
1/51

Physics Informed Neural Networks
(PINNs)

Elisa Riccietti and Theo Mary

LIP-ENS Lyon



2/51

The context

The problem: numerical approximation of PDE’s solutions.

I Classical approaches: discretization methods (finite
differences, finite elements) and multigrid methods (MG)

I New advances in machine learning : Physics Informed Neural
Networks (PINNs)
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Outline

Recap on classical methods and limitations

Physics Informed Neural Networks (PINNs)
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The numerical solution of PDEs: linear case

I Classically PDEs are
discretized on a grid using
finite differences or finite
elements

I The resulting linear system
Au = f is solved using a
fixed point iterative
method (Gauss-Seidel or
Jacobi)

I The size of the grids
impacts the size of the
system and the accuracy of
the solution approximation
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Limitations of classical approaches

1) May be difficult to discretize the domain
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Little detour: Finite elements method (FEM)

Illustrative problems P1 and P2

P1 one-dimensional problem

P1 :

{
u′′(x) = f (x) in (0, 1),

u(0) = u(1) = 0

P2 two-dimensional problem (Dirichlet problem)

P2 :

{
uxx(x , y) + uyy (x , y) = f (x , y) in Ω,

u = 0 on ∂Ω

where f is given, u is unknown



8/51

FEM in two steps

1. One rephrases the original BVP in its weak form. Little to no
computation is usually required for this step. The
transformation is done by hand on paper.

2. Discretization: the weak form is discretized in a
finite-dimensional space. This yields a large but
finite-dimensional linear problem whose solution will
approximately solve the original BVP.
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Weak formulation for P1

If u solves P1, then for any smooth function v such that
v(0) = v(1) = 0, we have∫ 1

0
f (x)v(x) dx =

∫ 1

0
u′′(x)v(x) dx . (1)

Conversely, if u with u(0) = u(1) = 0 satisfies (1) for every smooth
function v(x) then one may show that this u will solve P1.
We define a new operator or map φ(u, v) by using integration by
parts:∫ 1

0
f (x)v(x) dx =

∫ 1

0
u′′(x)v(x) dx

= u′(x)v(x)|10 −
∫ 1

0
u′(x)v ′(x) dx

= −
∫ 1

0
u′(x)v ′(x) dx ≡ −φ(u, v),

where we have used the assumption that v(0) = v(1) = 0.
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The weak form of P2

If we integrate by parts using a form of Green’s identities, we see
that if u solves P2, then we may define φ(u, v) for any v by∫

Ω
fv ds = −

∫
Ω
∇u · ∇v ds ≡ −φ(u, v),

φ can be turned into an inner product on a suitable space H1
0 (Ω)

(Sobolev space) of once differentiable functions of Ω that are zero
on ∂Ω. We have also assumed that v ∈ H1

0 (Ω). The existence and
uniqueness of the solution can also be shown.
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Discretization of weak form of P1 and P2

The basic idea is to replace the infinite-dimensional linear problem:

Find u ∈ H1
0 such that ∀v ∈ H1

0 , −φ(u, v) =

∫
fv

with a finite-dimensional version:

Find u ∈ V such that ∀v ∈ V , −φ(u, v) =

∫
fv

where V is a finite-dimensional subspace of H1
0 .

How to choose V ? There are many possible choices for V , for the
FEM we take a space of piecewise polynomial functions
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Choice of V for P1

In the interval (0, 1), choose n values of x with

0 = x0 < x1 < · · · < xn < xn+1 = 1

and we define V by:

V = {v : [0, 1]→ R : v is continuous, v |[xk ,xk+1] is linear for

k = 0, . . . , n, and v(0) = v(1) = 0}

Observe that functions in V are not differentiable
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Choice of V for P2

I We consider a triangulation
of Ω, V is the set of
functions that are linear on
each triangle.

I When the triangular mesh
becomes finer and finer, the
solution of the discrete
problem will converge to the
solution of the original P2.

I Mesh fineness: largest or
average triangle size in the
triangulation.
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Choosing a basis of V for P1

In the one-dimensional case, for each control point xk we will
choose the piecewise linear function vk in V whose value is 1 at xk
and zero at every xj , j 6= k , i.e.,

vk(x) =


x−xk−1

xk −xk−1
if x ∈ [xk−1, xk ],

xk+1−x
xk+1−xk if x ∈ [xk , xk+1],

0 otherwise,

for k = 1, . . . , n; this basis

is a shifted and scaled tent function.
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Choosing a basis of V for P2

For the two-dimensional case, we choose again one basis function
vk per vertex xk of the triangulation of the planar region Ω. The
function vk is the unique function of V whose value is 1 at xk and
zero at every xj , j 6= k.
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More complex FEM methods

I In case of curved domains we might replace the triangles with
curvilinear elements

I Can replace ”piecewise linear” with ”piecewise quadratic” or
even ”piecewise polynomial” (”higher order element”)

I The finite element method is not restricted to triangles
(tetrahedra, prisms, or pyramids in 3-d or higher-order
simplexes in multidimensional spaces).

I More advanced implementations (adaptive finite element
methods) utilize a method to assess the quality of the results
(based on error estimation theory) and modify the mesh
during the solution
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Matrix form of the problem

If we write

u(x) =
n∑

k=1

ukvk(x) and f (x) =
n∑

k=1

fkvk(x)

then our problem

∀v ∈ V , −φ(u, v) =

∫
fv

taking v(x) = vj(x) for j = 1, . . . , n, becomes

−
n∑

k=1

ukφ(vk , vj) =
n∑

k=1

fk

∫
vkvjdx

for j = 1, . . . , n.
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Matrix form of the problem

If we denote

I u = (u1, . . . , un)T

I f = (f1, . . . , fn)T

I L = (Lij) = (φ(vi , vj))ij
I M = (Mij) = (

∫
vivjdx)ij

we can write the problem in matrix form:

−Lu = Mf.

Alternatively, it is not necessary to assume f (x) =
n∑

k=1

fkvk(x).

and taking again v(x) = vj(x) for j = 1, . . . , n the problem

becomes −Lu = b, where b = (b1, . . . , bn)t and bj =

∫
fvjdx for

j = 1, . . . , n.
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Small support of the basis

The primary advantage of this choice of basis is that

〈vj , vk〉 =

∫ 1

0
vjvk dx and φ(vj , vk) =

∫ 1

0
v ′j v
′
k dx

will be zero for almost all j , k1.
→ most of the entries of L and M are zero: sparse linear system
with symmetric and positive definite matrix. A technique such as
the conjugate gradient method is favored.

1In the one dimensional case, the support of vk is the interval [xk−1, xk+1].
Hence, the integrands of 〈vj , vk〉 and φ(vj , vk) are identically zero whenever
|j − k| > 1. Similarly, in the planar case, if xj and xk do not share an edge of
the triangulation, then the integrals∫

Ω

vjvk ds and

∫
Ω

∇vj · ∇vk ds

are both zero
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Limitations of classical approaches

2) Cannot directly handle nonlinear equations

Idea: locally linearize the problem
Example:

F (u) = −∆u + eu − f = 0

I Given u0, approximate

F (u) ∼ F̂ (u) := −∆u + eu0 + eu0(u − u0)− f

I Solve (approximately) F̂ (u) = 0 and get u1.

I Repeat.

Requires to solve a sequence of linear problems and solves an
approximated problem
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Limitations of classical approaches

3) Curse of dimensionality: the number of samples N necessary to
uniformly cover a volume grows exponentially in the dimension of
the space p.

I The sampling density d is proportional to N1/p.

I If in 1D (p = 1) the density is d = 100, this means that there
is no more than 10−2 = 0.01 distance between points

I To have the same density in dimension p = 10 we need
N = 10010 samples (i.e., an equivalent sampling of a
10-dimensional unit hypercube with a lattice that has the
same spacing between adjacent points).
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A new approach for PDEs

A recent development: use neural networks to approximate the
solution of a PDE

M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear partial differential equations, 2019.

Example:

−∆u(x) = f (x)

write u(x) ∼ uθ(x) = NN(θ, x)
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Why this approach ?

I Natural approach for nonlinear equations

I Provides analytic and continuously differentiable expression of
the approximate solution

I The solution is meshless, well suited for problems with
complex geometries

I The training is highly parallelizable on GPU

I Allows to alleviate the effect of the curse of dimensionality
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Scientific machine learning (SML)

Classical physics

, Do not require data

/ Experimental data for
complex physical systems is
limited.

/ Requires good knowledge of
the physics of the system

Classical ML

, good practical performance
in the big data regime

/ unable to extract
interpretable information
and knowledge from data

/ Predictions may be
physically inconsistent or
implausible (observational
biases, noisy measurements):
poor generalization



26/51

Scientific machine learning

Physics-informed learning integrates (noisy) data and
mathematical models, and implements them through neural
networks or other kernel-based methods.

, Networks in SML can be trained from additional information
obtained by enforcing the physical laws (providing ‘informative
priors’)

, It may be possible to design specialized network architectures
that automatically satisfy some of the physical invariants for
better accuracy, faster training and improved generalization.

, More interpretable ML methods that remain robust in the
presence of imperfect data (missing or noisy values, outliers
and so on) and can provide accurate and physically consistent
predictions,

G. Karniadakis et all., Physics-informed machine learning, 2021.
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General NN strategy for learning problems

Neural network Training data

I Dataset composed of input/output couples (xi , yi ), i = 1, . . . ,m.

I Compute NN(xi , θ) =

σ(W3σ(W2

σ(W1xi + b1)

+ b2) + b3)

I Loss function L(θ; x , y) = 1
m

∑m
i=1(NN(xi , θ)− yi )

2 = MSE

I The associated minimization problem : min
θ∈Θ

L(θ; x , y)

I Optimize by stochastic gradient descent (SGD)
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Neural network Training data

Training problem:

min
θ∈Θ

L(θ) =
1

m

m∑
i=1

(NN(θ, xi )− yi )
2

How to integrate the physical knowledge in the model?
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Physics Informed Neural Networks (PINNs)

Neural network NN(θ, x) ≈ u(x) Training data

Training problem: min
θ∈Θ

L(θ) = LOBS(θ) + LPDE (θ)

LOBS(θ)=
1

m1

∑
xi∈Ω∪∂Ω

(NN(θ, xi )− yi )
2,

LPDE (θ)=
1

m2,i

∑
xi∈Ω

(L(NN(θ, xi ))− f (xi ))2)

+
1

m2,b

∑
xi∈∂Ω

(B(NN(θ, xi ))− g(xi ))2)
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1D and 2D example

On the blackboard !
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Convergence theory [Shin, Darbon, Karniadakis, 2020]

I the universality property of NN (approximation error)

I statistical sampling,

I ability of numerical optimizers (ADAM,SGD,...) to reach an
approximate global optimum of nonconvex function

I h̃m our network,

I hm a perfectly trained network on the dataset,

I ĥ function minimizing the problem with infinitely many data,

I u∗ the solution of the underlying PDE
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Convergence theory [Shin, Darbon, Karniadakis, 2020]
I LPINN expected loss
I Lm empirical loss over m samples
I α Holder constant of the loss
I d dimension of the space
I HP: the derivation is based on the probabilistic space filling

arguments, assume that training data distributions cover the
interior and the boundary

With high probability

LPINN(h) 6 Lm(h) + C (mα/d)

and
LPINN(hm) 6 C (mα/d)

with hm ∈ Hn minimizer of Lm If PDE is linear (elliptic or
parabolic)

lim
m→∞

hm = u∗ in C 0

(seq of minimizers conv uniformly to PDE sol in infinite data
regime)
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Convergence analysis

Most recent advances: regularized PINNs [Doumeche, Biau, Boyer,
2024]

Lreg (u) = LPINN(u) + λt‖u‖2
Hm

Assume u∗ unique solution in Hm, then almost surely

lim
λt→0,D→∞,n→∞,k→∞

‖uθ̂(k,n,D,λt)
− u∗‖Hm = 0

D: width of the neural network
n: number of points
k: iterations
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The optimization error

An important ingredient: the F-principle

⇒ PINNs are not effective
in approximating highly
oscillatory solutions
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Can we exploit MG for the training of PINNs?

How to transpose the ingredients of success of MG Basic idea of
MG: Exploiting “complementarity” between problems involved

Classical MG vs Neural networks

I Consider a minimization method and a class of problems for
which this method is efficient

smoothing (GS orJ) first-order (GD, SGD)
high-frequency low-frequency

I Split the problem depending of its frequency content

I Shift the frequencies

Coarser discretizations Specialized architectures
(Mscale networks)



36/51

Specialized architectures

I Mscale networks: [Liu, Cai and Xu, (2020)]
frequency-selective subnetworks + wavelet-inspired and
frequency-located activation functions
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Our architecture
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Multilevel PINNs: the training

From simultaneous training to BCD training!
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How to select the blocks?

Criterion:
‖∇i f (x)‖ ≥ τ‖∇f (x)‖, τ ∈ (0, 1)
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Numerical results: MSE vs iterations

Problem: Navier Stockes equation on Ω

Ω



41/51

Numerical results: final MSE on average (10 runs)
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Numerical results: MSE vs iterations

Problem: Heat equation


∂u(z, t)

∂t
=

1

(ωπ)2

∂2u(z, t)

∂z2
,

u(z, 0) = sin(ωπz), z ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ [0, 1],

Good numerical results, but ... does the method converge?
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ML methods: abstraction from the PDE context

Problem: F space of continuous functions parametrized by x

min
y∈F

f (y)

Approach: we look for y as the sum of two terms

y(x) = y1(x1) + y2(x2).

This yields the optimization problem

min
(x1,x2)∈Rn

f (y1(x1) + y2(x2)),

where n = n1 + n2.
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ML methods: approximation spaces

A12 =
{
y ∈ F | y(x) = y1(x1) + y2(x2) for some (x1, x2) ∈ Rn

}
Ai =

{
y ∈ F | y(x) = yi (xi ) for some xi ∈ Rni

}
(i = 1, 2).

Hierarchical context Distributed context

A2 ⊂ A1 = A12 A1,A2 ⊂ A12



45/51

The distributed context

Example: neural networks

f (x) = loss

y1(x1) = NN1(x1)

y2(x2) = NN2(x2)
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The hierarchical context

Example: classical MG

f (x) =
1

2
xTAx + xTb
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A block coordinate descent (BCD) perspective on ML

The hierarchical context
Alternate:

min
(x1, x2) ∈ Rn1+n2

x

f (y1(x1)+y2(x2))

and

min
x2 ∈ Rn2

x1 fixed

f (y1(x1) + y2(x2))

The distributed context
Alternate:

min
x2 ∈ Rn1

x1 fixed

f (y1(x1) + y2(x2))

and

min
x1 ∈ Rn1

x2 fixed

f (y1(x1) + y2(x2)).
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A BCD-ML algorithm: an iteration

How to update x?

1 Partition x in blocks: (x1, . . . , xn)
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A BCD-ML algorithm: an iteration

How to update x?

2 Select a block i (x1, . . . , xi , . . . , xn)
I Criterion: ‖∇i f (x)‖ ≥ τ‖∇f (x)‖, τ ∈ (0, 1)
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A BCD-ML algorithm: an iteration

How to update x?

3 Update the block:
I pk iterations of a first-order method (possibly stochastic)

min
xi

f (x1, . . . , xi , . . . , xn)→ xnewi

I xi ← xnewi
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BCD theory for nonconvex problems

I Powell (1973): cyclic BCD may fail on nonconvex
continuously differentiable functions.

I Bertsekas (1999): convergence of cyclic BCD if minimizer
along any coordinate direction from any point is unique

I Attouch et all. (2010) + Bolte et all (2014), proximal
alternating methods under Kurdyka-Lojasiewicz (KL) property
convergence of sequence to stationary points

I Amaral et all. (2022) high (p)-order BCD smooth nonconvex
for Lipschitz continuous ∇f (xk) + regularized models
→O(ε−(p+1))
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A BCD-ML algorithm: convergence theory

Theorem (Gratton, Mercier, R., Toint, 2023)

If f has L-Lipschitz continuos gradient and step-size αk = α < 1/L

I Deterministic

‖∇f (x (K))‖ ≤ ε→ K = O

(
1

ε2p

)
I Stochastic

E

(
K∑

k=1

‖∇f (x (k))‖2

)
≤ C1(σ2) + O

(
1

K

)
− C2(σ2)p

p coarse iterations, σ2 variance of stochastic gradient
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