax v, times on A"u" = f* with initial guess v".



General multigrid methods - other cycles

h

2h

(@)
h
2h
4h
8h
(b)
h
2
4h
8h
(©)

Figure 3.6: Schedule of grids for (a) V-cycle, (b) W-cycle, and (c) FMG scheme,
all on four levels.



Schemes for the cycles

Full Multigrid V-Cycle (Recursive Form)
vh — FMG"(f").
1. If Q" = coarsest grid, set v « 0 and go to step 3.
Else
R )
v2h — FMGQh(th)_
2. Correct vF «— I} v2h

3. v — Vh(vh £h) vy times.



Numerical example

Convergence of Numerical Poisson System
T T

8 100 S 00000000000000000000006000000008 o
N
©
8 Numerical Method
c 5L
[ 10 = © = Jacobi Smoothing
) =—#— Gauss-Seidel
z V-Cycle Multigrid
8 1o} —#— F-Cycle Multigrid |
Q0 = © = W-Cycle Multigrid
E
&) 10-15 1 1 1 1 1 1 il
0 5 10 15 20 25 30 35 40

Iterations



From linear to nonlinear: multilevel methods

Multigrid methods work for linear systems: Ax = b
An extension exists for nonlinear equations: A(x) = b FAS (Full

Approximation Scheme)

But what happens if we want to
tackle a more general
optimization problem with a
hierarchical structure ?
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Multilevel optimization methods



Classical iterative optimization methods

Large-scale nonlinear unconstrained optimization problems:

min f(x)

X

» Build a model (Bx ~ V2f(xx) or Bx = 0):

1
f(xk+5) =~ Te(s) = F(x) +sTVF(xe) + ESTBks



Classical iterative optimization methods

Large-scale nonlinear unconstrained optimization problems:

min f(x)

» Build a model (Bx ~ V2f(xx) or Bx = 0):
1
f(xk+5) =~ Te(s) = F(x) +sTVF(xe) + ESTBks
» Compute a step sx (r(Ak) regularization term):

msin my(s) = Tk(s) + r(Xk), Ak >0



Classical iterative optimization methods

Large-scale nonlinear unconstrained optimization problems:

min f(x)

» Build a model (Bx ~ V2f(xx) or Bx = 0):
Fxk+5) ~ Tu(s) = F(xk) + 5T VF(xk) + %STB;(S
» Compute a step sx (r(Ak) regularization term):
msin my(s) = Tk(s) + r(Xk), Ak >0

> Update the iterate xx11 = xx + sk



Classical examples

» Gradient method:
A
mi(s) = £ () +sTVF i) + 5 s
» Adaptive second order method:
_ T 1l 72 Ak 2
my(s) = f(xk) +s' VF(xk)+ 5S Vf(xk)s + 7\\5“
» Adaptive Cubic Regularization (ARC):
_ T 1l 72 Ak i3
mg(s) = f(xk) +s' VF(xk) + 55 Vf(xk)s + ?HSH

@ Cubic regularization of Newton method and its global performance,
Y. Nesterov and B. Polyak, 2006



Bottleneck: Subproblem solution

Solving
min Tk(Xk,S) + r()\k)
S

represents greatest cost per iteration, which depends on the size of
the problem.

Possible solution: multilevel methods
@ MG /OPT: A multigrid approach to discretized optimization
problems, Nash, 2000*

[ RMTR: Recursive trust-region methods, S. Gratton, A. Sartenaer
and Ph. L. Toint, 2008

1https ://optimization-online.org/wp-content/uploads/2012/04/3447.pdf
https://www.cerfacs.fr/algor/reports/2007/TR_PA_07_42.pdf


https://optimization-online.org/wp-content/uploads/2012/04/3447.pdf
https://www.cerfacs.fr/algor/reports/2007/TR_PA_07_42.pdf

Multilevel spirit

» Exploit structure of the problem to build a hierarchical
representation of the problem

» Exploit lower levels to compute a cheap (but useful) step

» Simplify the landscape in a nonconvex setting



Hierarchy of problems (n, > n,_1 > ...np)

‘ Finest Level f, : R — R

Restriction | R, P, 1 Prolongation

Fine Level f,_1 : R"-1 - R

Restriction | R,—1 P,_1 1 Prolongation
Restriction | R» P> 1 Prolongation
0’::.’0‘
s
"3:.::’:’%:’:’:3:‘ Coarse Level » : R™ — R
R
Restriction | Ry P1 1 Prolongation

§ Coarsest Level fp : R™ — R




Example 1: image restoration

-
)4

Decimation

Decimation




Example 2: hyperspectral imaging

spectrale ou réduction spatiale

Résolution spatiale

41/64



Example 3: neural networks

%S
e
=

42/64



Classical one-level method

min f(x)

X Xyl = X+ 8

XN

e
o
X

TR

AN min T;(s) + ri(s)
s




Multilevel strategy: step computation

Two choices:
1. Classical fine step

2. Coarse step



Fine step

min )

h _ Lh h
Hep1 = X + 5

SN . N
RN min T/(s") + r/(s") | RGN
E s

v

IR, A
Jis
s



Multilevel strategy: step computation

Two choices:
1. Classical fine step

2. Coarse step



Coarse step

minf"(x") ~ min f(x)
s s h = yhg heH
R X1 = X TSk

, AN WA
= OO SRR
":’::"\““\\}\\\. A
AR 2
(S
o RS

B H¢ H
min f (s™)




What do we need to use such a method 7

Transfer operators
> /[T € RNu*No - from fine to coarse (Ny < Np).
> I,’_’, € RNoXNH - from coarse to fine.

> Relation between the operators : l,’_’, = a(l,:")T, a > 0.

Vv
vy




What do we need to use such a method 7
Lower level model

When to use the lower level model?
» Choose lower level model pf if
> i V) > RV ()], > 0
> if [V (DI > €

» Minimize regularized Taylor model otherwise.

How to define the lower level model?
Modify f to ensure coherence among levels



First order coherence

Niveau fin i

Niveau grossier H -

50/64



Coherence between levels: first order

Let xf = l#x,f. Model with first order correction:
P () = FHOE + s7) + ()T
v = IV () — VT ()
This ensures that

Vil (07) = IV £ (x¢)

> first-order behaviours of f and uf are coherent around x,i’.

» If s descent direction for u,’;’ and s" = PhsH then s" is a
descent direction for f”

0> Vull(0MTsH = (vrh(x)T Phst = (VFh(x)Ts"



Multilevel algorithm: k-th iteration

Given x,f

1. If descent condition, decide to go to step 2 or step 3. Else go
to step 2.

2. Fine iteration: iteration on f.
2.1 Minimize T} (s) obtaining s}.
2.2 Set X:H =xJ +s].

3. Coarse iteration:
3.1 Initialisation : x}! = I//x}
3.2 Compute first order coherence v

3.3 Minimization (possibly approximate) of
p(sM) = FH(xf +sM) - st = oMo o 0f(0")

H

m times
3.4 Fine level update: x/! ; = x/ + /,_,sm B



A possible iterative scheme

k=1 k=2 k=3
_’ " . _’4@_’ e _’_’ T .



Parameters of the coarse iterations

> &, any minimization scheme, can be different from fine level
one, can use second order
» How many iterations m?

» m large enough to compensate projection cost
> m not too large to keep first order coherence



Effect of coarse projection in a nonlinear setting

1. Cost reduction: usually a factor 4 from one level to another in
dimension 2
> Level h: fi(u),ueR"
> Level H: fH(u),uc R/
— for the same cost, can do at coarse level 4 times the
number of iterations at fine level

2. Smoothing of the landscape: escape local minima— better
solution



Smoothing of the landscape
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Smoothing of the landscape
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Smoothing of the landscape

32 samples: z=nA + > x? — Acos(2nx;)
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Smoothing of the landscape
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Numerical results for 5 levels MG/OPT with line-search
Problem:

- 2
mgnF(a) = %/0 <§—;(wlao) - ¢($1)) dzy,

MG/Opt with Exact Gradient

error in objective value

0 100 200 300 400 500 600 700 800
fine-level gradient evaluations



Numerical results for 5 levels RMTR

Performance profile® on 17 infinite-dimensional problems involving
differential operators

AF=one-level Newton

MR=from down to up

MF=RMTR from up to down

vVvyyvyy

FM= RMTR from down to up

Recursive trust-region methods, S. Gratton, A. Sartenaer and Ph. L.
Toint, 2008

=) &)

Benchmarking Optimization Software with Performance Profiles , E. D.
Dolan, J. J. Moré, 2002

3Performance profile pa(7) of an algorithm A at point T shows the fraction
of the test set for which the algorithm is able to solve within a factor of 7 of
the best algorithm for the given measure



Numerical results for 4 levels ARC

—Au(z) + ") = g(z) inQ C R?,
u(z) =0 on 09,

The following nonlinear minimization problem is then solved:

1
min Zu” Au + ||e"/?|]?2 — g u,
ueRn 2

which is equivalent to the nonlinear system Au + e = g.
» Coarse approximations: coarser discretization of the problem

n = 1024 n = 4096
ARC MARC4 || ARC MARC4
o | itr/ity | 11/11  7/2 || 23/23  15/4
save 2.2 4.1
Oy | itr/ite | 27/27 13/4 56/56 22/6
save 3.9 6.1




Extension to g-order models

@ on high-order multilevel optimization strategies, H. Calandra, S.
Gratton, E. R., X. Vasseur, 2020

We define

,ug’:k(sH) :fH(x(’:’k + SH) + corr
q
1 . .
corr = S[R(V/F(x)) = VI (] (s7, ..., s"),
i=1 : i times
Example
For g =2

corr :(/ﬁth(X;?) — VfH(Xf))TXICI

1
+ 5 () TRV O = V27 0a))x



Theoretical results: Assumptions

Assumption 1

Let us assume that for all levels the g-th derivative tensors of "
are Lipschitz continuous.

Assumption 2
There exist strictly positive scalars kgg, p > 0 such that

dist(x, X) < keg||Vif(X)|l, Vx € N(X,p),

where X is the set of second-order critical points of f, dist(x, X)
denotes the distance of x to & and
N(X, p) = {x | dist(x, X) < p}.

W On the Quadratic Convergence of the Cubic Regularization Method
under a Local Error Bound Condition, Yue, M.C. and Zhou, Z. and
So, A.M.C., 2018: generalized to higher-order methods



Theoretical results: 1) global convergence

Theorem

Let Assumption 1 hold. Then, the sequence of iterates generated
by the algorithm converges globally to a first-order stationary point.

[§ E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos
and Ph. L. Toint, 2017: generalized to multilevel framework



Theoretical results: 2) complexity

Theorem

Let Assumption 1 hold. Let fi,,, be a lower bound on f. Then, the
method requires at most

q+1

O(e 7))
iterations to achieve an iterate xy such that |V f(x,)|| < e

W E.G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos

1
and Ph. L. Toint, 2017: k = O(e_%) Complexity of standard
method is maintained



Theoretical result: 3) local convergence

Theorem

Let Assumptions 1 and 2 hold. Assume that L£(f(xx)) is bounded
for some k > 0 and that it exists an accumulation point x* such
that x* € X'. Then, the whole sequence {xx} converges to x* and
it exist strictly positive constants ¢ € R and k € N such that:

X1 — X7

<ec, Vk>k.
[[xae — x*||@
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