
1/71

Cours 3

Stochastic optimization for large scale
problems

Elisa Riccietti and Théo Mary

The reference for this part is Optimization Methods for Large-Scale
Machine Learning, by Leon Bottou, Frank E. Curtis, Jorge

Nocedal, SIAM Review, Vol. 60, No. 2, pp. 223-311.

LIP-ENS Lyon

2/71

The context

The problem: large scale optimization problems

min
x∈Rn

f (x), with n large

Typically

f (x) =
m∑
i=1

fi (x) m large

with f , fi : Rn → R for i = 1, . . . ,m

3/71

Example 1: Image restoration

min
x
‖Ax − b‖2 + λ‖Dx‖2

4/71

Example 2: Matrix factorization

min
X1,...,XL

‖A− X1 . . .XL‖2
F

5/71

Example 3: Neural networks training

min
θ

1

m

m∑
i=1

`(NN(θ; xi), y
i)

6/71

Outline

Classical optimization

The large scale setting

Stochastic optimization

Improving convergence: variance reduction

Improving convergence: momentum

Improving convergence: adaptive stepsizes

Beyond SGD: second order

7/71

Classical optimization methods

Iterative method
I Given a starting guess x0 ∈ Rn

I Define a descent direction pk ∈ Rn: ∇f (xk)Tpk < 0

I Build a sequence {xk}k∈N such that xk+1 = xk + αkpk , where
αk is called the step length or the learning rate.

I Goal: find a stationary point x∗ of f : ∇f (x∗) = 0

8/71

Classical optimization methods

xk+1 = xk + αkpk

If αk is small enough, from Taylor’s theorem:

f (xk+1) ∼ f (xk) + αk∇f (xk)Tpk < f (xk).

This ensures x∗ not to be a maximum point, but in unfortunate
cases it may be a saddle point, there is usually no guarantee of
convergence to a minimum.

9/71

First and second order methods

I First order just use first order derivatives (gradient)

I Second order also use second order derivatives (Jacobian,
Hessian matrices)

∇f (x) =


∂f (x)
∂x1
...

∂f (x)
∂xn

 ∈ Rn

∇2f (x) =


∂2f (x)
∂x1∂x1

· · · ∂2f (x)
∂x1∂xn

...
...

∂2f (x)
∂xn∂x1

· · · ∂2f (x)
∂xn∂xn

 =


(
∇∂f (x)

∂x1

)T
...(

∇∂f (x)
∂xn

)T
 ∈ Rn×n

If f ∈ C 2(x) then ∇2f (x) is a symmetric matrix.

10/71

First order: gradient method

pk = −∇f (xk).

xk+1 = xk − αk∇f (xk).

I , quite cheap: it requires just the computation of the
gradient of f at each iteration

I / slow convergence: it requires a large number of iterations
to reach a stationary point

Gradient method
Given x0, toll > 0, set k = 0.
While ‖∇f (xk)‖ > toll

1. Compute the search direction pk = −∇f (xk).

2. Choose αk .

3. Set xk+1 = xk + αkpk

4. Set k = k + 1

11/71

Second order: Newton’s method

pk = −∇2f (xk)−1∇f (xk).

I , fast convergence: usually requires few iterations to reach a
stationary point

I / expensive: it requires the computation of first and second
order derivatives and the solution of a linear system at each
iteration ∇2f (xk)pk = −∇f (xk).

Newton’s method
Given x0, toll > 0, set k = 0.
While ‖∇f (xk)‖ > toll

1. Compute the search direction by solving
∇2f (xk)pk = −∇f (xk).

2. Choose αk .

3. Set xk+1 = xk + αkpk

4. Set k = k + 1

12/71

Outline

Classical optimization

The large scale setting

Stochastic optimization

Improving convergence: variance reduction

Improving convergence: momentum

Improving convergence: adaptive stepsizes

Beyond SGD: second order

13/71

Large scale setting

Typical problem

min
x∈Rn

f (x) =
m∑
i=1

fi (x) n,m large

Typically, n,m = 106, 109

14/71

Gradient step in large scale setting

f (x) =
m∑
i=1

fi (x), fi (x) ∈ R;

∇f (x) =
m∑
i=1

∇fi (x), ∇fi (x) ∈ Rn

Cost of computing ∇f (x): O(nm).

15/71

Newton’s step in large scale setting

f (x) =
m∑
i=1

fi (x), fi (x) ∈ R

∇f (x) =
m∑
i=1

∇fi (x), ∇fi (x) ∈ Rn

∇2f (x) =
m∑
i=1

∇2fi (x), ∇2fi (x) ∈ Rn×n

Cost of computing ∇2f (x): O(n2m).
Cost of solving ∇2f (x)p = −∇f (x): O(n3)

16/71

What changes from
classical optimization

to machine learning setting?

17/71

Expected risk minimization

Given a family of input-output pairs (xi , y i) ∼ P(x , y), we want to
build a parametric model Fθ such that Fθ(xi) ∼ y i

We wish to minimize the expected risk:

R(θ) =

∫
`(Fθ(x), y)dP(x, y) = E[`(Fθ(x), y)]

where ` is a loss function.
Problem: P(x , y) is not known !
Approximation: estimate the expected risk by the empirical risk

Warning!: change of notations, the variables become θ

18/71

Training procedure

Given a model Fθ and a training set {(x1, y1), . . . , (xm, ym)}, find
the best parameters θ ∈ Rn to fit the data and to generalize well.

Empirical risk minimisation (ERM) principle

Given a loss function `,

min
θ

E(X ,Y)(`(Y ,Fθ(X))) ∼ min
θ

Rm(θ)︸ ︷︷ ︸
f (θ)

:=
1

m

m∑
i=1

`(y i ,Fθ(xi))︸ ︷︷ ︸
fi (θ)

Example

Fθ: a NN, θ weights and biases
`: Logistic loss `(θ) = −y log(Fθ(x))− (1− y) log(1− Fθ(x))
Quadratic loss `(θ) = (y − Fθ(x))2

19/71

Early stopping

Finding an exact minimizer should be avoided because the risk is to
do overtraining: the model is adapted too well to the training set
and is not well suited to generalize to unseen samples. Solution:
early stopping (Classically ‖∇f (x)‖ < toll with toll ∼ 10−6, 10−8).

20/71

Outline

Classical optimization

The large scale setting

Stochastic optimization

Improving convergence: variance reduction

Improving convergence: momentum

Improving convergence: adaptive stepsizes

Beyond SGD: second order

21/71

Towards stochastic optimization

Large data sets: redundancy
We don’t need to take into account all the samples at each
iteration

Rm(θ) :=
1

m

m∑
i=1

`(y i ,Fθ(xi))︸ ︷︷ ︸
fi (θ)

→ Stochastic optimization with randomly chosen subsets

22/71

Stochastic gradient descent for NN training

GD
For all k ≥ 1 set

θk+1 = θk − αk
1

m

m∑
i=1

∇θL(y i ,Fθ(xi))

SGD
For all k ≥ 1, choose randomly īk ∈ {1, . . . ,m} and set

θk+1 = θk − αk∇θL(y īk ,Fθ(xīk))

23/71

Stochastic gradient descent

min
x

f (x) =
1

m

m∑
i=1

fi (x)

Stochastic Gradient (SG) Method

1. Given an initial iterate x0.

2. For k = 0, 1, 2, . . . do

2.1 choose randomly ik in {1, . . . ,m}.
2.2 compute pk = −∇fik (xk)
2.3 choose a stepsize αk > 0
2.4 set xk+1 = xk + αkpk

Stochastic algorithm (non deterministic): the sequence is not
uniquely determined from x0, but depends on the random sequence
{ik}.

1 epoch = all the samples have been seen (Iteration: a sample,
epoch: a full batch)

24/71

SGD vs GD

Advantages: much cheaper

I Uses just one sample for the gradient: ∇fīk (θk) rather than∑m
i=1∇fi (θk)

I Heuristic strategies to update αk or fixed (usually small) α

I Suitable for very large scale problems

I Fast convergence at the beginning of the procedure: good if
high accuracy is not required

Disadvantages: slow convergence

I Uses just partial information

I Needs limk→∞ αk = 0 to converge

I Requires tuning of αk

I More suitable for convex problems, degrades for ill-posed
problems

25/71

Choose the learning rate

26/71

SGD vs GD

I Standard gradient method is more expensive but gives a
better direction (more information is used)

I Stochastic and full approaches offer different trade-offs
in terms of per-iteration costs and expected
per-iteration improvement in minimizing the empirical risk.

27/71

Mini-batch gradient

I Between full gradient method and stochastic gradient method

I Take a small subset Ik ⊂ {1, . . . ,m} of the samples at each
iteration:

xk+1 = xk −
αk

|Ik |
∑
i∈Ik

∇fi (xk),

I This allows some degree of parallelization

I Reduces variance of the stochastic gradient estimates, the
method is easier to tune in terms of choosing the stepsizes.

28/71

SGD vs GD

29/71

Convergence results - convex case

Assume f strongly convex, θ ∈ Rn

I GD converges linearly:

f (θk)− f ∗ ≤ O(ρk), ρ ∈ (0, 1),

→ number of iterations is proportional to log(1/ε).

I SGD with αk = O(1/k) converges sublinearly in expectation
[Theorem 4.7 https:

//epubs.siam.org/doi/epdf/10.1137/16M1080173]:

E(f (θk)− f ∗) = O(1/k).

I GD cost : m log(1/ε) (each iteration costs m)

I SGD cost: 1/ε does not depend on m!

I In the big data regime where m is large, m log(1/ε)� 1/ε.

https://epubs.siam.org/doi/epdf/10.1137/16M1080173
https://epubs.siam.org/doi/epdf/10.1137/16M1080173

30/71

Convergence results - general case

What kind of assumptions do we need?

xk+1 = xk − αkg(xk , ξk)

with g(xk , ξk) stochastic estimate of ∇f (x)

1. Lipschitz continuity of the gradient

2. The norm of g(xk , ξk) is comparable to the norm of the
gradient.

3. In expectation, the vector −g(xk , ξk) is a direction of
sufficient descent for f from xk

4. The variance of g(xk , ξk) is not too large

31/71

Assumptions translated in mathematical terms

1. ‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖ for all x , y ∈ Rn

2. ‖Eξk (g(xk , ξk))‖ ≤ µG‖∇f (xk)‖
3. ∇f (xk)TEξk (g(xk , ξk)) ≥ µ‖∇f (xk)‖2

4. var(g(xk , ξk)) ≤ M + MV ‖∇f (xk)‖2

Example

These properties hold with µG = µ = 1 if g(xk , ξk) is an unbiased
estimate of ∇f (xk)

Consequence:

Eξk (‖g(xk , ξk)‖2) ≤ M+MG‖∇f (xk)‖2, MG = MV +µ2
G ≥ µ2 > 0

32/71

Notations

We use E[·] to denote an expected value taken with respect to the
joint distribution of all random variables. For example, since xk is
completely determined by the realizations of the independent
random variables {ξ1, ξ2, . . . , ξk−1}, the total expectation of f (xk)
for any k ∈ N can be taken as

E[f (xk)] = Eξ1Eξ2 . . .Eξk−1
[f (xk)]

33/71

Theorem (GD, Nonconvex Objective, Fixed Stepsize)

Under the assumption, suppose that the GD method is run with a
fixed positive stepsize, αk = α ≤ 2

L . Then, the sum-of-squares and
average-squared gradients of f corresponding to the GD iterates
satisfy the following inequalities for all k ∈ N:

K∑
k=1

‖∇f (xk)‖2 ≤ f (x1)− finf

and therefore
∞∑
k=1

‖∇f (xk)‖2 ≤ f (x1)− finf

and
lim
k→∞

‖∇f (xk)‖ = 0.

34/71

Proof (I)

From the Lipschitz continuity of the gradient

f (xk+1)− f (xk) ≤ ∇f (xk)T (xk+1 − xk) +
L

2
‖xk+1 − xk‖2

= −α∇f (xk)T∇f (xk) +
α2
kL

2
‖∇f (xk)‖2

= α(−1 +
L

2
α)‖∇f (xk)‖2 < −‖∇f (xk)‖2

Summing both sides of this inequality for k ∈ {1, . . . ,K} and
recalling the assumption gives

finf − f (x1) ≤ f (xK+1)− f (x1) ≤ −
K∑

k=1

‖∇f (xk)‖2

35/71

Theorem (SGD, Nonconvex Objective, Fixed Stepsize)

Under the assumption, suppose that the SG method is run with a
fixed positive stepsize, αk = α ≤ µ

LMG
. Then, the expected

sum-of-squares and average-squared gradients of f corresponding
to the SG iterates satisfy the following inequalities for all k ∈ N:

E

[
K∑

k=1

‖∇f (xk)‖2

]
≤ KαLM

µ
+ 2

(f (x1)− finf)

µα

and therefore

E

[
1

K

K∑
k=1

‖∇f (xk)‖2

]
≤ αLM

µ
+ 2

(f (x1)− finf)

µKα
K→∞→ αLM

µ
.

36/71

Proof (I)

From the Lipschitz continuity of the gradient

f (xk+1)− f (xk) ≤ ∇f (xk)T (xk+1 − xk) +
L

2
‖xk+1 − xk‖2

= −α∇f (xk)Tg(xk , ξk) +
α2L

2
‖g(xk , ξk)‖2

Passing to the expected value

Eξk [f (xk+1)]− f (xk) ≤− α∇f (xk)TEξk [g(xk , ξk)]

+
α2L

2
Eξk [‖g(xk , ξk)‖2]

37/71

Proof (II)

Taking the total expectation and from the assumption on the step:

E[f (xk+1)]− E(f (xk)) ≤ −(µ− 1

2
αLMG)αE[‖∇f (xk)‖2] +

1

2
α2LM

≤ −1

2
µαE[‖∇f (xk)‖2] +

1

2
α2LM.

Summing both sides of this inequality for k ∈ {1, . . . ,K} and
recalling the assumption gives

finf−f (x1) ≤ E[f (xK+1)]−f (x1) ≤ −1

2
µα

K∑
k=1

E[‖∇f (xk)‖2]+
1

2
Kα2LM.

Rearranging and dividing by K yields the thesis.

38/71

Outline

Classical optimization

The large scale setting

Stochastic optimization

Improving convergence: variance reduction

Improving convergence: momentum

Improving convergence: adaptive stepsizes

Beyond SGD: second order

39/71

Limitations of SGD

I difficult to set the stepsize

I may diverge with fixed stepsizes

I slow, sublinear rate of convergence whit diminishing stepsizes

Several techniques to try to accelerate the convergence:

I variance reduction methods

I accelerated methods with momentum

I adaptive stepsize

40/71

Variance reduction methods

Variance reduction methods: improve rate of convergence by
incorporating new gradient information in order to construct a
more reliable step with smaller variance

Can achieve linear rate with fixed stepsize for strongly convex
objectives if the variance of the stochastic vectors ∇fik (xk)
decreases geometrically, i.e. it exist M > 0 and ξ ∈ (0, 1) such that

var = E[(‖∇fik (xk)‖ − E(‖∇fik (xk)‖))2] ≤ Mξk ,

Two classes of methods:

I dynamic sample size

I gradient aggregation methods

41/71

Dynamic sampling methods

Gradually increasing the mini-batch size: increasingly accurate
gradient estimates

xk+1 = xk −
α

|Ik |
∑
i∈Ik

∇fi (xk), |Ik | = nk = dτk−1e

for some τ > 1. It exists M > 0 such that var ≤ M
nk
.

I In practice : good value of the parameter τ (may jeopardize
per-iteration costs)

I Adaptive sampling algorithm: choosing the sample sizes not
according to a prescribed sequence, but adaptively :
sampled var ≤ C‖∇fIk (xk)‖2 for a positive constant C > 0.
If this is not satisfied the size of the set is increased.

42/71

Gradient aggregation methods

Achieve a lower variance by using full gradient information in a
parsimonious way: either increase the cost or the memory Among

them:

I SVRG - stochastic variance reduced gradient

I SAGA - stochastic average gradient

43/71

SVRG: stochastic variance reduced gradient

It operates in cycles.
At the beginning of each cycle, an iterate xk is available at which
the algorithm computes a full (or batch) gradient

∇fm(xk) =
1

m

m∑
i=1

∇fi (xk).

Then, after initializing x̃1 = xk , a set of N inner iterations indexed
by j with an update x̃j+1 = x̃j − αg̃j are performed, where

g̃j = ∇fij (x̃j)− (∇fij (xk)−∇fm(xk))

=


∂fij (x̃j)

∂x1
...

∂fij (x̃j)

∂xn

−

∂fij (xk)

∂x1
...

∂fij (xk)

∂xn

+
1

m


∂f1(xk)
∂x1

+ · · ·+ ∂fm(xk)
∂x1

...
∂f1(xk)
∂xn

+ · · ·+ ∂fm(xk)
∂xn


and ij ∈ {1, . . . ,m} is chosen at random.

44/71

SVRG method

1. Given an initial iterate x0, stepsize α > 0 and positive integer
N.

2. For k = 0,1,2,. . . do

2.1 Compute the batch gradient ∇fm(xk)
2.2 Initialize x̃1 = xk
2.3 for j = 1, . . . ,N do

2.3.1 Chose ij uniformly from {1, . . . ,m}.
2.3.2 Set g̃j = ∇fij (x̃j)− (∇fij (xk)−∇fm(xk))
2.3.3 Set x̃j+1 = x̃j − αg̃j .

2.4 Update xk+1

2.4.1 Option 1: Set xk+1 = x̃N+1.
2.4.2 Option 2: Set xk+1 = 1

N

∑N
j=1 x̃j+1

2.4.3 Option 3: Choose j uniformly from {1, ...,N} and set
xk+1 = x̃j+1.

45/71

SVRG as a variance reduction technique

I SVRG update: application of a variance reduction technique
to the stochastic gradient.

I Variance reduction is a statistical technique that is used to
reduce the variance of a random variable X by using another
random variable Y , which is positively correlated with X . A
new variable Zα is defined as

Zα = α(X − Y) + E(Y),

which has reduced variance.

I Since E[∇fij (xk)] = ∇fm(xk), one can view g̃j as the result of
the application of this technique to the stochastic gradient
∇fij (x̃j), choosing α = 1.

I g̃j represents an unbiased estimator of ∇fm(x̃j), but with a
smaller variance

46/71

SAGA

Does not operate in cycles, and computes batch gradients only at
the initial point.

I Compute ∇fi (x0) for i = 1, . . . ,m and store it in a n ×m
table.

I At iteration k choose randomly ik , compute ∇fik (xk) and
update the ik -column of the table

I Compute the new step. Choose ik ∈ 1, ...,m randomly and set

gk = ∇fik (xk)−∇fik (x[ik]) +
1

m

m∑
i=1

∇fi (x[i])

where x[i] represents the latest iterate at which ∇fi was
evaluated (from the table).

I E[gk] = ∇fm(xk)

I As opposed to SVRG, SAGA needs to store all the gradients
but does not have additional cost

47/71

SAGA algorithm

SAGA method

1. Given an initial iterate x0, stepsize α > 0.

2. For i = 1, . . . ,m do

2.1 Compute ∇fi (x1).
2.2 Store ∇fi (x[i]) = ∇fi (x1) (create the table).

3. For k = 1, 2, ... do

3.1 Choose j uniformly in {1, ...,m}.
3.2 Compute ∇fj(xk).
3.3 Set gk = ∇fj(xk)−∇fj(x[j]) + 1

m

∑m
i=1∇fi (x[i])

3.4 Store ∇fj(x[j]) = ∇fj(xk) (update the table).
3.5 Set xk+1 = xk − αgk .

48/71

Outline

Classical optimization

The large scale setting

Stochastic optimization

Improving convergence: variance reduction

Improving convergence: momentum

Improving convergence: adaptive stepsizes

Beyond SGD: second order

49/71

Accelerated gradient method: momentum

1. The gradient in a plateau is negligible or zero → very small
steps.

2. The path followed by gradient descent is very jittery, also
when operating with mini-batch mode.

3. Could never reach the optimum

How to fix this? → gradient descent with momentum

50/71

Momentum: keep memory of the past

I Define the step as the average of past gradients instead of the
gradient at the current iteration.

I Cannot consider all the gradients with equal weightage.

I Need to use some sort of weighted average

50/71

Momentum: keep memory of the past

I Define the step as the average of past gradients instead of the
gradient at the current iteration.

I Cannot consider all the gradients with equal weightage.

I Need to use some sort of weighted average

51/71

Gradient method with momentum

Exponential Moving Average (EMA)

Consider a noisy sequence y(t). The EMA s(t) for a series y(t)
may be calculated recursively as:

s(t) =

{
y(1) if t = 1,

βs(t − 1) + (1− β)y(t) if t > 1

where β ∈ [0, 1] represents the degree of weighting increase. A
lower β discounts older observations faster.

52/71

EMA for gradients

I New weight update:

sk = βsk−1 + (1− β)gk

where sk = θk+1 − θk , gk is the gradient approximation (full
gradient, or a mini-batch or stochastic gradient).

I Often β → βk and (1− β)→ αk

θk+1 = θk − αkgk︸ ︷︷ ︸
standard gradient step

+βk(θk − θk−1)︸ ︷︷ ︸
momentum term

,

I Special cases:
I βk = 0 for all k ∈ N: classical GD/SGD
I αk = α and βk = β: heavy ball method.

53/71

Heavy ball momentum
I By expanding the update:

θk+1 = θk − α
k∑

j=1

βk−jgk

each step is an exponentially decaying average of past
gradients.

I Let’s analyse the contribution of β. Assume α = 1. At k = 3;
g3 will contribute 100% of its value
I β = 0.1: g2 10% and g1 1%:
I β = 0.9: g2 90% and g1 81%.
I Higher β: contribution from earlier gradients decreases slowly,

accommodates more gradients from the past. Usually β ∼ 0.9

53/71

Heavy ball momentum
I By expanding the update:

θk+1 = θk − α
k∑

j=1

βk−jgk

each step is an exponentially decaying average of past
gradients.

I Let’s analyse the contribution of β. Assume α = 1. At k = 3;
g3 will contribute 100% of its value
I β = 0.1: g2 10% and g1 1%:
I β = 0.9: g2 90% and g1 81%.
I Higher β: contribution from earlier gradients decreases slowly,

accommodates more gradients from the past. Usually β ∼ 0.9

54/71

How does momentum help?

I LR too small: small steps, convergence takes a lot of time
even when the gradient is high.

I LR too high: the sequence oscillates around the minima

How does momentum fix this?

1. All the past gradients have the same sign: the summation
term will become large and we will take large steps

2. Different signs: the summation term will become small and
the steps will be small, damping the oscillations.

55/71

Nesterov accelerated gradient
I Treats the future approximate position

θ̃k = θk + βk(θk − θk−1) as a ”lookahead”

I Computes the gradient at θ̃k instead of the old θk

I The Nesterov update is then θk+1 = θ̃k − αkg(θ̃k)

I In momentum: first gradient descent step and then
momentum term, in Nesterov: first momentum then gradient
descent (with the gradient evaluated at θ̃k , not at θk).

I Better convergence: distance to the optimal value decaying
with a rate O(1/k) for momentum and O(1/k2) for Nesterov

56/71

Numerical test

CNN on a classification problem

57/71

Outline

Classical optimization

The large scale setting

Stochastic optimization

Improving convergence: variance reduction

Improving convergence: momentum

Improving convergence: adaptive stepsizes

Beyond SGD: second order

58/71

AdaGrad (Adaptive Gradient, 2011)

v0 = 0

vk+1 = vk + g2
k

xk+1 = xk + αgk/
√
vk

I Diagonal scaling on the coordinates of gk : adaptive
componentwise stepsizes, good for coordinates that can vary
by orders of magnitude.

I Useful for sparse gradients:
I Frequent updates (large accumulated gradient) smaller

learning rate : prevents the parameter from changing too
drastically and stabilizes learning.

I Infrequent updates (small accumulated gradient) larger
learning rate : more significant updates when necessary.

I Stepsizes: α√
vk
→ Stepsizes go to zero!

59/71

RMSProp: Root Mean Square Propagation (2012)

Componentwise:

v0 = 0

vk+1 = βvk + (1− β)g2
k

xk+1 = xk + αgk/
√
vk

I Improves ADAGRAD by considering the exponential moving
average of the squared gradient

I Slows down the decrease of the stepsize

60/71

Adam (2015)

Componentwise:

v0 = 0

mk+1 = β1mk + (1− β1)gk

vk+1 = β2vk + (1− β2)g2
k

m̂k =
mk

1− βk1
v̂k =

vk
1− βk2

xk+1 = xk + αm̂k/
√
v̂k

The algorithm updates exponential moving averages of the
gradient (mk) and the squared gradient (vk) These moving
averages are initialized as (vectors of) 0’s, leading to moment
estimates that are biased towards zero

61/71

Numerical test

62/71

Outline

Classical optimization

The large scale setting

Stochastic optimization

Improving convergence: variance reduction

Improving convergence: momentum

Improving convergence: adaptive stepsizes

Beyond SGD: second order

63/71

Inexact second order methods

Newton’s step:

xk+1 = xk+αkpk , Hm(xk)pk = −∇fm(xk), Hm :=
m∑
i=1

Hi ∈ Rn×n

I Classically: accurately solve the Newton system through
matrix factorization techniques (LU, Cholesky..)

I Instead: use an iterative approach for inexact solution:

‖Hm(xk)pk +∇fm(xk)‖ ≤ tol

Example: conjugate gradient (CG) method.

64/71

Inexact second order methods

I If linear solves are accurate enough, Newton-CG method can
enjoy a superlinear rate of convergence

I No access to the Hessian itself, only Hessian-vector products:
Hessian-free. This is ideal when such products can be coded
directly without having to form an explicit Hessian

I Each product is at least as expensive as a gradient evaluation,
but as long as the number of products (one per CG iteration)
is not too large, the improved rate of convergence can
compensate for the extra per-iteration work required over a
simple full gradient method.

65/71

Example

Let f (x) = ex1x2 and for d ∈ R2

Φ(x; d) = ∇f (x)Td = x2e
x1x2d1 + x1e

x1x2d2.

∇Φx(x, d) = Hf (x)d =

[
x2

2 e
x1x2d1 + (ex1x2 + x1x2e

x1x2)d2

(ex1x2 + x1x2e
x1x2)d1 + x2

1 e
x1x2d2

]
with Hf (x) the Hessian matrix of f . Can compute Hf (x)d without
computing Hf (x) explicitly.
Storing the scalars x1, x2 and ex1x2 from the evaluation of f , the
additional costs of computing the gradient-vector and
Hessian-vector products are small.
In general, one can compute Hf (x)d at a cost that is a small
multiple of the cost of evaluating ∇f (x), and without forming the
Hessian, which would require O(n2) storage.

66/71

Subsampled Hessian-Free Newton Methods

Idea: the Hessian matrix need not be as accurate as the gradient
to yield an effective iteration. Given Ik ⊂ {1, . . . ,m} and
IHk ⊂ {1, . . . ,m}, the stochastic gradient estimate is

∇fIk (xk) =
1

|Ik |
∑
i∈Ik

∇fi (xk),

and the stochastic Hessian estimate is

HIk (xk) =
1

|IHk |
∑
i∈IHk

Hfi (xk),

where IHk is uncorrelated with Ik and |IHk | < |Ik |.
I |IHk | small to reduce the cost of product involving the Hessian

and thus the cost of CG iterations.

I |Ik | large enough so that the curvature information captured
through the Hessian-vector products is productive.

67/71

Subsampled Hessian-Free Inexact Newton Method

1. Given an initial iterate x0, ρ ∈ (0, 1), and
maxCG ∈ N.

2. For k = 0, 1, 2, ... do

2.1 Choose randomly Ik and IHk .
2.2 Compute pk applying Hessian-free CG to solve

HIk
(xk)pk = −∇fIk

(xk) until maxCG iterations
have been performed or a trial solution yields

‖rk‖ := ‖HIk
(xk)pk +∇fIk

(xk)‖ ≤ ρ‖∇fIk
(xk)‖

2.3 Set xk+1 = xk +αkpk , where αk satisfies (A)+(W)

68/71

Cost of step computation in Newton-CG

I Let gcost be the cost of computing ∇fIk (xk)

I factor× gcost denote the cost of one Hessian-vector product.

I maxCG maximum number of CG iterations

The step computation cost is

maxCG × factor× gcost + gcost .

I If |IHk | = |Ik | = n for all k ∈ N, the factor is at least 1 and
maxCG ∼ 5, 20: cost is many times the cost of an SG
iteration.

I Stochastic subsampled framework: the factor can be chosen
to be sufficiently small such that maxCG × factor ∼ 1, leading
to a per-iteration cost proportional to that of SG.

69/71

Rate of convergence

Defining rk := HIk (xk)pk +∇fIk (xk) for all k ∈ N, the iteration
can enjoy a linear, superlinear, or quadratic rate of convergence by
controlling ‖rk‖, where for the superlinear rates one must have

‖rk‖
‖∇f (xk)‖

→ 0.

1

1R. S. Dembo, Eisenstat S. C., and T. Steihaug. Inexact Newton Methods.
SIAM Journal on Numerical Analysis, 19(2):400-408, 1982.

70/71

Exercise

Consider the moon dataset

X , y = make moons(n samples = N, noise = δ, random state = 42)

I Split the dataset into
training and test sets

I Normalize the data for
better performance

I Build a simple neural
network model

I Train it with different
optimizers (GD, SGD,
ADAM..)

71/71

Exercise

Test the effect of:

I size N

I noise δ

I learning rate

I momentum

	Classical optimization
	The large scale setting
	Stochastic optimization
	Improving convergence: variance reduction
	Improving convergence: momentum
	Improving convergence: adaptive stepsizes
	Beyond SGD: second order

