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Backward error analysis

• Backward error analysis recasts the rounding errors as perturbations of the input
data

• Example for summation:

s2 = x1 + x2
⇒ ŝ2 = (x1 + x2)(1 + δ1) = x1(1 + δ1) + x2(1 + δ1)

s3 = ŝ2 + x3
⇒ ŝ3 = (ŝ2 + x3)(1 + δ2)

= x1(1 + δ1)(1 + δ2) + x2(1 + δ1)(1 + δ2) + x3(1 + δ2)
. . .

⇒ ŝn =
∑n

i=1

[
xi
∏n

k=ki
(1 + δk)

]

Worst-case fundamental lemma

Let δk , k = 1 : n, such that |δk | ≤ u and nu < 1. Then
n∏

k=1

(1 + δk) = 1 + θn, |θn| ≤ γn :=
nu

1− nu
.
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s3 = ŝ2 + x3
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Backward stability in linear algebra

Most linear algebra computations have backward stable implementations:

• Inner products
ŝ = (x +∆x)T y , |∆x | ≤ γn|x |

• Matrix–vector products

ŷ = (A+∆A)x , |∆A| ≤ γn|A|

• LU factorization∗

L̂Û = A+∆A, |∆A| ≤ γn|L̂||Û|
• Triangular systems

(T +∆T )x̂ = b, |∆T | ≤ γn|T |
• Linear systems∗

(A+∆A)x̂ = b, |∆A| ≤ (3γn + γ2n)|L̂||Û|

(∗ backward stable only if ∥|L̂||Û|∥ ≈ ∥A∥, need stable pivoting
strategy for Gaussian elimination)4/53



Genesis of backward error analysis

• Backward error analysis was developed by James Wilkison
in the 1960s

• At that time, n = 100 was huge! Solving linear systems
of n = O(10) equations would take days

⇒ n was considered a “constant”

James Wilkinson

Nicholas Higham

The constant terms in an error bound are the
least important parts of error analysis. It is not
worth spending much effort to minimize constants
because the achievable improvements are usually
insignificant.

Nick Higham, ASNA 2ed (2002)
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Today: large problems

Since the 1990s, the TOP500 list ranks the world’s most powerful supercomputers
based on how fast they can solve a dense linear system of equations Ax = b

November 2023:
Frontier achieves
1.1 ExaFLOPS by solving
system with n = 22 millions!
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Today: low precisions

number of bits

signif. (t) exp. range u = 2−t

fp128 quadruple 113 15 10±4932 1× 10−34

fp64 double 53 11 10±308 1× 10−16

fp32 single 24 8 10±38 6× 10−8

fp16 11 5 10±5 5× 10−4

bfloat16
half

8 8 10±38 4× 10−3

fp8 (e4m3) 4 4 10±2 6× 10−2

fp8 (e5m2)
quarter

3 5 10±5 1× 10−1

Half (16-bit) and quarter (8-bit) precision now in hardware, driven by AI
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Can low precision extreme scale computations be accurate ?
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Understanding rounding error accumulation

To limit it, we need to understand rounding error accumation: when and why does it
happen?

Let us measure the actual backward error, which is given by

η = min
{
ϵ > 0 : ŝ = (x +∆x)T y , |∆x | ≤ ϵ|x |

}
=
|ŝ − s|
|x |T |y |

and compare it to its bound γn
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|ŝ − s|
|x |T |y |

and compare it to its bound γn

Inner product in single precision
with random uniform [0, 1] vectors

10
1

10
2

10
3

10
4

10
5

10
-8

10
-6

10
-4

10
-2

9/53



Understanding rounding error accumulation

To limit it, we need to understand rounding error accumation: when and why does it
happen?
Let us measure the actual backward error, which is given by

η = min
{
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Probabilistic error analysis

Goal: develop probabilistic analyses to obtain improved bounds that are more realistic
for the average computation

• Bounds for random data: specialize data-independent bounds to random data

• Bounds for random errors: improve bounds by modelling the rounding errors as
random

• Bounds for random data and errors: both of the above
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Basic properties of E operator

Let X ,Y be random variables and a a constant.
The E operator satisfies the following properties:

• Linearity: E(X + Y ) = E(X ) + E(Y ) and E(aX ) = aE(X )

• Monotonocity: X ≤ Y ⇒ E(X ) ≤ E(Y )

• Non-multiplicativity: in general, E(XY ) ̸= E(X )E(Y ). If X and Y are
independent, then equality holds.
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Hoeffding’s inequality

Hoeffding’s inequality

Let X0, . . . , Xn be independent random variables satisfying |Xk | ≤ ck for k = 0: n − 1.
Then, the sum S =

∑n
k=1 Xk satisfies, for any λ > 0,

Pr

(
|S − E(S)| ≥ λ

( n∑
k=1

c2k

)1/2
)
≤ 2 exp(−λ2/2)

• Better than the worst-case bound
∑n

i=1 ck

• If ∀k , ck = c: nc →
√
nc

• Small values of λ suffice

13/53



Sum of random data

Let S =
∑n

i=1 Xi . Then by Hoeffding’s inequality:

• If Xi ∼ U([0, 1]) :
◦ |Xi | ≤ 1
◦ E(S) = n

2
⇒ |S | = n

2 ± λ
√
n ≈ n

2

• If Xi ∼ U([−1, 1]) :
◦ |Xi | ≤ 1
◦ E(S) = 0
⇒ |S | ≤ λ

√
n, but no lower bound (|S | can be close to 0 with non-small probability)

Let T =
∑n

i=1 |Xi |. Then by Hoeffding’s inequality:

• If Xi ∼ U([0, 1]) : no change, T ≈ n
2

• If Xi ∼ U([−1, 1]): |Xi | ∼ U([0, 1]) and so T ≈ n
2
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Conditioning of random data

The conditioning of S =
∑n

i=1 Xi is

κ =

∑n
i=1 |Xi |

|
∑n

i=1 Xi |
=

T

|S |

• If Xi ∼ U([0, 1]) : |S |,T ≈ n
2 ⇒ κ ≈ 1

• If Xi ∼ U([−1, 1]): |S | ≤ λ
√
n and

T ≈ n
2 ⇒ κ ≥

√
n

2λ

10 2 10 3 10 4 10 5 10 6 10 7

n

10 0

10 2

10 4

10 6

10 8

5 ([0,1])
5 ([-1,1])
np

n

15/53



Backward and forward errors for random data

ηfwd = κηbwd and ηbwd ≤ nu:

• If Xi ∼ U([0, 1]) : ηfwd ≈ nu ?

• If Xi ∼ U([−1, 1]) : ηfwd ≈ n3/2u ?

10 2 10 3 10 4 10 5 10 6 10 7

n

10 -8

10 -6

10 -4

10 -2

10 0

2bwd = 2fwd ([0,1])
2bwd ([-1,1])
2fwd ([-1,1])
nup

nu
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Modelling rounding errors as random variables

• Worst-case nu bound attained when all n errors are equal to +u, or all equal to −u
(i.e., they all accumulate in the same direction)

• Since the 1960s, numerical analysts have tried modelling the δi as independent
random variables to translate the intuition that this does not seem very likely: we
can hope the +u and −u to cancel each other

There is no claim that ordinary rounding and chopping are
random processes, or that successive errors are independent.
The question to be decided is whether or not these particular
probabilistic models of the processes will adequately describe
what actually happens.

Hull & Swenson, 1966

The fact that rounding errors are neither random nor uncor-
related will not in itself preclude the possibility of modelling
them usefully by uncorrelated random variables

William Kahan, 1996 William Kahan18/53



Wilkinson’s conjecture

Wilkinson’s conjecture (1961)

In general, the statistical distribution of the rounding
errors will reduce considerably the function of n occur-
ring in the relative errors. We might expect in each
case that this function should be replaced by some-
thing which is no bigger than its square root.

James Wilkinson

Why only a conjecture? Some heuristic arguments based on CLT, but:

• First-order analyses (“+O(u2)”)

• Asymptotic statements (“for sufficiently large n”)

• Unspecified probabilities (“with high probability”)

• Only applicable to specific algorithms

• Unable to explain diversity of behaviors previously observed
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A naive model

Naive model

In the computation of interest, the rounding errors δk are independent random variables
of mean zero: E(δk) = 0.

• Rounding errors are clearly not independent, so the model is not applicable

• We need a weaker assumption called mean independence
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Conditional expectation and mean independence

We will use the conditional expectation E(X | Y ):

• E(X | Y ) is a random variable which takes the value E(X | Y = y) when Y = y

• The E(X | Y ) operator satisfies the properties above

• E(X | Y ) = E(X ) if X and Y are independent

• E(X | Y ) = X if X is a function of Y

Model M

In the computation of interest, the rounding errors δk are mean independent random
variables of mean zero: E(δk | δ1, . . . , δk−1) = E(δk) = 0.
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Martingales

• A sequence of random variables E0, . . . , En is called a martingale with respect to
X0, . . . , Xn if, for all k ,
◦ Ek is a function of X0, . . . , Xk

◦ E(|Ek |) <∞
◦ E(Ek+1 | X0, . . . ,Xk) = Ek

• Example: random walks are martingales.

Position at step k + 1 depends on previous
positions but, if all directions have equal
probabilities, its expected value is the
position at step k
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Azuma–Hoeffding’s inequality

Azuma–Hoeffding’s inequality

Let E0, . . . , En be a martingale such that |Ek+1 − Ek | ≤ ck , for k = 0: n − 1.
Then, for any λ > 0,

Pr

(
|En − E0| ≥ λ

( n∑
k=1

c2k

)1/2
)
≤ 2 exp(−λ2/2)

Extends Hoeffding’s inequality to mean independent variables
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Sum of mean independent rouding errors

Model M

In the computation of interest, the rounding errors δk are mean independent random
variables of mean zero: E(δk | δ1, . . . , δk−1) = E(δk) = 0.

• En =
∑n

i=1 δi (with E0 = 0) is a martingale w.r.t. δ1, . . . , δn:
Ek is a function of δ1, . . . , δk and |Ek | ≤ ku ⇒ E(|Ek |) <∞

E(Ek+1 | δ1, . . . , δk) = E(Ek + δk+1 | δ1, . . . , δk)
= E(Ek | δ1, . . . , δk) + E(δk+1 | δ1, . . . , δk) = Ek

• Azuma–Hoeffding: |Ek+1 − Ek | ≤ u ⇒ |En − E0| = |En| ≤ λ
√
nu with probability

1− 2 exp(−λ2/2)
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Product of mean independent rouding errors

• We know how to bound En =
∑n

i=1 δi , but what about Pn =
∏n

i=1(1 + δi ) ?
• By the Taylor expansion

log(1 + x) =
∞∑
i=1

(−1)i+1 x
i

i

we have

δi −
u2

1− u
≤ log(1 + δi ) ≤ δi +

u2

1− u

and thus

En −
nu2

1− u
≤

n∑
i=1

log(1 + δi ) ≤ En +
nu2

1− u

Therefore with probability at least 2 exp(−λ2/2)

1

exp
(
λ
√
nu + nu2

1−u

) ≤ Pn ≤ exp
(
λ
√
nu +

nu2

1− u

)
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Probabilistic backward error analysis

Model M

In the computation of interest, the rounding errors δk are mean independent random
variables of mean zero: E(δk | δ1, . . . , δk−1) = E(δk) = 0.

Probabilistic fundamental lemma (Higham and M., 2019, 2020)

Let δk , k = 1 : n, satisfy Model M. Then, for any λ > 0, the relation
n∏

i=1

(1 + δi ) = 1 + θn, |θn| ≤ γ̃n(λ) := exp
(
λ
√
nu +

nu2

1− u

)
− 1

≤ λ
√
nu + O(u2)

holds with probability at least P(λ) = 1− 2 exp(−λ2/2).
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Probabilistic backward error analysis

Probabilistic fundamental lemma (Higham and M., 2019, 2020)

Let δk , k = 1 : n, satisfy Model M. Then, for any λ > 0, the relation
n∏

i=1

(1 + δi ) = 1 + θn, |θn| ≤ γ̃n(λ) := exp
(
λ
√
nu +

nu2

1− u

)
− 1

≤ λ
√
nu + O(u2)

holds with probability at least P(λ) = 1− 2 exp(−λ2/2).

Key features:

• valid to all orders

• valid for all n

• explicit probability P(λ) (but pessimistic)
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Probabilistic backward error analysis

Probabilistic fundamental lemma (Higham and M., 2019, 2020)

Let δk , k = 1 : n, satisfy Model M. Then, for any λ > 0, the relation
n∏

i=1

(1 + δi ) = 1 + θn, |θn| ≤ γ̃n(λ) := exp
(
λ
√
nu +

nu2

1− u

)
− 1

≤ λ
√
nu + O(u2)

holds with probability at least P(λ) = 1− 2 exp(−λ2/2).

Key features:
• can be applied in a systematic way: γn → γ̃n(λ)

ŝ = (x +∆x)T y , |∆x | ≤ γ̃n(λ)|x |

ŷ = (A+∆A)x , |∆A| ≤ γ̃n(λ)|A|

L̂Û = A+∆A, |∆A| ≤ γ̃n(λ)|A|
(A+∆A)x̂ = b, |∆A| ≤ (3γ̃n(λ) + γ̃n(λ)

2)|A|
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Example with dependent rounding errors

Summation with constant xi :

si = si−1 + c , i = 2: n

leads to an error growing as nu rather than
√
nu

10 2 10 3 10 4 10 5

n

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

bwderr
.ne.n(1)

 Explain what is happening27/53



Example with dependent rounding errors (cont’d)

2q−1 2q

×

ŝi−1 ŝi ŝi+1 ŝi+2

+c

××
θ

+c

××
θ

+c

××
θ
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Example with dependent rounding errors (cont’d)
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Example with dependent rounding errors (cont’d)
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Example with round to zero mode

Error for round to nearest (RTN) and
round to zero (RZ)

10
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-3
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Distribution of δi :
RTN (top) vs RZ (bottom)

 Explain what is happening
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Example with rounding errors of nonzero mean

Summation of a very large number of nonnegative terms (n≫ 103 in fp16, n≫ 107 in
fp32) leads to an error eventually growing like O(nu)

fp32

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8
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-10
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-8
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-6
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-4

10
-2

10
0

fp16

10
0

10
1
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2

10
3

10
4

10
5

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 Explain what is happening
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Example with rounding errors of nonzero mean (cont’d)

si = si−1 + xi ⇒ ŝi = (ŝi−1 + xi )(1 + δi )

Explanation: si keeps increasing, at some point, it becomes so large that ŝi−1 ≥ xi/u
and the computed sum stagnates: ŝi = ŝi−1. Stagnation produces negative δi : indeed
δi = −xi/(ŝi−1 + xi ) < 0

Distribution of the δi
fp32

Top: 1 ≤ i ≤ 3× 107

Bottom: 3× 107 ≤ i ≤ 108

fp16

Top: 1 ≤ i ≤ 3× 103

Bottom: 3× 103 ≤ i ≤ 105
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Example with rounding errors of nonzero mean (cont’d)
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Validity of the probabilistic bound

• The previous examples reveal situations in which the probabilistic bound is not
valid, because the assumptions in the model are not satisfied

• Even though the analysis gives useful predictions, care is required in applying and
interpreting the bound

. . . at least with a deterministic rounding mode such as round to nearest
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Stochastic rounding: definition

•
x

⌊x⌋ ⌈x⌉

With round to nearest

fl(x) =

{
⌈x⌉ if x − ⌊x⌋ > ⌈x⌉ − x

⌊x⌋ otherwise

Instead, with stochastic rounding

fl(x) =

{
⌈x⌉ with probability p = x−⌊x⌋

⌈x⌉−⌊x⌋
⌊x⌋ with probability 1− p = ⌈x⌉−x

⌈x⌉−⌊x⌋

where ⌊·⌋ and ⌈·⌉ denote the operators that round down and up
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SR: an old idea. . .

ENIAC (1947–1955)

The individual rounding-off errors ϵ are really not random
variables. In certain interval the ϵ’s had a biased distribu-
tion which caused unexpectedly large accumulations of the
rounding-off error. To circumvent this difficulty the present
writer has proposed a random rounding-off procedure whichs
make ϵ a true random variable.

George Forsythe, 1950
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. . . more relevant than ever

The last decade has seen a resurgence of interest in SR, with use in many applications
and growing hardware support

Graphcore IPU Intel Loihi2
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SR in deep learning (Gupta et al., 2015)
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SR in climatology (Paxton et al., 2022)
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How to explain the success of SR in modern low precision
computing?
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SR ⇒ zero mean δi

• Let a, b ∈ R and op ∈ {+,−,×,÷} such that

fl(a op b) = (a op b)(1 + δ)

• Let x := a op b; with stochastic rounding,

E(fl(x)) =
⌈x⌉

(
x − ⌊x⌋

)
+ ⌊x⌋

(
⌈x⌉ − x

)
⌈x⌉ − ⌊x⌋

=
x
(
⌈x⌉ − ⌊x⌋

)
⌈x⌉ − ⌊x⌋

= x

• The expected value of the computed result is the exact result

E(fl(a op b)) = a op b

⇒ E((a op b)(1 + δ)) = a op b

⇒ (a op b)E(δ) = 0

⇒ E(δ) = 0 if a op b ̸= 0

⇒ Stochastic rounding enforces zero mean rounding errors
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SR ̸⇒ independent δi

• Consider the computation of s := (a+ b) + c

ŝ = fl(fl(a+ b) + c) =
(
(a+ b)(1 + δ1) + c

)
(1 + δ2)

• Define ŝ1 = fl(a+ b) + c = (a+ b)(1 + δ1) + c

• Then, δ2 = (ŝ − ŝ1)/ŝ1 is entirely determined by

ŝ1δ2 =

{
⌈ŝ1⌉ − ŝ1 with probability p = (ŝ1 − ⌊ŝ1⌋)/(⌈ŝ1⌉ − ⌊ŝ1⌋),
⌊ŝ1⌋ − ŝ1 with probability 1− p

which clearly depends on ŝ1 and so on δ1

⇒ Even with stoch. rounding, rounding errors may be dependent
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SR ⇒ mean independent δi
• Consider the computation of s = â op b̂, where the computation of â and b̂ has
already produced k rounding errors δ1, . . . , δk

• Then, ŝ = fl(â op b̂) = (â op b̂)(1 + δk+1) and δk+1 = (ŝ − s)/s (which depends on
δ1, . . . , δk) is given by

sδk+1 =

{
⌈s⌉ − s with probability p = s−⌊s⌋

⌈s⌉−⌊s⌋
⌊s⌋ − s with probability 1− p = ⌈s⌉−s

⌈s⌉−⌊s⌋

• Since ⌈s⌉ − s and ⌊s⌋ − s are entirely determined by δ1, . . . , δk

E(⌈s⌉ − s | δ1, . . . , δk) = ⌈s⌉ − s

E(⌊s⌋ − s | δ1, . . . , δk) = ⌊s⌋ − s

where E(X | Y ) denotes the conditional expectation of X given Y
• Therefore we obtain

E
(
sδk+1 | δ1, . . . , δk

)
= p E

(
⌈s⌉ − s | δ1, . . . , δk

)
+ (1− p)E

(
⌊s⌋ − s | δ1, . . . , δk

)
= p(⌈s⌉ − s) + (1− p)(⌊s⌋ − s) = 0

⇒ Stochastic rounding enforces mean independence:

E(δi | δ1, . . . , δi−1) = E(δi ) (= 0)42/53



SR is a 1D random walk!

The position at each step depends on
previous positions, but we have an equal
chance to take any direction at any given
step ⇒ martingale

• SR transforms finite-precision computations into random walks
◦ Rounding errors at a given step depend on previous errors, but this dependence is weak:

their expectation remains zero by construction
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SR enforces Model M

Backward error bound with SR (Connolly, Higham and M., 2021)

SR enforces Model M. Therefore, the γ̃n bound holds unconditionally with SR.

Constant xi (fp32)

10 2 10 3 10 4 10 5

n

10 -8

10 -6

10 -4

10 -2

bwderr (RTN)
bwderr (SR)
.ne.n(1)

⇒ stochastic rounding
produces nonconstant δi

Nonzero xi (fp16)

10 1 10 2 10 3 10 4 10 5

n

10 -4

10 -3

10 -2

10 -1

10 0

bwderr (RTN)
bwderr (SR)
.ne.n(1)

⇒ stochastic rounding overcomes
stagnation44/53



Variance of SR
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Introduction

Random data

Random errors

Stochastic rounding

Random data and random errors
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Back to random data

ηfwd = κηbwd

ηbwd ≈ nu → ηbwd ≈
√
nu:

• If Xi ∼ U([0, 1]) : ηfwd ≈
√
nu ?

SHARP!

• If Xi ∼ U([−1, 1]) : ηfwd ≈ nu ?
Still not sharp!

⇒ Why do we have ηbwd ≈ u for
U([−1, 1]) data??

10 2 10 3 10 4 10 5 10 6 10 7

n

10 -8

10 -6

10 -4

10 -2

10 0

2bwd = 2fwd ([0,1])
2bwd ([-1,1])
2fwd ([-1,1])
nup

nu
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Intuitive explanation

• Recall that under Model M

ŝ =
n∑

i=1

xiyi (1 + θi ), |θi | ≤ γ̃n(λ)

and thus

ηbwd =
|ŝ − s|
|x |T |y |

=
|
∑n

i=1 xiyiθi |∑n
i=1 |xiyi |

• Under Model M, |ŝ − s| ≤ λ
√
numaxk |sk |, where sk is the partial inner product of

the first k elements of x and y

• Without any assumption on xi , yi , the best bound we have on |
∑n

i=1 xiyiθi | is
γ̃n(λ)

∑n
i=1 |xiyi |. But what about for specific xi , yi?

⇒ If E(xiyi ) = 0, then we can expect the variables zi = xiyiθi to also cancel each
other!
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Formal explanation

Model M’

In addition to the assumptions of Model M, assume that in the inner product s = xT y ,
xi and yi are random independent variables such that E(xiyi ) = µ, E(|xiyi |) = µ+, and
|xiyi | ≤ C .

Probabilistic bwd error bound for random inner products (Higham and M., 2020)

Let s = xT y . Under Model M’, for any λ > 0, the backward error bound

ηbwd =
|ŝ − s|
|x |T |y |

≤ λµ
√
n + λ2C

µ+ − λC/
√
n
· u + O(u2)

holds with probability P(λ) = 1− 2(n + 1) exp
(
−λ2/2

)
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Tensor cores

10
2

10
3

10
4

10
5

10
6

10
7

10
-8

10
-6

10
-4

10
-2

10
0

Convert x and y to fp16, then compute s = xT y in
fp32 arithmetic

η = ηconvert + ηcompute

≤

∣∣∣∑n
i=1 xiyiϵi

∣∣∣
|x |T |y |

+ ηcompute, |ϵi | ≲ 2u16

• Worst-case bound: η ≲ 2u16 + nu32
⇒ starts growing for n ≥ 2u16/u32 = 214 ≈ 104

• Under Model M: η ≲ 2u16 +
√
nu32

⇒ starts growing for n ≥ 228 ≈ 108

• Under Model M’ for zero-mean vectors: η ≲ u16√
n
+ cu32

⇒ decreases until n ≳ 108
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Shifting to zero mean for accuracy

Idea: given xi , yi of mean µ ̸= 0, let zi = xi − µ and compute s = zT y + nµ, then
η ≤ cu for some c independent of n

Cost: 2n flops but for C = AB, where A,B,C ∈ Rn×n the cost of the algorithm below
is in O(n2) instead of O(n3)

Ã← A− xeT

C ← ÃB + x(eTB)

where xi = mean of ith row of A and e is the vector full of ones
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Application to matrix multiplication

Backward error (for [0, 1] data)

Single precision

10
2

10
3

10
4

10
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10
6

10
7
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-7
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-6

10
-5

10
-4

Half precision

10
2

10
3

10
4

10
5

10
-4

10
-3

10
-2

10
-1

10
0
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Open problem: matrix factorization and linear systems

Doolittle’s formula for A = LU

ℓik =
(
aik −

k−1∑
j=1

ℓijujk
)
/ukk ,

ukj = akj −
k−1∑
i=1

ℓkiuij

The inner products arising in LU
factorization are not random! And yet. . .

10 1 10 2 10 3 10 4

n

2

3

4

5

6

7

8

9
10
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12

B
ac

k
w
ar

d
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ro
r

#10 -8

Internship/PhD available (see here for details)
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