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Context: deep neural networks (DNN) are growing fast
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Scaling up

Why? : better performance, more complex tasks ...
... but

I The computational complexity, memory usage and
energy consumption of deep networks are increasingly
growing, both during training and inference

I Limitation for the deployment on resource-constrained devices
(mobile, embedded systems) where energy is often a limited
resource

I High environmental impact

I Limitation for real-time applications
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The computational bottlenecks
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Improve performance and power efficiency
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Quantization: definition

Quantization is the process of constraining an input from a
continuous or large set of values (such as the real numbers) to a
discrete set (such as the integers).
Example: convert floating-point numbers to lower precision (e.g.,
8-bit integers).

Example: https://www.qualcomm.com/news/onq/2019/03/

heres-why-quantization-matters-ai
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Low precision formats

Modern hardware

I Nvidia tensor cores

I Google TPUs

I FPGAs
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Benefits of quantization
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8-bit Integer (INT8)

I INT8 quantization is widely used for model deployment in
edge devices and mobile platforms.

I Key benefits of INT8 quantization:
I Memory efficiency: 8-bit integers require one-quarter of the

memory compared to FP32.
I Faster inference: Lower bit-width operations are less

computationally expensive, reducing both memory access time
and arithmetic operations.

I Energy savings: Typically results in lower power consumption,
especially in specialized hardware like TPUs, GPUs, and edge
AI accelerators.

I Example: Intel’s Neural Network Processor (NNP) and
Google’s Edge TPUs provide dedicated support for INT8
inference, reducing energy consumption by up to 4x compared
to FP32.
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4-bit Quantization

I 4-bit quantization is an emerging trend, focused on
ultra-low-power AI applications.

I Benefits of 4-bit quantization:
I Extremely low memory and storage requirements.
I Significant reduction in energy usage, particularly for inference.

I Trade-offs:
I Accuracy loss: Aggressive quantization can cause a notable

decrease in model accuracy.
I Requires specialized hardware that supports low-precision

operations.

I 4-bit quantization is still an area of active research, focusing
on improving the trade-off between energy savings and model
accuracy.
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Quantization: the bad

low precision = low accuracy

Challenge: reduce precision without harming accuracy
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Mixed Precision Quantization

I Mixed precision quantization involves applying different
bitwidths to different parts of the model.

I Example: Weights can be quantized to 8 bits while activations
remain at 16 bits.

I This helps to balance model accuracy with computational
efficiency.

I Particularly useful if not all parameters are equally important
for model expressivity
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Quantization formats
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How to quantize?
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How to quantize?

Want to quantize X to int8

X =


0.97 0.64 0.74 1.00
0.58 0.84 0.84 0.81
0.00 0.18 0.90 0.28
0.57 0.96 0.80 0.81


We don’t directly quantize it, but rather a scaled version to avoid
overflows.
Example: for int8 range=[−128, 127] = [minint8,maxint8]
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How to quantize?

X =


0.97 0.64 0.74 1.00
0.58 0.84 0.84 0.81
0.00 0.18 0.90 0.28
0.57 0.96 0.80 0.81



Compute scaling factor

s =
maxint8−minint8

xmax − xmin
=

127 + 128

xmax − xmin
= 255

Scale
Xs = s(X − xmin) + minint8

Quantize
round(Xs)

Clip the value
X ≈ clip(round(Xs))
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Outside the representable range: clip function

The basic idea of the clip function is to restrict values to a
predefined range (min val, max val).
The clip function is defined as:

clip(x ,min val,max val) =


min val if x < min val

x if min val ≤ x ≤ max val

max val if x > max val

For example:

clip(5, 0, 10) = 5 (within the range)

clip(−3, 0, 10) = 0 (clipped to min val)

clip(15, 0, 10) = 10 (clipped to max val)
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Quantization for DNNs
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Types of rounding

I Traditional Rounding: Typically rounds a number to the
nearest integer or a nearby fixed point.
I Round to Nearest: Rounds 1.5 to 2 and 2.4 to 2.
I Round Down: Always rounds down (e.g., 2.8 becomes 2).
I Round Up: Always rounds up (e.g., 2.1 becomes 3).

I Stochastic Rounding: Rounds based on probability,
depending on the fractional part of the number.
I For example, if a number is 1.7, it might round to 1 with

probability 0.3 and to 2 with probability 0.7.

I Key Difference: Stochastic rounding introduces randomness,
whereas traditional rounding methods are deterministic.

”Stochastic Rounding: Implementation, Error Analysis, and Applications” M. Croci, M. Fasi, N. Higham, T. Mary,
M. Mikaitis, 2021
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Introduction to Stochastic Rounding

I Stochastic rounding is a method of rounding numbers where
the rounding direction is chosen probabilistically, based on the
fractional part of the number.

I Unlike traditional rounding methods (e.g., round to nearest,
round down), stochastic rounding introduces randomness into
the rounding process.

I Commonly used in contexts like:
I Neural network quantization in low precision.
I Computationally intensive simulations with low precision.
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Why Stochastic Rounding?

E(x̂) = x

I In standard rounding methods, bias can accumulate, leading
to systematic errors in computations.

I Stochastic rounding introduces randomness, which helps to:
I Reduce bias: Prevents systematic overestimation or

underestimation of values. This randomness in rounding
ensures that the rounding error has an expected value of zero,
leading to less bias.

I Preserve statistical properties: Maintains the expected
value over a series of rounding operations.

I Improve model accuracy: In neural networks, reduces the
impact of rounding errors on training and inference, especially
when working with low-precision formats, where small errors
can propagate and magnify over multiple layers.
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How Stochastic Rounding Works

I Let x = n + f , where n is the integer part and f is the
fractional part.

I In stochastic rounding:

Round(x) =

{
n with probability 1− f

n + 1 with probability f
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Stochastic Rounding (SR) in Neural Networks

Not a new idea:
Höhfeld M, Fahlman SE. 1992 ”Probabilistic rounding in neural network learning with limited precision”

I Useful in NN, especially in low-precision formats like INT8 or
FP16.

I In low-precision arithmetic, rounding errors can significantly
impact model performance due to the limited number of bits

I The bias introduced by quantization can be reduced, leading
to:
I Better accuracy: Helps to maintain the distribution of

weights and activations, preserving model accuracy
I Improved robustness: Less sensitive to the propagation of

rounding errors over multiple layers.

I SR can outperform traditional rounding methods in certain
quantized neural networks:
Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. 2015 ”Deep Learning with Limited Numerical

Precision”
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Limitations of RN for low precision
”On Stochastic Roundoff Errors in Gradient Descent with Low- Precision Computation” Xia, L., Massei, S., Hochstenbach, M. E.,

Koren, B. (2024).
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SR for neural networks
Gupta S, Agrawal A, Gopalakrishnan K, Narayanan P. 2015 ”Deep Learning with Limited Numerical Precision”
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Challenges and Limitations

I Hardware support: Not all hardware accelerators natively
support stochastic rounding, requiring custom
implementations.

I Higher complexity: The randomness involved in stochastic
rounding can make it more difficult to analyze and debug
models.
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Quantization-Based Methods for 
Efficient DNN Inference
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Quantization for efficient DNN inference

Post Training Quantization (PTQ) Quantization-Aware Training (QAT)
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+ higher accuracy in general
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Training with Quantization

I Quantization-Aware Training (QAT): A technique where
quantization is simulated during training.

I The model is trained with quantized weights and/or
activations to maintain accuracy.

I During training, the gradients are computed as if the model
were full precision.
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QAT: backward path quantization simulation

Conv/FC
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Problem: How can we back propagate through quantization layers?
➡round-to-nearest does not have meaningful gradients 

   (i.e., either zero or undefined everywhere)

➡gradient-based training seems impossible

18



QAT: backward path quantization simulation

Conv/FC

Activation

+

Quantizer

Weights

QuantizerBiases

Input

ŷ
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   (i.e., either zero or undefined everywhere)

➡gradient-based training seems impossible

Solution: redefine gradient with “straight-through estimator” (STE) [1]

[1] Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation, Bengio et al., arXiv:1308.3432, 2013
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QAT: backward path quantization simulation
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Schematic view of a QAT procedure with STE applied (adapted from [1])

[1] A Survey of Quantization Methods for Efficient Neural Network Inference, Gholami et al., arXiv:2103.13630, 2021
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Early success of QAT: BinaryConnect

[”BinaryConnect: Training Deep Neural Networks with binary weights
during propagations”, M. Courbariaux, Y. Bengio, JP David, 2016]

I BinaryConnect is a method for training neural networks with binary
weights and activations.

I During training, the weights are binarized (approximated to +1 or
-1).

I The activations can also be binarized, reducing the computational
cost of both forward and backward passes.
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How BinaryConnect Works

I Keeps double copy of the weights: binary weights Wbin and
continuous weights W

I Train the model using real-valued weights (for gradient
computation), but at each step, constrain the weights to
binary values after the weight update step.

I Reduce memory and computation for inference, while still
benefiting from continuous gradients during training (essential
for SGD to work).
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How BinaryConnect Works

I During forward pass:
I We compute the activations using binary weights

I During backpropagation:
I The gradients are computed as if the network were using

real-valued weights.
I The continous weights are updated based on these gradients.

I The weights are binarized using the sign function:

wbinary = sign(w)
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Algorithm: BinaryConnect

Input:

I Training data xi , yi for i = 1, . . . ,N

I Neural network architecture (e.g., layers, activation functions)

I Number of epochs T

I Learning rate η

Output: Trained binary weights Wbin and biases b (usually in
full-precision)

35 / 78



Algorithm: BinaryConnect

1. Initialize weights W and biases b with small random values

2. Initialize the binary weights Wbin = sign(W )

3. For each epoch t = 1, . . . ,T :
3.1 For each training sample (xi , yi )

3.1.1 Perform forward pass: calculate activations using the binary
weights Wbin: ai = σ(Wbinxi + b)

3.1.2 Compute the loss L(xi , yi ) (e.g., cross-entropy or mean
squared error)

3.1.3 Perform backward pass (backpropagation): compute the
gradients ∇L with respect to continuous weights W

3.1.4 Update continuous weights using the continuous gradients
∇L: W = clip(W − η∇WL,−1, 1), b = b − η∇bL

3.1.5 Update binary weights: binarize the continuous weights
Wbin = sign(W )

4. Return the final binary weights Wbin and biases b
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Backward pass

Key points:

I compute gradients as if the weights were continuous, even
though they are binary: ∇L(W ) by using the straight-through
estimator (STE) for the sign function.

I Update the weights in full precision and then binarize:

W = W − η∇L(W )
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Binarizing the weights

Often it is better to binarize stochastically

wbin =

{
+1 with p = clip(w , 0, 1)

−1 with 1− p

instead that
Wbin = sign(W )
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Advantages of BinaryConnect

I Extreme reduction of memory requirements: binary weights
take only 1 bit per weight.

I Faster computations: using binary values accelerates inference
and training

I Suitable for embedded systems and mobile devices.

I Often retains near state-of-the-art performance despite the
simplifications.

39 / 78



Numerical results
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Challenges and Limitations

I Binarizing weights can lead to reduced model expressiveness
and lower performance for complex tasks.

I While STE works well in practice for many cases, it is still an
approximation: the learning process may be less efficient or
may converge to suboptimal solutions in some scenarios.

I Not all types of neural network architectures are suitable for
binary weights (CNN, GANs, transformers..)

I BinaryConnect may require more epochs or larger learning
rates to achieve comparable performance to networks with
continuous weights.

I The optimization landscape may also be more noisy or less
smooth due to the discretization of the weights
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Post-Training Quantization

I Post-Training Quantization (PTQ) refers to the process of
quantizing a pre-trained model without retraining.

I Typically applied after training a high-precision model (e.g.,
32-bit floating point) for deployment on resource-constrained
devices.

I It involves converting the model’s weights and/or activations
to lower bitwidth (e.g., 8-bit integers).

43 / 78



Methods for Post-Training Quantization

I Quantizing Weights: Weights can be quantized after
training to reduce the model’s size.

I Quantizing Activations: Activations are also quantized
during inference to further reduce computational costs.

I Calibration: Calibration is used to select optimal scaling
factors for quantization. It typically involves running a small
dataset through the model to estimate the range of
activations.
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Calibration Process

I Calibration helps to determine the scaling factors that best
preserve the model’s accuracy after quantization.

I Common calibration techniques include:
I Min-Max Calibration: Finds the minimum and maximum

values of activations and weights to determine the
quantization range.

I Histogram-based Calibration: Uses a histogram of
activation values to set more precise scaling factors.

I Calibration is especially important when quantizing activations
to prevent a significant accuracy drop.
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Challenges in Post-Training Quantization

I Calibration Sensitivity: The accuracy of the calibration
process is critical, and improper calibration can lead to
significant performance drops.

I Automated Calibration Methods: Advances in machine
learning-based calibration techniques that do not require
manual tuning.

I Non-Uniform Distributions: Some models have highly
non-uniform weight distributions, making it harder to quantize
efficiently.
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Limitations of classical quantization schemes

I Traditional quantization methods usually focus on reducing
bit-width uniformly across layers or channels.

I Limitations: Such methods can lead to significant accuracy
loss because they ignore how sensitive to quantization the
parameters in the different layers are.

I Solution: Use second-order information (i.e., the Hessian
matrix) to guide the quantization process.

I Hessian Matrix: Captures the sensitivity of the model’s loss
function with respect to the parameters, providing richer
information for quantization decisions.
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Origins of Hessian aware quantization - 1994

Aim: predict the effect of a

parameter xi on f (

x1
...
xn

) without

computing f (


x1
...
0
...
xn

) for all i

Idea: Taylor development

f (x)− f (x̃) ≈ ∇f (x̃)T (x − x̃) +
1

2
(x − x̃)TH(x̃)(x − x̃)

We want to find parameters xi that make f (x)− f (x̃) small to
suppress them.
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OBD pruning

Simplifying assumptions:

I At convergence: ∇f (x̃) ≈ 0

I 1
2 (x − x̃)TH(x̃)(x − x̃) = 1

2

∑
i Hi ,ix

2
i + 1

2

∑
i 6=j Hi ,jxixj

I We neglect the last term to reduce cost

I 1
2

∑
i Hi ,ix

2
i can be efficiently computed by backpropagation

with cost similar to that of the gradient

Saliency of a parameter: si = Hi ,ix
2
i /2
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OBD procedure

Procedure:

1. Choose a reasonable network architecture

2. Train the network until a reasonable solution is obtained

3. Compute the second derivatives for each parameter

4. Compute the saliencies for each parameter

5. Sort the parameters by saliency and delete some low-saliency
parameters

6. Iterate to step 2
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Numerical results
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HAWQ: Hessian AWare Quantization

HAWQ: Hessian AWare Quantization of Neural Networks with Mixed-Precision, Z. Dong, Z. Yao, A. Gholami, M.

Mahoney, K. Keutzer, 2019

I HAWQ leverages the Hessian matrix of the loss function to
guide the quantization of weights.

I The Hessian matrix provides second-order information about
the importance of each weight for the model’s performance.

I The idea behind HAWQ is to reduce the precision (bit-width)
of the weights that have low sensitivity to the loss, while
preserving precision in important weights.

I This method helps minimize accuracy degradation during
quantization, while achieving substantial compression.
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How to measure sensitivity?

I Compute the eigenvalues of the Hessian of each block in the
network.

I Important: it is not possible to explicitly form the Hessian
since the size of a block can be quite large.

I Solution: compute the Hessian eigenvalues without explicitly
forming it, using a matrix-free power iteration algorithm
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Why the eigenvalues of the Hessian?
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Hessian-Aware Quantization (HAWQ) Overview

1 Train the model with full precision (e.g., FP32).

2 Compute the sensitivity measure based on the Hessian
eigenvalues

3 Apply adaptive quantization based on the sensitivity of the
weights.

4 Fine-tune the model with quantized weights to minimize
accuracy loss (quantization-aware multi-stage re-training)
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∆Wi = Q(Wi )−Wi

Fine tuning intuition : first fine-tune layers that have high
curvature, which cause more perturbations after quantization.
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Pruning

Definition: Select some neurons and/or weights and suppress
them (set to zero)

How to choose?
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Magnitude pruning

I Many of the learned weights have small magnitudes and
contribute little to the network’s performance.

I Magnitude pruning removes weights that have small
magnitudes, reducing the complexity of the model.

I Pruning criterion: given a weight wi , prune if

|wi | < τ

with τ chosen pruning threshold.
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Pruning Process

1. Train the full Model

2. Compute Magnitudes of the weights

3. Sort weights based on their absolute magnitudes.

4. Set threshold τ (Top-k pruning, Percentage pruning, Global
threshold)

5. Prune the weights that are below the threshold (set them to
zero)

6. Retrain the model (fine-tune) for a few more epochs with the
found mask. This allows the model to adjust to the new
sparsity pattern and recover any lost performance.
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Magnitude pruning

Advantage: pruning small weights can also act as a form of
regularization, helping the model generalize better by reducing
overfitting.

Variants:

I Layer-wise pruning

I Structured Pruning (removes entire neurons, filters (in CNNs),
or channels in the network). This leads to a more structured
sparsity pattern and can take advantage of hardware
optimizations for matrix or tensor operations.

I Iterative Pruning: prune the network iteratively, pruning a
small fraction of weights at each step and retraining the
model after each pruning phase. This helps in minimizing
performance degradation.

64 / 78



Other pruning criteria

I Gradient pruning: reducing the number of parameters that are
updated in each iteration by setting to zero small gradients →
limitation: saturation (vanishing gradients), better Hessian
pruning

I L1 regularization → limitation: tuning of λ

regloss = loss + λ‖w‖1
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Lottery tickets

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, J.Frankle, M. Carbin, 2019

Objective: Find a subnetwork of a large network, such that, if
trained starting from the same w0 maintains the same performance
as the large network
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Lottery ticket algorithm

I Choose w0 random

I Train the full network starting from w0 and get w∗

I Prune the network based on the magnitude of w∗: select a
mask m (binary matrix 0/1) and set wp = w ·m

I Reset wp = w0 ·m
I Train sub network with just weights wp

What do we expect from the subnetwork?
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Definition of the training time

Training time #Iter(M, I ) of model M with initialization I given
(D,A,H, L) (datasets, learning algorithm, hyperparameters, loss)

First iteration at which it reaches minimum validation loss

A. Gonon Winning tickets 4 / 33
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Definition of the training time

(M, I ) is said to learn faster than (M ′, I ′) on (D,A,H, L) if

#Iter(M, I ) ⩽ #Iter(M ′, I ′)

Remark 1: If the cost of one iteration of (D,A,H, L) for (M ′, I ′) is much
cheaper than for (M, I ), then the actual training time on a machine for M ′

could be smaller than the one for M. For instance if M ′ is a smaller model
than M, then an iteration for M ′ is likely to be cheaper than for M: be
cautious if #Iter(M, I ) ⩽ #Iter(M ′, I ′).

Remark 2: Doing gradient-descent, if M ′ is a subnet of M and if it is
trained by computing all the gradients of M and then zeroing the ones not
in M ′, then an iteration for M ′ should have the same cost as for M.
Remark 1 does not apply in this case.
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Definition of the training time

(M, I ) is said to learn faster than (M ′, I ′) on (D,A,H, L) if

#Iter(M, I ) ⩽ #Iter(M ′, I ′)

Remark 1: If the cost of one iteration of (D,A,H, L) for (M ′, I ′) is much
cheaper than for (M, I ), then the actual training time on a machine for M ′

could be smaller than the one for M.

For instance if M ′ is a smaller model
than M, then an iteration for M ′ is likely to be cheaper than for M: be
cautious if #Iter(M, I ) ⩽ #Iter(M ′, I ′).

Remark 2: Doing gradient-descent, if M ′ is a subnet of M and if it is
trained by computing all the gradients of M and then zeroing the ones not
in M ′, then an iteration for M ′ should have the same cost as for M.
Remark 1 does not apply in this case.

A. Gonon Winning tickets 5 / 33



Definition of the training time

(M, I ) is said to learn faster than (M ′, I ′) on (D,A,H, L) if

#Iter(M, I ) ⩽ #Iter(M ′, I ′)

Remark 1: If the cost of one iteration of (D,A,H, L) for (M ′, I ′) is much
cheaper than for (M, I ), then the actual training time on a machine for M ′

could be smaller than the one for M. For instance if M ′ is a smaller model
than M, then an iteration for M ′ is likely to be cheaper than for M: be
cautious if #Iter(M, I ) ⩽ #Iter(M ′, I ′).

Remark 2: Doing gradient-descent, if M ′ is a subnet of M and if it is
trained by computing all the gradients of M and then zeroing the ones not
in M ′, then an iteration for M ′ should have the same cost as for M.
Remark 1 does not apply in this case.
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Notations

Notations: s ∈ [0, 1] = level of sparsity, Ms = subnet of M of sparsity s
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Average random sparse subnets learn slower and are less
accurate (empirical)

Figure: Dashed lines show the average training time for random subnets with
random initializations of given sparsity of a fixed original model.

#Iter(original model) ⩽ #Iter(random Ms)
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Average random sparse subnets learn slower and are less
accurate (empirical)

Figure: Dashed lines show the average top 1 accuracy for random subnets with
random initializations of given sparsity of a fixed original model.

Top1(trained random Ms) ⩽ Top1(trained original model)

A. Gonon Winning tickets 8 / 33



Average random sparse subnets learn slower and are less
accurate (empirical)

Average sparse subnets learn slower than the average trained full
model: for M and s considered in the experiments and empirical means:

EI#Iter(M, I ) ⩽ EMs ,I#Iter(Ms , I )

max
I

#Iter(M, I ) ⩽ min
Ms ,I

#Iter(Ms , I ) for s not too close from 100%

Average sparse subnets are less accurate than the average trained
full model: for M and s considered in the experiments and empirical
means:

EITop1(M, I ) ⩾ EMs ,ITop1(Ms , I )

min
I

Top1(M, I ) ⩾ max
Ms ,I

Top1(Ms , I ) for s not too close from 100%
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Challenge

Is it possible to find early on during training a sparse subnet that trains
faster than the original model without accuracy degradation?
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Definition of lottery tickets: (Ms , I ) versus (M , I )

Lottery ticket: Fix (D,A,H, L). Consider a model and an initialization
(M, I ). A lottery ticket is a submodel (Ms , I ) of sparsity s of (M, I ).

Average lottery ticket learns slower than the average full model:

EI#Iter(M, I ) ⩽ EMs ,I#Iter(Ms , I ), ∀M,∀s.

Average lottery ticket is less accurate than the average trained
full model:

EITop1(M, I ) ⩾ EMs ,ITop1(Ms , I ), ∀M,∀s.
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Definition: Winning tickets

Winning lottery ticket: Fix (D,A,H, L,Top1) with Top1 a measure of
accuracy. Consider a model and an initialization (M, I ). A lottery ticket is
a submodel (Ms , I ) of sparsity s is winning if:

it learns faster than the original model: #Iter(Ms , I ) ⩽ #Iter(M, I )

it is more accurate than the original model:
Top1(M, I ) ⩽ Top1(Ms , I )

Lottery ticket hypothesis: Fix (D,A,H, L,Top1) with Top1 a measure
of accuracy. Consider a model and an initialization (M, I ). There exists a
winning lottery ticket (Ms , I ) with s << 100%.

Interest of the hypothesis: At init, there is a subnet that can be trained
at least as fast as the original model to an accuracy at least as good.
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Algorithm to find winning tickets

Algorithm of Iterative Pruning to find winning tickets:

I Train original model

I Layer-wise, prune p = 20% of the weights with the smallest
magnitude (p/2% for the output layer)

I Iterate until desire sparsity is achieved

Novelty: IMP find subnets that can be trained efficiently from the
start for unprecedented small level of sparsity without degradation
of accuracy
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Empirical performance of tickets found by Iterative Pruning

Learns faster1 than the original model for 3.6% ⩽ s ⩽ 100%:
EI#Iter(IMP(M, s), I ) ⩽ EI#Iter(M, I )

Figure: Dashed lines: random Ms , I . Solid lines: random IMP(M, s), I .

1The training time decreases from s = 100% to s = 21% at which point
early-stopping occurs 38% earlier than for the original model, then it increases
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Empirical performance of tickets found by Iterative Pruning

More accurate2 than the original model for 3.6% ⩽ s ⩽ 100%:
EITop1(IMP(M, s), I ) ⩾ EITop1(M, I )

2The accuracy increases from s = 100% to s = 13.5% where it gained 0.3%, then it
decreases
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Quantization
Generalities
Quantization aware training (QAT)
Post training quantization (PTQ)
Mixed precision quantization

Sparsification
Pruning
Structured sparsification



Structured sparsification

Aim: replace dense weight matrices with structured ones (e.g.,
sparse, low-rank, Fourier transform).

These methods have not seen widespread adoption:

I in end-to-end training due to unfavorable efficiency-quality
tradeoffs,

I in dense-to-sparse fine-tuning of pretrained models due to lack
of tractable algorithms to approximate a given dense weight
matrix
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Monarch networks

[”Monarch: Expressive Structured Matrices for Efficient and Accurate
Training”, T. Dao et all, 2022]

Monarch matrices:

I hardware-efficient (they are parameterized as products of two
block-diagonal matrices for better hardware utilization)

I expressive (they can represent many commonly used transforms).

I The problem of approximating a dense weight matrix with a
Monarch matrix, though nonconvex, has an analytical optimal
solution.
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Monarch matrices

We can interpret P = PT as follows: it reshapes a vector x of size
n as a matrix of size m ×m, transposes the matrix, then converts

back into a vector of size n.
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Link with butterfly matrices
I Let B butterfly matrix of size n where n is a power of 4.

I B = B1 . . .Blog2(n)/2︸ ︷︷ ︸
L′

Blog2(n)/2 . . .Blog2(n)︸ ︷︷ ︸
R

I R is block-diagonal with m =
√
n dense blocks, each block of

size m ×m

I L′ is composed of m ×m blocks of size m ×m, where each
block is a diagonal matrix:

L′ =

D11 . . . D1m

. . . . . . . . .
Dm1 . . . Dmm


I L′ can be written as block-diagonal with the same structure as

R after permuting the rows and columns.

I L = PL′PT : up to permuting rows and columns, L′ is also a
block-diagonal matrix of m dense blocks, each of size m ×m.

I B butterly implies B monarch
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Projection algorithm

Special case of matrix factorization algorithm - cf. Cours 10 Sparse
matrix factorization

→ Solve a series of block SVDs
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Compression - end-to-end (E2E)

Replacing dense matrices with Monarch matrices in Vision Transformer ViT,

MLP-Mixer (ImageNet), and GPT-2 (WikiText-103) can speed up training by

up to 2× without sacrificing model quality
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Compression - Denso-to-sparse

Procedure: BERT pretrained weights, approximate them with
Monarch matrices, and finetune the resulting model on the 9 GLUE
tasks (collection of nine natural language understanding tasks).

Result: Monarch finetuned model with similar quality to the dense
BERT model, but with 1.7× faster finetuning speed.
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Pixelated butterfly
Pixelated Butterfly: Simple and Efficient Sparse Training for Neural Network Models, Dao et all, 2022

I An approach similar to the previous one, but that uses
butterfly factorizations

I As classical butterfly matrices are not hardware efficient, they
propose variants of butterfly (block and flat) to take
advantage of modern hardware.

Recent development : ”Fast inference with Kronecker-sparse matrices” A. Gonon, L. Zheng, P.

Carrivain, Q. Le, 2024 (GPU matrix multiplication algorithms specialized for
Kronecker-sparse matrices)
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Exercise: quantization of neural networks

Objective: Understand and apply quantization techniques to
neural networks. Experiment with a post-training quantization
technique. Evaluate the trade-offs between model size, inference
speed, and accuracy.
Exercise Overview:

1. Train a basic neural network on a dataset (e.g., MNIST).

2. Apply post-training quantization to the trained model.

3. Compare the performance of the quantized models with the
original floating-point model:
I Model Performance: check how accuracy changes with

quantization and quantization-aware training.
I Inference Speed: measure the impact of quantization on the

inference time. Does it decrease? Why?
I Model Size: check how much the model size is reduced by

quantization.
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