Cours 5

Multigrid and multilevel methods

Elisa Riccietti and Théo Mary

LIP-ENS Lyon

The concept

AIM? Given a problem, reduce the computational cost of the solution processHOW? Exploit the structure to perform dimensionality reduction

The concept

AIM? Given a problem, reduce the computational cost of the solution processHOW? Exploit the structure to perform dimensionality reduction

The concept

AIM? Given a problem, reduce the computational cost of the solution processHOW? Exploit the structure to perform dimensionality reduction

Multilevel methods (ML)

Outline

Origins of multilevel methods

The problem

Numerical solution of partial differential equations (PDEs) Given $f : \Omega \subset \mathbb{R}^d \to \mathbb{R}$, $g : \partial\Omega \to \mathbb{R}$ and a differential operator D, find $u : \mathbb{R}^d \to \mathbb{R}$ that solves

> D(u(x)) = f(x) in Ω u(x) = g(x) in $\partial \Omega$

Examples:

- Poisson's equation: $D(u(x)) = \Delta u(x) = \sum_{i=1}^{d} \frac{\partial^2 u(x)}{\partial x_i^2}$
- Nonlinear equation: $D(u(x)) = \sum_{i=1}^{d} a_i(x) \frac{\partial^2 u(x)}{\partial x_i^2} + \rho(x)$

W. Briggs, V. Henson, S. McCormick. A Multigrid Tutorial, SIAM, 2000.

A simple 1D example: **1D Poisson's problem** with Dirichlet boundary conditions.

Given $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$ find $u : \mathbb{R} \to \mathbb{R}$ such that

$$-u''(x) = f(x), x \in (0,1)$$

 $u(0) = g(0) = 0$
 $u(1) = g(1) = 0$

The numerical solution of PDEs: discretization

- Build a grid on Ω.
 Example: equispaced points on each axis
- Discretize D on the chosen grid and obtain a discrete problem
- The size of the grids impacts the size of the discrete problem and the accuracy of the solution approximation

1D:
$$h = \frac{1}{n}$$
, $x_j = jh$, $0 \le j \le n$

Example: 2D, $\Omega = [0,1] \times [0,1]$

Discretization of derivatives: the simple 1D case

Let $u : \mathbb{R} \to \mathbb{R}$

$$u'(x) = \lim_{h \to 0} \frac{u(x) - u(x+h)}{h}$$

Discretization: for fixed small h

$$u'(x) \sim \frac{u(x) - u(x+h)}{h} \text{ or } \frac{u(x-h) - u(x)}{h}$$
$$u''(x) = (u')'(x) \sim \frac{u'(x) - u'(x+h)}{h} \sim \frac{\frac{u(x-h) - u(x)}{h} - \frac{u(x) - u(x+h)}{h}}{h}$$
$$= \frac{u(x-h) - 2u(x) + u(x+h)}{h^2}$$

Discretization of the model test problem

1D:
$$h = \frac{1}{n}, x_j = jh, 0 \le j \le n$$

- The boundary conditions: $u(x_0) = g(x_0) = 0$, $u(x_n) = g(x_n) = 0$
- On the interior points of the grid: −u''(x_j) = f(x_j) j = 1,...,n-1
- Solution approximation: $(0, u_1, \ldots, u_n, 0)$
- Discretization of $u''(x_j) \sim \frac{u(x_j-h)-2u(x_j)+u(x_j+h)}{h^2} = \frac{u_{j-1}-2u_j+u_{j+1}}{h^2}$

Matrix form:

If the PDE is linear, we obtain a linear system

$$Au = f$$
, $A \in \mathbb{R}^{n+1 \times n+1}$

Fixed point methods

Au = f is solved using a fixed point method. Fixed point scheme :

$$u^{(k+1)} = Ru^{(k)} + b$$

The true solution :

$$u^* = Ru^* + b$$

To define R, we decompose the matrix:

$$A = L + D + U$$

$$\underbrace{\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 0 & 0 & 0 \\ 4 & 0 & 0 \\ 7 & 8 & 0 \end{bmatrix}}_{L} + \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{bmatrix}}_{D} + \underbrace{\begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{bmatrix}}_{U}$$

Examples of fixed-point schemes

► Jacobi:

$$\mathbf{u}^{(k+1)} = \underbrace{-D^{-1}(L+U)}_{R} \mathbf{u}^{(k)} + \underbrace{D^{-1}\mathbf{f}}_{b}$$

► Gauss-Seidel:

$$\mathbf{u}^{(k+1)} = \underbrace{-(L+D)^{-1}U}_{R} \mathbf{u}^{(k)} + \underbrace{(L+D)^{-1}\mathbf{f}}_{b}$$

Fixed point: reduction of the error

Fixed point scheme :

$$u^{(k+1)} = Ru^{(k)} + b$$

The true solution :

$$u^* = Ru^* + b$$

The error :

$$e^{(k+1)} := u^{(k+1)} - u^* = Re^{(k)}$$

After *M* iterations:

$$e^{(M)} := u^{(M)} - u^* = Re^{(M-1)} = R^2 e^{(M-2)} = \dots = R^M e^{(0)}$$

Convergence:

$$\lim_{M\to\infty} \|e^{(M)}\| = 0 \iff \rho(R) < 1,$$

where $\rho(R) = \max\{|\lambda_1|, \dots, |\lambda_n|\}$ eigenvalues

The Jacobi scheme: study of the convergence

Let us consider or test problem:

We can see that

$$R := -D^{-1}(L+U) = I - \frac{1}{2}A \tag{1}$$

The Jacobi scheme: study of the convergence

Eigenvalues and eigenvectors

$$\lambda_k(A) = 4\sin^2\left(rac{k\pi}{2n}
ight), \ 1 \le k \le n-1$$

 $(w_k)_j = \sin\left(rac{k\pi j}{n}
ight), \ 1 \le j \le n-1$

Thus from (1)

$$\lambda_k(R) = 1 - rac{1}{2}\lambda_k(A) = 1 - 2\sin^2\left(rac{k\pi}{2n}
ight), \ 1 \le k \le n-1$$

Eigenvectors are the same as those of A: $Rw_k = \lambda_k(R)w_k$

Notice that $|\lambda_k(R)| < 1$ for all k and thus the method converges, but the rate of convergence will depend on how small $|\lambda_k(R)|$ are

Reduction of the error

The eigenvectors form a basis. **Initial error:**

$$e^{(0)} = \sum_{k=1}^{n-1} c_k w_k$$

After *M* iterations:

$$e^{(M)} := u^{(M)} - u^* = R^M e^{(0)} = \sum_{k=1}^{n-1} c_k R^M w_k = \sum_{k=1}^{n-1} c_k \lambda_k^M(R) w_k$$

- ► After *M* iterations, the *k*th components of the initial error (modes) w_k has been reduced by a factor of λ^M_k(R) < 1</p>
- Modes are not mixed: the iteration can change the amplitude of a mode, but it cannot convert that mode into different modes

The Fourier modes

The vectors

$$(w_k)_j = \sin\left(\frac{k\pi j}{n}\right), \ 1 \le j \le n-1$$

are special vectors called the **Fourier modes** and k is the frequency.

On a *n*-point grid:

- ▶ $1 \le k < \frac{n}{2}$ low frequencies
- $\frac{n}{2} \le k < n-1$ high frequencies

Limitation of iterative schemes: the smoothing property

$$e^{(M)} = u^{(M)} - u^* = \sum_{k=1}^{n-1} c_k \lambda_k^M(R) w_k$$

Hard to reduce the low frequency components of the error

How to make the methods efficient on all frequencies?

Frequency shift by coarsening!

- **Fine** grid Ω^h with *n* points: $1 \le k \le n-1$
- Coarse grid Ω^{2h} with n/2 points: 1 ≤ k ≤ n/2 Grid points of Ω^{2h} are the even-numbered points of Ω^h.

Property:
$$(w_k^h)_{2j} = (w_k^{2h})_j$$

Wavenumbers $k \le n^h/2$ in $\Omega^h \rightarrow$ wavenumbers $k \le n^{2h}$ in Ω^{2h}

Accelerate convergence by considering multiple grids

- The smoothing rate (the convergence factor for the oscillatory modes) for the standard relaxation schemes is small and independent of the grid spacing *h*.
- The smooth error modes, which remain after relaxation on one grid, appear more oscillatory on the coarser grids.
- Moving to successively coarser grids, all of the error components on the original fine grid eventually appear oscillatory and are reduced by relaxation.
- The overall convergence factor for a good multigrid scheme is small and independent of *h*.

Part I

Multigrid methods

Multigrid methods

After removing all the oscillatory components, when relaxation begins to stall, signaling the predominance of smooth error modes, it is advisable to move to a coarser grid; there, the smooth error modes appear more oscillatory and relaxation will be more effective.

- Fine scales: eliminate high frequency components of the error
- <u>Coarse scales</u>: eliminate low frequency components of the error

Ingredients of a two-level multigrid methods

Consider a PDE:

$$Au = f$$

Consider two discretizations:

Fine grid:
$$A^h u^h = f^h$$

• Coarse grid:
$$A^{2h}u^{2h} = f^{2h}$$

0.4 0.6 0.8

1.0

0.2 -

0.0

Transfer operators: how do we move between two grids ?

From fine to coarse: I_h^{2h} (restriction)

Injection:

$$v_j^{2h} = v_{2j}^h$$

Full weighting

Figure 3.4: Restriction by full weighting of a fine-grid vector to the coarse grid.

Transfer operators: how do we move between two grids ? From coarse to fine: I_{2h}^{h} (prolongation)

Interpolation

Figure 3.2: Interpolation of a vector on coarse grid Ω^{2h} to fine grid Ω^{h} .

How to define the coarse level operator A^{2h} ?

$$A^{2h} = I_h^{2h} A^h I_{2h}^h$$

Discretization of differential operator on the coarse grid

Consider a PDE:

Au = f

Consider two discretizations:

Fine grid: A^hu^h = f^h
Coarse grid: A^{2h}u^{2h} = f^{2h}

Idea: write the solution u as the sum of a fine and a coarse term:

and update the two components in an alternate fashion.

Update the two components in an alternate fashion:

 $u \sim v + e$

Update the two components in an alternate fashion:

$$u \sim v + e$$

 $r = f - Av$

Update the two components in an alternate fashion:

 $u \sim v + e$

Ae = r residual equation

Fine level: get v^h by iterating on A^hu = f^h
 Compute r^h = f - Av^h and project r^{2h} = Rr^h
 Coarse level: compute correction: A^{2h}e^{2h} = r^{2h}

Update the two components in an alternate fashion:

 $u \sim v + e$

- <u>Fine level</u>: get v^h by iterating on $A^h u = f^h$
- Compute $r^h = f Av^h$ and project $r^{2h} = Rr^h$
- <u>Coarse level</u>: compute correction: $A^{2h}e^{2h} = r^{2h}$

• Correct:
$$v^h \leftarrow v^h + P(e^{2h})$$

Link to iterative refinement, see

General multigrid methods - V-cycle

V-Cycle Scheme

$$\mathbf{v}^h \leftarrow V^h(\mathbf{v}^h, \mathbf{f}^h)$$

- Relax on A^hu^h = f^h ν₁ times with initial guess v^h.
- Compute f^{2h} = I_h^{2h}r^h.
 - Relax on $A^{2h}\mathbf{u}^{2h} = \mathbf{f}^{2h}\nu_1$ times with initial guess $\mathbf{v}^{2h} = \mathbf{0}$.
 - Compute f^{4h} = I^{4h}_{2h}r^{2h}.
 - Relax on Å^a^hu^{4h} = f^{4h} ν₁ times with initial guess v^{4h} = 0.
 - Compute f^{8h} = I^{8h}_{4h} r^{4h}.
 - Solve A^{Lh}u^{Lh} = f^{Lh}.

- Correct v^{4h} ← v^{4h} + I^{4h}_{ab}v^{8h}.
- Relax on A^{4h}u^{4h} = f^{4h}ν₂ times with initial guess v^{4h}.
 Correct v^{2h} ← v^{2h} + I^{4h}_{2h}v^{4h}.
- Relax on A^{2h}u^{2h} = f^{2h⁴ⁿ}₂ times with initial guess v^{2h}.
- Correct v^h ← v^h + I^h_{2h} v^{2h}.
 Relax on A^hu^h = f^h ν₂ times with initial guess v^h.

General multigrid methods - V-cycle

V-Cycle Scheme (Recursive Definition)

$$\mathbf{v}^h \leftarrow V^h(\mathbf{v}^h, \mathbf{f}^h).$$

1. Relax ν_1 times on $A^h \mathbf{u}^h = \mathbf{f}^h$ with a given initial guess \mathbf{v}^h .

2. If $\Omega^h = \text{coarsest grid}$, then go to step 4. Else

$$\begin{split} \mathbf{f}^{2n} &\leftarrow I_h^{2n}(\mathbf{f}^n - A^n \mathbf{v}^n) \\ \mathbf{v}^{2h} &\leftarrow \mathbf{0}, \\ \mathbf{v}^{2h} &\leftarrow V^{2h}(\mathbf{v}^{2h}, \mathbf{f}^{2h}). \end{split}$$

- **3**. Correct $\mathbf{v}^h \leftarrow \mathbf{v}^h + I_{2h}^h \mathbf{v}^{2h}$.
- 4. Relax ν_2 times on $A^h \mathbf{u}^h = \mathbf{f}^h$ with initial guess \mathbf{v}^h .

General multigrid methods - other cycles

Figure 3.6: Schedule of grids for (a) V-cycle, (b) W-cycle, and (c) FMG scheme, all on four levels.

Schemes for the cycles

Full Multigrid V-Cycle (Recursive Form) $\mathbf{v}^h \leftarrow FMG^h(\mathbf{f}^h).$

1. If $\Omega^h = \text{coarsest grid}$, set $\mathbf{v}^h \leftarrow \mathbf{0}$ and go to step 3. Else

$$\begin{split} \mathbf{f}^{2h} &\leftarrow I_h^{2h}(\mathbf{f}^h), \\ \mathbf{v}^{2h} &\leftarrow FMG^{2h}(\mathbf{f}^{2h}) \end{split}$$

- **2**. Correct $\mathbf{v}^h \leftarrow I^h_{2h} \mathbf{v}^{2h}$.
- **3**. $\mathbf{v}^h \leftarrow V^h(\mathbf{v}^h, \mathbf{f}^h) \ \nu_0$ times.
Numerical example

From linear to nonlinear: multilevel methods

Multigrid methods work for linear systems: Ax = bAn extension exists for nonlinear equations: A(x) = b FAS (Full Approximation Scheme)

But what happens if we want to tackle a more general optimization problem with a hierarchical structure ?

Part II

Multilevel optimization methods

Classical iterative optimization methods

Large-scale nonlinear unconstrained optimization problems:

 $\min_{x} f(x)$

• Build a model $(B_k \sim \nabla^2 f(x_k) \text{ or } B_k = 0)$:

$$f(x_k+s) \simeq T_k(s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T B_k s$$

Classical iterative optimization methods

Large-scale nonlinear unconstrained optimization problems:

 $\min_{x} f(x)$

• Build a model $(B_k \sim \nabla^2 f(x_k) \text{ or } B_k = 0)$:

$$f(x_k+s) \simeq T_k(s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T B_k s$$

• Compute a step s_k ($r(\lambda_k)$ regularization term):

$$\min_{s} m_k(s) = T_k(s) + r(\lambda_k), \qquad \lambda_k > 0$$

Classical iterative optimization methods

Large-scale nonlinear unconstrained optimization problems:

 $\min_{x} f(x)$

• Build a model $(B_k \sim \nabla^2 f(x_k) \text{ or } B_k = 0)$:

$$f(x_k+s) \simeq T_k(s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T B_k s$$

• Compute a step s_k ($r(\lambda_k)$ regularization term):

$$\min_{s} m_k(s) = T_k(s) + r(\lambda_k), \qquad \lambda_k > 0$$

• Update the iterate $x_{k+1} = x_k + s_k$

Classical examples

Gradient method:

$$m_k(s) = f(x_k) + s^T \nabla f(x_k) + \frac{\lambda_k}{2} \|s\|^2$$

Adaptive second order method:

$$m_k(s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T \nabla^2 f(x_k) s + \frac{\lambda_k}{2} \|s\|^2$$

Adaptive Cubic Regularization (ARC):

$$m_k(s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T \nabla^2 f(x_k) s + \frac{\lambda_k}{3} \|s\|^3$$

 Cubic regularization of Newton method and its global performance, Y. Nesterov and B. Polyak, 2006

Bottleneck: Subproblem solution

Solving

$$\min_{s} T_k(x_k, s) + r(\lambda_k)$$

represents greatest cost per iteration, which depends on the size of the problem.

Possible solution: multilevel methods

- **MG/OPT:** A multigrid approach to discretized optimization problems, Nash, 2000¹
- RMTR: Recursive trust-region methods, S. Gratton, A. Sartenaer and Ph. L. Toint, 2008²

¹https://optimization-online.org/wp-content/uploads/2012/04/3447.pdf ²https://www.cerfacs.fr/algor/reports/2007/TR_PA_07_42.pdf

Multilevel spirit

- Exploit structure of the problem to build a hierarchical representation of the problem
- Exploit lower levels to compute a cheap (but useful) step
- Simplify the landscape in a nonconvex setting

Hierarchy of problems $(n_r > n_{r-1} > \dots n_0)$

Finest Level $f_r : \mathbb{R}^{n_r} \to \mathbb{R}$ Restriction $\downarrow R_r$ $P_r \uparrow$ Prolongation

Fine Level $f_{r-1} : \mathbb{R}^{n_{r-1}} \to \mathbb{R}$ Restriction $\downarrow R_{r-1}$ $P_{r-1} \uparrow$ Prolongation

Restriction $\downarrow R_2$

 P_2 \uparrow Prolongation

Coarse Level $f_2 : \mathbb{R}^{n_2} \to \mathbb{R}$ Restriction $\downarrow R_1$ $P_1 \uparrow$ Prolongation

Coarsest Level $f_0 : \mathbb{R}^{n_0} \to \mathbb{R}$

Example 1: image restoration

Example 2: hyperspectral imaging

Example 3: neural networks

Classical one-level method

 $\min_{x} f(x)$

Multilevel strategy: step computation

Two choices:

- 1. Classical fine step
- 2. Coarse step

Fine step

 $\min_{x^h} f^h(x^h)$

Multilevel strategy: step computation

Two choices:

- 1. Classical fine step
- 2. Coarse step

Coarse step

What do we need to use such a method ?

Transfer operators

▶ $I_h^H \in \mathbb{R}^{N_H \times N_h}$: from fine to coarse $(N_H < N_h)$.

- ▶ $I_H^h \in \mathbb{R}^{N_h \times N_H}$: from coarse to fine.
- ▶ Relation between the operators : $I_H^h = \alpha (I_h^H)^T$, $\alpha > 0$.

What do we need to use such a method ?

Lower level model

When to use the lower level model?

▶ Choose lower level model μ^H if

• if
$$||I_h^{2h} \nabla f^h(x_k^h)|| \ge \kappa ||\nabla f^h(x_k^h)||$$
, $\kappa > 0$

• if
$$\|\nabla \mu_k^H(x_k^H)\| > \epsilon'$$

Minimize regularized Taylor model otherwise.

How to define the lower level model?

Modify f^H to ensure coherence among levels

First order coherence

Coherence between levels: first order

Let
$$x_k^H = I_h^H x_k^h$$
. Model with first order correction:

$$\mu_k^H(s^H) = f^H(x_k^H + s^H) + (v^H)^T s^H$$

$$v^H = I_h^H \nabla f^h(x_k^h) - \nabla f^H(x_k^H)$$

This ensures that

$$\nabla \mu_k^H(0^H) = I_h^H \nabla f^h(x_k^h)$$

- first-order behaviours of f^h and μ_k^H are coherent around x_k^h .
- If s^H descent direction for µ^H_k and s^h = P^hs^H, then s^h is a descent direction for f^h

$$0 > \nabla \mu_{k}^{H} (0^{H})^{T} s^{H} = (\nabla f^{h} (x_{k}^{h}))^{T} P^{h} s^{H} = (\nabla f^{h} (x_{k}^{h}))^{T} s^{h}$$

Multilevel algorithm: k-th iteration

Given x_k^h

- 1. If descent condition, decide to go to step 2 or step 3. Else go to step 2.
- 2. Fine iteration: iteration on f_h .
 - 2.1 Minimize $T_k^h(s)$ obtaining s_k^h .

2.2 Set
$$x_{k+1}^h = x_k^h + s_k^h$$
.

- 3. Coarse iteration:
 - 3.1 Initialisation : $x_k^H = l_h^H x_k^h$ 3.2 Compute first order coherence v^H 3.3 Minimization (possibly approximate) of $\mu_k^H(s^H) = f^H(x_k^H + s^H)$: $s_{m,k}^H = \Phi^H \circ \ldots \circ \Phi^H(0^H)$ 3.4 Fine level update: $x_{k+1}^h = x_k^h + l_h^h s_{m,k}^H$

A possible iterative scheme

Parameters of the coarse iterations

- \$\Phi_H\$: any minimization scheme, can be different from fine level one, can use second order
- How many iterations m?
 - m large enough to compensate projection cost
 - m not too large to keep first order coherence

Effect of coarse projection in a nonlinear setting

- 1. Cost reduction: usually a factor 4 from one level to another in dimension 2
 - ▶ Level *h*: $f^h(u), u \in \mathbb{R}^{n^2}$
 - ▶ Level *H*: $f^H(u), u \in \mathbb{R}^{n^2/4}$

 \rightarrow for the same cost, can do at coarse level 4 times the number of iterations at fine level

2. Smoothing of the landscape: escape local minima \rightarrow better solution

Numerical results for 5 levels MG/OPT with line-search Problem:

$$\min_{a} F(a) = \frac{1}{2} \int_0^{\pi} \left(\frac{\partial u}{\partial x_2}(x_1, 0) - \phi(x_1) \right)^2 dx_1,$$

Numerical results for 5 levels RMTR

Performance profile³ on 17 infinite-dimensional problems involving differential operators

Figure 4.7: Performance profile for CPU time with variants AF, MF, MR and FM (17 test problems).

Recursive trust-region methods, S. Gratton, A. Sartenaer and Ph. L. Toint, 2008

Benchmarking Optimization Software with Performance Profiles , E. D. Dolan, J. J. Moré, 2002

³Performance profile $p_A(\tau)$ of an algorithm A at point τ shows the fraction of the test set for which the algorithm is able to solve within a factor of τ of the best algorithm for the given measure

Numerical results for 4 levels ARC

$$\begin{cases} -\Delta u(z) + e^{u(z)} = g(z) & \text{in } \Omega \subset \mathbb{R}^2, \\ u(z) = 0 & \text{on } \partial \Omega, \end{cases}$$

The following nonlinear minimization problem is then solved:

$$\min_{u\in\mathbb{R}^n}\frac{1}{2}u^T A u + \|e^{u/2}\|^2 - g^T u,$$

which is equivalent to the nonlinear system $Au + e^u = g$.

Coarse approximations: coarser discretization of the problem

			n = 1024		<i>n</i> = 4096	
		ARC	MARC 4	ARC	MARC 4	
\overline{u}_1	it _T /it _f	11/11	7/2	23/23	15/4	
	save		2.2		4.1	
\overline{u}_2	it _T /it _f	27/27	13/4	56/56	22/6	
	save		3.9		6.1	

Extension to q-order models

On high-order multilevel optimization strategies, H. Calandra, S. Gratton, E. R., X. Vasseur, 2020

We define

$$\mu_{q,k}^{H}(s^{H}) = f^{H}(x_{0,k}^{H} + s^{H}) + \operatorname{corr}$$
$$\operatorname{corr} = \sum_{i=1}^{q} \frac{1}{i!} [\mathcal{R}(\nabla^{i} f^{h}(x_{k})) - \nabla^{i} f^{H}(x_{k}^{H})] \underbrace{(s^{H}, \dots, s^{H})}_{i \text{ times}},$$

Example

For q = 2

$$\operatorname{corr} = (I_h^H \nabla f^h(x_k^h) - \nabla f^H(x_k^H))^T x_k^H + \frac{1}{2} (x_k^H)^T (I_h^H \nabla^2 f^h(x_k^h) I_H^h - \nabla^2 f^H(x_k^H)) x_k^H$$

Theoretical results: Assumptions

Assumption 1

Let us assume that for all levels the q-th derivative tensors of f^h are Lipschitz continuous.

Assumption 2

There exist strictly positive scalars κ_{EB} , $\rho > 0$ such that

$$\operatorname{dist}(x,\mathcal{X}) \leq \kappa_{EB} \|\nabla_x f(x)\|, \quad \forall x \in \mathcal{N}(\mathcal{X},\rho),$$

where \mathcal{X} is the set of second-order critical points of f, $\operatorname{dist}(x, \mathcal{X})$ denotes the distance of x to \mathcal{X} and $\mathcal{N}(\mathcal{X}, \rho) = \{x \mid \operatorname{dist}(x, \mathcal{X}) \leq \rho\}.$

On the Quadratic Convergence of the Cubic Regularization Method under a Local Error Bound Condition, Yue, M.C. and Zhou, Z. and So, A.M.C., 2018: generalized to higher-order methods
Theoretical results: 1) global convergence

Theorem

Let Assumption 1 hold. Then, the sequence of iterates generated by the algorithm converges globally to a first-order stationary point.

E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos and Ph. L. Toint, 2017: generalized to multilevel framework Theoretical results: 2) complexity

Theorem

Let Assumption 1 hold. Let f_{low} be a lower bound on f. Then, the method requires at most

 $O(\epsilon^{-\frac{q+1}{q}})$

iterations to achieve an iterate x_k such that $\|\nabla f(x_k)\| \leq \epsilon$

E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos and Ph. L. Toint, 2017: $k = O(e^{-\frac{q+1}{q}})$ Complexity of standard method is maintained

Theoretical result: 3) local convergence

Theorem

Let Assumptions 1 and 2 hold. Assume that $\mathcal{L}(f(x_k))$ is bounded for some $k \ge 0$ and that it exists an accumulation point x^* such that $x^* \in \mathcal{X}$. Then, the whole sequence $\{x_k\}$ converges to x^* and it exist strictly positive constants $c \in \mathbb{R}$ and $\overline{k} \in \mathbb{N}$ such that:

$$\frac{\|x_{k+1}-x^*\|}{\|x_k-x^*\|^q} \le c, \quad \forall k \ge \bar{k}.$$