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Morgagni 67a, 50134 Firenze, Italia.; bDipartimento di Ingegneria Industriale, Università di
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This article deals with the optimization of energy resources management of industrial dis-
tricts, with the aim of minimizing the customer energy expenses. A modelling of the district
is employed, whose optimization gives rise to a nonlinear constrained optimization problem.
Here the focus is on its numerical solution. Two different methods are considered: a Sequen-
tial Linear Programming (SLP) and a Particle Swarm Optimization (PSO) method. Efficient
implementations of both approaches are devised and the results of the tests performed on
several energetic districts are reported, including a real case study.
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1. Introduction

In this article the numerical solution of optimization problems arising in energy districts
is investigated.

The electric system has been experiencing a dramatic evolution in the last years, due
to the growing use of unpredictable renewable energy sources and of the spread of dis-
tributed generation. On top of that, customers are increasing their attention towards a
smarter approach to energy consumption, and paying more and more attention to conve-
nient energy tariff schemes, choosing among different retailers. The problem of efficiently
optimizing the resources management of a district is then considered, with the aim of
providing the cheapest solution to the customers.

This problem may be addressed in different ways. A possibility is to formulate it
as a mixed integer nonlinear programming (MINLP) problem, that can be addressed
by adopting a proper linearization yielding a mixed integer linear programming (MILP)
problem (Salgado and Pedrero 2008; Bischi et al. 2014). This in turn can be solved by one
of the many commercial solvers available. In some cases the problem can even be directly
formulated as a (MILP) (Schiefelbein et al. 2015). Another possibility is to formulate it
as a multi-objective optimization problem (Ascione et al. 2016; Wang, Martinac, and
Magny 2015), when the cost function is not the only objective that has to be minimized.

The research centre ’Enel Ingegneria e Ricerca’ in Pisa, in collaboration with the
Department of Civil and Industrial Engineering of the University of Pisa, addressed the
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problem of optimizing an energy district adopting an alternative approach. The problem
has been formulated as a nonlinear programming problem (NLP). A software package has
been developed (Pannocchia and Mancuso 2014), which takes as an input information
like energy market prices, specifications of the machines, current and forecast weather
information, and builds a model of the energy district. It also computes the objective
cost function (measuring the costs related to the exchange of energy with the network)
and the functions modelling the physical constraints on the machines’ variables. The aim
of the optimization process is to find, one day ahead, the machines’ parameters setting
providing the optimal dispatching of local energy resources for the following day, in order
to minimize the cost of energy at customer site (Ferrara, Riccardi, and Sello 2014).

Here the focus is on the solution of the arising nonlinear minimization problem. In
solving such a problem a compromise between two needs should be found. On one hand
one aims at finding the machine asset corresponding to the lowest possible value of the
objective function. On the other hand the optimization process should be quick, as it
needs to be performed several times in a day, when the needs of the district or the weather
conditions affecting the renewable resources change.

The objective is a nonconvex multimodal function with hundreds of variables. It does
not have a simple analytical expression and it is expensive to evaluate, as it is a sum over
a large number of terms. Also, the function features some discontinuities. Thus, derivative
free methods are particularly attractive. As an alternative, methods using derivatives can
be used, if the objective function is approximated around discontinuities by a smooth
surrogate function. While the function is still exactly evaluated, the derivatives of the
surrogate function are employed. Just first order methods can be used anyway as, due to
such an approximation, one cannot rely on second order derivatives. Also, the analytical
form of just some components of the gradient is available and the remaining ones have to
be approximated, for example via finite differences. Then, approximating also the second
derivatives would be computationally too heavy anyway.

Having this in mind, it was decided to compare a Sequential Linear Programming (SLP)
and a Particle Swarm Optimization (PSO). SLP is a classical optimization method. It is
a first order iterative procedure that builds approximations to the solution of the orig-
inal nonlinear problem by considering a sequence of linear subproblems approximating
it (Fletcher and de la Maza 1989; Byrd et al. 2003). The generated sequence usually
converges to a local minimum close to the starting guess. PSO (Hu and Eberhart 2002;
Lu and Chen 2008) is a derivative free method, part of the family of more recently devel-
oped metaheuristic algorithms, which aim at finding a global minimum of an optimization
problem. This class comprises also Genetic Algorithms (Tessema and Yen 2009), Cultural
Algorithms (Jin and Reynolds 1999), Differential Evolution (Mezura-Montes, Miranda-
Varela, and del Carmen Gómez-Ramón 2010). The literature amount on PSO methods
is huge. Many variants of the original approach have been proposed to solve successfully
engineering problems. Just to cite a few, in De-los Cobos-Silva et al. (2018); Zhang and
Xie (2003); Liu, Cai, and Wang (2010) the basic scheme has been improved by integrat-
ing it with Differential Evolution, in Mazhoud et al. (2013) a new constraint-handling
mechanism (based on a closeness evaluation of the solutions to the feasible region) is
proposed and in Cagnina, Esquivel, and Coello (2011) a double population and a special
shake mechanism to avoid premature convergence are used. Many strategies have also
been proposed, that consist in using PSO as a global search method and coupling it with
a fast local search algorithm, to speed up its convergence (Fu and Tong 2010; Fan and
Zahara 2007; Vaz and Vicente 2009; Martelli and Amaldi 2014).

The aim of this work is to investigate and compare the performance of SLP and PSO
methods on this kind of problems. Specifically, the study is intended to understand if it
is worth the use of a method such PSO, that aims at returning a solution close to the
global minimum but is expected to converge more slowly than SLP, which is a first order
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method.
Efficient and reliable implementations of the two procedures are also provided, specially

designed for the problem at hand. The adopted SLP method is close to the one presented
in (Robinson 1972), but is equipped with a trust-region approach to promote global
convergence (Nocedal and Wright 2006). The PSO method is based on the constraint
handling strategy introduced in Michalewicz and Attia (1994) and on a new strategy to
prevent stagnation in local minima, proposed here.

The two solvers have been inserted in the software package developed by Enel centre
and University of Pisa, and tested on many different realistic examples of energy districts,
and on a real energy district provided by Enel. Preliminary analysis on this topic has
been conducted by the authors in Riccietti, Bellavia, and Sello (2017), where the problem
under study is introduced and preliminary numerical results are given. In this article the
numerical solution of the arising optimization problem is deeply analysed.

The article is organized as follows: in Section 2 the district modelling is introduced,
the machines that are part of the district are presented, focusing on the description of
the optimization variables. In Section 3 the arising optimization problem is stated. In
Sections 4 and 5 the SLP and PSO procedures implemented for the specific problem
are respectively described. The convergence analysis for SLP is reported in Section 2 of
the supplemental material. Finally, in Section 6 numerical results are presented. The two
solvers are applied to examples of energetic districts and the results of the tests performed
are shown. Further numerical results are reported in Section 1 of the supplemental ma-
terial, where the two methods are applied to a well-known set of benchmark functions,
usually employed to test performance of metaheuristic methods (Liang et al. 2005). The
aim is to provide a comparison of the implemented methods with the state-of-the-art of
metaheuristic methods.

2. The District Model

The optimization problem to be solved arises form the district modelling described below,
that has been designed in Pannocchia and Mancuso (2014). The user has to specify which
devices the district is compound of and the characteristic parameters of each of them, to
simulate their real behaviour. The variables that need to be optimized are the physical
parameters of the machines that describe their functioning, such as the electrical power
produced by generators, that stored by batteries, the thermal power provided by boilers.
The decision variables chosen are all continuous (Pannocchia and Mancuso 2014), as it is
described in the following subsections, so that the arising problem is a NLP. The decision
variables are dimensionless variables in [0, 1] or [−1, 1], obtained scaling the quantities
under control with respect to their maximum value.

The aim of the optimization process is to individuate the optimal generation, load
and energy storage profile for each device. A plan of the decision variables for each
machine is built for the following day. The aim is to minimize the expenses related to the
district management, taking into account real time informations such as the price of the
electricity (to sell or to buy), wind speed, solar radiation and ambient temperature. The
time unit is set to be τ = 15 minutes, so that the day is divided into N = 24×60

15 = 96
quarters of an hour. The solver has to find the optimal decision variables for each device
and for each time unit. Let i be the time index, i = 1, . . . , N = 96.

In the next subsections the four different types of machines that can be included as
part of an energy district are described. They are: electrical generators, accumulators,
electrical loads, thermal configurations (i.e. groups of heat/cold generation units, whose
components are predefined) (Ferrara, Riccardi, and Sello 2014).
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2.1 Electrical generators and thermal configurations

Thermal configurations are groups of heat/cold generation units, like cogeneration en-
gines (or CHP, Combined Heat and Power), boilers, chillers. Examples of thermal config-
urations may be a CHP, a boiler and a heat pump connected in parallel or an absorption
refrigerator connected to a CHP and an electric chiller. The user can choose among 12
different predefined thermal configurations. Electrical generators comprise photovoltaic,
wind turbine and fuel burning generators (Pannocchia and Mancuso 2014).

Let Ngen denote the total number of generators and thermal configurations. For the
k-th device αk ∈ RN denotes the decision variables vector, k = 1 . . . , Ngen. Its component
αk(i) is the load at i-th time unit:

αk(i) =
Pk(i)

PNk
, 0 ≤ αk(i) ≤ 1, i = 1, . . . , N, (1)

namely the ratio between the actual power output and the maximum power output of
the machine. The decision variables are then real, and used to decide whether the unit is
on or off through the computation of the unit status. The unit status is a discontinuous
function θk, defined as

θk(x) =

{
1 if x ≥ αmin,k

0 if x < αmin,k
, (2)

where αmin,k is the minimum operating load for unit k. The cost functions for generators
and thermal configurations depend on the unit status at each time instant i, that is
evaluated as θk(αk(i)). As a consequence, they feature some discontinuities.

For fuel burning generators and thermal configurations with CHP a constraint on the
number of ignitions NI(αk) is provided for. That is an integer number counting how
many times unit k is turned on within a day. The number of ignitions must be bounded
above, so that the following constraint arises:

NI(αk) =
1

2

N∑
i=1

|θk(αk(i))− θk(αk(i− 1))| ≤ NImax. (3)

Note that values of NI(αk) are integers, but NI(αk) is not a variable of the problem,
subject to optimization, the decision variable is αk that is real.

2.2 Electrical accumulators

Let βb ∈ RN be the decision variables vector for the b-th accumulator, b = 1, . . . , Nacc

with Nacc the total number of accumulators in the district. Its components βb(i) are the
decision variables at the i-th time unit, i = 1, . . . , N :

βb(i) = −Pb(i)

PBb
, −1 ≤ βb(i) ≤ 1, i = 1, . . . , N, (4)

where Pb(i) is the power either supplied or absorbed by accumulator b at time i and
PBb is the rated power output of the b-th battery (Ferrara, Riccardi, and Sello 2014).
Negative values of βb(i) means that the accumulator is providing power, positive values
of βb(i) means that the accumulator is storing power. For each accumulator and for each
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time unit there are also two physical restrictions on the state of charge SOCb:

SOCbmin ≤ SOCb(i) ≤ SOCbmax, i = 1, . . . , N. (5)

SOCb is a piecewise linear function of βb, as it depends on the efficiency of the accumula-
tor ηb, which takes two different values depending on the sign of βb (charge and discharge
mode):

SOCb(i) = c1 + c2ηb(i)βb(i), (6)

where c1 is a constant depending on the state of charge of the previous time instant
and on the daily auto-discharge of the accumulator, and c2 is a constant depending on
the nominal power and the capacity of the accumulator. SOCb is then non-differentiable
when βb changes sign.

2.3 Electrical loads

Three different types of electrical loads are considered: L1 loads, that are mandatory
electrical consumptions, L2 loads, that are electrical cycles that need to be completed
one or more times at no specific time in the day, L3 loads, that are normally on, and can
be shut down for a limited amount of time without compromising the related process
operation. L1 loads are given parameters for each time unit, so these loads do not have
decision variables associated and are not included in the count of total number of loads
that is Nloads = NL2 + NL3 where NL2 and NL3 are total numbers of L2 and L3 loads
respectively. For the loads the decision variables are associated to the indexes of starting
times of cycles (for L2 loads) and to indexes of switch-off and switch-on times (for L3
loads). These should be integer variables. In order to avoid working with a MINLP, in
Enel package scalar continuous variables in (0, 1] are considered as decision variables and
they are then related to the integer quantities one actually wants to control (Pannocchia
and Mancuso 2014). Let γm denote the vector of decision variables for m-th (L2 or L3)
load. For L2 loads the decision variables are given by γm ∈ RNm , where Nm is the number
of cycles that need to be completed by m-th L2 load. γm is used to compute the starting
time il of l-th cycle as: il = dγm(l)Ne, l = 1, . . . , Nm, so that il ∈ {1, 2, . . . , N}. For m-
th L3 load the vector of decision variables is γm ∈ R2NIm , with NIm maximum number
of times that the electric load is activated. The odd components of γm are related to
switch-off times sl and the even ones to switch-on times al, for l = 1, 2, . . . , NIm:

sl = dγm(2l − 1)Ne, al = dγm(2l)Ne.

On the loads decision variables there are the following bound constraints:

1

N
≤ γm(l) ≤ 1, l = 1, . . . , Nm,

1

N
≤ γm(j) ≤ 1, j = 1, . . . , 2NIm, (7)

and also some physical nonlinear constraints. For L2 loads one constraint ensures that
the time between the starting points of two successive cycles is enough to complete the
first of them. A second constraint ensures that the amount of time between the beginning
of the last cycle and the end of the day is enough to complete the cycle. For L3 loads they
guarantee three conditions. First, that the switch-off of the load precedes the switch-on.
Second, that the load is not off for more than a given amount of time. Third, that if a
load is off and is switched on, a suitable amount of time passes until it is switched off
again (Ferrara, Riccardi, and Sello 2014).
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It is worth underlining that an approximation is introduced in the problem when real
variables are considered rather than integer ones. However, taking into account that the
time unit is rather small, and that Enel is planning to significantly further reduce it in
future work, it was preferred to allow such approximation, rather than that working with
a MINLP.

3. Arising Optimization Problem

The objective cost function f represents the overall daily district expense for exchanging
electricity with the network (Pannocchia and Mancuso 2014). If f̄i denotes the cost at
each time instant i, the objective function results to be:

f(x) =

N∑
i=1

f̄i(x).

Each f̄i can be expressed as f̄i = cifi, where ci is the prize of electricity at instant i and
fi is the net electrical power exchanged between the district and the network at instant
i, which is positive if the district is selling electricity to network or negative if the district
is buying it. The exchange of power with the network can be expressed as the sum of all
the partial exchanges of district devices for the i-th time unit:

fi(x) =

Ngen∑
k=1

fi,k(x)−
Nloads∑
m=1

fi,m(x) +

Nacc∑
b=1

fi,b(x),

where fi,k(x) is the power generated by the k-th generator, fi,m(x) is the power absorbed
by the m-th electrical load, fi,b(x) is the power released by the b-th accumulator, which
is negative when the accumulator is charged (Pannocchia and Mancuso 2014).

If n is the problem dimension, with

n = N [Ngen +Nacc] +

NL2∑
m=1

Nm +

NL3∑
m=1

NIm,

then f : Rn → R is a nonlinear, nonconvex multimodal function, that features some
discontinuities. As discussed in the previous section, a number of devices have physi-
cal constraints on their decision variables (see equations (3), (5)). The constraints are
nonlinear and relaxable (minor violations are allowed). They can be stacked together
obtaining a vector of constraints g : Rn → Rp, with p total number of constraints:

g(x) =
[
g1(x), . . . , gNgen

(x), . . . , gNgen+Nacc
(x), , . . . , gNgen+Nacc+Nloads

(x)
]T
,

where gj(x) for j = 1, . . . , Ngen +Nacc +Nloads is a vector containing the constraints on
the j-th device. The resulting optimization problem is the following nonlinear constrained
problem:

min
x

f(x), (8a)

xmin ≤ x ≤ xmax, (8b)

g(x) ≤ 0, (8c)
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where x ∈ Rn is the stacked vector of all devices decision variables, xmin ∈ Rn and
xmax ∈ Rn denote the bound constraints from (1), (4), (7), i.e.

x =
[
α1, . . . , αNgen

, β1, . . . , βNacc
, γ1, . . . , γNloads

]T
,

xmin =
[
0, . . . , 0,−1 · · · − 1, 1

N , . . . ,
1
N

]T
, xmax =

[
1, . . . , 1, . . . 1,

]T
.

4. Sequential Linear Programming

Sequential Linear Programming (SLP) is an iterative method to find local minima of
nonlinear constrained optimization problems, by solving a sequence of linear program-
ming problems, (Robinson 1972; Byrd et al. 2003). The adopted SLP method is close
to the one presented in (Robinson 1972), but is equipped with a trust-region approach
to promote the global convergence. Moreover a bound-constraints handling strategy is
adopted, that is similar to the one used in (Herty et al. 2007), where an SLP approach
without trust-region is presented for equality constrained problems. The proposed ap-
proach is different also from those presented in (Fletcher and de la Maza 1989; Byrd
et al. 2003) as second order information is not used.

At each iteration k, f and g are approximated in a neighbourhood of the current
solution approximation xk with first order Taylor series:

mk(d) = f(xk) +∇f(xk)Td (9)

gi(xk) +∇gi(xk)Td ≤ 0 i = 1, . . . , p, (10)

where d = x−xk. It is worth reminding that functions depending on the status function
θk and the constraints functions for accumulators feature some discontinuities. Then,
while they are evaluated exactly, for the computation of gradients they are approxi-
mated in a neighbourhood of those points by a surrogate function obtained replacing the
discontinuous status and efficiency functions with continuous and differentiable sigmoid
functions (Pannocchia and Mancuso 2014).

To obtain a globally convergent method, a trust region strategy is employed (Conn,
Gould, and Toint 2000). Then, a new constraint is added, that consists in a bound on
the step-length of this form: ‖d‖∞ ≤ ∆k, where ∆k is called the trust-region radius. The
new constraint is added to the bound constraints, so that at each iteration the following
problem is solved:

min
d

mk(d), (11a)

gi(xk) +∇gi(xk)Td ≤ 0; i = 1, . . . , p, (11b)

max((xmin − xk)j ,−∆k) ≤ dj ≤ min((xmax − xk)j ,∆k), j = 1, . . . , n. (11c)

At each iteration the computed solution dk of (11) is used as a step to define the new
solution approximation: xk+1 = xk + dk. Anyway, it is not possible to work directly
with problem (11), as the linearized constraints could be inconsistent, i.e. it could be
impossible to find a d for which (11b) holds, or the solution found dk could be such that
the new approximation xk + dk does not satisfy the nonlinear constraints:

xk + dk /∈ Ω = {x : xmin ≤ x ≤ xmax, g(x) ≤ 0}.

To deal with this, the constraints are usually added in the objective function as a penalty
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parameter, i.e. a new term is added to function f that is positive if the constraints are not
satisfied, and is zero otherwise. The resulting new objective function is called a penalty
function. This term can be chosen in many different ways, so that different penalty
functions are obtained. Following (Fletcher and de la Maza 1989; Byrd et al. 2003) the l1
penalty function was chosen and the following penalized objective function is obtained:

Φ(x; ν) = f(x) + ν

p∑
i=1

max(0,−gi(x)) (12)

where ν > 0 is the penalty parameter. If ν is sufficiently large, i.e.

ν ≥ ν∗ = max{λ∗i , i = 1, . . . , p}, (13)

where λ∗i , i = 1, . . . , p are the Lagrange multiplier of the inequality constraints
g(x) ≤ 0, it is possible to show that l1 is an exact penalty function, (Nocedal and Wright
2006):

Definition 4.1 Exact Penalty Function A penalty function Φ(x, ν) is said to be exact
if there exists a positive scalar ν∗ such that for any ν ≥ ν∗, any local solution of the
nonlinear programming problem (8) is a local minimizer of Φ(x, ν).

Since it is necessary to take into account the bound constraints, the following problem
is actually to be dealt with:

min
x

Φ(x; ν) = f(x) + ν

p∑
i=1

max(0,−gi(x)) (14a)

xmin ≤ x ≤ xmax. (14b)

If (13) holds, local minimizers of (14) are equivalent to local solutions of (8), to a large
extent (see Fletcher (1987); Han and Mangasarian (1979); Janesch and Santos (1997) for
details). The general scheme of the algorithm is the same as before, with the difference
that instead of linearising both f and the constraints, function Φ is linearised and at
each iteration a problem with just bound constraints is solved, that surely has a solution.
As choosing the right value of ν a priori is difficult, a sequence of linearized penalized
problems is actually solved, adjusting the penalty parameter during the course of the
computation. Then, at iteration k given the current iterate xk and the current penalty
parameter νk, the following linear programming problem has to be solved:

min
d
lk(d) := f(xk) +∇f(xk)T d+ νk

p∑
i=1

max(0,−gi(xk)−∇gi(xk)T d); (15a)

max((xmin − xk)j ,−∆k) ≤ dj ≤ min((xmax − xk)j ,∆k), j = 1, . . . , n. (15b)

After the solution dk is found, it is necessary to decide whether to accept the step or
not. The step acceptance is based on the agreement between the model function lk and
the objective function Φ, which is measured by the ratio between the actual reduction
and the predicted reduction (Conn, Gould, and Toint 2000):

ρk =
Φ(xk; νk)− Φ(xk + dk; νk)

lk(0)− lk(dk)
=

∆Φk

∆lk
. (16)

If ρk > ρbad, where ρbad is a tolerance to be fixed, typically ρbad ∈
(
0, 1

4

)
, the step is

accepted. In this case the trust-region radius is left unchanged or it is possibly enlarged.
Otherwise the step is rejected, the trust-region is shrink and (15) is solved again.
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In Algorithm 1 it is sketched the k-th iteration of SLP method described above.

Algorithm 1 k-th iteration of SLP algorithm

(1) Given xk, ∆k, ∆max, νk, 0 < ρbad < ρgood < 1.
(2) Evaluate ∇f(xk) and ∇gi(xk) for i = 1, . . . , p.
(3) Solve the linear programming problem (15) obtaining a candidate step dk.

(4) Let Φ(x; ν) = f(x)+ν
p∑

i=1
max(0,−gi(x)), compute the step evaluation parameter ρk

in (16).
(a) If ρk ≤ ρbad, reduce the trust-region radius: ∆k+1 = 1

2∆k, and go to step (5).
(b) ElseIf ρk ≥ ρgood, and in addition ‖dk‖∞ ≥ 0.8∆k, increase the trust-region

radius
∆k+1 = min(2∆k,∆max). Go to step (5).

(c) Else set ∆k+1 = ∆k and go to step (5).
(5) If ρk > ρbad accept the step, set: xk+1 = xk + dk and choose νk+1 > 0.

Otherwise reject the step: xk+1 = xk. Set νk+1 = νk.

It is possible to prove the global convergence of the sequence {xk} generated by Al-
gorithm 1 to a stationary point of problem (14), as stated in the following theorem. See
Section 2 of the supplemental material for the proof.

Theorem 4.2 Global convergence of Algorithm 1
Let f and g be C1 functions and let {xk} be the sequence generated by Algorithm 1. Then,

either there exists an iteration index k̄ such that xk̄ is a stationary point for problem (14),
or there exists a subsequence S of indexes such that {xk}k∈S has an accumulation point
x∗ which is a stationary point for problem (14).

Theorem 4.2 states the existence of an accumulation point x∗ of the sequence {xk}
generated by Algorithm 1 that is a stationary point of problem (14), regardless of the
starting point. In Section 4.1 it will be described the chosen penalty parameter update
strategy, which ensures that the penalty parameter ν is large enough to let x∗ be a
solution of the original problem.

4.1 Implementation issues

In this section three important features of the algorithm are discussed: the solution
of subproblems (15), the stopping criterion and the updating strategy for the penalty
parameter. Function lk in (15a) is non-differentiable, but problem (15) can be written as
the following equivalent smooth linear programming problem, introducing the vector of
slack variables t, (Byrd et al. 2003):

min
d,t
∇f(xk)Td+ νk

∑
i∈I

ti (17a)

gi(xk) +∇gi(xk)Td ≤ ti, i = 1, . . . , p (17b)

max((xmin − xk)j ,−∆k) ≤ d ≤ min((xmax − xk)j ,∆k)j , j = 1, . . . , n, (17c)

t ≥ 0. (17d)

Then, the solution dk of the above problem is sought, along with the Lagrange multipliers
vectors λk, πk and λ̄k of constraints (17b), (17c) and (17d) respectively. These multipliers
are employed to implement a reliable stopping criterion for Algorithm 1. Algorithm 1 is
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stopped whenever a pair (xk, λk) satisfies the following conditions:

max{‖∇f(xk) +∇g(xk)Tλk‖∞, ‖g(xk)Tλk‖∞} < ε(1 + ‖λk‖2), (18)

max{max
i∈I

(0, gi(xk)),max(0, xmin − xk),max(0, xk − xmax)} < ε(1 + ‖xk‖2), (19)

with ε a tolerance to be fixed. This stopping criterion provides a measure of the closeness
of the computed solution to a point satisfying first order optimality conditions for problem
(8). See Theorem 2.5 in Section 2 of the supplemental material for a theoretical support
for the employment of such criterion.

As far as the penalty parameter is concerned, it is desirable to have penalty function
(12) to be exact, according to equation (13) and Definition 4.1. Then, at Step 5 of
Algorithm 1, in case of successful iteration, the following updating strategy is adopted:

If νk < max{‖λk‖∞, ‖λ̄k‖∞} then νk+1 = max{‖λk‖∞, ‖λ̄k‖∞} (20)

is set. Both in (18) and (20) current Lagrange multiplier estimates of the LP subproblems
(17), provided by the function used to solve the LPs, are used as an approximation to
those of the original problem.

5. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic evolutionary method designed to
converge to a global minimum of a function f , (Kennedy 2011). It is inspired to the
behaviour of bird swarms. Following the natural metaphor, PSO evolves a population of
individuals, referred to as particles, within the search space, that behave according to
simple rules and interact to produce a collective behaviour to pursuit a common aim, in
this case the localization of a global minimum. The swarm is composed of s particles,
each of them represents an approximation of the global minimum of the optimization
problem and it is represented by a vector x ∈ Rn. To each particle it is associated a
velocity vector v too. The method is an iterative procedure where at each iteration k
vectors xk and vk are updated as follows:

vik+1 = wvik + c1r1(pibest,k − xik) + c2r2(pgbest,k − x
i
k) (21)

xik+1 = xik + vik+1 (22)

where xik and vik are the position and velocity vector of the i-th particle, i = 1, . . . , s,
at the k-th iteration, pibest,k and pgbest,k are respectively the best position reached by the

i-th particle so far and the best position reached by the whole swarm (the best position
is the one that corresponds to the lowest value of the objective function), c1, c2 and w
are positive weights, r1 and r2 are random variables with uniform distribution in [0, 1],
r1, r2 ∼ U(0, 1). At each iteration vectors pibest,k and pgbest,k are updated too:

pibest,k+1 =

{
xik if f(xik) < f(pibest,k)

pibest,k otherwise
pgbest,k+1 =

{
p if f(p) < f(pgbest,k)

pgbest,k otherwise
(23)

where p = arg mini=1...s f(pibest,k+1).

The solution approximation provided by the procedure is pgbest,k∗ where k∗ is the last
iteration index. Bound constraints are handled bringing back on the nearest boundary a
particle x that has left the search space. It is also necessary to change the particle velocity,
otherwise at the next iteration it is likely to have a new violation: (vik)j = −r(vik)j ,
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where (vik)j is the j-th component of vector vik and r is a random variable uniformly
distributed in (0, 1). Originally PSO methods were developed to deal with problems
with just bound constraints, and later they were employed to solve also constrained
problems (Aziz et al. 2011; Parsopoulos, Vrahatis et al. 2002). See also (Mezura-Montes
and Coello 2011; Jordehi 2015) for a more recent review on constraints handling strategies
for PSO methods. Penalty function approaches are widely employed to make the method
suitable to the solution of that kind of problems. Following (Michalewicz and Attia 1994;
Michalewicz and Schoenauer 1996), the following quadratic penalty function is employed:

Ψ(x; τ) = f(x) +
1

2τ

p∑
i=1

gi(x)2, (24)

with τ penalty parameter that is decreased at each iteration so as to increase the weight of
the penalty term in the objective function, to penalize with increasing severity constraints
violations. Then, given a penalty parameter τk, function Ψ(x; τk) is used in (23) in place of
the objective function f(x). The k-th iteration of PSO procedure is sketched in Algorithm
2.

Algorithm 2 k-th iteration of PSO algorithm

(1) Given c1, c2, wmin, wmax, kmax, τk, xmax, xmin, xik, vik, pibest,k, pgbest,k for i = 1, . . . , s,
perform the following steps.

(2) Compute wk in (26), r1, r2 ∼ U(0, 1) and evolve the swarm according to (21), (22).
(3) Handle the bound constraints: for i = 1, . . . , s and j = 1, . . . , n
• If (xik+1)j < (xmin)j compute r ∼ U(0, 1) and set

(xik+1)j = (xmin)j ,

(vik+1)j = −r(vik+1)j ,

• Elseif (xik+1)j > (xmax)j compute r ∼ U(0, 1) and set

(xik+1)j = (xmax)j ,

(vik+1)j = −r(vik+1)j .

(4) Evaluate the objective function (24) of each particle of the swarm and update vectors

pibest,k+1 =

{
xik if Ψ(xik; τk) < Ψ(pibest,k; τk)

pibest,k otherwise

pgbest,k+1 =

{
p if Ψ(p; τk) < Ψ(pgbest,k; τk)

pgbest,k otherwise

where p = arg mini=1...s Ψ(pibest,k+1; τk) and choose τk+1 < τk.

In the implemented PSO method a new strategy to help the swarm escape from local
minima is proposed. When the swarm appears to be stuck, i.e. when after a certain
number of iterations the value of the objective function is not decreased, the velocity
updating scheme (21) is modified adding a new term in the equation, that is proportional
to the distance of the global best position from the particle best position:

vik+1 = wvik + c1r1(pibest,k − xik) + c2r2(pgbest,k − x
i
k) + c3r3(pibest,k − p

g
best,k), (25)

11
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where c3 is a weighting parameter to be set, and r3 ∼ U(0, 1). When coefficient c3 6= 0
the weight of the term (pibest,k − xik) is increased while that of (pgbest,k − x

i
k) is decreased.

In this way, the particles are less attracted by the global best position, fostering the
swarm to escape from a stalemate. When a new improvement in the objective function is
obtained, coefficient c3 is set back to zero and the standard update is employed. Numerical
experiments have shown that in some tests the addition of this term indeed helps the
swarm to find a better solution approximation. In the following this PSO variant will be
addressed as PSOc3.

The main advantage of PSO methods is that they do not require neither regularity
assumptions on the objective function nor to compute the first derivatives and are so
suitable when few information on the objective function are available. Clearly the fact
that few information on f are used, leads to a slow method that requires many itera-
tions to converge. However, the method could be efficiently implemented on a parallel
architecture.

These methods are heuristic and standard convergence results, like those proved for
exact optimization methods, are not usually provided. However, a different kind on anal-
ysis of the algorithm can be performed. Using results from the dynamic system theory,
it is possible to provide an understanding about how the swarm searches the problem
space through the analysis of a single particle trajectory or of the the swarm seen as a
stochastic system, (Trelea 2003; Clerc and Kennedy 2002). The analysis provides use-
ful guidelines for the choice of the free parameters, to control the system’s convergence
tendencies.

5.1 Implementation issues

The choices regarding the method implementation are made taking into account several
factors. The problems under consideration have hundreds of variables and the objective
function is a sum over a large number of terms. Also, the algorithm must return results
quickly to be useful in practise.

Regarding the number of particles, it is impossible to use wide swarms because each
particle of the swarm requires two function evaluations, the objective and the constraints
functions, at each iteration. On the other hand using few particles means low exploration
capability. After several numerical tests, it was found that a swarm of 20 particles repre-
sents a good compromise between solution quality and execution time. For parameter w
in (21), instead of using a fixed value, a linearly decreasing scheme is adopted, (Shi and
Eberhart 1998):

wk = wmax − (wmax − wmin)
k

kmax
, (26)

where kmax is the maximum number of allowed iterations. With this choice convergence
velocity is slowed down ensuring a more accurate exploration of the search space. The
process is stopped when a maximum number of iterations kmax is performed or when there
are no improvements over a fixed number of iterations κ. An improvement is measured
in terms of a decrease in the objective function, and it is judged not to be sufficient when
the following condition is satisfied for κ consecutive iterations and for ε a tolerance to be
fixed:

|f(xk−2)− f(xk)|
|f(xk−2)|

< ε (27)

12
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6. Numerical Tests

Both solvers were implemented in MATLAB and numerical tests were performed to study
their practical performance. First the proposed methods have been benchmarked against
some of the state-of-the-art metaheuristic methods, on a set of functions commonly used
to test performance of such approaches. It emerged that the proposed methods can
compare with other metaheuristic approaches recently proposed in the literature. The
results of these tests are reported in Section 1 of the supplemental material.

Then, 13 different problems arising from the described industrial application and corre-
sponding to models of synthetic energy districts were taken into account, plus one arising
from the modelling of an existing district in Pisa, provided by Enel centre. To solve these
problems, the two solvers were inserted in the software tool previously developed by Enel
centre and University of Pisa.

The numerical experimentation is performed on an Intel(R)Xeon(R) CPU E5430, 2.66
GHz, 8.00 GB RAM, using MATLAB R2016a. The machine precision is εm ∼ 2 · 10−16.

Here the values of the free coefficients used in the procedures are specified. For PSOc3

in (21) c1 = 1.3 and c2 = 2.8, in (25) c3 = 1, in (26) wmax = 0.6, wmin = 0.1, the tolerance
for the stopping criterion (27) is ε = 10−3, κ = 20 and kmax = 1700. The swarm size is
20. The choice of this rather small value is motivated by the fact that in energy districts
test cases the objective function is expensive to evaluate and the use of wider swarms
would lead to prohibitive computational costs. In the PSO constraints handling strategy
(24) it was set τk+1 = (1 − 0.01)τk and τ0 = 0.1. For SLP in (12) it was set ν0 = 1. In
Algorithm 1 ρbad = 0.10 and ρgood = 0.75, and the linear subproblems were solved using
the Matlab function linprog(Interior Point Algorithm) with default choice parameters.
Notice that the structure of the subproblems is not taken into consideration and a special
purpose code could lead to a more efficient solution of the subproblems, but this is out
of the scope of this article.

Results shown in the following tables are the average of those obtained over 100 runs,
varying the starting point for SLP solver. In the tables for each one of the test cases
the following statistics are reported: f̄ and k̄ arithmetic mean of the function values
and the number of iterations, σf the standard deviation on function values, min f and
max f minimum and maximum function values obtained, time(·) total time in seconds
or minutes.

6.1 Examples of synthetic energy districts

In this section the results gained by the two methods when applied to 13 synthetic
test examples of energy districts are presented. The arising optimization problems have
different dimensions, the number of variables is comprised between 294 and 494, the
number of bound constraints between 588 and 796 and the number of process constraints
is 10 for the first test and 213 for the others. The results of the tests performed are
reported in Table 1.

At first glance, from these results it is possible to deduce the following remarks.
The convergence rate of SLP method is much higher then that of PSO method. This

is a consequence of the fact that SLP solver is a gradient-based method. Indeed, as PSO
method does not employ first order information, it requires an high number of iteration
to allow the swarm to carefully explore the search space. In term of computational time
an iteration of PSO method is cheaper than one of SLP. Each SLP iteration indeed,
requires the solution of a Linear Programming problem and the computation of some
derivatives by finite differences, which is computationally expensive. Despite this, the
total time required by SLP is really lower than that required by PSO method, as SLP
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Table 1.: Tests on 13 synthetic examples of energy districts and on Pisa district (last
row), comparison of PSOc3 and SLP solvers.

Problem Solver f̄ σf max f min f k̄ time(m)

Test 1 PSOc3 16.6 0.6 18.3 15.4 1207 1.8
SLP 16.1 1.9 25.8 15.4 25.4 0.06

Test 2 PSOc3 27.1 0.3 27.7 26.4 1585 13
SLP 26.9 0.7 29.3 25.8 78.9 1.0

Test 3 PSOc3 27.8 0.3 28.5 27.1 1554 14
SLP 27.9 0.7 30.7 26.8 84 1.3

Test 4 PSOc3 27.1 0.3 27.8 26.5 1583 11
SLP 26.9 0.7 29.2 26.1 82.5 0.5

Test 5 PSOc3 32.5 1.5 36.6 29.2 1493 14
SLP 29.7 4.4 48.7 26.7 78.8 1.0

Test 6 PSOc3 27.3 0.4 28.6 26.7 1588 11
SLP 27.4 1.1 31.2 26.2 83.8 0.5

Test 7 PSOc3 49.7 0.7 52.2 48.2 1509 10
SLP 48.9 0.9 53.1 46.9 76.3 0.4

Test 8 PSOc3 46.2 0.8 49.2 44.3 1531 10
SLP 44.7 1.8 51.9 42.9 78.9 0.4

Test 9 PSOc3 46.2 0.8 48.6 44.5 1543 15
SLP 44.4 1.6 51.3 42.9 79.6 0.4

Test 10 PSOc3 25.3 0.3 26.1 24.7 1484 14
SLP 25.6 0.5 28.2 24.9 73.0 1.0

Test 11 PSOc3 25.1 0.3 26.3 24.5 1406 14
SLP 25.6 0.6 28.4 24.8 70.3 1.0

Test 12 PSOc3 31.3 0.9 34.7 29.3 1379 12
SLP 30.5 3.0 45.4 29.0 64.4 0.6

Test 13 PSOc3 32.1 0.8 35.1 30.4 1385 11
SLP 31.9 4.0 53.5 30.0 64.8 0.7

Pisa PSOc3 73.4 0.03 73.6 73.4 377 2.7
SLP 74.0 0.7 80.6 73.4 23 0.08

performs far less iterations. As expected SLP is more suitable for real time optimization.
Regarding function values it can be observed that on many tests PSO presents higher

means compared to SLP, but generally the values on different runs are close to the mean
value, as the standard deviation is really low. On the other hand SLP provides lower
means but high standard deviation, which means both higher worst values and lower
best values. Then, the probability of finding a worst result on a single run using SLP
is high, while for PSO is more likely to have a result close to the mean value. This is
highlighted in Figure 1 (a), where for each test case the mean values together with the
standard deviation for the two solvers are compared. The left bars (light grey) refer to
PSOc3 method and the right ones (dark grey) to SLP method, the standard deviation is
highlighted by black vertical lines. Note that overall PSO provides good results, even if
a small number of particles is employed. Its performance could be improved increasing
the swarm size, to better explore the search space. The difference between PSO and SLP
is indeed especially evident in Test 5, which is the one in which the search space has
highest dimension. However, from the numerical experience it emerged that increasing
the number of particles would be prohibitive from a computational point of view.

Then, a deeper statistical analysis of the results was performed. First it was checked if
the results obtained in the tests satisfy the conditions for the use of a parametric test, cf.
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(Garćıa et al. 2009; Derrac et al. 2011). They were tested with the Kolmogorov-Smirnov
test, via the Matlab function kstest. It emerged that the data are not normally dis-
tributed, meaning that a non-parametric analysis would be more meaningful. Therefore
the data were analysed by the Wilcoxon signed ranks test, cf. (Derrac et al. 2011), based
on the mean values found, through the Matlab function signrank. Wilcoxon test is a
nonparametric test that is used to determine whether two independent samples were
selected from populations having the same distribution, therefore it can be employed to
detect significant differences between the behaviour of two algorithms. The null hypoth-
esis is that the difference between two sample means is zero. From the test it emerges
that the data produce an evidence that is sufficient to reject the null hypothesis, accord-
ing to significance level α = 0.05. If R+ denotes the sum of ranks for the problems in
which SLP outperforms PSOc3, and R− the sum of ranks for the opposite, one obtains
R+ = 84, R− = 21. Then, the statistical tests confirm that SLP shows an improvement
over PSO on these problems, if the mean values are considered.

(a) (b)

Figure 1.: (a) Comparison of objective function values obtained by PSOc3 (left bars, light
grey) and SLP (right bars, dark grey) on the 13 tests cases; (b) comparison of actual
management (f0 = 89.3, left bar) and optimized management provided by SLP (central
bar) and PSOc3 (right bar), on the test case of Pisa district.

In the next section results of the tests performed on a real energy district are shown.

6.1.1 Pisa District

This is a real district in Pisa provided by the research centre ’Enel Ingegneria e Ricerca’,
that comprises: a photovoltaic generator with rated power 14 kWe, a wind farm with
rated power 3 kWe, 2 L1 loads related to lighting and heating consumptions. Moreover,
a thermal group is also part of the district, that is composed of a CHP characterized by
rated power 25 kWe and rated thermal power 75 kWt, a gas boiler with rated thermal
power 35 kWt, a tank for the storage of hot water with capacity 9400 kJ/ ℃. This
was modelled choosing one among the predefined thermal configurations provided by
the software tool. The decision variables for each of these machines are described in
Section 2. As for synthetic energetic districts, the time horizon is one day, that is divided
into N = 96 time steps. The arising optimization problem has 288 variables, 576 bound
constraints and 1 physical constraint. The detailed results of the optimization process
are reported in the last row of Table 1.

This test is much less constrained than those presented in the previous section, it
has just one mild nonlinear constraint, and the dimensionality of the search space is also
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lower. In this case PSO algorithm performs better than SLP algorithm, providing a lower
mean value of the objective function and also a really smaller standard deviation. Notice
that in this case also for PSOc3 algorithm the execution time is quite reasonable.

This test case is particularly interesting, because data referring to the cost of unop-
timized management of local resources, i.e. the management that is actually running
the district, are available. Specifically, the daily cost function of the district for energy
consumption is f0 = 89.3, as it is depicted in Figure 1 (b), left bar. By means of the
proposed procedures, it is possible to predict values of the machines’ decision variables
which minimize the cost function. The district management gained setting the machine
parameters to these optimal values will be referred to as optimal management. In Figure
1 (b), right bars, the optimal values of the objective function found by SLP and PSO
respectively are reported. They represent the cost associated to the optimal management
and can be compared to f0 (the value of the unoptimized cost function) to evaluate sav-
ings arising from the employment of the optimized management. The comparison shows
that the optimized approach let the district save 18% of the overall daily expense to buy
energy from the network.

7. Conclusions

In this article a modelling of energy districts is considered that gives rise to a NLP. The
main focus of the article is the numerical solution of such a problem. To this aim, a
Particle Swarm Optimization solver and a Sequential Linear Programming solver were
implemented and compared. The solvers were tested first on constrained tests taken
from the literature, and it emerged that they can compare with other methods recently
proposed in the literature. Then, the solvers were tested on many different examples of
synthetic energy districts, including also a real case study. From this study it was high-
lighted that PSO provides values less distributed around the mean, but lower means are
generally provided by SLP method. The results suggest that a hybrid PSO/SLP method
may be a promising alternative solver, that will be object of future work. Noticeably,
from the test performed on the real case study it arises that the optimized management
of resources gained by the optimization package provides considerable savings in the
energy bill.
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1. Comparison with the state-of-the-art

In this section the performance of the proposed PSO and SLP methods is evaluated on
the set of CNOP (constrained nonlinear optimization problems) called G-suite, proposed
in (Liang et al. 2006) for the competition on constrained optimization of the Congress
on Evolutionary Computation in 2006 (CEC’2006). This set was chosen since it provides
a challenging set of functions and it makes possible to compare the proposed methods
to the state-of-the-art of metaheuristic methods. Indeed, a large part of papers dealing
with evolutionary methods refers to this set of functions, see for example (Das and
Suganthan 2011; de-los Cobos-Silva et al. 2016; Liu et al. 2016; Mezura-Montes and
Lopez-Ramirez 2007). The G-suite is composed of 24 CNOP. Among them, those subject
just to inequality constraints were selected, as the proposed methods are not designed to
handle equality constraints. Table 1 sums up the relevant features of each test function.
In the heading, n is the number of variables, ρ = |F |/|S| is the estimated ratio between
the feasible region and the search space, LI is the number of linear inequality constraints
and NI is the number of nonlinear inequality constraints.

The tests are performed on an Intel(R) Core(TM) i7-4510U 2.00GHz, 16 GB RAM; using
Matlab2016a, the machine precision is ǫm ∼ 2 · 10−16.
Here the values of the free coefficients used in the procedures are specified. For PSOc3

in

vik+1 = wkv
i
k + c1r1(p

i
best,k − xik) + c2r2(p

g
best,k − xik) + c3r3(p

i
best,k − pgbest,k),

it was set c1 = 1.3, c2 = 2.8, c3 = 1, and

wk = wmax − (wmax − wmin)
k

kmax
,

∗Corresponding author. Email: elisa.riccietti@unifi.it
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Table 1. Details of the test problems.

Prob. n Type ρ LI NI
g01 13 quadratic 0.0111% 9 0
g02 20 nonlinear 99.9971% 0 2
g04 5 quadratic 52.1230% 0 6
g06 2 cubic 0.0066% 0 2
g07 10 quadratic 0.0003% 3 5
g08 2 nonlinear 0.8560% 0 2
g09 7 polynomial 0.5121% 0 4
g10 8 linear 0.0010% 3 3
g12 3 quadratic 4.7713% 0 1
g16 5 nonlinear 0.0204% 4 34
g18 9 quadratic 0.0000% 0 13
g19 15 nonlinear 33.4761% 0 5
g24 2 linear 76.6556% 0 2

with wmax = 0.6, wmin = 0.1. The tolerance for the stopping criterion

|f(xk−2)− f(xk)|

|f(xk−2)|
< ǫ (1)

is ǫ = 10−3, and the process is stopped either when (1) is satisfied for κ = 20 consecutive
iterations, or if kmax = 1700 iterations are performed. The swarm size is 100. This is
bigger than the swarm size used in Section 6 of the main paper. This choice is motivated
by the fact that in energy districts test cases the objective function is expensive to
evaluate and the use of wider swarms would lead to prohibitive computational costs.
On the other hand in test problems taken from the literature this is not the case, so a
higher number of particle is employed to allow a better exploration of the search space.
Moreover for these test problems it was found harder to satisfy the constraints than in
the tests of energy districts. Then for both PSO and SLP algorithm constraints violations
are penalized with higher severity here than in Section 6 of the main paper. Then, in the
PSO quadratic penalty function

Ψ(x; τk) = f(x) +
1

2τk

p∑

i=1

gi(x)
2,

it was set τk+1 = (1− 0.01)τk and τ0 = 10−6.
For SLP in

Φ(x; ν) = f(x) + ν

p∑

i=1

max(0,−gi(x))

it was set ν0 = 5. In Algorithm 1 (reported in the main paper) ρbad = 0.10 and ρgood =
0.75, and the linear subproblems were solved using the Matlab function linprog(Interior
Point Algorithm) with default choice parameters.
For each test function 25 runs were performed, as required by the CEC’2006 Special

Session. The results are reported in Table 2. For each one of the test cases the following
statistics are reported: f̄ and k̄ arithmetic mean of the function values and the number of
iterations, σf the standard deviation on function values,min f andmax f minimum and
maximum function values obtained, time(s) total time in seconds, feas the percentage

2
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of runs in which a feasible solution is found.
Noticeably, PSOc3 always finds feasible solutions in all runs, while SLP method is

not so robust from this point of view, in 4 out of 13 tests (g07, g08, g09, g10) a feasible
solution is found in 75%-90% of the runs and especially in instance g06 a feasible solution
is never found. The results reported refers just to the feasible runs. In 9 out of 13 instances
PSOc3 manages to find the best known solution (g01, g04, g06, g07, g08, g09, g12, g16,
g24). In two instances (g18, g19) it finds the best values reported in (Liang et al. 2006),
but recently even better values have been found in (de-los Cobos-Silva et al. 2016). In the
remaining two instances values close to the minimum are found, but the global minimum
is not reached. Regarding SLP method, in 6 instances it finds the global minimum (g01,
g04, g06, g07, g09, g24). In instances g08 and g12 the best value found is close to it.
In instances g02 and g10 its performance is worst than that of PSOc3 and as PSOc3 in
instances g18, g19 SLP finds the best values reported in (Liang et al. 2006), but not the
ones found in (de-los Cobos-Silva et al. 2016). Noticeably, in many runs the standard
deviation is really low.

Table 2. Tests on 13 test functions taken from the G-suit of CEC’2006. Comparison of PSOc3 and SLP solvers.

Test Solver f̄ σf max f min f k̄ time(s) feas

g01 PSOc3 -14.54 0.94 -12.00 -15.00 130.0 3.31 100%
SLP -14.28 0.76 -12.66 -15.00 68.7 1.62 100%

g02 PSOc3 -0.60 0.05 -0.49 -0.69 130.0 3.36 100%
SLP -0.19 0.06 -0.076 -0.27 17.6 2.10 100%

g04 PSOc3 -30665 0.10 -30665 -30666 130.0 2.80 100%
SLP -30666 1.18e-08 -30666 -30666 300.0 6.67 100%

g06 PSOc3 -6951.6 7.32 -6935 -6961.1 130.0 2.72 100%
SLP -6961.8 1.70e-05 -6961.8 -6961.8 200.0 3.90 100%

g07 PSOc3 25.20 0.70 26.56 24.35 1322.9 33.50 100%
SLP 24.55 0.9784 28.22 24.31 47.7 1.40 80%

g08 PSOc3 -0.0958 3.18e-17 -0.0958 -0.0958 180.0 5.08 100%
SLP -0.0120 0.03 0.0460 -0.0860 28.2 0.68 90%

g09 PSOc3 681.28 0.39 682.63 681.03 636.3 17.26 100%
SLP 680.63 8.86e-09 680.63 680.63 62.1 1.80 90%

g10 PSOc3 7760.8 775.93 10607 7241.6 1520.6 33.53 100%
SLP 14237 40400 22300 8617 15.6 1.34 75%

g12 PSOc3 -1 0 -1 -1 180.0 7.32 100%
SLP -0.799 0.11 -0.5540 -0.9864 20.6 0.62 100%

g16 PSOc3 -1.90 1.5e-3 -1.8997 -1.9041 239.9 8.82 100%
SLP - - - - - - 0%

g18 PSOc3 -0.73 0.13 -0.49 -0.8577 180.0 4.52 100%
SLP -0.84 0.07 -0.6750 -0.8660 43.4 1.25 100%

g19 PSOc3 40.71 5.89 57.64 34.44 1229.1 35.08 100%
SLP 32.66 3.42e-09 32.66 32.66 52.3 1.46 100%

g24 PSOc3 -5.5080 5.24e-09 -5.5080 -5.5080 180.0 4.81 100%
SLP -4.28 1.08 -2.23 -5.5080 4.3 0.07 100%

As suggested for example in (Derrac et al. 2011; Garćıa et al. 2009) a nonparametric
analysis of the results was performed. First, the Wilcoxon test was used to compare the
methods performance, based on the mean values found, through the Matlab function
signrank. Wilcoxon test is a nonparametric test that is used to determine whether
two independent samples were selected from populations having the same distribution,
therefore it can be employed to detect significant differences between the behaviour of
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two algorithms. The null hypothesis is that the difference between two sample means
is zero. It emerged that the null hypothesis of equivalence of the two algorithm cannot
be rejected at significance level α = 0.05. Denoting with R+ the sum of ranks for the
problems in which SLP outperforms PSOc3, and R− the sum of ranks for the opposite,
R+ = 33 and R− = 58 are obtained. Anyway it is worth remembering that the test is
performed without taking into account that SLP solver does not find a feasible solution
in all runs.
It is then possible to conclude that both solvers find good results, both in terms of mean

values and in terms of runtime. PSO method manages to find a solution approximation
requiring a really low number of function evaluations, that is about 150000 for three test
cases (g07, g10, g19) but is much lower for the others: less than 50000 for g09 and g16
and less than 20000 for all the others test cases. SLP requires considerably less function
evaluations despite n extra function evaluations for iteration are needed to approximate
the gradient. Indeed, the maximum number of f -evaluations required is 1800 for g04. As
problems dimensions are really small and a quite large number of particles is used for
PSO method, the execution time for SLP is lower than for PSO.
The proposed methods were compared with seven hybrid procedures introduced in

(de-los Cobos-Silva et al. 2016). These procedures, namely MMC-DE, MMC-DE-SC,
MMC-DE-interleaved, MMC-DE-SC-interleaved, MMC-DE-batch, MMC-DE-SC-batch
and PSO-3P-SC, are based on metaheuristic approaches. The comparison was carried
out through pairwise comparison by the Wilcoxon test, using the statistics provided
in (de-los Cobos-Silva et al. 2016). It emerges that the null hypothesis of equivalence
should be rejected for the comparisons of PSOc3 with MMC-DE-SC-interleaved, PSO-
3P-SC at significance level α = 0.01, and with MMC-DE at significance level α = 0.03.
PSOc3 indeed shows an improvement over these methods, getting respectively R+ =
91, 78, 67, where in this case R+ is the sum of ranks for the problems in which PSOc3
outperforms the method it is compared with. On the other hand SLP method results
to be equivalent to all the hybrids, except for MMC-DE-SC-interleaved for which SLP
shows an improvement at significance level α = 0.01 and R+ = 77, with R+ the sum
of ranks for the problems in which SLP outperforms MMC-DE-SC-interleaved. Then
a Friedman test was performed to compare PSOc3, PSO-3P-SC, MMC-DE, MMC-DE-
SC-interleaved and SLP, followed by a post-hoc analysis through the Matlab function
multcompare. This function, using the statistics provided by the Friedman test, performs
N × N multiple comparisons, where N is the number of algorithms to be tested, and
estimates the difference of average ranks (MathWorks 2017; King and Mody 2010). The
result of the test is a matrix of multiple comparison results, returned as an p-by-6 matrix
of scalar values, where p is the number of pairs. Each row of the matrix contains the
result of one paired comparison test. The matrix obtained in the test is shown in Table 3.
Method 1 and Method 2 denote the methods being compared, lb, diff and ub denotes
respectively the lower confidence interval, the estimate, and the upper confidence interval,
p-value is the p-value for the hypothesis test that the corresponding mean difference is
not equal to 0. Then, in each row the numbers indicate that the mean of Method 1 minus
the mean of Method 2 is estimated to be diff, and a 95% confidence interval for the true
difference of the means is [lb, ub]. If the confidence interval contains 0, the difference
is significant at the 5% significance level, otherwise it is not. The post-hoc analysis
confirms all the differences detected by the Wilcoxon test, except the one between PSOc3
and MMC-DE. It emerged indeed that PSOc3 and PSO-3P-SC (p=0.0178), PSOc3 and
MMC-DE-SC-interleaved (p=0.001) and MMC-DE-SC-interleaved and SLP (p=0.0221)
have mean ranks significantly different, as it is shown in Figure 1. In the figure, estimates
and comparison intervals are shown for each method. Each method mean is represented
by the symbol ”o”, and the interval is represented by a line extending out from the
symbol. Two methods means are significantly different if their intervals are disjoint,
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Figure 1. Post-hoc analysis through Matlab function multcompare.

while they are not significantly different if their intervals overlap, (MathWorks 2017;
King and Mody 2010).

Table 3. Matrix of multiple comparisons from Matlab function multcompare.

Method 1 Method 2 lb diff ub p-value
PSOc3 PSO-3P-SC -3.5301 -1.8846 -0.2391 0.0154
PSOc3 MMC-DE -2.8378 -1.1923 0.4532 0.2775
PSOc3 MMC-DE-SC-inter -4.2994 -2.6538 -1.0083 0.0001
PSOc3 SLP -2.4532 -0.8077 0.8378 0.6668
PSO-3P-SC MMC-DE -0.9532 0.6923 2.3378 0.7810
PSO-3P-SC MMC-DE-SC-inter -2.4147 -0.7692 0.8763 0.7066
PSO-3P-SC 5.0000 -0.5686 1.0769 2.7224 0.3822
MMC-DE MMC-DE-SC-inter -3.1071 -1.4615 0.1840 0.1092
MMC-DE 5.0000 -1.2609 0.3846 2.0301 0.9689
MMC-DE-SC-inter 5.0000 0.2006 1.8462 3.4917 0.0188

Finally, efficiency and reliability of the proposed version of PSO was compared against
the basic version of PSO method introduced by Hu and Eberhart (2002) and to MEIGO-
ESS proposed by Egea et al. (2014). MEIGO is a toolbox, whose Matlab code is available,
in which an enhanced scatter search method (ESS), a population-based metaheuristic, is
implemented. In the toolbox an option is available to apply a local search to the current
population to increase the convergence to optimal solutions. In the experiments this
option was not enabled, as it employs first-order information (approximated by finite
differences) and therefore a comparison with PSO methods, that uses only function
values, would not be fair.
To compare the codes they were applied to the problems in Table 1 and the performance

profile approach in Moré and Wild (2009) was employed. The main idea behind the
performance profile approach is briefly outlined here, for a more detailed description see
Dolan and Moré (2002). In this approach, when m solvers are compared on a test set,
the performance of each solver in the solution of a test is measured by the ratio of its
computational effort and the best computational effort by any solver on this test. Here
the number of performed function and constraints evaluations was used as a performance
measure, they will be referred to as f -evaluations for sake of brevity. Specifically, for each
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Figure 2. Performance profiles, based on number of function evaluations.

test t solved by the solver s, let Fs,t denote the total number of f -evaluations required
by the solver s to solve the test t. Moreover, let F̄t denote the lowest number of function
evaluations required by all the solvers to solve test t. Then, the ratio

fs,t =
Fs,t

F̄t

measures the performance of solver s on test t with respect to the best performance
among all the solvers on such test. Then, the performance profile of solver s is defined as

πs(τ) =
no tests s.t. fs,t ≤ τ

no tests
, τ ≥ 1.

As a convergence test, the one proposed in Moré and Wild (2009) for derivative-free
methods was used, that measures the decrease in function value:

f(x0)− f(x) ≥ (1− τ̃)(f(x0)− fL), (2)

where τ̃ = 10−3 was chosen, x0 is a starting point and for each problem fL is the optimal
known value of f , given in Liang et al. (2006).
Performance profiles are shown in Figure 2. The test set is constituted by ten runs of

each problems in Table 1. A failure was declared when the maximum allowed number of f -
evaluations was reached without (2) being satisfied. In the profiles on the left just PSOc3
and the basic version of PSO in Hu and Eberhart (2002), labelled simply as PSO, are
considered. The aim is to show the advantages of the new PSO algorithm proposed in this
work compared to the basic version. On the right all the three algorithms are considered,
to compare the proposed PSO method also to the state-of-the-art metaheuristic method
MEIGO-ESS. Focusing on the comparison between PSO and PSOc3, it can be noticed
that the new strategy introduced here strengthen robustness of PSO. Indeed, PSOc3
shows 75% of successful runs against 67% of PSO, as can be seen from the right side
of the left plot. This shows that using the new velocity update the swarm is less likely
trapped in local minima. Focusing on the comparison with MEIGO-ESS, the right plot
shows that MEIGO-ESS is the most efficient solver on the 45% of runs and outperforms
PSOc3 in terms of efficiency, but PSOc3 is more robust (MEIGO-ESS solves about 70%
of the problems).
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2. Convergence analysis for SLP method

In this section Algorithm 1, reported in the main paper, is considered. Theorem 4.2
of the main paper is proved, which states the global convergence of the sequence {xk}
generated by Algorithm 1 to a stationary point of problem (14) (stated in the main
paper). Here the problem is restated in a more general form, as the theorem is valid
not only when l1 penalty function is chosen, but also for all polyhedral penalty convex
functions H (Fletcher and de la Maza 1989). Then, Φ is going to be expressed in the
following general compact form: Φ(x; ν) = f(x) + H(g(x; ν)), where H(g(x; ν)) is the
penalty term and g : Rn → Rp and, for sake of simplicity, in the following analysis
g(x; ν) and Φ(x; ν) will be denoted as g(x) and Φ(x) respectively. Moreover for the step
a generic norm ‖dk‖ can be considered, while, for seek of simplicity, bound constraints
are not considered.
So, as a consequence of the above assumptions, theoretical results are referred to the

following unconstrained problem:

min
x

Φ(x) = f(x) +H(g(x)), (3)

and subproblem (15) of the main paper becomes:

min
d

lk(d) = f(xk) +∇f(xk)
Td+H(g(xk) +∇g(xk)

Td) (4a)

‖d‖ ≤ ∆k, (4b)

where ∇g(x) ∈ Rp×n is the Jacobian matrix of g(x).
To prove the theorem it is necessary to take into account that objective functions of

problems (3) and (4) are non differentiable, so to characterize their stationary points it is
necessary to introduce KKT conditions for problems with non-smooth objective function,
(Fletcher 1987).

Definition 2.1 Let f be a convex function defined in D ⊆ Rn. A vector v is a sub-
gradient of f at x ∈ D, if f(y) ≥ f(x) + vT (y − x) for all y ∈ D.

Definition 2.2 Let f be a convex function defined in D ⊆ Rn. The subdifferential
∂f(x) of f at x is the set of all subgradients:

∂f(x) = {v : vT (y − x) ≤ f(y)− f(x) for all y ∈ D}.

First order necessary KKT conditions for x∗ to solve (3) are that there exists vectors
of multipliers λ∗ ∈ ∂H(g∗) such that, (see Theorem 14.2.1 in (Fletcher 1987)): ∇f(x∗)+
∇g(x∗)λ∗ = 0. First order conditions for subproblem (4) are that there exist multipliers
λk ∈ ∂H(g(xk)+∇g(xk)

Tdk), wk ∈ ∂‖dk‖ and πk ≥ 0, ( see Theorem 14.6.1 in (Fletcher
1987)), such that:

∇f(xk) +∇g(xk)
Tλk + πkwk = 0, (5)

πk(‖dk‖ −∆k) = 0. (6)

The following Lemma is proved in (Fletcher 1987) and is useful for the convergence
theorems.

Lemma 2.3 [Lemma 14.2.1 of (Fletcher 1987)] Let f : K → R be a convex function,
K ⊂ Rn a convex set. Then ∂f(x) is a closed convex set and it is bounded for all x ∈

7
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B ⊂
o

K where B is compact and
o

K denotes the interior of K.

The following theorem is the reformulation of Theorem 4.2 of the main paper in a
slightly more general form. It is proved following the lines of the proof of Theorem 2.1
in (Fletcher and de la Maza 1989). Note that in (Fletcher and de la Maza 1989) it is
assumed to have at disposal an approximation of the Hessian matrix of the Lagrangian
function, while the method considered in this article exploits just first order informations.

Theorem 2.4 [Global convergence of Algorithm 1]
Let f and g be C1 functions and let H(g) be a convex function. Let {xk} be the sequence
generated by Algorithm 1. Either there exists an iteration index k̄ such that xk̄ is a KKT
point for Φ(x), or Φ(xk) → −∞ k → ∞, or if the sequence {xk} is bounded, then there
exists a subsequence S of indexes such that {xk}k∈S has an accumulation point x∗ which
satisfies the KKT conditions for Φ(x), that is it exists a vector of multipliers λ∗ such
that:

∇f(x∗) +∇g(x∗)λ∗ = 0. (7)

Proof. To prove the theorem it is sufficient to consider the case in which {Φk} is
bounded below and {xk} is bounded. Because {xk} is bounded, there exists a subsequence
S of iterations such that {xk}k∈S → x∗. Suppose that:
a) dk does not satisfy ρk > ρbad for any k ∈ S and {∆k}k∈S → 0 and hence {‖dk‖}k∈S →
0.
Let define ∆Φk = Φ(xk) − Φ(xk + dk) and ∆lk = lk(0) − lk(dk) = Φ(xk) − lk(dk). A
consequence of C1 continuity of f and g, convexity of H(g) and boundedness of ∂H(g),
which follows from Lemma 2.3, and of the use of the first order Taylor expansion, is
that: ∆Φk = ∆lk + o(‖dk‖) and hence ∆Φk/∆lk → 1 as k → ∞, which contradicts the
fact that ρk = ∆Φk

∆lk
> ρbad fails for all k ∈ S. Therefore this case is inconsistent and it

certainly exists a subsequence of indexes S such that:
b) dk satisfies ρk > ρbad and lim inf

k∈S
∆k > 0.

In fact, let S′ be a sequence of indexes of unsuccessful iterations. If S′ is finite, then
clearly ρk > ρbad for k sufficiently large. Otherwise suppose k0 ∈ S′. Since {∆k}k∈S′ 9 0,
otherwise case (a) is obtained again, for each k0 ∈ S′ it exists i such that k0 + i is
a successful iteration with k0 + i /∈ S′. Therefore xk0+i = xk0

and the subsequence
{xk0+i}k0∈S′ → x∗. Let S = {k0 + i, k0 ∈ S′}, then {xk}k∈S is the subsequence of case
(b). In case (b) it can be assumed that lim infk∈S ∆k > ∆̄ > 0, as if lim infk∈S ∆k = 0
thus imply lim inf ∆k = 0 and this yields case (a) that has be proved to be inconsistent.
Because Φ1−Φ∗ ≥

∑
k∈S ∆Φk, it follows that

∑
k∈S ∆Φk converges. Then, ρk ≥ ρbad, i.e.

∆Φk ≥ ∆lkρbad, yields the convergence of the series
∑

k∈S ∆lk, and hence {∆lk} → 0.

Define l∗(d) = f(x∗) +∇f(x∗)d+H(g(x∗) +∇g(x∗)Td). Let

d̄ = argmin l∗(d), s.t. ‖d‖ ≤ ∆̄

and denote x̄ = x∗ + d̄. Then

‖x̄− xk‖ ≤ ‖x̄− x∗‖+ ‖x∗ − xk‖ = ‖d̄‖+ ‖x∗ − xk‖ ≤ ∆̄ + ‖x∗ − xk‖ ≤ ∆k

for all k sufficiently large, k ∈ S. Thus x̄ is feasible for problem (4), so
lk(x̄− xk) ≥ lk(dk) = Φ(xk)−∆lk. In the limit, for k ∈ S, ∇f(xk) → ∇f(x∗),
g(xk) → g(x∗),∇g(xk) → ∇g(x∗), x̄ − xk → d̄, and ∆lk → 0, so it follows that l∗(d̄) ≥
Φ(x∗) = l∗(0). Thus d = 0 also minimizes l∗(d) subject to ‖d‖ ≤ ∆̄, and since the latter
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constraint is not active it follows from (6) that π∗ = 0 and from (5) that it exists λ∗ such
that ∇f(x∗) +∇g(x∗)λ∗ = 0, then x∗ is a KKT point. �

Theorem 2.4 states that in case the objective function is not unbounded, which is
ensured in the particular case considered in the main paper, due to the presence of the
bound constraints, it exists an accumulation point x∗ of the sequence {xk} generated by
Algorithm 1 that satisfies KKT conditions (7) for Φ(x), regardless of the starting point.
It is also possible to prove the convergence of multipliers, i.e. if the subsequence S of

Theorem 2.4 exists, than the subsequence of multipliers of subproblems (4) approximates
multipliers of problem (3). In fact, the following theorem holds:

Theorem 2.5 Convergence of multipliers, Theorem 2.2 in (Fletcher and de la Maza
1989) Let f, g ∈ C1, H(g) a convex function, πk and λk multipliers of subproblems (4),
defined in (5) and (6). If the subsequence S in the statement of Theorem 2.4 exists, then
{πk}k∈S →0. Moreover any accumulation point λ∗ of the multiplier vectors λk, k ∈ S,
satisfies λ∗ ∈ Λ∗, where Λ∗ = {λ : λ satisfies KKT conditions (7) at x∗}, and such an
accumulation point exists.

The stopping criterion employed for Algorithm 1, that is described in Section 4.1 of the
main paper, relies on this important theoretical result, that allows to use the multipliers
of subproblems (4), provided by the function used to solve the LPs, as an approximation
of those of problem (3).
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