Harnessing inexactness
in scientific computing

Lecture 2: summation

Theo Mary (CNRS)
theo.mary@lip6.fr

https://perso.lip6.fr/Theo.Mary/

Elisa Riccietti (ENS Lyon)
elisa.riccietti@ens-lyon.fr
https://perso.ens-1lyon.fr/elisa.
riccietti/

M2 course at ENS Lyon, 2024-2025
Slides available on course webpage

n
D%
=1

theo.mary@lip6.fr
https://perso.lip6.fr/Theo.Mary/
elisa.riccietti@ens-lyon.fr
https://perso.ens-lyon.fr/elisa.riccietti/
https://perso.ens-lyon.fr/elisa.riccietti/

2/51

Introduction

Why summation is important

n
y = E Xj ...an ubiquitous and fundamental task!
i=1

Dot products: ?
ot products a,bER":>aTb:Za;b,-
i=1
e Matrix—vector products:
n
AER™" beR"= (Ab); =) ajb, j=1:m
i=1
e Matrix—matrix products:
n
AER™" BeR™P = (AB)j= > ajby, j=1:mk=1:p
i=1
e Gaussian elimination (LU factorization):

k—1
AR AU O = (ajk — i éji”ik)/ukk

3/51 ug = aK;— D g Lkiujj

Accumulation of rounding errors

Summation suffers from the accumulation of rounding errors

Standard model of FP arithmetic:

flixopy) = (xopy)(1 +9), [d| <u,forope {+, —,x,+}

Consider the computation of y = >"7 ; x; by recursive summation:

Y2 =X1t+tXx2 = 5/\2 =(X1 +X2)(1+(51)
3 =yp+tx3 = 3 =(R+x3)(l+02)
= (Xl + X2) (1 =+ 51)(1 + 52) +X3(1 —+ 52)
—_——

61 and § accumulate!
ya = ...etc.

How can we measure the accumulated effect of all rounding errors?

4/51

Forward and backward errors

5/51

Let y = f(x) be computed in finite precision and let y be the computed result

Forward error analysis measures

ly — vl

ly|

Backward error analysis computes the smallest perturbation Ax such that

|y — y| (absolute) or (relative)

y = f(x+ Ax)

and measures |Ax| (absolute) or |Ax|/|x| (relative).

Backward error analysis recasts the rounding errors as perturbations of the input
data

An algorithm is backward stable if it yields a small backward error, where “small”
usually means O(u)

Forward and backward errors for summation

e Forward error

|y =yl
Ntwd =
lyl

e Backward error

n
Nbwd = Min {6 > 0:3dx;, 5/\: ZX,' + 6x;, |5X," < S‘Xi’} .
i=1

Two questions:
¢ Find a formula for npyq

¢ Find bounds for nyq and ngyq When y is computed in floating-point arithmetic

6/51

Formula for backward error

n
Nbwd = mMin {5 >0:30x;, y= Zx,- + 0x;, |0x;] < 5|x,-|} .
i=1

We have the formula R
o = 12—
wd = .
>lita il

(using ox; = (¥ — y) z;ljlxl'l)

i=1 [xi

7/51

Formula for conditioning

As a result we also obtain the formula

o Mwd 2o Ixil
Mbwd ‘Z?:Mi’

e ris large if Y |xj| > | > xi| = cancellation

8/51

Backward error analysis

Y2 = X1+ X2
= Y2 =(a+x)(1+6)=xi(1+0)+x(L+d1)
i =Y2t+x3
= 3 =(r+x3)(1+02)
=x1(1 4 81)(L + 62) + x2(1 + 01)(1 + 52) + x3(1 + &2)

=> Yo =i [X" [Tk (1 + 6k)}

9/51

Backward error analysis

2 =x1tx
= Y2 =(a+x)(1+6)=xi(1+0)+x(L+d1)
3 =Y2+x3
= ¥ =0 +x)(1+0)
=x1(1401)(1 4 02) + x2(1 + 61)(1 + 62) + x3(1 + 02)

:> Yo =i [X" [Temr (1 + 5'()}

Worst-case fundamental lemma

Let 0k, k =1: n, such that |0x| < v and nu < 1. Then
n

[T +6) =1+6n, [0a] <vn:=
k=1

nu

1—nu

9/51

General worst-case bound

General algorithm

S={x1,...,xn}

Repeat
Choose any pair (x;,x;) € S (i # j)
S « S\ {xi,x;}
S« Su{x; + x;}

until S = {y}

No matter the summation order we have the bound

Nowd < Yno1 = (n — 1)u + O(v?)

10/51

Consider the computation
n
y=D_x
i=1

In floating-point arithmetic, the forward error 7gyq is bounded by

Niwd < Mowd Ky Nowd < Yn1 = (n — 1)u+ O(v?), K=
I > xil

Thus ngeq can be large when
e The unit roundoff u is large (low precision)
e The dimension n is large (accumulation)

e The condition number is large (cancellation)

11/51

Dealing with accumulation

12/51

No matter the summation order we have the bound
Mowd < Vo1 = (n — 1)u + O(u?)

= However, for specific orders, we can get much better bounds, and much smaller
errors!

Summation tree

Given a summation order to compute y = Y7, x;, we define its associated summation
tree as a binary tree such that:

e the n leaf nodes are the n summands x;
e any inner node is equal to the sum of its two children

e the root node is the final sum y

Example: recursive summation is a comb tree

14/51

Tree-based summation

e For any summation tree, we have the bound:

Mhwd < Yh = hu+ O(u?)
where h is the height of the tree

e The minimal bound is therefore attained for a balanced binary tree, for which
h = [log, n]. This is called pairwise summation.

e While it achieves the minimal bound, pairwise summation is not efficient on modern
computers.

15/51

Blocked summation

Blocked summation algorithm:

fori=1:n/bdo
ib

Compute y; = ZJ:(i—l)b+1 Xj-
end for

Compute y = Zzl{ Vi

<9

e Widely used in NLA libraries (BLAS, LAPACK, ...)
® Nowd < Yp With h=>b+n/b—2
e With optimal b= +/n: h=2(y/n—1)

16/51

Blocked summation

17/51

fori=1:n/bdo

Compute y; = Z}":(,_l)bﬂ Xj.
end for
Compute y = Z, 1y,

ib b

si= > v [Ta+d) |

j=(i—1)b+1 k=k;

at most b — 1 terms

n/b n/b
y=X[n ITa+a) |

i=1 k=K!

at most n/b — 1 terms
n n/b

E H(1+5“) [Ta+o]

J=1 k=k; k=K’

atmost b+ n/b — 2 terms

Superblock summation

e Superblocked summation: tree summation with t levels, block size at level t :
bt = nl/t

t = 1 = standard recursive summation

t = 2 = optimal blocked summation

t = log, n = pairwise summation

Nowd < Yn With h = t(n'/t — 1)

[2) Castaldo et al. (2009)

O O O O O

No

f+|:|\+“'+\LeveI0
BT

Nt ' \NA” _)
):'+ +---+DV- i |;|+|;|+"'+|:|\Levelt-2
m +|:|+..-+|:| LRI +|:|+"'+|:| Level t-1

18/51

https://epubs.siam.org/doi/abs/10.1137/070679946

Fast Accurate Blocked summation algorithm (FABsum) [3 Blanchard, Higham, M. (2020)

for i=1:n/bdo

Compute y; = ZJ"-b:(,-_l)bH xj with FastSum.
end for
Compute y = ZZ? y; with AccurateSum.

<3

e Cost: C(n,b) = 2C(b) + C5(2) = Cr(n) + £ Ca(n)
e Error: €(n, b) = €r(b) + €a2(n/b) + €r(b)es(n/b)
= If e4(p) = pu? (recursive summation in precision u?), then e(n, b) = bu + O(u?) is

independent of n to first order
19/51

https://epubs.siam.org/doi/abs/10.1137/19M1257780

FABsum: numerical results

Backward error for summing random uniform [0, 1] data

fp32 fpl6
—o—FABsum

100

—o—Standard
—o—FABsum

20/51

Blocked summation: implementation remark

fori=1:n/bdo

Compute y; = Zjl'b:(i—l)b+1 Xj-
end for
Compute y = ZZ? Yi-

e If implemented as is, requires storing n/b intermediate y; values, which requires
extra memory and is likely to slow down computation

e Better to implement as follows:

y=0

fori=1:n/bdo
Compute z = Z_;'b:(i—l)b+1 Xj.
Computey =y +z

end for

21/51

Dealing with cancellation

22/51

a I
o+ /)
a+b ‘ ‘
[x,y] = Fast2Sum(a,b) x-fia-p) NN
Input: a, b € F such that |a| > |b]
Output: x = fl(a+ b),y € F such that X I—
X+y=a+b T
. T]
x=a+b
e:z—a b [
=b—e
Y .- [—
y (S

23/51

Kahan's summation (compensated summation)

Input: x; €F, i=1:n
Output: y = > " ; x;
y=0
z=0
fori=1: ndo

t=xi+z

[y, z] = Fast2Sum(y, t)
end for

e Kahan's summation reinjects the errors at each step in the sum
e It satisfies the bound nywa < 2u + O(nu?) (proof is quite complicated)

24/51

Distillation methods

n n

in W Z dl Whel'e K}(dl) < K/(Xl)

= =

Fast2Sum: fl(a+b) =a+ b+e, whereecF

AccSum: repeatedly replace (a, b) by (fl(a + b), e) until the sum is sufficiently well
conditioned (higher x = more iterations)

[2) Rump, Ogita, Oishi (2008)

25/51

https://doi.org/10.1137/050645671

Condensation methods

m
Zx, G —— Z where m < n and k(d;) < k(x;)
condensation 4 1 distillation 1

26/51

Condensation methods

m
Zx, G —— Z where m < n and k(d;) < k(x;)
condensation 4 1 distillation 1

26/51

Condense & Distill, conceptually
Conceptual algorithm

S={x1,...,xn}

Repeat for all pairs (x;, x;) € S? (i # j) such that x; + x; is exact
S« S\ {xi, x}
S + SU {x + x;}

until no such pair remains

Distill S

e Can we easily determine when x; + x; is exact?

e Can we bound the maximum number of leftover summands?

27/51

Demmel-Hida method

[a]

: 4

| accumulator

28/51

Demmel-Hida method

[a]

28/51

Demmel-Hida method

Consider arithmetic with f-bit mantissa and
e-bit exponent (e = 11 for fp64).

28/51

Demmel-Hida method

Consider arithmetic with f-bit mantissa and
e-bit exponent (e = 11 for fp64).
® One big accumulator: Kulisch method
... need one accumulator of 2¢ 4 log, n
bits

28/51

Demmel-Hida method

Consider arithmetic with f-bit mantissa and
e-bit exponent (e = 11 for fp64).
® One big accumulator: Kulisch method
... need one accumulator of 2¢ 4 log, n
bits
e One accumulator per exponent:
Malcolm method ... need 2°¢
accumulators of f + log, n bits

28/51

Demmel-Hida method

Consider arithmetic with f-bit mantissa and

e-bit exponent (e = 11 for fp64).
e One big accumulator: Kulisch method

... need one accumulator of 2¢ + log, n
bits

e One accumulator per exponent:

e Demmel-Hida: general method, balance

28/51

Malcolm method ... need 2°¢
accumulators of f + log, n bits

the number and size of accumulators.

Input: n summands x;, number of
exponent bits m to extract

2"7
Output: y =} 7 | A

Initialize A; =0 for j =1,...,27

for i=1: ndo
J < m leading bits of exponent(x;)
Aj A+ X

end for

With 2™ accumulators, need F-bit mantissa
with

F>f+logyn]+2°"™—1

Demmel-Hida method

number of bits
signif. (t) exp. range wu=2"

Numerical example with fp64 and fp128 arithmetics:
e Assume log, n <29 (n < 0.5 x 10°)
e =113, f =53, e = 11 = m must thus satisfy

F>f+[logyn| +2°°m—1
= 2=m <32
=6<m

29/51

Distillation vs condensation

Distillation methods (AccSum, etc.)
© Entirely in the working precision

© Only uses standard arithmetic
operations

@ Strongly dependent on the conditioning
@ Limited parallelism

30/51

Condensation methods (Demmel-Hida,
etc.)

© Independent on the conditioning
© High level of parallelism
@ Requires access to the exponent

© Requires extended precision arithmetic

Distillation vs condensation

Distillation methods (AccSum, etc.) Condensation methods (Demmel-Hida,
etc.)

© Independent on the conditioning

© Entirely in the working precision

© Only uses standard arithmetic
operations © High level of parallelism

@ Strongly dependent on the conditioning © Requires access to the exponent
© Limited parallelism @ Requires extended precision arithmetic

Can we avoid the use of extended precision arithmetic?

30/51

When is x 4+ y exact? Intuition 1

2q—1 29 2q+1

[1 1 [[| [
’?! R 2—>| I
13

Let x,y € FN[2971,29] such that

x =291 4 ke
y = 29-1 4 kye
Then

x+y =294 ke +291 4 ke
=29+ (ke + ky)e € F iff ke + k, =0 mod 2

31/51

When is x 4+ y exact? Intuition 1

2q—1 29 2q+1

I A A A A A E I
’<—>!6IIIIII—>I2 I
13

Similarly if
x =291 4 ke
y =294 k,2¢
then x + y € T iff
x4y <29t and k, =0 mod 2
x+y > 291 and k, + 2k, = 0 mod 4

31/51

When is x 4+ y exact? Intuition 2

29 x 101 429 x 111 = 29 x 1100 = 29! x 110.0 € F
29 x 101 +29 x 110 =29 x 1011 =29+1 x 101.1 ¢ F

29 x 101 + 2971 x 111 = 29+1 x 100.01 ¢
29 x 101 + 2971 x 110 = 29+1 % 100.00 € F

32/51

Theorem (Graillat and M.)

Let x,y € F of the same sign 0 = +1 such that

X = O'(ﬁex + kxeex);
= o(BY + kyee,).

Assuming (without loss of generality) that |x| < |y|, then x + y € F, and thus the
addition is exact, iff one of the following conditions is met:

(i) x=0;
(i) |x+y| < Bt e —e < t—1, and k, = 0 mod B,
(”I) ’X+y| = ﬁey+1, ey + 1 S €max; ey — & S t—]-, and kx = 0 mod Be'viex;
)

(iv) |x +y| > poti, e, +1< emax, & — & < t—2, and
ky + k, 3%~ =0 mod B& &L,

When is x + y exact? Corollary

ky + ky 3% "% =0 mod & &1 oo Ktk =0mod2
=2, ex=¢y

Corollary

If x,y € F with 8 = 2 have the same sign, exponent, and least significant bit,
then barring overflow their addition is exact.

34/51

Graillat—Mary method

Consider the toy example
y = 0.25 4 0.3125 + 0.375 4 0.375 + 0.4375 + 0.4375 -+ 0.625 + 0.625 + 0.75 + 0.75 + 0.875
computed with 3-bit arithmetic:
F = {0.25,0.3125,0.375, 0.4375,0.5,0.625,0.75,0.875,1,1.25,1.5,1.75,2,2.5,3}

35/51

Graillat—Mary method

Consider the toy example
y = 0.25 4 0.3125 + 0.375 4 0.375 + 0.4375 + 0.4375 -+ 0.625 + 0.625 + 0.75 + 0.75 + 0.875
computed with 3-bit arithmetic:
F = {0.25,0.3125,0.375, 0.4375,0.5,0.625,0.75,0.875,1,1.25,1.5,1.75,2,2.5,3}

Graillat—Mary method

Consider the toy example
y = 0.25 4 0.3125 + 0.375 4 0.375 + 0.4375 + 0.4375 -+ 0.625 + 0.625 + 0.75 + 0.75 + 0.875
computed with 3-bit arithmetic:
F = {0.25,0.3125,0.375, 0.4375,0.5,0.625,0.75,0.875,1,1.25,1.5,1.75,2,2.5,3}

Graillat—Mary method

Consider the toy example
y = 0.25 4 0.3125 + 0.375 4 0.375 + 0.4375 + 0.4375 -+ 0.625 + 0.625 + 0.75 + 0.75 + 0.875
computed with 3-bit arithmetic:
F = {0.25,0.3125,0.375, 0.4375,0.5,0.625,0.75,0.875,1,1.25,1.5,1.75,2,2.5,3}

Graillat—-Mary method

36/51

Input: n summands x; and a distillation
method distill
Output: y =7 | X

Initialize Acc(e, s, b) to 0 for € = emin: €max,
se{-1,1}, be {0,1}.
for all x; in any order do
e = exponent(x;)
s = sign(x;)
b = LSB(x;)
insert (Acc, x;, e,s, b)
end for
Xcondensed = gather (ACC)

y = distill(Xcondensed)

function insert (Acc, x,e,s, b)
if Acc(e, s, b) =0 then

Acc(e, s, b) = x
else
x" = Acc(e, s, b) + x
Acc(e,s,b) =0
b’ = LSB(x')
insert(Acc,x’,e + 1,s,b')
end if

end function

function Xcondensed = gather (Acc)

i=0
for all nonzero Acc(e, s, b) do
i=i+1
Xcondensed(i) = ACC(E, S, b)
end for

end function

Graillat—-Mary method
Conceptual algorithm

S={x1,...,xn}

Repeat for all pairs (x;, ;) € S (i # j) such that x; + x; is exact
S S\ {xi, x;}
S+ SU {x; + x;}

until no such pair remains

Distill S

e Can we easily determine when x; + x; is exact? YES! It suffices to check the sign,

exponent, and LSB of x; and x;
e Can we bound the maximum number of leftover summands? YES! At most 4L
summands where L is the depth of the tree

L <[logyn] +d

where d is independent of n and depends on the range of the values (at most 2047

sr/s binarv64)

Distillation vs condensation

Distillation methods (AccSum, etc.)
© Entirely in the working precision

© Only uses standard arithmetic
operations

@ Strongly dependent on the conditioning
@ Limited parallelism

38/51

Condensation methods (Demmel-Hida,
Graillat-Mary)

© Independent on the conditioning
© High level of parallelism
& Requires access to the exponent + LSB

@R . II

Performance comparison

—6— AccSum
—g&— Demmel-Hida
—— Graillat-Mary

39/51

Quadruple working precision

5 —O6— AccSum
—— Graillat-Mary

40/51

Adaptive precision summation

41/51

Adaptive precision algorithms

e Given an algorithm and a prescribed accuracy ¢, adaptively select the minimal
precision for each instruction depending on the data

= First of all, why should the precisions vary?

42/51

Adaptive precision algorithms

e Given an algorithm and a prescribed accuracy ¢, adaptively select the minimal
precision for each instruction depending on the data

= First of all, why should the precisions vary?

e Because not all computations are equally “important”!

Example:
64 bits
a Innnnnm
+ b (T T

Unimportant bits

= Opportunity for mixed precision: adapt the precisions to the data at hand by
storing and computing “less important” (which usually means smaller) data in lower
precision

42/51

Sparse matrix—vector product (SpMV)

Goal: compute y = Ax, where A is a sparse matrix, with a prescribed accuracy ¢

fori=1: mdo

Yi = 2 jcnnz;(A) A%
end for

If computed in precision ¢, y satisfies

Vi —yil <me Y lapx]
Jj€nnz;(A)

and thus
Iy =yl < cel|Alllix|l (e = maxn;)

This is a normwise backward error bound: y = (A+ E)x, || E| < ce||A]|.

43/51

Adaptive precision SpMV

e Given p available precisions u; < e < up < ... < up, define partition
A=3"P_ A where

S _ flx(ay) if [a5] € (ellAll/ux, ellAll/ uk1]
% 0 otherwise

= the precision of each element is chosen inversely proportional to its magnitude

9 6IIAII 6IIAII/Lls 6IIAII/tfz +00
H/—/ H/—/ ~— H/—/
drop precision u3 precision up precision uq
X X d S
X X = d + + | h
X X d s

44/51

Adaptive precision SpMV

fori=1: mdo

for k=1: pdo

(k) _ (K. i isi
y; = ZjEnnz,-(A(k)) aij Xj In precision ug

end for
L _\"P (k) - .
Yi=2_k—1Y; = Inprecision uy
end for

e Compute y(k) = A x in precision ug. The computed ?(k) satisfies
97 =y < (el Al
e Compute y = ZZII y(k) in precision u;. The computed y satisfies
~(k
Z ® 4 e, el < purl Al

=yi+fi, [|fil < cellAllllx]|

45/51 [2 Graillat, Jézéquel, M., Molina (2024)

https://doi.org/10.1137/22M1522619

Custom precision formats

The more precisions we have, the more we can reduce storage = can we exploit custom
precision formats?

Emulated formats

Bits
Format Signif.(t) Exponent Range u=2""t
bf16 8 8 10+38 4% 1073
£p24 16 8 10538 21075
£p32 24 8 105%¥ 6 x 108
£p40 29 11 10%308 2 1079
£p4s 37 11 10+308 g x 10~ 12
£p56 45 11 10+308 3 10— 14
£p64 53 11 10%308 1 10716

How to efficiently implement custom precision storage?

46/51

Custom precision accessor

union union64 {

uint64_t i; ?Ig: s %gbi:s

. T 1
glouble £ Stored as RP40 |
double RpToFp (rpd0 Tp, size.t i){ " °e [T IIIITITTII]
oren un}i)onez uez- P - RRNNIRRN NN ANN N RANNN N ARNNNANNNNLE, ssccausssseusassonns)
wint64 t i64h. 1641 un2_vioumse ooy TTTTTTTTTTHTTTIT T IR E T
164h = (uint64_t)rp. 132[i]; bt AN A AN AN ANNNNNINC, Sucacescsesecececeesasecasts
164h = 164h << 32: - \IH\HH\HIHHHHHHHHH\\HHHHHHHHHHHH\HHH
6 6 32;
1641 = (uint64_t)rp.i8[il; Accossed as P64 :\HHHHHHHHH RNNRRRANRRRA N NRRNAANARNA,
1641 = i641 << 24; S— .
u64.i = i64h | i641: ngn This S2bits

return u64.f;

[2) Graillat, Jézéquel, M., Molina, Mukunoki (2024)

47/51

https://doi.org/10.1007/978-3-031-69583-4_2

Experimental results (Long_Coup_dt6 matrix, n ~ 1.5M)

10° .
—¥— Uniform
[¢ —6— Adaptive
= 3
o) 1079
g
B
3
<
e}
% 10°10L
B
g
-
o
Z
107"

e Controlled accuracy

48/51

Experimental results (Long_Coup_dt6 matrix, n ~ 1.5M)

100
o
I 16
80 - 24|
32
= 40
g 60} 48|
= .56
< &
B 40t
e
20

2—53 2—45 2—37 2—29 2—24 2—16 2—8

3

e Controlled accuracy

48/51

Experimental results (Long_Coup_dt6 matrix, n ~ 1.5M)

100

80t _

60} X .

40 - N

Cost (% of fp64)

—%— Uniform storage S o

20 | —e— Adaptive storage Q N

~ 4 — Uniform time ~

- © - Adaptive time So-. -

3—53 2—‘45 27‘37 27‘29 2724 2—16 2—8

e Controlled accuracy
e Storage reduced by at least 30% and potentially much more for larger .

48/51 ® Time cost matches storage.

Conclusion

49/51

Conclusion

Newd < Mbwd s Mowd < Yn-1 = (n—1)u+ O(Uz),

® We have seen various summation methods with different properties/objectives:
handling error accumulation, cancellation, using mixed precision. ..

e A common theme has been the reordering of the summands by grouping them into
blocks/buckets,

o either fixed-size groups of arbitrary summands
o or groups of summands of similar magnitude.
e We have seen several possible uses of mixed precision arithmetic:
o Mixed precision blocked summation (FABsum): reduce accumulation
= NMpwd independent of n
o Bucket summation with extended precision (Demmel-Hida): reduce cancellation
= Ntwa independent of k
o Bucket summation with adaptive precision: exploit lower precisions while controlling

Tbwd
50,51 "

Practical exercise

® You are given a mysterious sum to evaluate as accurately and efficiently as possible.
Goal: achieve close to 1071® accuracy while maintaning a time cost comparable to
recursive summation.

e Use of MATLAB's sum is obviously forbidden!
e Suggestions:

o Implement Kahan's summation (slide 24).

o Implement blocked summation (slide 16). How should you choose the block size b?

o Implement FABsum (slide 19) with Kahan's summation as AccurateSum. How should
you choose the block size b?

Compare performance—accuracy tradeoffs.

Remember slide number 21.

o O

51/51

	Introduction
	Dealing with accumulation
	Dealing with cancellation
	Adaptive precision summation
	Conclusion

