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Why summation is important

y =
n∑

i=1

xi . . . an ubiquitous and fundamental task!

• Dot products:
a, b ∈ Rn ⇒ aTb =

n∑
i=1

aibi

• Matrix–vector products:

A ∈ Rm×n, b ∈ Rn ⇒ (Ab)j =
n∑

i=1

ajibi , j = 1: m

• Matrix–matrix products:

A ∈ Rm×n, B ∈ Rn×p ⇒ (AB)jk =
n∑

i=1

ajibik , j = 1: m, k = 1: p

• Gaussian elimination (LU factorization):

A ∈ Rn×n, A = LU ⇒

{
ℓjk =

(
ajk −

∑k−1
i=1 ℓjiuik

)
/ukk

ukj = akj −
∑k−1

i=1 ℓkiuij3/51



Accumulation of rounding errors

Summation suffers from the accumulation of rounding errors

Standard model of FP arithmetic:

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u , for op ∈ {+,−,×,÷}

Consider the computation of y =
∑n

i=1 xi by recursive summation:

y2 = x1 + x2 ⇒ ŷ2 = (x1 + x2)(1 + δ1)
y3 = ŷ2 + x3 ⇒ ŷ3 = (ŷ2 + x3)(1 + δ2)

= (x1 + x2) (1 + δ1)(1 + δ2)︸ ︷︷ ︸
δ1 and δ2 accumulate!

+x3(1 + δ2)

y4 = . . . etc.

How can we measure the accumulated effect of all rounding errors?
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Forward and backward errors

• Let y = f (x) be computed in finite precision and let ŷ be the computed result

• Forward error analysis measures

|ŷ − y | (absolute) or
|ŷ − y |
|y |

(relative)

• Backward error analysis computes the smallest perturbation ∆x such that

ŷ = f (x +∆x)

and measures |∆x | (absolute) or |∆x |/|x | (relative).
• Backward error analysis recasts the rounding errors as perturbations of the input
data

• An algorithm is backward stable if it yields a small backward error, where “small”
usually means O(u)
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Forward and backward errors for summation

• Forward error

ηfwd =
|ŷ − y |
|y |

• Backward error

ηbwd = min

{
ε > 0 : ∃δxi , ŷ =

n∑
i=1

xi + δxi , |δxi | ≤ ε|xi |

}
.

Two questions:

• Find a formula for ηbwd

• Find bounds for ηbwd and ηfwd when ŷ is computed in floating-point arithmetic
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Formula for backward error

ηbwd = min

{
ε > 0 : ∃δxi , ŷ =

n∑
i=1

xi + δxi , |δxi | ≤ ε|xi |

}
.

We have the formula

ηbwd =
|ŷ − y |∑n
i=1 |xi |

.

Proof :

• |ŷ−y |∑n
i=1 |xi |

≤ ηbwd

• ηbwd ≤ |ŷ−y |∑n
i=1 |xi |

(using δxi = (ŷ − y) |xi |∑n
i=1 |xi |

)
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Formula for conditioning

As a result we also obtain the formula

κ =
ηfwd

ηbwd
=

∑n
i=1 |xi |∣∣∣∑n
i=1 xi

∣∣∣ .
• κ is large if

∑
|xi | ≫ |

∑
xi | ⇒ cancellation
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Backward error analysis

y2 = x1 + x2
⇒ ŷ2 = (x1 + x2)(1 + δ1) = x1(1 + δ1) + x2(1 + δ1)

y3 = ŷ2 + x3
⇒ ŷ3 = (ŷ2 + x3)(1 + δ2)

= x1(1 + δ1)(1 + δ2) + x2(1 + δ1)(1 + δ2) + x3(1 + δ2)
. . .

⇒ ŷn =
∑n

i=1

[
xi
∏n

k=ki
(1 + δk)

]

Worst-case fundamental lemma

Let δk , k = 1 : n, such that |δk | ≤ u and nu < 1. Then
n∏

k=1

(1 + δk) = 1 + θn, |θn| ≤ γn :=
nu

1− nu
.
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⇒ ŷ2 = (x1 + x2)(1 + δ1) = x1(1 + δ1) + x2(1 + δ1)

y3 = ŷ2 + x3
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General worst-case bound

General algorithm

S = {x1, . . . , xn}
Repeat

Choose any pair (xi , xj) ∈ S2 (i ̸= j)
S← S\ {xi , xj}
S← S ∪ {xi + xj}

until S = {y}

No matter the summation order we have the bound

ηbwd ≤ γn−1 = (n − 1)u + O(u2)
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Summary

Consider the computation

y =
n∑

i=1

xi

In floating-point arithmetic, the forward error ηfwd is bounded by

ηfwd ≤ ηbwdκ, ηbwd ≤ γn−1 = (n − 1)u + O(u2), κ =

∑
|xi |

|
∑

xi |
Thus ηfwd can be large when

• The unit roundoff u is large (low precision)

• The dimension n is large (accumulation)

• The condition number κ is large (cancellation)
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No matter the summation order we have the bound

ηbwd ≤ γn−1 = (n − 1)u + O(u2)

⇒ However, for specific orders, we can get much better bounds, and much smaller
errors!
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Summation tree

Given a summation order to compute y =
∑n

i=1 xi , we define its associated summation
tree as a binary tree such that:

• the n leaf nodes are the n summands xi

• any inner node is equal to the sum of its two children

• the root node is the final sum y

Example: recursive summation is a comb tree
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Tree-based summation

• For any summation tree, we have the bound:

ηbwd ≤ γh = hu + O(u2)

where h is the height of the tree

• The minimal bound is therefore attained for a balanced binary tree, for which
h = ⌈log2 n⌉. This is called pairwise summation.

• While it achieves the minimal bound, pairwise summation is not efficient on modern
computers.
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Blocked summation

Blocked summation algorithm:

for i = 1: n/b do
Compute yi =

∑ib
j=(i−1)b+1 xj .

end for
Compute y =

∑n/b
i=1 yi .

x1 · · · xb︸ ︷︷ ︸
y1

· · · · · · · · ·︸ ︷︷ ︸
···

· · · · · · · · ·︸ ︷︷ ︸
···

· · · · · · · · ·︸ ︷︷ ︸
···

xn−b+1 · · · xn︸ ︷︷ ︸
yn/b︸ ︷︷ ︸

y

• Widely used in NLA libraries (BLAS, LAPACK, . . . )

• ηbwd ≤ γh with h = b + n/b − 2

• With optimal b =
√
n : h = 2(

√
n − 1)
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Blocked summation

for i = 1: n/b do
Compute yi =

∑ib
j=(i−1)b+1 xj .

end for
Compute y =

∑n/b
i=1 yi .

ŷi =
ib∑

j=(i−1)b+1

[
xj

b∏
k=kj

(1 + δ
(i)
k )

︸ ︷︷ ︸
at most b − 1 terms

]

ŷ =

n/b∑
i=1

[
ŷi

n/b∏
k=k′

i

(1 + δ′k)︸ ︷︷ ︸
at most n/b − 1 terms

]

=
n∑

j=1

[
xj

b∏
k=kj

(1 + δ
(i)
k )

n/b∏
k=k′′

j

(1 + δ′k)︸ ︷︷ ︸
at most b + n/b − 2 terms

]
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Superblock summation

• Superblocked summation: tree summation with t levels, block size at level t :
bt = n1/t

◦ t = 1 ⇒ standard recursive summation
◦ t = 2 ⇒ optimal blocked summation
◦ t = log2 n⇒ pairwise summation
◦ ηbwd ≤ γh with h = t(n1/t − 1)
◦ � Castaldo et al. (2009)
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FABsum

Fast Accurate Blocked summation algorithm (FABsum) � Blanchard, Higham, M. (2020)

for i = 1: n/b do
Compute yi =

∑ib
j=(i−1)b+1 xj with FastSum.

end for
Compute y =

∑n/b
i=1 yi with AccurateSum.

x1 · · · xb︸ ︷︷ ︸
y1

· · · · · · · · ·︸ ︷︷ ︸
···

· · · · · · · · ·︸ ︷︷ ︸
···

· · · · · · · · ·︸ ︷︷ ︸
···

xn−b+1 · · · xn︸ ︷︷ ︸
yn/b︸ ︷︷ ︸

y

• Cost: C (n, b) = n
bCf (b) + Ca(

n
b ) ≈ Cf (n) +

1
bCa(n)

• Error: ϵ(n, b) = ϵf (b) + ϵa(n/b) + ϵf (b)ϵa(n/b)

⇒ If ϵa(p) = pu2 (recursive summation in precision u2), then ϵ(n, b) = bu + O(u2) is
independent of n to first order
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FABsum: numerical results

Backward error for summing random uniform [0, 1] data
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Blocked summation: implementation remark

for i = 1: n/b do
Compute yi =

∑ib
j=(i−1)b+1 xj .

end for
Compute y =

∑n/b
i=1 yi .

• If implemented as is, requires storing n/b intermediate yi values, which requires
extra memory and is likely to slow down computation

• Better to implement as follows:

y = 0
for i = 1: n/b do

Compute z =
∑ib

j=(i−1)b+1 xj .
Compute y = y + z

end for
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Fast2sum

[x,y] = Fast2Sum(a,b)

Input: a, b ∈ F such that |a| ≥ |b|
Output: x = fl(a + b), y ∈ F such that
x + y = a+ b

x = a+ b
e = x − a
y = b − e
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Kahan’s summation (compensated summation)

Input: xi ∈ F, i = 1: n
Output: y ≈

∑n
i=1 xi

y = 0
z = 0
for i = 1: n do

t = xi + z
[y , z ] = Fast2Sum(y , t)

end for

• Kahan’s summation reinjects the errors at each step in the sum

• It satisfies the bound ηbwd ≤ 2u + O(nu2) (proof is quite complicated)
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Distillation methods

n∑
i=1

xi −−−−−−→
distillation

n∑
i=1

di , where κ(di )≪ κ(xi )

Fast2Sum: fl(a+ b) = a+ b + e, where e ∈ F
AccSum: repeatedly replace (a, b) by (fl(a+ b), e) until the sum is sufficiently well
conditioned (higher κ⇒ more iterations)
� Rump, Ogita, Oishi (2008)
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Condensation methods

n∑
i=1

xi −−−−−−−→
condensation

m∑
i=1

ci −−−−−−→
distillation

m∑
i=1

di , where m≪ n and κ(di )≪ κ(xi )
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Condense & Distill, conceptually

Conceptual algorithm

S = {x1, . . . , xn}
Repeat for all pairs (xi , xj) ∈ S2 (i ̸= j) such that xi + xj is exact

S← S\ {xi , xj}
S← S ∪ {xi + xj}

until no such pair remains

Distill S

• Can we easily determine when xi + xj is exact?

• Can we bound the maximum number of leftover summands?
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Demmel–Hida method

accumulator

a

+ b
+

Consider arithmetic with f -bit mantissa and
e-bit exponent (e = 11 for fp64).

• One big accumulator: Kulisch method
. . . need one accumulator of 2e + log2 n
bits

• One accumulator per exponent:
Malcolm method . . . need 2e

accumulators of f + log2 n bits

• Demmel–Hida: general method, balance
the number and size of accumulators.

Input: n summands xi , number of
exponent bits m to extract
Output: y =

∑2m

j=1 Aj

Initialize Aj = 0 for j = 1, . . . , 2m

for i = 1: n do
j ← m leading bits of exponent(xi )
Aj ← Aj + xi

end for

With 2m accumulators, need F -bit mantissa
with

F ≥ f + ⌈log2 n⌉+ 2e−m − 1
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Demmel–Hida method

number of bits

signif. (t) exp. range u = 2−t

fp128 quadruple 113 15 10±4932 1× 10−34

fp64 double 53 11 10±308 1× 10−16

Numerical example with fp64 and fp128 arithmetics:

• Assume log2 n ≤ 29 (n ≲ 0.5× 109)

• F = 113, f = 53, e = 11 ⇒ m must thus satisfy

F ≥ f + ⌈log2 n⌉+ 2e−m − 1

⇒ 211−m ≤ 32

⇒ 6 ≤ m
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Distillation vs condensation

Distillation methods (AccSum, etc.)

, Entirely in the working precision

, Only uses standard arithmetic
operations

/ Strongly dependent on the conditioning

/ Limited parallelism

Condensation methods (Demmel–Hida,
etc.)

, Independent on the conditioning

, High level of parallelism

/ Requires access to the exponent

/ Requires extended precision arithmetic

Can we avoid the use of extended precision arithmetic?
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When is x + y exact? Intuition 1

2q−1 2q 2q+1

ε 2ε 4ε

Let x , y ∈ F ∩ [2q−1, 2q] such that

x = 2q−1 + kxε

y = 2q−1 + kyε

Then

x + y = 2q−1 + kxε+ 2q−1 + kyε

= 2q + (kx + ky )ε ∈ F iff kx + ky ≡ 0 mod 2
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When is x + y exact? Intuition 1

2q−1 2q 2q+1

ε 2ε 4ε

Similarly if

x = 2q−1 + kxε

y = 2q + ky2ε

then x + y ∈ F iff {
x + y ≤ 2q+1 and kx ≡ 0 mod 2

x + y > 2q+1 and kx + 2ky ≡ 0 mod 4
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When is x + y exact? Intuition 2

2q × 101 + 2q × 111 = 2q × 1100 = 2q+1 × 110.0 ∈ F
2q × 101 + 2q × 110 = 2q × 1011 = 2q+1 × 101.1 /∈ F

2q × 101 + 2q−1 × 111 = 2q+1 × 100.01 /∈ F
2q × 101 + 2q−1 × 110 = 2q+1 × 100.00 ∈ F
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When is x + y exact? Theorem

Theorem (Graillat and M.)

Let x , y ∈ F of the same sign σ = ±1 such that

x = σ(βex + kxεex ),

y = σ(βey + kyεey ).

Assuming (without loss of generality) that |x | ≤ |y |, then x + y ∈ F, and thus the
addition is exact, iff one of the following conditions is met:

(i) x = 0;

(ii) |x + y | < βey+1, ey − ex ≤ t − 1, and kx ≡ 0 mod βey−ex ;

(iii) |x + y | = βey+1, ey + 1 ≤ emax, ey − ex ≤ t − 1, and kx ≡ 0 mod βey−ex ;

(iv) |x + y | > βey+1, ey + 1 ≤ emax, ey − ex ≤ t − 2, and
kx + kyβ

ey−ex ≡ 0 mod βey−ex+1.

33/51



When is x + y exact? Corollary

kx + kyβ
ey−ex ≡ 0 mod βey−ex+1 −−−−−−−→

β=2, ex=ey
kx + ky ≡ 0 mod 2

Corollary

If x , y ∈ F with β = 2 have the same sign, exponent, and least significant bit,
then barring overflow their addition is exact.
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Graillat–Mary method

Consider the toy example

y = 0.25 + 0.3125 + 0.375 + 0.375 + 0.4375 + 0.4375 + 0.625 + 0.625 + 0.75 + 0.75 + 0.875

computed with 3-bit arithmetic:

F = {0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3}

0.25 0.3125 0.375 0.43750.375 0.4375

0.625 0.75

0.625 0.625 0.75 0.8750.75

1.5 1.51.25

3

LSB=0

LSB=1

e = 1

e = 0

e = −1

e = −2

y = 0.375 + 0.4375 + 0.75 + 1.25 + 3

35/51



Graillat–Mary method

Consider the toy example

y = 0.25 + 0.3125 + 0.375 + 0.375 + 0.4375 + 0.4375 + 0.625 + 0.625 + 0.75 + 0.75 + 0.875

computed with 3-bit arithmetic:

F = {0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3}

0.25 0.3125 0.375 0.43750.375 0.4375

0.625 0.75 0.625 0.625 0.75 0.8750.75

1.5 1.51.25

3

LSB=0

LSB=1

e = 1

e = 0

e = −1

e = −2

y = 0.375 + 0.4375 + 0.75 + 1.25 + 3

35/51



Graillat–Mary method

Consider the toy example

y = 0.25 + 0.3125 + 0.375 + 0.375 + 0.4375 + 0.4375 + 0.625 + 0.625 + 0.75 + 0.75 + 0.875

computed with 3-bit arithmetic:

F = {0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3}

0.25 0.3125 0.375 0.43750.375 0.4375

0.625 0.75 0.625 0.625 0.75 0.8750.75

1.5 1.51.25

3

LSB=0

LSB=1

e = 1

e = 0

e = −1

e = −2

y = 0.375 + 0.4375 + 0.75 + 1.25 + 3

35/51



Graillat–Mary method

Consider the toy example

y = 0.25 + 0.3125 + 0.375 + 0.375 + 0.4375 + 0.4375 + 0.625 + 0.625 + 0.75 + 0.75 + 0.875

computed with 3-bit arithmetic:

F = {0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3}

0.25 0.3125 0.375 0.43750.375 0.4375

0.625 0.75 0.625 0.625 0.75 0.8750.75

1.5 1.51.25

3LSB=0

LSB=1

e = 1

e = 0

e = −1

e = −2

y = 0.375 + 0.4375 + 0.75 + 1.25 + 335/51



Graillat–Mary method

Input: n summands xi and a distillation
method distill

Output: y =
∑n

i=1 xi

Initialize Acc(e, s, b) to 0 for e = emin : emax,
s ∈ {−1, 1}, b ∈ {0, 1}.
for all xi in any order do

e = exponent(xi )
s = sign(xi )
b = LSB(xi )
insert (Acc, xi , e, s, b)

end for
xcondensed = gather (Acc)

y = distill(xcondensed)

function insert (Acc, x , e, s, b)
if Acc(e, s, b) = 0 then

Acc(e, s, b) = x
else

x ′ = Acc(e, s, b) + x
Acc(e, s, b) = 0
b′ = LSB(x ′)
insert(Acc, x ′, e + 1, s, b′)

end if
end function

function xcondensed = gather (Acc)

i = 0
for all nonzero Acc(e, s, b) do

i = i + 1
xcondensed(i) = Acc(e, s, b)

end for
end function36/51



Graillat–Mary method

Conceptual algorithm

S = {x1, . . . , xn}
Repeat for all pairs (xi , xj) ∈ S2 (i ̸= j) such that xi + xj is exact

S← S\ {xi , xj}
S← S ∪ {xi + xj}

until no such pair remains

Distill S

• Can we easily determine when xi + xj is exact? YES! It suffices to check the sign,
exponent, and LSB of xi and xj

• Can we bound the maximum number of leftover summands? YES! At most 4L
summands where L is the depth of the tree

L ≤ ⌈log2 n⌉+ d

where d is independent of n and depends on the range of the values (at most 2047
in binary64)
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Distillation vs condensation

Distillation methods (AccSum, etc.)

, Entirely in the working precision

, Only uses standard arithmetic
operations

/ Strongly dependent on the conditioning

/ Limited parallelism

Condensation methods (Demmel–Hida,
Graillat–Mary)

, Independent on the conditioning

, High level of parallelism

/ Requires access to the exponent + LSB

/ Requires extended precision arithmetic
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Performance comparison
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Quadruple working precision
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Adaptive precision algorithms

• Given an algorithm and a prescribed accuracy ε, adaptively select the minimal
precision for each instruction depending on the data

⇒ First of all, why should the precisions vary?

• Because not all computations are equally “important”!
Example:

a
+ b

64 bits

Unimportant bits

⇒ Opportunity for mixed precision: adapt the precisions to the data at hand by
storing and computing “less important” (which usually means smaller) data in lower
precision
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Sparse matrix–vector product (SpMV)

Goal: compute y = Ax , where A is a sparse matrix, with a prescribed accuracy ε

for i = 1: m do
yi =

∑
j∈nnz i (A) aijxj

end for

If computed in precision ε, ŷ satisfies

|ŷi − yi | ≤ niε
∑

j∈nnz i (A)

|aijxj |

and thus
∥ŷ − y∥ ≤ cε∥A∥∥x∥ (c = max

i
ni )

This is a normwise backward error bound: ŷ = (A+ E )x , ∥E∥ ≤ cε∥A∥.
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Adaptive precision SpMV

• Given p available precisions u1 < ε < u2 < . . . < up, define partition
A =

∑p
k=1 A

(k) where

a
(k)
ij =

{
flk(aij) if |aij | ∈ (ε∥A∥/uk , ε∥A∥/uk+1]

0 otherwise

⇒ the precision of each element is chosen inversely proportional to its magnitude

0 ϵ∥A∥ ϵ∥A∥/u3 ϵ∥A∥/u2 +∞

drop precision u3 precision u2 precision u1× ×
× ×
× ×

 =

d
d

d

+

 s

s

+

h


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Adaptive precision SpMV

for i = 1: m do
for k = 1: p do

y
(k)
i =

∑
j∈nnz i (A(k)) a

(k)
ij xj in precision uk

end for
yi =

∑p
k=1 y

(k)
i in precision u1

end for

• Compute y (k) = A(k)x in precision uk . The computed ŷ (k) satisfies

|ŷ (k)i − y
(k)
i | ≤ (n

(k)
i )2ε∥A∥∥x∥

• Compute y =
∑p

k=1 y
(k) in precision u1. The computed ŷ satisfies

ŷi =

p∑
k=1

ŷ
(k)
i + ei , |ei | ≤ pu1∥A∥∥x∥

= yi + fi , |fi | ≤ cε∥A∥∥x∥

� Graillat, Jézéquel, M., Molina (2024)45/51
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Custom precision formats

The more precisions we have, the more we can reduce storage ⇒ can we exploit custom
precision formats?

Emulated formats

Bits

Format Signif.(t) Exponent Range u = 2−t

bf16 8 8 10±38 4× 10−3

fp24 16 8 10±38 2× 10−5

fp32 24 8 10±38 6× 10−8

fp40 29 11 10±308 2× 10−9

fp48 37 11 10±308 8× 10−12

fp56 45 11 10±308 3× 10−14

fp64 53 11 10±308 1× 10−16

How to efficiently implement custom precision storage?
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Custom precision accessor

union union64 {

uint64_t i;

double f;

};

double RpToFp (rp40 rp, size_t i){

union union64 u64;

uint64_t i64h, i64l;

i64h = (uint64_t)rp.i32[i];

i64h = i64h << 32;

i64l = (uint64_t)rp.i8[i];

i64l = i64l << 24;

u64.i = i64h | i64l;

return u64.f;

}

Exp.
11 bits

uint8_t to uint64_t copy

Sign
1 bit

Sig.
28 bits

Exp.
11 bits

Sign
1 bit

Sig.
52 bits

bitshift

uint32_t to uint64_t copy

bitshift

binary or

Accessed as FP64

Stored as RP40

� Graillat, Jézéquel, M., Molina, Mukunoki (2024)
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Experimental results (Long Coup dt6 matrix, n ≈ 1.5M)
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• Controlled accuracy

• Storage reduced by at least 30% and potentially much more for larger ε.

• Time cost matches storage.
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Conclusion

ηfwd ≤ ηbwdκ, ηbwd ≤ γn−1 = (n − 1)u + O(u2), κ =

∑
|xi |

|
∑

xi |

• We have seen various summation methods with different properties/objectives:
handling error accumulation, cancellation, using mixed precision. . .

• A common theme has been the reordering of the summands by grouping them into
blocks/buckets,
◦ either fixed-size groups of arbitrary summands
◦ or groups of summands of similar magnitude.

• We have seen several possible uses of mixed precision arithmetic:
◦ Mixed precision blocked summation (FABsum): reduce accumulation
⇒ ηbwd independent of n

◦ Bucket summation with extended precision (Demmel-Hida): reduce cancellation
⇒ ηfwd independent of κ

◦ Bucket summation with adaptive precision: exploit lower precisions while controlling
ηbwd
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Practical exercise

• You are given a mysterious sum to evaluate as accurately and efficiently as possible.
Goal: achieve close to 10−16 accuracy while maintaning a time cost comparable to
recursive summation.

• Use of MATLAB’s sum is obviously forbidden!

• Suggestions:
◦ Implement Kahan’s summation (slide 24).
◦ Implement blocked summation (slide 16). How should you choose the block size b?
◦ Implement FABsum (slide 19) with Kahan’s summation as AccurateSum. How should

you choose the block size b?
◦ Compare performance–accuracy tradeoffs.
◦ Remember slide number 21.
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