Neural Networks compression

Elisa Riccietti and Theo Mary

January 23, 2025

1 / 78

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① 의 O

Context: deep neural networks (DNN) are growing fast

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ э QQ 2 / 78

Scaling up

Why? : better performance, more complex tasks ...

- ... but
	- \blacktriangleright The computational complexity, memory usage and energy consumption of deep networks are increasingly growing, both during training and inference
	- \blacktriangleright Limitation for the deployment on resource-constrained devices (mobile, embedded systems) where energy is often a limited resource
	- \blacktriangleright High environmental impact
	- \blacktriangleright Limitation for real-time applications

The computational bottlenecks

The computational bottlenecks

The computational bottlenecks

Training a DNN model

Data movement

- to compute units
- · send partial results back to memory

 $A \equiv \mathbf{1} + \mathbf{1} +$ QQ 4 / 78

Improve performance and power efficiency

 Ω 5 / 78

Outline

[Quantization](#page-8-0)

[Generalities](#page-9-0) [Quantization aware training \(QAT\)](#page-38-0) [Post training quantization \(PTQ\)](#page-54-0) [Mixed precision quantization](#page-59-0)

[Sparsification](#page-71-0)

[Pruning](#page-72-0) [Structured sparsification](#page-101-0)

Outline

[Quantization](#page-8-0)

[Generalities](#page-9-0) [Quantization aware training \(QAT\)](#page-38-0) [Post training quantization \(PTQ\)](#page-54-0) [Mixed precision quantization](#page-59-0)

[Sparsification](#page-71-0)

[Pruning](#page-72-0) [Structured sparsification](#page-101-0)

[Quantization](#page-8-0) **[Generalities](#page-9-0)**

[Quantization aware training \(QAT\)](#page-38-0) [Post training quantization \(PTQ\)](#page-54-0) [Mixed precision quantization](#page-59-0)

メロト メ都ト メミト メミト

重

 299

[Sparsification](#page-71-0)

[Pruning](#page-72-0) [Structured sparsification](#page-101-0)

Quantization: definition

Quantization is the process of constraining an input from a continuous or large set of values (such as the real numbers) to a discrete set (such as the integers).

Example: convert floating-point numbers to lower precision (e.g., 8-bit integers).

Example: [https://www.qualcomm.com/news/onq/2019/03/](https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai) [heres-why-quantization-matters-ai](https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai)

24 bits per pixel

Low precision formats

Modern hardware

- \blacktriangleright Nvidia tensor cores
- Google TPUs

 \blacktriangleright FPGAs

Benefits of quantization

Quantization effects: the good

Memory usage Power consumption Latency Silicon area storage needed for weights and enerav is significantly reduced for less memory access and simpler 8-bit arithmetic and below and activations is proportional to both computations and memory computations lead to faster runtimes requires less area than larger the bit width used accesses and reduced latency bit width FP compute units ADD energy (pJ) **Memory access** MULT area (µm²) **FP32** INT₈ energy (pJ) 111.125 **INT32 INT8** INT32 FP16 **FP32** INT8 **FP16 FP32** 111 Cache (64-bit) 0.03 $O.1$ 0.4 0.9 282 3495 1640 7700 **8KB** 10 91010101 0101010 32KB 20 **30x energy reduction** 27x area reduction 1MB 100 MULT energy (pJ) ADD area (um²) **DRAM** 1300-INT8 INT32 FP16 **FP32** 2600 INT8 INT32 **FP16 FP32** 0.2 3.1 1.1 3.7 Up to $4x$ 36 137 1360 4184 energy 18.5x energy reduction 116x area reduction reduction

Sources: Mark Horowitz (Stanford), energy based on ASIC, area based on TSMC 45nm process Wikimedia Commons (co) (a)

11

8-bit Integer (INT8)

- \triangleright INT8 quantization is widely used for model deployment in edge devices and mobile platforms.
- \blacktriangleright Key benefits of INT8 quantization:
	- \blacktriangleright Memory efficiency: 8-bit integers require one-quarter of the memory compared to FP32.
	- \blacktriangleright Faster inference: Lower bit-width operations are less computationally expensive, reducing both memory access time and arithmetic operations.
	- \triangleright Energy savings: Typically results in lower power consumption, especially in specialized hardware like TPUs, GPUs, and edge AI accelerators.
- ▶ Example: Intel's Neural Network Processor (NNP) and Google's Edge TPUs provide dedicated support for INT8 inference, reducing energy consumption by up to 4x compared to FP32.

4-bit Quantization

- \triangleright 4-bit quantization is an emerging trend, focused on ultra-low-power AI applications.
- \blacktriangleright Benefits of 4-bit quantization:
	- \blacktriangleright Extremely low memory and storage requirements.
	- \triangleright Significant reduction in energy usage, particularly for inference.
- \blacktriangleright Trade-offs:
	- \triangleright **Accuracy loss:** Aggressive quantization can cause a notable decrease in model accuracy.
	- \blacktriangleright Requires specialized hardware that supports low-precision operations.
- \blacktriangleright 4-bit quantization is still an area of active research, focusing on improving the trade-off between energy savings and model accuracy.

Quantization: the bad

low precision $=$ low accuracy

Challenge: reduce precision without harming accuracy

Mixed Precision Quantization

- \triangleright Mixed precision quantization involves applying different bitwidths to different parts of the model.
- \triangleright Example: Weights can be quantized to 8 bits while activations remain at 16 bits.
- \triangleright This helps to balance model accuracy with computational efficiency.
- \blacktriangleright Particularly useful if not all parameters are equally important for model expressivity

Quantization formats

メロトメ 御 トメ 差 トメ 差 トー 差 QQ 16 / 78

How to quantize?

Limited (dynamic) range

⇒ value magnitude range

FP32: $(10^{-38}, 10^{38})$

~76 orders of magnitude

FP8: $(10^{-2}, 10^{2})$

~ 4 orders of magnitude

How to quantize?

Want to quantize X to int8

$$
X = \begin{bmatrix} 0.97 & 0.64 & 0.74 & 1.00 \\ 0.58 & 0.84 & 0.84 & 0.81 \\ 0.00 & 0.18 & 0.90 & 0.28 \\ 0.57 & 0.96 & 0.80 & 0.81 \end{bmatrix}
$$

We don't directly quantize it, but rather a scaled version to avoid overflows.

Example: for int8 range= $[-128, 127] = [min_{int8}, max_{int8}]$

How to quantize?

$$
X=\begin{bmatrix} 0.97 & 0.64 & 0.74 & 1.00 \\ 0.58 & 0.84 & 0.84 & 0.81 \\ 0.00 & 0.18 & 0.90 & 0.28 \\ 0.57 & 0.96 & 0.80 & 0.81 \end{bmatrix}
$$

Compute scaling factor

$$
s = \frac{\max_{\text{int8}} - \min_{\text{int8}}}{x_{\max} - x_{\min}} = \frac{127 + 128}{x_{\max} - x_{\min}} = 255
$$

Scale

$$
X_s = s(X - x_{\min}) + \min_{int8}
$$

Quantize

round (X_s)

Clip the value

$$
X \approx \text{clip}(\text{round}(X_s))
$$

Outside the representable range: clip function

The basic idea of the clip function is to restrict values to a predefined range (min_val, max_val). The clip function is defined as:

$$
clip(x, min_val, max_val) = \begin{cases} min_val & \text{if } x < min_val \\ x & \text{if } min_val \le x \le max_val \\ max_val & \text{if } x > max_val \end{cases}
$$

For example:

 $clip(5, 0, 10) = 5$ (within the range) $clip(-3, 0, 10) = 0$ (clipped to min_val) $clip(15, 0, 10) = 10$ (clipped to max_val)

During inference (i.e., for a trained network):

During inference (i.e., for a trained network):

· store network parameters in low precision

During inference (i.e., for a trained network):

- store network parameters in low precision
- store/compute intermediate signals in low precision

During inference (i.e., for a trained network):

- · store network parameters in low precision
- · store/compute intermediate signals in low precision

During training:

イロト イタト イミト イミト・ミニ りなぐ 21 / 78

During inference (i.e., for a trained network):

- · store network parameters in low precision
- · store/compute intermediate signals in low precision

During training:

· store/compute back propagated gradients in low precision

KOX KORKA EX KEX LE YORO 21 / 78

Types of rounding

 \triangleright Traditional Rounding: Typically rounds a number to the nearest integer or a nearby fixed point.

P Round to Nearest: Rounds 1.5 to 2 and 2.4 to 2.

- **P** Round Down: Always rounds down (e.g., 2.8 becomes 2).
- **Round Up:** Always rounds up (e.g., 2.1 becomes 3).
- \triangleright Stochastic Rounding: Rounds based on probability, depending on the fractional part of the number.
	- \triangleright For example, if a number is 1.7, it might round to 1 with probability 0.3 and to 2 with probability 0.7.
- \triangleright Key Difference: Stochastic rounding introduces randomness, whereas traditional rounding methods are deterministic.

"Stochastic Rounding: Implementation, Error Analysis, and Applications" M. Croci, M. Fasi, N. Higham, T. Mary, M. Mikaitis, 2021

Introduction to Stochastic Rounding

- \triangleright Stochastic rounding is a method of rounding numbers where the rounding direction is chosen probabilistically, based on the fractional part of the number.
- \triangleright Unlike traditional rounding methods (e.g., round to nearest, round down), stochastic rounding introduces randomness into the rounding process.
- \triangleright Commonly used in contexts like:
	- \blacktriangleright Neural network quantization in low precision.
	- \triangleright Computationally intensive simulations with low precision.

Why Stochastic Rounding?

 $E(\hat{x}) = x$

 \blacktriangleright In standard rounding methods, bias can accumulate, leading to systematic errors in computations.

- \triangleright Stochastic rounding introduces randomness, which helps to:
	- **Reduce bias:** Prevents systematic overestimation or underestimation of values. This randomness in rounding ensures that the rounding error has an expected value of zero, leading to less bias.
	- \blacktriangleright Preserve statistical properties: Maintains the expected value over a series of rounding operations.
	- \blacktriangleright Improve model accuracy: In neural networks, reduces the impact of rounding errors on training and inference, especially when working with low-precision formats, where small errors can propagate and magnify over multiple layers.

How Stochastic Rounding Works

In Let $x = n + f$, where *n* is the integer part and *f* is the fractional part.

 \blacktriangleright In stochastic rounding:

Round(x) =
$$
\begin{cases} n \text{ with probability } 1 - f \\ n + 1 \text{ with probability } f \end{cases}
$$

Figure 2.1. Stochastic rounding rounds the real number x to the next smaller number |x| in F or to the next larger number $\lceil x \rceil$ in F. In this example, RN rounds x to $\lceil x \rceil$, whereas mode 1 SR can round to either $\lceil x \rceil$ or $\lceil x \rceil$ but is more likely to round to $\lceil x \rceil$.

Stochastic Rounding (SR) in Neural Networks

Not a new idea:

Höhfeld M, Fahlman SE. 1992 "Probabilistic rounding in neural network learning with limited precision"

- \triangleright Useful in NN, especially in low-precision formats like INT8 or FP16.
- \blacktriangleright In low-precision arithmetic, rounding errors can significantly impact model performance due to the limited number of bits
- \triangleright The bias introduced by quantization can be reduced, leading to:
	- Better accuracy: Helps to maintain the distribution of weights and activations, preserving model accuracy
	- \blacktriangleright Improved robustness: Less sensitive to the propagation of rounding errors over multiple layers.
- \triangleright SR can outperform traditional rounding methods in certain quantized neural networks:

Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. 2015 "Deep Learning with Limited Numerical Precision"

Limitations of RN for low precision

"On Stochastic Roundoff Errors in Gradient Descent with Low- Precision Computation" Xia, L., Massei, S., Hochstenbach, M. E., Koren, B. (2024).

Fig. 2 Minimizing $f(x) = (x - 1024)^2$ using GD with binary 8 ($u = 2^{-3}$) and RN, where the red area indicates where stagnation occurs

SR for neural networks

Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. 2015 "Deep Learning with Limited Numerical Precision"

 299 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$ Ξ 28 / 78

Challenges and Limitations

- \blacktriangleright Hardware support: Not all hardware accelerators natively support stochastic rounding, requiring custom implementations.
- \blacktriangleright Higher complexity: The randomness involved in stochastic rounding can make it more difficult to analyze and debug models.

Quantization-Based Methods for Efficient DNN Inference

14

メロト メ御 トメ 君 トメ 君 トッ 君 し

 $2Q$
Quantization for efficient DNN inference

- **+** no need for access to training pipeline
- **+** data-free or small calibration set used
- **+** usually fast, with simple API
- **-** lower accuracy at lower bit widths

Post Training Quantization (PTQ) Quantization-Aware Training (QAT)

- access to training pipeline & labelled data

イロト メタト メミト メミト

 $2Q$

重

- **-** longer training times
- **-** hyper-parameter tuning needed
- **+** higher accuracy in general

Quantization for efficient DNN inference

- **+** no need for access to training pipeline
- **+** data-free or small calibration set used
- **+** usually fast, with simple API
- **-** lower accuracy at lower bit widths

Post Training Quantization (PTQ) **Quantization-Aware Training (QAT)**

- access to training pipeline & labelled data

イロト メタト メミト メミト

 $2Q$

重

- **-** longer training times
- **-** hyper-parameter tuning needed
- **+** higher accuracy in general

[Quantization](#page-8-0)

[Generalities](#page-9-0)

[Quantization aware training \(QAT\)](#page-38-0)

★ ロメ (4 御) > (唐) > (唐) → 唐

 299

[Post training quantization \(PTQ\)](#page-54-0) [Mixed precision quantization](#page-59-0)

[Sparsification](#page-71-0)

[Pruning](#page-72-0) [Structured sparsification](#page-101-0)

Training with Quantization

- \blacktriangleright Quantization-Aware Training (QAT): A technique where quantization is simulated during training.
- \blacktriangleright The model is trained with quantized weights and/or activations to maintain accuracy.
- \triangleright During training, the gradients are computed as if the model were full precision.

QAT: backward path quantization simulation th quantization simulation
 chappen: How can we back propagate through quantization layers?

—round-to-nearest does not have meaningful gradients

(i.e., either zero or undefined everywhere)

Problem: How can we back propagate through quantization layers?

メロメ メタメ メミメ メミメ

 $2Q$

重

- ➡round-to-nearest does not have meaningful gradients
- ➡gradient-based training seems impossible

QAT: backward path quantization simulation

[1] Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation, *Bengio et al.*, arXiv:1308.3432, 2013

イロト メタト メミト メミト

 $2Q$

QAT: backward path quantization simulation

[1] Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation, *Bengio et al.*, arXiv:1308.3432, 2013

メロメ メタメ メミメ メミメ

 $2Q$

QAT: backward path quantization simulation

Schematic view of a QAT procedure with STE applied (adapted from [1])

[1] A Survey of Quantization Methods for Efficient Neural Network Inference, *Gholami et al.*, arXiv:2103.13630, 2021

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B$

 $2Q$

Early success of QAT: BinaryConnect

["BinaryConnect: Training Deep Neural Networks with binary weights during propagations", M. Courbariaux, Y. Bengio, JP David, 2016]

- ▶ BinaryConnect is a method for training neural networks with binary weights and activations.
- \blacktriangleright During training, the weights are binarized (approximated to $+1$ or -1).
- \blacktriangleright The activations can also be binarized, reducing the computational cost of both forward and backward passes.

How BinaryConnect Works

- \triangleright Keeps double copy of the weights: binary weights W_{bin} and continuous weights W
- \blacktriangleright Train the model using real-valued weights (for gradient computation), but at each step, constrain the weights to binary values after the weight update step.
- \blacktriangleright Reduce memory and computation for inference, while still benefiting from continuous gradients during training (essential for SGD to work).

How BinaryConnect Works

 \blacktriangleright During forward pass:

 \triangleright We compute the activations using binary weights

\blacktriangleright During backpropagation:

- \blacktriangleright The gradients are computed as if the network were using real-valued weights.
- \blacktriangleright The continous weights are updated based on these gradients.
- \blacktriangleright The weights are binarized using the sign function:

$$
w_{\text{binary}} = \text{sign}(w)
$$

34 / 78

イロト イ団 トメ 差 トメ 差 トー 差

Algorithm: BinaryConnect

Input:

- \blacktriangleright Training data x_i, y_i for $i = 1, \ldots, N$
- \triangleright Neural network architecture (e.g., layers, activation functions)
- \blacktriangleright Number of epochs T
- **Learning rate** η

Output: Trained binary weights W_{bin} and biases b (usually in full-precision)

Algorithm: BinaryConnect

- 1. Initialize weights W and biases b with small random values
- 2. Initialize the binary weights $W_{bin} = sign(W)$
- 3. For each epoch $t = 1, \ldots, T$:
	- 3.1 For each training sample (x_i, y_i)
		- 3.1.1 Perform forward pass: calculate activations using the binary weights $W_{bin}: a_i = \sigma(W_{bin}x_i + b)$
		- 3.1.2 Compute the loss $L(x_i, y_i)$ (e.g., cross-entropy or mean squared error)
		- 3.1.3 Perform backward pass (backpropagation): compute the gradients ∇L with respect to continuous weights W
		- 3.1.4 Update continuous weights using the continuous gradients $\nabla L: W = \text{clip}(W - \eta \nabla_W L, -1, 1), b = b - \eta \nabla_b L$
		- 3.1.5 Update binary weights: binarize the continuous weights W_{bin} = sign(W)
- 4. Return the final binary weights W_{bin} and biases b

Key points:

- \triangleright compute gradients as if the weights were continuous, even though they are binary: $\nabla L(W)$ by using the straight-through estimator (STE) for the sign function.
- \triangleright Update the weights in full precision and then binarize:

 $W = W - \eta \nabla L(W)$

Binarizing the weights

Often it is better to binarize stochastically

$$
w_{bin} = \begin{cases} +1 & \text{with } p = \text{clip}(w, 0, 1) \\ -1 & \text{with } 1 - p \end{cases}
$$

instead that

 W_{bin} = sign(W)

$$
\Box \rightarrow 4 \Box \rightarrow 4 \Xi \rightarrow 4 \Xi \rightarrow \Xi \rightarrow 38/78
$$

×

Advantages of BinaryConnect

- \blacktriangleright Extreme reduction of memory requirements: binary weights take only 1 bit per weight.
- \blacktriangleright Faster computations: using binary values accelerates inference and training
- \triangleright Suitable for embedded systems and mobile devices.
- \triangleright Often retains near state-of-the-art performance despite the simplifications.

Numerical results

Challenges and Limitations

- ▶ Binarizing weights can lead to reduced model expressiveness and lower performance for complex tasks.
- \triangleright While STE works well in practice for many cases, it is still an approximation: the learning process may be less efficient or may converge to suboptimal solutions in some scenarios.
- \triangleright Not all types of neural network architectures are suitable for binary weights (CNN, GANs, transformers..)
- ▶ BinaryConnect may require more epochs or larger learning rates to achieve comparable performance to networks with continuous weights.
- \triangleright The optimization landscape may also be more noisy or less smooth due to the discretization of the weights

[Quantization](#page-8-0)

[Generalities](#page-9-0) [Quantization aware training \(QAT\)](#page-38-0) [Post training quantization \(PTQ\)](#page-54-0) [Mixed precision quantization](#page-59-0)

メロメ メ御メ メ君メ メ君メート

活

 299

[Sparsification](#page-71-0)

[Pruning](#page-72-0) [Structured sparsification](#page-101-0)

Post-Training Quantization

- \triangleright Post-Training Quantization (PTQ) refers to the process of quantizing a pre-trained model without retraining.
- \blacktriangleright Typically applied after training a high-precision model (e.g., 32-bit floating point) for deployment on resource-constrained devices.
- It involves converting the model's weights and/or activations to lower bitwidth (e.g., 8-bit integers).

Methods for Post-Training Quantization

- \triangleright Quantizing Weights: Weights can be quantized after training to reduce the model's size.
- \triangleright Quantizing Activations: Activations are also quantized during inference to further reduce computational costs.
- \triangleright **Calibration:** Calibration is used to select optimal scaling factors for quantization. It typically involves running a small dataset through the model to estimate the range of activations.

Calibration Process

- \triangleright Calibration helps to determine the scaling factors that best preserve the model's accuracy after quantization.
- \triangleright Common calibration techniques include:
	- \triangleright Min-Max Calibration: Finds the minimum and maximum values of activations and weights to determine the quantization range.
	- \blacktriangleright Histogram-based Calibration: Uses a histogram of activation values to set more precise scaling factors.
- \triangleright Calibration is especially important when quantizing activations to prevent a significant accuracy drop.

Challenges in Post-Training Quantization

- \triangleright Calibration Sensitivity: The accuracy of the calibration process is critical, and improper calibration can lead to significant performance drops.
- \blacktriangleright Automated Calibration Methods: Advances in machine learning-based calibration techniques that do not require manual tuning.
- \triangleright Non-Uniform Distributions: Some models have highly non-uniform weight distributions, making it harder to quantize efficiently.

[Quantization](#page-8-0)

[Generalities](#page-9-0) [Quantization aware training \(QAT\)](#page-38-0) [Post training quantization \(PTQ\)](#page-54-0) [Mixed precision quantization](#page-59-0)

★ ロメ (4 御) > (唐) > (唐) → 唐

 299

[Sparsification](#page-71-0)

[Pruning](#page-72-0) [Structured sparsification](#page-101-0)

Limitations of classical quantization schemes

- \blacktriangleright Traditional quantization methods usually focus on reducing bit-width uniformly across layers or channels.
- \triangleright Limitations: Such methods can lead to significant accuracy loss because they ignore how sensitive to quantization the parameters in the different layers are.
- \triangleright Solution: Use second-order information (i.e., the Hessian matrix) to guide the quantization process.
- \blacktriangleright Hessian Matrix: Captures the sensitivity of the model's loss function with respect to the parameters, providing richer information for quantization decisions.

Origins of Hessian aware quantization - 1994

Idea: Taylor development

$$
f(x) - f(\tilde{x}) \approx \nabla f(\tilde{x})^{\mathsf{T}}(x - \tilde{x}) + \frac{1}{2}(x - \tilde{x})^{\mathsf{T}} H(\tilde{x})(x - \tilde{x})
$$

We want to find parameters x_i that make $f(x) - f(\tilde{x})$ small to suppress them.

> $\mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A}$ 49 / 78

OBD pruning

Simplifying assumptions:

At convergence: $\nabla f(\tilde{x}) \approx 0$

$$
\triangleright \frac{1}{2}(x-\tilde{x})^{\mathsf{T}}H(\tilde{x})(x-\tilde{x})=\frac{1}{2}\sum_{i}H_{i,i}x_{i}^{2}+\frac{1}{2}\sum_{i\neq j}H_{i,j}x_{i}x_{j}
$$

- \triangleright We neglect the last term to reduce cost
- \blacktriangleright $\frac{1}{2}\sum_i H_{i,i}x_i^2$ can be efficiently computed by backpropagation with cost similar to that of the gradient

50 / 78

イロト イ団 トイミト イミト・ミーの

Saliency of a parameter: $s_i = H_{i,i} x_i^2/2$

OBD procedure

Procedure:

- 1. Choose a reasonable network architecture
- 2. Train the network until a reasonable solution is obtained
- 3. Compute the second derivatives for each parameter
- 4. Compute the saliencies for each parameter
- 5. Sort the parameters by saliency and delete some low-saliency parameters
- 6. Iterate to step 2

Numerical results

Figure 1: (a) Objective function (in dB) versus number of parameters for OBD (lower curve) and magnitude-based parameter deletion (upper curve). (b) Predicted and actual objective function versus number of parameters. The predicted value (lower curve) is the sum of the saliencies of the deleted parameters.

HAWQ: Hessian AWare Quantization

HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision, Z. Dong, Z. Yao, A. Gholami, M. Mahoney, K. Keutzer, 2019

- \blacktriangleright HAWQ leverages the Hessian matrix of the loss function to guide the quantization of weights.
- \blacktriangleright The Hessian matrix provides second-order information about the importance of each weight for the model's performance.
- \triangleright The idea behind HAWQ is to reduce the precision (bit-width) of the weights that have low sensitivity to the loss, while preserving precision in important weights.
- \triangleright This method helps minimize accuracy degradation during quantization, while achieving substantial compression.

How to measure sensitivity?

- \triangleright Compute the eigenvalues of the Hessian of each block in the network.
- \triangleright Important: it is not possible to explicitly form the Hessian since the size of a block can be quite large.
- \triangleright Solution: compute the Hessian eigenvalues without explicitly forming it, using a matrix-free power iteration algorithm

Why the eigenvalues of the Hessian?

Fig. 1: Top eigenvalue of each individual block of pre-trained ResNet20 on Cifar-10 (Left), and Inception-V3 on ImageNet (Right). Note that the magnitudes of eigenvalues of different blocks varies by orders of magnitude. See Figure δ and $\bar{\beta}$ in appendix for the 3D loss landscape of other blocks.

Fig. 2: 1-D loss landscape for different blocks of ResNet20 on Cifar-10. The landscape is plotted by perturbing model weights along the top Hessian eigenvector of each block, with a magnitude of ϵ (i.e., $\epsilon = 0$ corresponds to no perturbation).

Hessian-Aware Quantization (HAWQ) Overview

- 1 Train the model with full precision (e.g., FP32).
- 2 Compute the sensitivity measure based on the Hessian eigenvalues
- 3 Apply adaptive quantization based on the sensitivity of the weights.
- 4 Fine-tune the model with quantized weights to minimize accuracy loss (quantization-aware multi-stage re-training)

Algorithm 2: Hessian AWare Quantization

Input: Block-wise Hessian eigenvalues λ_i (computed from Algorithm $\overline{1}$, and block size n_i for $i=1,\cdots,b.$ for $i = 1, 2, ..., b$ do // Compute Quantization Precision $S_i = \lambda_i/n_i$ // See Eq. $|5|$ Order S_i in descending order and to determine relative quantization precision for each block. Compute ΔW_i based on Eq. 2. **for** $i = 1, 2, ..., b$ **do** // Fine-Tuning Order $\Omega_i = \lambda_i ||\Delta W_i||^2$ // See Eq. 6 Order Ω_i in descending order and perform block-wise fine-tuning

$$
\Delta W_i = Q(W_i) - W_i
$$

Fine tuning intuition : first fine-tune layers that have high curvature, which cause more perturbations a[fte](#page-68-0)[r q](#page-70-0)[u](#page-68-0)[an](#page-69-0)[t](#page-70-0)[i](#page-58-0)[z](#page-59-0)[a](#page-70-0)[ti](#page-71-0)[o](#page-7-0)[n](#page-8-0)[.](#page-70-0)

 Ω 57 / 78

Block	Laver(s)	Layer Type	Parameter Size	Weight bit	Activation bit
Block 0	Laver ₀	Conv	4.32e2	8	8
Block 1	Layer 1-2	Conv	4.61e3	6	$\overline{4}$
Block 2	Laver 3-4	Conv	4.61e3	6	$\overline{4}$
Block 3	Laver 5-6	Conv	4.61e ₃	8	$\overline{4}$
Block 4	Layer 7-8	Conv	1.38e4	3	$\overline{4}$
Block 5	Layer 9-10	Conv	1.84e4	3	$\overline{4}$
Block 6	Laver 11-12	Conv	1.84e4	3	$\overline{4}$
Block 7	Layer 13-14	Conv	5.53e4	$\overline{2}$	$\overline{4}$
Block 8	Layer 15-16	Conv	7.37e4	\overline{c}	$\overline{4}$
Block 9	Layer 17-18	Conv	7.37e4	$\overline{2}$	$\overline{4}$
Block 10	Laver 19	FC	6.40e2	3	8

Table VI: Block seperation and final block precision of ResNet20 on Cifar-10. Here we abbreviate convolutional laver as "Conv," fully connected layer as "FC."

Outline

[Quantization](#page-8-0)

[Generalities](#page-9-0) [Quantization aware training \(QAT\)](#page-38-0) [Post training quantization \(PTQ\)](#page-54-0) [Mixed precision quantization](#page-59-0)

[Sparsification](#page-71-0)

[Pruning](#page-72-0) [Structured sparsification](#page-101-0)
[Quantization](#page-8-0)

[Generalities](#page-9-0) [Quantization aware training \(QAT\)](#page-38-0) [Post training quantization \(PTQ\)](#page-54-0) [Mixed precision quantization](#page-59-0)

メロト メ都ト メミト メミト

重

 299

[Sparsification](#page-71-0) [Pruning](#page-72-0) [Structured sparsification](#page-101-0)

Pruning

Definition: Select some neurons and/or weights and suppress them (set to zero)

How to choose?

Magnitude pruning

- \blacktriangleright Many of the learned weights have small magnitudes and contribute little to the network's performance.
- \triangleright Magnitude pruning removes weights that have small magnitudes, reducing the complexity of the model.
- \blacktriangleright Pruning criterion: given a weight w_i , prune if

 $|w_i| < \tau$

62 / 78

with τ chosen pruning threshold.

Pruning Process

- 1. Train the full Model
- 2. Compute Magnitudes of the weights
- 3. Sort weights based on their absolute magnitudes.
- 4. Set threshold τ (Top-k pruning, Percentage pruning, Global threshold)
- 5. Prune the weights that are below the threshold (set them to zero)
- 6. Retrain the model (fine-tune) for a few more epochs with the found mask. This allows the model to adjust to the new sparsity pattern and recover any lost performance.

Magnitude pruning

Advantage: pruning small weights can also act as a form of regularization, helping the model generalize better by reducing overfitting.

Variants:

- \blacktriangleright Layer-wise pruning
- ▶ Structured Pruning (removes entire neurons, filters (in CNNs), or channels in the network). This leads to a more structured sparsity pattern and can take advantage of hardware optimizations for matrix or tensor operations.
- Iterative Pruning: prune the network iteratively, pruning a small fraction of weights at each step and retraining the model after each pruning phase. This helps in minimizing performance degradation.

Other pruning criteria

- \triangleright Gradient pruning: reducing the number of parameters that are updated in each iteration by setting to zero small gradients \rightarrow limitation: saturation (vanishing gradients), better Hessian pruning
- \blacktriangleright L₁ regularization \rightarrow limitation: tuning of λ

$$
regloss = loss + \lambda ||w||_1
$$

Lottery tickets

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, J.Frankle, M. Carbin, 2019

Objective: Find a subnetwork of a large network, such that, if trained starting from the same w_0 maintains the same performance as the large network

Lottery ticket algorithm

- \blacktriangleright Choose w_0 random
- ▶ Train the full network starting from w_0 and get w^*
- ▶ Prune the network based on the magnitude of w^* : select a mask m (binary matrix $0/1$) and set $w_p = w \cdot m$
- Reset $w_p = w_0 \cdot m$
- \blacktriangleright Train sub network with just weights w_p

What do we expect from the subnetwork?

 322

ŧ

วิวิจั

f

Training time $\# \text{Iter}(M, I)$ of model M with initialization /

ละล

Training time $\#\text{Iter}(M, I)$ of model M with initialization / given (D, A, H, L) (datasets, learning algorithm, hyperparameters, loss)

First iteration at which it reaches minimum validation loss

 (M, I) is said to learn faster than (M', I') on (D, A, H, L) if

 $\#\text{Iter}(M,I) \leq \#\text{Iter}(M',I')$

1023532534531 를 300

 (M, I) is said to learn faster than (M', I') on (D, A, H, L) if

 $\#\text{Iter}(M,I) \leq \#\text{Iter}(M',I')$

Remark 1: If the cost of one iteration of (D, A, H, L) for (M', I') is much cheaper than for (M, I) , then the actual training time on a machine for M' could be smaller than the one for M.

 (M, I) is said to learn faster than (M', I') on (D, A, H, L) if

 $\#\text{Iter}(M,I) \leq \#\text{Iter}(M',I')$

Remark 1: If the cost of one iteration of (D, A, H, L) for (M', I') is much cheaper than for (M, I) , then the actual training time on a machine for M' could be smaller than the one for M . For instance if M' is a smaller model than M , then an iteration for M' is likely to be cheaper than for M : be cautious if $\#\text{Iter}(M, I) \leq \#\text{Iter}(M', I').$

 (M, I) is said to learn faster than (M', I') on (D, A, H, L) if

 $\#\text{Iter}(M,I) \leq \#\text{Iter}(M',I')$

Remark 1: If the cost of one iteration of (D, A, H, L) for (M', I') is much cheaper than for (M, I) , then the actual training time on a machine for M' could be smaller than the one for M . For instance if M' is a smaller model than M , then an iteration for M' is likely to be cheaper than for M : be cautious if $\#\text{Iter}(M, I) \leq \#\text{Iter}(M', I').$

Remark 2: Doing gradient-descent, if M' is a subnet of M and if it is trained by computing all the gradients of M and then zeroing the ones not in M' , then an iteration for M' should have the same cost as for M. Remark 1 does not apply in this case.

Notations

Notations: $s \in [0, 1]$ = level of sparsity, M_s = subnet of M of sparsity s

ALLAND AND ARRIVE AGG

Figure: Dashed lines show the average training time for random subnets with random initializations of given sparsity of a fixed original model.

#Iter(original model) \leq #Iter(random M_s)

(日) 消費 消費

ลิวลิ

Figure: Dashed lines show the average top 1 accuracy for random subnets with random initializations of given sparsity of a fixed original model.

Top1(trained random M_s) \leq Top1(trained original model)

KO K KA K K B K

Average sparse subnets learn slower than the average trained full **model:** for *M* and *s* considered in the experiments and empirical means:

 $\mathbb{E}_l\# \text{Iter}(M, I) \leq \mathbb{E}_{M_s,l} \# \text{Iter}(M_s, I)$ $\max_{l} \# \text{Iter}(M, l) \leq \min_{M \leq l} \# \text{Iter}(M_s, l)$ for s not too close from 100%

Average sparse subnets learn slower than the average trained full **model:** for *M* and *s* considered in the experiments and empirical means:

 $\mathbb{E}_l\# \text{Iter}(M, I) \leq \mathbb{E}_{M_s,l} \# \text{Iter}(M_s, I)$ $\max_{l} \# \text{Iter}(M, l) \leq \min_{M \leq l} \# \text{Iter}(M_s, l)$ for s not too close from 100%

Average sparse subnets are less accurate than the average trained full model: for M and s considered in the experiments and empirical means[.]

 \mathbb{E}_I Top1 $(M, I) \geq \mathbb{E}_{M_s, I}$ Top1 (M_s, I) $\min_{l} \text{Top1}(M, l) \ge \max_{M_s, l} \text{Top1}(M_s, l)$ for s not too close from 100%

지하다 지수는 어려운 사람들이 그를 지수야 없다.

Is it possible to find early on during training a sparse subnet that trains faster than the original model without accuracy degradation?

Definition of lottery tickets: (M_s, I) versus (M, I)

Lottery ticket: Fix (D, A, H, L) . Consider a model and an initialization (M, I) . A lottery ticket is a submodel (M_s, I) of sparsity s of (M, I) .

1023532534531 를 300

Definition of lottery tickets: (M_s, I) versus (M, I)

Lottery ticket: Fix (D, A, H, L) . Consider a model and an initialization (M, I) . A lottery ticket is a submodel (M_s, I) of sparsity s of (M, I) .

• Average lottery ticket learns slower than the average full model:

 $\mathbb{E}_{l} \# \text{Iter}(M, I) \leq \mathbb{E}_{M_{\rm c}} \# \text{Iter}(M_{\rm s}, I),$ $\forall M. \forall s.$

Definition of lottery tickets: (M_s, I) versus (M, I)

Lottery ticket: Fix (D, A, H, L) . Consider a model and an initialization (M, I) . A lottery ticket is a submodel (M_s, I) of sparsity s of (M, I) .

• Average lottery ticket learns slower than the average full model:

 $\mathbb{E}_{l} \# \text{Iter}(M, I) \leq \mathbb{E}_{M_{\rm c}} \# \text{Iter}(M_{\rm s}, I),$ $\forall M. \forall s.$

• Average lottery ticket is less accurate than the average trained full model:

 \mathbb{E}_I Top1 $(M, I) \geq \mathbb{E}_{M_{\rm c}}$ Top1 $(M_{\rm s}, I)$, $\forall M, \forall s$.

Definition: Winning tickets

Winning lottery ticket: Fix $(D, A, H, L, Top1)$ with Top1 a measure of accuracy. Consider a model and an initialization (M, I) . A lottery ticket is a submodel (M_s, I) of sparsity s is winning if:

• it learns faster than the original model: $\#\text{Iter}(M_{s}, I) \leq \#\text{Iter}(M, I)$

(1954年1月11日) (1954年1月1日) 1998年

• it is more accurate than the original model: $\text{Top1}(M, I) \leq \text{Top1}(M_s, I)$

Algorithm to find winning tickets

Algorithm of Iterative Pruning to find winning tickets:

- \blacktriangleright Train original model
- **If** Layer-wise, prune $p = 20\%$ of the weights with the smallest magnitude ($p/2\%$ for the output layer)
- \blacktriangleright Iterate until desire sparsity is achieved

Novelty: IMP find subnets that can be trained efficiently from the start for unprecedented small level of sparsity without degradation of accuracy

Empirical performance of tickets found by Iterative Pruning

Learns faster¹ than the original model for $3.6\% \le s \le 100\%$: $\mathbb{E}_l \# \text{Iter}(\text{IMP}(M, s), l) \leq \mathbb{E}_l \# \text{Iter}(M, l)$

Figure: Dashed lines: random M_s , I. Solid lines: random IMP (M, s) , I.

¹The training time decreases from $s = 100\%$ to $s = 21\%$ at which point early-stopping occurs 38% earlier than for the original model, then it increases

つへへ

Empirical performance of tickets found by Iterative Pruning

More accurate² than the original model for $3.6\% \leqslant s \leqslant 100\%$: \mathbb{E}_I Top1(IMP $(M, s), I) \geq \mathbb{E}_I$ Top1 (M, I)

²The accuracy increases from $s = 100\%$ to $s = 13.5\%$ where it gained 0.3%, then it decreases QQ

[Quantization](#page-8-0)

[Generalities](#page-9-0) [Quantization aware training \(QAT\)](#page-38-0) [Post training quantization \(PTQ\)](#page-54-0) [Mixed precision quantization](#page-59-0)

★ ロメ (4 御) > (唐) > (唐) → 唐

 299

[Sparsification](#page-71-0) [Pruning](#page-72-0) [Structured sparsification](#page-101-0) Aim: replace dense weight matrices with structured ones (e.g., sparse, low-rank, Fourier transform).

These methods have not seen widespread adoption:

- \triangleright in end-to-end training due to unfavorable efficiency-quality tradeoffs,
- \triangleright in dense-to-sparse fine-tuning of pretrained models due to lack of tractable algorithms to approximate a given dense weight matrix

Monarch networks

["Monarch: Expressive Structured Matrices for Efficient and Accurate Training", T. Dao et all, 2022]

Monarch matrices:

- \blacktriangleright hardware-efficient (they are parameterized as products of two block-diagonal matrices for better hardware utilization)
- \triangleright expressive (they can represent many commonly used transforms).
- \blacktriangleright The problem of approximating a dense weight matrix with a Monarch matrix, though nonconvex, has an analytical optimal solution.

Monarch matrices

Definition 3.1. Let $n = m^2$. An $n \times n$ *Monarch matrix* has the form:

$$
\mathbf{M} = \mathbf{PLP}^{\top} \mathbf{R},
$$

where **L** and **R** are block-diagonal matrices, each with m blocks of size $m \times m$, and **P** is the permutation that maps $[x_1, \ldots, x_n]$ to $[x_1, x_{1+m}, \ldots, x_{1+(m-1)m}, x_2, x_{2+m}, \ldots,$ $x_{2+(m-1)m},\ldots,x_m,x_{2m},\ldots,x_n].$

Figure 2: Monarch matrices are parametrized as products of two block-diagonal matrices up to permutation, allowing efficient multiplication algorithm that leverages batch matrix multiply.

We can interpret $P=P^{\mathcal{T}}$ as follows: it reshapes a vector x of size n as a matrix of size $m \times m$, transposes the matrix, then converts back into a vector of size n.

Link with butterfly matrices

In Let B butterfly matrix of size n where n is a power of 4.

$$
B = B_1 \dots B_{\log_2(n)/2} B_{\log_2(n)/2} \dots B_{\log_2(n)}
$$

- ▶ R is block-diagonal with $m = \sqrt{n}$ dense blocks, each block of size $m \times m$
- If L' is composed of $m \times m$ blocks of size $m \times m$, where each block is a diagonal matrix:

$$
L' = \begin{bmatrix} D_{11} & \dots & D_{1m} \\ \dots & \dots & \dots \\ D_{m1} & \dots & D_{mm} \end{bmatrix}
$$

- \blacktriangleright L' can be written as block-diagonal with the same structure as R after permuting the rows and columns.
- \blacktriangleright $L = PL'P^{T}$: up to permuting rows and columns, L' is also a block-diagonal matrix of m dense blocks, each of size $m \times m$.
- \triangleright B butterly implies B monarch

Special case of matrix factorization algorithm - cf. Cours 10 Sparse matrix factorization

 \rightarrow Solve a series of block SVDs

Compression - end-to-end (E2E)

Replacing dense matrices with Monarch matrices in Vision Transformer ViT, MLP-Mixer (ImageNet), and GPT-2 (WikiText-103) can speed up training by up to $2\times$ without sacrificing model quality

Table 1: The performance of Monarch matrices and ViT / MLP-Mixer on ImageNet, including the number of parameters and FLOPs. We measure the Top-1 accuracy and the training time speedup compared to the corresponding dense model.

Model	ImageNet acc. Speedup Params FLOPs			
$Mixer-S/16$	74.0	٠	18.5M	3.8G
Monarch-Mixer-S/16	73.7	$1.7\times$	7.0M	1.5G
$Mixer-B/16$	77.7	۰	59.9M	12.6G
Monarch-Mixer-B/16	77.8	$1.9\times$	20.9M	5.0G
$ViT-S/16$	79.4	٠	48.8M	9.9G
Monarch-ViT-S/16	79.1	$1.9\times$	19.6M	3.9G
$ViT-B/16$	78.5	۰	86.6M	17.6G
Monarch-ViT-B/16	78.9	$2.0\times$	33.0M	5.9G

Table 2: Performance of Monarch matrices and GPT-2-Small/Medium on WikiText-103, including the # of parameters and FLOPs. Monarch achieves similar perplexity (ppl) but 2.0× faster.

Compression - Denso-to-sparse

Procedure: BERT pretrained weights, approximate them with Monarch matrices, and finetune the resulting model on the 9 GLUE tasks (collection of nine natural language understanding tasks).

Result: Monarch finetuned model with similar quality to the dense BERT model, but with $1.7\times$ faster finetuning speed.
Table 8: The performance of Monarch matrices in finetuning BERT on GLUE.

Pixelated butterfly

Pixelated Butterfly: Simple and Efficient Sparse Training for Neural Network Models, Dao et all, 2022

- \triangleright An approach similar to the previous one, but that uses butterfly factorizations
- \triangleright As classical butterfly matrices are not hardware efficient, they propose variants of butterfly (block and flat) to take advantage of modern hardware.

Recent development : "Fast inference with Kronecker-sparse matrices" A. Gonon, L. Zheng, P. Carrivain, Q. Le, 2024 (GPU matrix multiplication algorithms specialized for Kronecker-sparse matrices)

Exercise: quantization of neural networks

Objective: Understand and apply quantization techniques to neural networks. Experiment with a post-training quantization technique. Evaluate the trade-offs between model size, inference speed, and accuracy.

Exercise Overview:

- 1. Train a basic neural network on a dataset (e.g., MNIST).
- 2. Apply post-training quantization to the trained model.
- 3. Compare the performance of the quantized models with the original floating-point model:
	- \triangleright Model Performance: check how accuracy changes with quantization and quantization-aware training.
	- Inference Speed: measure the impact of quantization on the inference time. Does it decrease? Why?
	- \triangleright Model Size: check how much the model size is reduced by quantization.