Harnessing inexactness in scientific computing

Lecture 2: summation

Theo Mary (CNRS) <theo.mary@lip6.fr> <https://perso.lip6.fr/Theo.Mary/>

Elisa Riccietti (ENS Lyon) <elisa.riccietti@ens-lyon.fr> [https://perso.ens-lyon.fr/elisa.](https://perso.ens-lyon.fr/elisa.riccietti/) [riccietti/](https://perso.ens-lyon.fr/elisa.riccietti/)

M2 course at ENS Lyon, 2024–2025 Slides available on course webpage

[Introduction](#page-1-0)

Why summation is important

$$
y = \sum_{i=1}^{n} x_i
$$
 ... an ubiquitous and fundamental task!

• Dot products:

$$
a, b \in \mathbb{R}^n \Rightarrow a^T b = \sum_{i=1}^n a_i b_i
$$

• Matrix–vector products:

$$
A\in\mathbb{R}^{m\times n},\ b\in\mathbb{R}^n\Rightarrow (Ab)_j=\sum_{i=1}^n a_{ji}b_i,\quad j=1\colon m
$$

• Matrix–matrix products:

$$
A\in\mathbb{R}^{m\times n},\ B\in\mathbb{R}^{n\times p}\Rightarrow (AB)_{jk}=\sum_{i=1}^n a_{ji}b_{ik},\quad j=1\colon m,k=1\colon p
$$

• Gaussian elimination (LU factorization):

$$
A \in \mathbb{R}^{n \times n}, \ A = LU \Rightarrow \begin{cases} \ell_{jk} &= \left(a_{jk} - \sum_{i=1}^{k-1} \ell_{ji} u_{ik}\right) / u_{kk} \\ u_{kj} &= a_{kj} - \sum_{i=1}^{k-1} \ell_{ki} u_{ij} \end{cases}
$$

Summation suffers from the accumulation of rounding errors

Standard model of FP arithmetic:

$$
fI(x \text{ op } y) = (x \text{ op } y)(1 + \delta), \quad |\delta| \le u \text{, for op } \in \{+, -, \times, \div\}
$$

Consider the computation of $y = \sum_{i=1}^{n} x_i$ by recursive summation:

$$
y_2 = x_1 + x_2 \Rightarrow \hat{y}_2 = (x_1 + x_2)(1 + \delta_1)
$$

\n
$$
y_3 = \hat{y}_2 + x_3 \Rightarrow \hat{y}_3 = (\hat{y}_2 + x_3)(1 + \delta_2)
$$

\n
$$
= (x_1 + x_2) (1 + \delta_1)(1 + \delta_2) + x_3(1 + \delta_2)
$$

\n
$$
\delta_1 \text{ and } \delta_2 \text{ accumulate!}
$$

 $v_4 = \ldots$ etc.

How can we measure the accumulated effect of all rounding errors?

Forward and backward errors

- Let $y = f(x)$ be computed in finite precision and let \hat{y} be the computed result
- Forward error analysis measures

$$
|\hat{y} - y|
$$
 (absolute) or $\frac{|\hat{y} - y|}{|y|}$ (relative)

• Backward error analysis computes the smallest perturbation Δx such that

$$
\widehat{y}=f(x+\Delta x)
$$

and measures $|\Delta x|$ (absolute) or $|\Delta x|/|x|$ (relative).

- Backward error analysis recasts the rounding errors as perturbations of the input data
- An algorithm is **backward stable** if it yields a small backward error, where "small" usually means $O(u)$

Forward and backward errors for summation

• Forward error

$$
\eta_{\text{fwd}} = \frac{|\widehat{y} - y|}{|y|}
$$

• Backward error

$$
\eta_{\text{bwd}} = \min \left\{ \varepsilon > 0 : \exists \delta x_i, \; \widehat{y} = \sum_{i=1}^n x_i + \delta x_i, \; |\delta x_i| \leq \varepsilon |x_i| \right\}.
$$

Two questions:

- Find a formula for η_{bwd}
- Find **bounds** for η_{bwd} and η_{fwd} when \hat{y} is computed in floating-point arithmetic

Formula for backward error

$$
\eta_{\text{bwd}} = \min \left\{ \varepsilon > 0 : \exists \delta x_i, \; \widehat{y} = \sum_{i=1}^n x_i + \delta x_i, \; |\delta x_i| \leq \varepsilon |x_i| \right\}.
$$

We have the formula

$$
\eta_{\text{bwd}} = \frac{|\widehat{y} - y|}{\sum_{i=1}^n |x_i|}.
$$

Proof:

\n- \n
$$
\frac{|\widehat{y}-y|}{\sum_{i=1}^{n}|x_i|} \leq \eta_{\text{bwd}}
$$
\n
\n- \n $\eta_{\text{bwd}} \leq \frac{|\widehat{y}-y|}{\sum_{i=1}^{n}|x_i|}$ (using $\delta x_i = (\widehat{y}-y) \frac{|x_i|}{\sum_{i=1}^{n}|x_i|}$)\n
\n

As a result we also obtain the formula

$$
\kappa = \frac{\eta_{\text{fwd}}}{\eta_{\text{bwd}}} = \frac{\sum_{i=1}^{n} |x_i|}{\left| \sum_{i=1}^{n} x_i \right|}.
$$

 $\bullet\; \kappa$ is large if $\sum |x_i|\gg |\sum x_i| \Rightarrow$ cancellation

Backward error analysis

. . .

$$
y_2 = x_1 + x_2
$$

\n
$$
\Rightarrow \hat{y}_2 = (x_1 + x_2)(1 + \delta_1) = x_1(1 + \delta_1) + x_2(1 + \delta_1)
$$

\n
$$
y_3 = \hat{y}_2 + x_3
$$

\n
$$
\Rightarrow \hat{y}_3 = (\hat{y}_2 + x_3)(1 + \delta_2)
$$

\n
$$
= x_1(1 + \delta_1)(1 + \delta_2) + x_2(1 + \delta_1)(1 + \delta_2) + x_3(1 + \delta_2)
$$

$$
\Rightarrow \quad \widehat{y}_n = \sum_{i=1}^n \left[x_i \prod_{k=k_i}^n (1 + \delta_k) \right]
$$

Backward error analysis

$$
y_2 = x_1 + x_2
$$

\n
$$
\Rightarrow \hat{y}_2 = (x_1 + x_2)(1 + \delta_1) = x_1(1 + \delta_1) + x_2(1 + \delta_1)
$$

\n
$$
y_3 = \hat{y}_2 + x_3
$$

\n
$$
\Rightarrow \hat{y}_3 = (\hat{y}_2 + x_3)(1 + \delta_2)
$$

\n
$$
= x_1(1 + \delta_1)(1 + \delta_2) + x_2(1 + \delta_1)(1 + \delta_2) + x_3(1 + \delta_2)
$$

$$
\Rightarrow \quad \widehat{y}_n = \sum_{i=1}^n \left[x_i \prod_{k=k_i}^n (1 + \delta_k) \right]
$$

Worst-case fundamental lemma

. . .

Let
$$
\delta_k
$$
, $k = 1 : n$, such that $|\delta_k| \le u$ and $nu < 1$. Then
\n
$$
\prod_{k=1}^n (1 + \delta_k) = 1 + \theta_n, \quad |\theta_n| \le \gamma_n := \frac{nu}{1 - nu}.
$$

General worst-case bound

General algorithm

 $\mathbb{S} = \{x_1, \ldots, x_n\}$ Repeat Choose any pair $(x_i, x_j) \in \mathbb{S}^2$ $(i \neq j)$ $\mathbb{S} \leftarrow \mathbb{S} \backslash \{x_i, x_j\}$ $\mathbb{S} \leftarrow \mathbb{S} \cup \{x_i + x_j\}$ until $\mathbb{S} = \{y\}$

No matter the summation order we have the bound

$$
\eta_{\text{bwd}} \leq \gamma_{n-1} = (n-1)u + O(u^2)
$$

Consider the computation

$$
y=\sum_{i=1}^n x_i
$$

In floating-point arithmetic, the forward error η_{fwd} is bounded by

$$
\eta_{\text{fwd}} \leq \eta_{\text{bwd}} \kappa, \qquad \eta_{\text{bwd}} \leq \gamma_{n-1} = (n-1)u + O(u^2), \qquad \kappa = \frac{\sum |x_i|}{|\sum x_i|}
$$

Thus η_{fwd} can be large when

- The unit roundoff u is large (low precision)
- The dimension n is large (accumulation)
- The condition number κ is large (cancellation)

[Dealing with accumulation](#page-12-0)

No matter the summation order we have the bound

$$
\eta_{\text{bwd}} \leq \gamma_{n-1} = (n-1)u + O(u^2)
$$

 \Rightarrow However, for specific orders, we can get much better bounds, and much smaller errors!

Given a summation order to compute $y = \sum_{i=1}^{n} x_i$, we define its associated summation tree as a binary tree such that:

- the *n* leaf nodes are the *n* summands x_i
- any inner node is equal to the sum of its two children
- the root node is the final sum y

Example: recursive summation is a comb tree

• For any summation tree, we have the bound:

$$
\eta_{\text{bwd}} \leq \gamma_h = hu + O(u^2)
$$

where h is the height of the tree

- The minimal bound is therefore attained for a **balanced binary tree**, for which $h = \lceil \log_2 n \rceil$. This is called pairwise summation.
- While it achieves the minimal bound, pairwise summation is not efficient on modern computers.

Blocked summation

Blocked summation algorithm:

for $i=1$: n/b do Compute $y_i = \sum_{j=(i-1)b+1}^{ib} x_j$. end for Compute $y = \sum_{i=1}^{n/b} y_i$.

- Widely used in NLA libraries (BLAS, LAPACK, ...)
- $\eta_{\text{bwd}} \leq \gamma_h$ with $h = b + n/b 2$
- With optimal $b = \sqrt{n}$: $h = 2(\sqrt{n-1})$

Blocked summation

for
$$
i = 1
$$
: n/b **do**
Compute $y_i = \sum_{j=(i-1)b+1}^{ib} x_j$.
end for
Compute $y = \sum_{i=1}^{n/b} y_i$.

$$
\widehat{y}_i = \sum_{j=(i-1)b+1}^{ib} \left[x_j \underbrace{\prod_{k=k_j}^{b} (1+\delta_k^{(i)})}_{\text{at most } b-1 \text{ terms}} \right]
$$
\n
$$
\widehat{y} = \sum_{i=1}^{n/b} \left[\widehat{y}_i \underbrace{\prod_{k=k'_i}^{n/b} (1+\delta'_k)}_{\text{at most } n/b-1 \text{ terms}} \right]
$$
\n
$$
= \sum_{j=1}^{n} \left[x_j \underbrace{\prod_{k=k'_i}^{b} (1+\delta_k^{(i)}) \prod_{k=k''_j}^{n/b} (1+\delta'_k)}_{\text{k=k''_j}} \right]
$$

at mo[st](#page-0-0) $b + n/b - 2$ terms

i

17/51

Superblock summation

- Superblocked summation: tree summation with t levels, block size at level t : $b_t = n^{1/t}$
	- \circ $t = 1 \Rightarrow$ standard recursive summation
	- \circ t = 2 \Rightarrow optimal blocked summation
	- \circ t = log₂ n \Rightarrow pairwise summation
	- \circ $\eta_{\text{bwd}} \leq \gamma_h$ with $h = t(n^{1/t} 1)$
	- ⊙ \triangleq [Castaldo et al. \(2009\)](https://epubs.siam.org/doi/abs/10.1137/070679946)

FABsum

Fast Accurate Blocked summation algorithm (FABsum) \Box [Blanchard, Higham, M. \(2020\)](https://epubs.siam.org/doi/abs/10.1137/19M1257780)

for
$$
i = 1
$$
: n/b **do**
Compute $y_i = \sum_{j=(i-1)b+1}^{ib} x_j$ with FastSum.
end for
Compute $y = \sum_{i=1}^{n/b} y_i$ with AccurateSum.

- Cost: $C(n, b) = \frac{n}{b}C_f(b) + C_a(\frac{n}{b})$ $\frac{n}{b}$) $\approx C_f(n) + \frac{1}{b}C_a(n)$
- Error: $\epsilon(n, b) = \epsilon_f(b) + \epsilon_a(n/b) + \epsilon_f(b)\epsilon_a(n/b)$
	- \Rightarrow If $\epsilon_a(p)=\rho u^2$ (recursive summation in precision u^2), then $\epsilon(n,b)=bu+O(u^2)$ is independent of n to first order

FABsum: numerical results

Backward error for summing random uniform [0, 1] data

Blocked summation: implementation remark

for
$$
i = 1
$$
: n/b **do**
Compute $y_i = \sum_{j=(i-1)b+1}^{ib} x_j$.
end for
Compute $y = \sum_{i=1}^{n/b} y_i$.

- If implemented as is, requires storing n/b intermediate y_i values, which requires extra memory and is likely to slow down computation
- Better to implement as follows:

```
y = 0for i=1: n/b do
    Compute z = \sum_{j=(i-1)b+1}^{ib} x_j.
    Compute y = y + zend for
```


[Dealing with cancellation](#page-22-0)

Fast2sum

$$
[x,y] = \text{Fast2Sum}(a,b)
$$
\nInput: $a, b \in \mathbb{F}$ such that $|a| \ge |b|$

\nOutput: $x = f1(a + b), y \in \mathbb{F}$ such that

\n
$$
x + y = a + b
$$
\n
$$
x = a + b
$$
\n
$$
e = x - a
$$
\n
$$
y = b - e
$$


```
Input: x_i \in \mathbb{F}, i = 1: n
Output: y \approx \sum_{i=1}^{n} x_iv = 0z = 0for i = 1: n do
    t = x_i + z[y, z] = \text{Fast2Sum}(y, t)end for
```
- Kahan's summation reinjects the errors at each step in the sum
- $\bullet\,$ It satisfies the bound $\eta_{\rm bwd} \leq 2u + O(nu^2)$ (proof is quite complicated)

$$
\sum_{i=1}^n x_i \xrightarrow[\text{distillation}]{}
$$

$$
\sum_{i=1}^n d_i,
$$
 where $\kappa(d_i) \ll \kappa(x_i)$

Fast2Sum: $fl(a + b) = a + b + e$, where $e \in \mathbb{F}$

AccSum: repeatedly replace (a, b) by $(fl(a + b), e)$ until the sum is sufficiently well conditioned (higher $\kappa \Rightarrow$ more iterations) $\boxed{\triangleq}$ [Rump, Ogita, Oishi \(2008\)](https://doi.org/10.1137/050645671)

 d_i , where $m \ll n$ and $\kappa(d_i) \ll \kappa(x_i)$

Condensation methods

where $m \ll n$ and $\kappa(d_i) \ll \kappa(x_i)$

Conceptual algorithm

```
\mathbb{S} = \{x_1, \ldots, x_n\}Repeat for all pairs (x_i, x_j) \in \mathbb{S}^2 (i \neq j) such that x_i + x_j is exact
       \mathbb{S} \leftarrow \mathbb{S} \backslash \{x_i, x_j\}\mathbb{S} \leftarrow \mathbb{S} \cup \{x_i + x_i\}until no such pair remains
Distill S
```
- Can we easily determine when $x_i + x_j$ is exact?
- Can we bound the maximum number of leftover summands?

Demmel–Hida method

Demmel–Hida method

• One big accumulator: Kulisch method ... need one accumulator of 2^e + log₂ n bits

- One big accumulator: Kulisch method ... need one accumulator of 2^e + log₂ n bits
- One accumulator per exponent: Malcolm method \ldots need 2^e accumulators of $f + \log_2 n$ bits

- One big accumulator: Kulisch method ... need one accumulator of 2^e + log₂ n bits
- One accumulator per exponent: Malcolm method \ldots need 2^e accumulators of $f + \log_2 n$ bits
- Demmel–Hida: general method, balance the number and size of accumulators.

Input: *n* summands x_i , number of exponent bits m to extract Output: $y = \sum_{j=1}^{2^m} A_j$

Initialize $A_j = 0$ for $j = 1, \ldots, 2^m$ for $i = 1:n$ do $j \leftarrow m$ leading bits of exponent (x_i) $A_i \leftarrow A_i + x_i$ end for

With 2^m accumulators, need F -bit mantissa with

$$
F \geq f + \lceil \log_2 n \rceil + 2^{e-m} - 1
$$

Numerical example with fp64 and fp128 arithmetics:

- Assume $\log_2 n \leq 29$ $(n \lesssim 0.5 \times 10^9)$
- $F = 113$, $f = 53$, $e = 11 \Rightarrow m$ must thus satisfy

$$
F \ge f + \lceil \log_2 n \rceil + 2^{e-m} - 1
$$

\n
$$
\Rightarrow 2^{11-m} \le 32
$$

\n
$$
\Rightarrow 6 \le m
$$

Distillation methods (AccSum, etc.)

- \circledcirc Entirely in the working precision
 \circledcirc Only uses standard arithmetic
- , Only uses standard arithmetic operations
- \circledcirc Strongly dependent on the conditioning
 \circledcirc I imited parallelism
- Limited parallelism

Condensation methods (Demmel–Hida, etc.)

- \odot Independent on the conditioning
 \odot High level of parallelism
- \odot High level of parallelism
 \odot Requires access to the e
- \circledcirc Requires access to the exponent
 \circledcirc Requires extended precision arith
- Requires extended precision arithmetic

Distillation methods (AccSum, etc.)

- \circledcirc Entirely in the working precision
 \circledcirc Only uses standard arithmetic
- , Only uses standard arithmetic operations
- \circledcirc Strongly dependent on the conditioning
 \circledcirc I imited parallelism
- Limited parallelism

Condensation methods (Demmel–Hida, etc.)

- \odot Independent on the conditioning
 \odot High level of parallelism
- \odot High level of parallelism
 \odot Requires access to the e
- \circledcirc Requires access to the exponent
 \circledcirc Requires extended precision arith
- Requires extended precision arithmetic

Can we avoid the use of extended precision arithmetic?

When is $x + y$ exact? Intuition 1

Let $x, y \in \mathbb{F} \cap [2^{q-1}, 2^q]$ such that

$$
x = 2^{q-1} + k_x \varepsilon
$$

$$
y = 2^{q-1} + k_y \varepsilon
$$

Then

$$
x + y = 2^{q-1} + k_x \varepsilon + 2^{q-1} + k_y \varepsilon
$$

= 2^q + (k_x + k_y) \varepsilon \in \mathbb{F} \text{ iff } k_x + k_y \equiv 0 \text{ mod } 2

When is $x + y$ exact? Intuition 1

Similarly if

$$
x = 2^{q-1} + k_x \varepsilon
$$

$$
y = 2^q + k_y 2\varepsilon
$$

then $x + y \in \mathbb{F}$ iff

$$
\begin{cases} x + y \le 2^{q+1} \text{ and } k_x \equiv 0 \mod 2 \\ x + y > 2^{q+1} \text{ and } k_x + 2k_y \equiv 0 \mod 4 \end{cases}
$$

 $2^q \times 101 + 2^q \times 111 = 2^q \times 1100 = 2^{q+1} \times 110.0 \in \mathbb{F}$ $2^q \times 101 + 2^q \times 110 = 2^q \times 1011 = 2^{q+1} \times 101.1 \notin \mathbb{F}$

$$
2^{q} \times 101 + 2^{q-1} \times 111 = 2^{q+1} \times 100.01 \notin \mathbb{F}
$$

$$
2^{q} \times 101 + 2^{q-1} \times 110 = 2^{q+1} \times 100.00 \in \mathbb{F}
$$

Theorem (Graillat and M.)

Let $x, y \in \mathbb{F}$ of the same sign $\sigma = \pm 1$ such that

$$
x = \sigma(\beta^{e_x} + k_x \varepsilon_{e_x}),
$$

$$
y = \sigma(\beta^{e_y} + k_y \varepsilon_{e_y}).
$$

Assuming (without loss of generality) that $|x| \le |y|$, then $x + y \in \mathbb{F}$, and thus the addition is exact, iff one of the following conditions is met:

\n- (i)
$$
x = 0
$$
;
\n- (ii) $|x + y| < \beta^{e_y + 1}$, $e_y - e_x \le t - 1$, and $k_x \equiv 0 \mod \beta^{e_y - e_x}$;
\n- (iii) $|x + y| = \beta^{e_y + 1}$, $e_y + 1 \le e_{\text{max}}$, $e_y - e_x \le t - 1$, and $k_x \equiv 0 \mod \beta^{e_y - e_x}$;
\n- (iv) $|x + y| > \beta^{e_y + 1}$, $e_y + 1 \le e_{\text{max}}$, $e_y - e_x \le t - 2$, and $k_x + k_y \beta^{e_y - e_x} \equiv 0 \mod \beta^{e_y - e_x + 1}$.
\n

$$
k_x + k_y \beta^{e_y - e_x} \equiv 0 \mod \beta^{e_y - e_x + 1} \quad \xrightarrow[\beta = 2, e_x = e_y]{}
$$
 $k_x + k_y \equiv 0 \mod 2$

Corollary

If $x, y \in \mathbb{F}$ with $\beta = 2$ have the same sign, exponent, and least significant bit, then barring overflow their addition is exact.

Consider the toy example

 $y = 0.25 + 0.3125 + 0.375 + 0.375 + 0.4375 + 0.4375 + 0.625 + 0.625 + 0.75 + 0.75 + 0.875$ computed with 3-bit arithmetic:

 $\mathbb{F} = \{0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3\}$

 $e = 0$

Consider the toy example

 $y = 0.25 + 0.3125 + 0.375 + 0.375 + 0.4375 + 0.4375 + 0.625 + 0.625 + 0.75 + 0.75 + 0.875$ computed with 3-bit arithmetic:

 $\mathbb{F} = \{0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3\}$

Consider the toy example

 $y = 0.25 + 0.3125 + 0.375 + 0.375 + 0.4375 + 0.4375 + 0.625 + 0.625 + 0.75 + 0.75 + 0.875$ computed with 3-bit arithmetic:

 $\mathbb{F} = \{0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3\}$

Consider the toy example

 $y = 0.25 + 0.3125 + 0.375 + 0.375 + 0.4375 + 0.4375 + 0.625 + 0.625 + 0.75 + 0.75 + 0.875$ computed with 3-bit arithmetic:

 $\mathbb{F} = \{0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875, 1, 1.25, 1.5, 1.75, 2, 2.5, 3\}$

Input: *n* summands x_i and a distillation method distill **Output:** $y = \sum_{i=1}^{n} x_i$ Initialize Acc(e, s, b) to 0 for $e = e_{\min}$: e_{\max} , $s \in \{-1, 1\}, b \in \{0, 1\}.$ **for** all x_i in any order \bf{do} $e =$ exponent (x_i) $s = sign(x_i)$ $b = \text{LSB}(x_i)$ insert (Acc, x_i, e, s, b) end for $x_{\text{condensed}} = \text{gather}$ (Acc) $y = distill(x_{condensed})$

function insert (Acc, x, e, s, b) if $Acc(e, s, b) = 0$ then $Acc(e, s, b) = x$ else $x' = Acc(e, s, b) + x$ $Acc(e, s, b) = 0$ $b' = \texttt{LSB}(x')$ $insert(Acc, x', e + 1, s, b')$ end if end function function $x_{\text{condensed}} =$ gather (Acc) $i = 0$ for all nonzero $Acc(e, s, b)$ do $i = i + 1$ $x_{\text{condensed}}(i) = \text{Acc}(e, s, b)$ end for 36/51 end function

Conceptual algorithm

 $\mathbb{S} = \{x_1, \ldots, x_n\}$ Repeat for all pairs $(x_i, x_j) \in \mathbb{S}^2$ $(i \neq j)$ such that $x_i + x_j$ is exact $\mathbb{S} \leftarrow \mathbb{S} \backslash \{x_i, x_j\}$ $\mathbb{S} \leftarrow \mathbb{S} \cup \{x_i + x_i\}$ until no such pair remains Distill S

- \bullet Can we easily determine when $x_i + x_j$ is exact? YES! It suffices to check the sign, exponent, and LSB of x_i and x_i
- Can we bound the maximum number of leftover summands? YES! At most 4L summands where L is the depth of the tree

$$
L \leq \lceil \log_2 n \rceil + d
$$

where d is independent of n and depends on the range of the values (at most 2047 $37/51$ in binary64)

Distillation methods (AccSum, etc.)

- \odot Entirely in the working precision
 \odot Only uses standard arithmetic
- , Only uses standard arithmetic operations
- \circledcirc Strongly dependent on the conditioning
 \circledcirc I imited parallelism
- Limited parallelism

Condensation methods (Demmel–Hida, Graillat–Mary)

- \odot Independent on the conditioning
 \odot High level of parallelism
- \odot High level of parallelism
 \odot Requires access to the e
- Requires access to the exponent $+$ LSB
- Requires extended precision arith

Performance comparison

Quadruple working precision

[Adaptive precision summation](#page-52-0)

- Given an algorithm and a prescribed accuracy ε , adaptively select the minimal precision for each instruction depending on the data
- \Rightarrow First of all, why should the precisions vary?
- Given an algorithm and a prescribed accuracy ε , adaptively select the minimal precision for each instruction depending on the data
- \Rightarrow First of all, why should the precisions vary?
	- Because not all computations are equally "important"! Example:

 \Rightarrow Opportunity for mixed precision: adapt the precisions to the data at hand by storing and computing "less important" (which usually means smaller) data in lower precision

Goal: compute $y = Ax$, where A is a sparse matrix, with a prescribed accuracy ε

for $i = 1: m$ do $y_i = \sum_{j \in nnz_i(A)} a_{ij}x_j$ end for

If computed in precision ε , \hat{v} satisfies

$$
|\widehat{y}_i - y_i| \leq n_i \varepsilon \sum_{j \in nnz_i(A)} |a_{ij}x_j|
$$

and thus

$$
\|\widehat{y}-y\|\leq c\varepsilon\|A\|\|x\|\qquad(c=\max_i n_i)
$$

This is a normwise backward error bound: $\hat{y} = (A + E)x$, $||E|| \le c \varepsilon ||A||$.

Adaptive precision SpMV

• Given p available precisions $u_1 < \varepsilon < u_2 < \ldots < u_n$, define partition $A=\sum_{k=1}^p A^{(k)}$ where

$$
a_{ij}^{(k)} = \begin{cases} \text{fl}_k(a_{ij}) & \text{if } |a_{ij}| \in (\varepsilon ||A|| / u_k, \varepsilon ||A|| / u_{k+1}] \\ 0 & \text{otherwise} \end{cases}
$$

 \Rightarrow the precision of each element is chosen inversely proportional to its magnitude

Adaptive precision SpMV

for
$$
i = 1
$$
: m do
\nfor $k = 1$: p do
\n
$$
y_i^{(k)} = \sum_{j \in nnz_i(A^{(k)})} a_{ij}^{(k)} x_j
$$
\nin precision u_k
\nend for
\n $y_i = \sum_{k=1}^p y_i^{(k)}$ in precision u_1
\nend for

- Compute $y^{(k)} = A^{(k)}x$ in precision u_k . The computed $\widehat{y}^{(k)}$ satisfies $|\widehat{y}_i^{(k)} - y_i^{(k)}|$ $|n_i^{(k)}| \leq (n_i^{(k)})$ $\binom{k}{i}^2 \varepsilon ||A|| ||x||$
- Compute $y = \sum_{k=1}^{p} y^{(k)}$ in precision u_1 . The computed \widehat{y} satisfies

$$
\widehat{y}_i = \sum_{k=1}^p \widehat{y}_i^{(k)} + e_i, \quad |e_i| \leq pu_1 ||A|| ||x||
$$

= $y_i + f_i, \quad |f_i| \leq c \varepsilon ||A|| ||x||$

 $45/51$ **e** Graillat, Jézéquel, M., Molina (2024)

The more precisions we have, the more we can reduce storage \Rightarrow can we exploit custom precision formats?

How to efficiently implement custom precision storage?

```
union union64 {
uint64_t i;
                                                                     Sign
                                                                            Exp.
11 bits
                                                                                            Sig.
28 bits
                                                                      \frac{1}{1} bit
double f;
                                                       Stored as RP40
};
                                                       uint8_t to uint64_t copy
double RpToFp (rp40 rp, size_t i){
                                                       bitshift
union union64 u64;
                                                       uint32_t to uint64_t copy
uint64_t i64h, i64l;
                                                       bitshift
i64h = (uint64_t)rp.i32[i];<u> 1909 - 1909 - 1909 - 1909 - 1909 - 1909 - 1909 - 1909 - 1909 - 1909 - 1909 - 1909 - 1909 - 1909 - 1909 - 190</u>
                                                       binary or
i64h = i64h \leq 32;
i641 = (uint64_t)rp.i8[i];Accessed as FP64
                                                                                            i641 = i641 \leq 24;
                                                                      Sign
                                                                            Exp.
                                                                                                            Sig.
52 bits
                                                                      1 bit
                                                                            11 bits
u64.i = i64h | i641;return u64.f;
}
```
 \equiv Graillat, Jézéquel, M., Molina, Mukunoki (2024)

Experimental results (Long_Coup_dt6 matrix, $n \approx 1.5M$)

• Controlled accuracy

Experimental results (Long_Coup_dt6 matrix, $n \approx 1.5M$)

• Controlled accuracy

Experimental results (Long_Coup_dt6 matrix, $n \approx 1.5M$)

- Controlled accuracy
- Storage reduced by at least 30% and potentially much more for larger ε .
- 48/51 Time cost matches storage.

[Conclusion](#page-63-0)

$$
\eta_{\text{fwd}} \leq \eta_{\text{bwd}} \kappa, \qquad \eta_{\text{bwd}} \leq \gamma_{n-1} = (n-1)u + O(u^2), \qquad \kappa = \frac{\sum |x_i|}{|\sum x_i|}
$$

- We have seen various summation methods with different properties/objectives: handling error accumulation, cancellation, using mixed precision...
- A common theme has been the reordering of the summands by grouping them into blocks/buckets,
	- either fixed-size groups of arbitrary summands
	- or groups of summands of similar magnitude.
- We have seen several possible uses of mixed precision arithmetic:
	- Mixed precision blocked summation (FABsum): reduce accumulation \Rightarrow η_{bwd} independent of *n*
	- Bucket summation with extended precision (Demmel-Hida): reduce cancellation \Rightarrow η_{fwd} independent of κ
	- Bucket summation with adaptive precision: exploit lower precisions while controlling

50/51 η_{bwd}

- You are given a mysterious sum to evaluate as accurately and efficiently as possible. **Goal:** achieve close to 10^{-16} accuracy while maintaning a time cost comparable to recursive summation.
- Use of MATLAB's sum is obviously forbidden!
- Suggestions:
	- Implement Kahan's summation (slide 24).
	- \circ Implement blocked summation (slide 16). How should you choose the block size b?
	- Implement FABsum (slide 19) with Kahan's summation as AccurateSum. How should you choose the block size b?
	- Compare performance–accuracy tradeoffs.
	- Remember slide number 21.