Multilevel Physics Informed Neural Networks (MPINNs)

Elisa Riccietti

LIP-ENS Lyon

Joint work with: S. Gratton - V. Mercier (ENSEEIHT, IRIT), P. Toint (UNamur)

Journées SMAI MODE 2022, Limoges, 30 May - 3 June 2022

ション (日本) (日本) (日本) (日本) (日本)

The context

The problem: numerical approximation of PDE's solutions.

- Classical approaches: discretization and multigrid methods (MG)
- New advances in machine learning: Physics Informed Neural Networks (PINNs)

Our objective:

Transfer the advantages of the first approach to the second.

Multigrid methods (MG)

Physics Informed Neural Networks (PINNs)

Multilevel PINNs (MPINNs)

Multigrid methods (MG)

Physics Informed Neural Networks (PINNs)

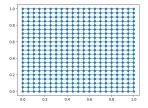
Multilevel PINNs (MPINNs)

The numerical solution of PDEs

 Classically PDEs are discretized on a grid using finite differences or finite elements

The resulting linear system Au = f is solved using a fixed point iterative method (Gauss-Siedel or Jacobi)

The size of the grids impacts the size of the system and the accuracy of the solution approximation



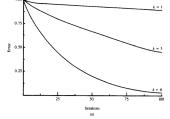
The intuition behind multigrid methods

• Example: $\Delta u = 0$, $v_k(j) = \sin(\frac{kj\pi}{n})$, k-th Fourier mode

The smoothing property: hard for fixed point iterative methods to reduce the low frequency components of the error



Figure 2.2: The modes $v_j = \sin \left(\frac{ik\pi}{n}\right)$, $0 \le j \le n$, with wavenumbers k = 1, 3, 6. The kth mode consists of $\frac{k}{2}$ full sine waves on the interval.



The intuition behind multigrid methods

How does a smooth component look like on a coarser grid?

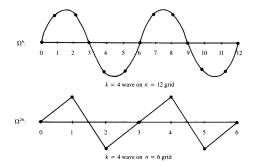


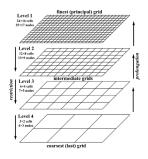
Figure 3.1: Wave with wavenumber k = 4 on Ω^h (n = 12 points) projected onto Ω^{2h} (n = 6 points). The coarse grid "sees" a wave that is more oscillatory on the coarse grid than on the fine grid.

・ロット (雪) ・ (日) ・ (日)

э

Multigrid methods for PDEs

State-of-the-art methods for PDEs: exploit representation of the problem at different scales



- Fine scales: eliminate high frequency components of the error
- <u>Coarse scales</u>: eliminate low frequency components of the error

ヘロト 人間 ト イヨト イヨト

э

Two-level multigrid methods

Consider a linear PDE:

Au = f.

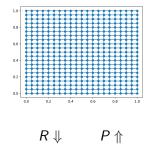
Consider two discretizations of the same system:

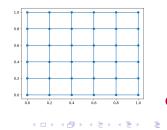
Fine grid: $A_h u_h = f_h$

• Coarse grid: $A_H u_H = f_H$

Idea: write the solution *u* as the sum of a fine and a coarse term:

$$u \sim \underbrace{v_h}_{\in \mathbb{R}^h} + P(\underbrace{e_H}_{\in \mathbb{R}^H}), \ H < h.$$





9/32

Two-level multigrid methods

Update the two components in an alternate fashion:

 $u \sim \mathbf{v} + e$ r = f - AvAe = r residual equation

- *Fine level*: get v_h by iterating on $A_h u = f_h$
- Compute $r_h = f Av_h$ and project $r_H = Rr_h$
- <u>Coarse level</u>: compute correction: $A_H e_H = r_H$

• Correct:
$$v_h \leftarrow v_h + P(e_H)$$

Two-level multigrid methods

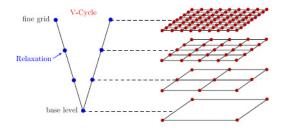
Update the two components in an alternate fashion:

 $u \sim v + e$ r = f - AvAe = r residual equation

- <u>Fine level</u>: get v_h by iterating on $A_h u = f_h$
- Compute $r_h = f Av_h$ and project $r_H = Rr_h$
- <u>Coarse level</u>: compute correction: $A_H e_H = r_H$

• Correct:
$$v_h \leftarrow v_h + P(e_H)$$

General multigrid methods



W. Briggs, V. Henson, S. McCormick. A Multigrid Tutorial, SIAM, 2000.

Multigrid methods (MG)

Physics Informed Neural Networks (PINNs)

Multilevel PINNs (MPINNs)

A new approach for PDEs

A recent development: use neural networks to approximate the solution of a PDE

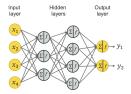
M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, 2019.

Why this approach ?

- Natural approach for nonlinear equations
- Provides analytic and continuously differentiable expression of the approximate solution
- The solution is meshless, well suited for problems with complex geometries
- The training is highly parallelizable on GPU
- Allows to alleviate the effect of the curse of dimensionality

・ロト ・ 御 ト ・ 国 ト ・ 国 ト

General NN strategy for learning problems

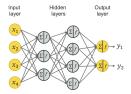


Dataset composed of input/output couples (x_i, y_i), i = 1,..., m.

+ ロ ト + 母 ト + 目 ト + 目 ・ の へ ()

- Loss function $L(\theta; x, y) = \frac{1}{m} \sum_{i=1}^{m} (NN(x_i, \theta) y_i)^2 = MSE$
- ► The associated minimization problem : $\min_{\theta \in \Theta} L(\theta; x, y)$
- Optimize by SGD

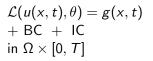
General NN strategy for learning problems

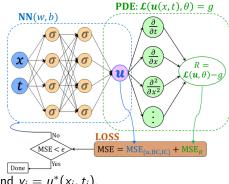


- Dataset composed of input/output couples (x_i, y_i), i = 1,..., m.
- Loss function $L(\theta; x, y) = \frac{1}{m} \sum_{i=1}^{m} (NN(x_i, \theta) y_i)^2 = MSE$
- ► The associated minimization problem : $\min_{\theta \in \Theta} L(\theta; x, y)$
- Optimize by SGD

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへの

Physics Informed Neural Networks (PINNs)



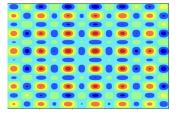


Given x_i, t_i sampled randomly, and $y_i = u^*(x_i, t_i)$,

$$MSE_{\{u,BC,IC\}} = \frac{1}{N_m} \sum_{\substack{x_i \in \Omega \cup \partial\Omega, t_i \in [0,T] \\ x_i \in \Omega, t_i \in [0,T]}} (NN(x_i, t_i) - y_i)^2,$$

$$MSE_R = \frac{1}{N_r} \sum_{\substack{x_i \in \Omega, t_i \in [0,T] \\ x_i \in \Omega, t_i \in [0,T]}} R(x_i, t_i)^2$$

On the spectral bias of neural networks



On the Spectral Bias of Neural Networks

Nasim Rahaman^{*12} Aristide Baratin^{*1} Devansh Arpit¹ Felix Draxler² Min Lin¹ Fred A. Hamprecht² Yoshua Bengio¹ Aaron Courville¹

WHEN AND WHY PINNS FAIL TO TRAIN: A NEURAL TANGENT KERNEL PERSPECTIVE

A PREPRINT

Sifan Wang Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania Philadelphia, PA 19104 sifanw@sss.upenn.edu Xinling Yu Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania Philadelphia, PA 19104 xlyu@sas.upen.edu

э

Paris Perdikaris Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania Philadelphia, PA 19104 pgp@seas.upen.edu

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

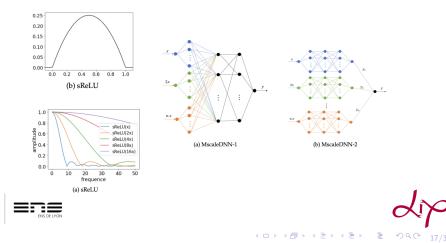
 \Rightarrow PINNs are not effective in approximating highly oscillatory solutions

Mscale networks

Z.Q. Liu, W. Cai, and Z.Q. John Xu, Multi-scale Deep Neural Network (MscaleDNN) forSolving

Poisson-Boltzmann Equation in Complex Domains, 2020

Idea: simultaneous training of frequency-selective subnetworks



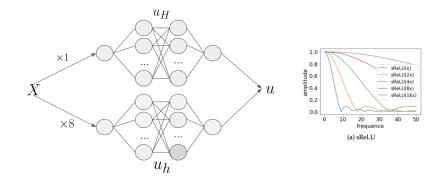
Multigrid methods (MG)

Physics Informed Neural Networks (PINNs)

Multilevel PINNs (MPINNs)

Multilevel PINNs: the architecture

Idea: $u_{sol}(x) \sim u_h(\theta_h, x) + u_H(\theta_H, x)$ Also exploit frequency-selective subnetworks



Multilevel PINNs: the loss

Problem definition

$$egin{array}{rcl} \mathcal{L}(u(x)) &=& g(x), \; x \in \Omega, \ u_{sol}(x) &\sim& u_h(heta_h, x) + u_H(heta_H, x) \end{array}$$

Fine problem	Coarse problem
$MSE_{h}(\theta_{h}) = MSE_{R,h}(\theta_{h}) + MSE_{B,h}(\theta_{h})$	$MSE_{H}(\theta_{H}) = MSE_{R,H}(\theta_{H}) + MSE_{B,H}(\theta_{H})$
$MSE_{R,h}(heta_h) = \mathcal{L}(\hat{u}_h(heta_h) + u_H) - g ^2$	$MSE_{R,H}(\theta_H) = \mathcal{L}(\hat{u}_H(\theta_H) + u_h) - g ^2$ $MSE_{B,H}(\theta_H) = \hat{u}_H(\theta_H) + u_h - u ^2$
$MSE_{B,h}(heta_h) = \hat{u}_h(heta_h) + u_H - u ^2$	$MSE_{B,H}(\theta_H) = \hat{u}_H(\theta_H) + u_h - u ^2$
Computed on z_h the fine sampling	Computed on z_H the coarse sampling

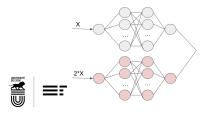
 \mathcal{A}

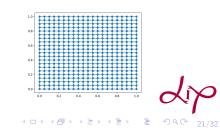
< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ ∽ Q @ _{20/32}

Multilevel PINNs: the training

Algorithm 1 2-level training of PINNs

- 1: Freeze coarse-network parameters, unfreeze fine-network parameters
- 2: for $i=1,2,\ldots$ do
- 3: Perform ν_1 epochs for the minimization of the fine problem
- 4: Freeze fine-network parameters, unfreeze coarse-network parameters
- 5: Perform ν_2 epochs for the minimization of the coarse problem
- 6: end for
- 7: Return : $u_H + u_h$

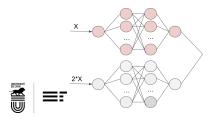


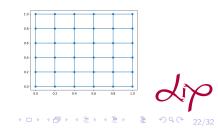


Multilevel PINNs: the training

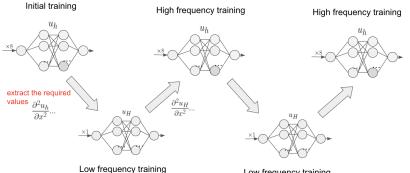
Algorithm 2 2-level training of PINNs

- 1: Freeze coarse-network parameters, unfreeze fine-network parameters
- 2: for $i=1,2,\ldots$ do
- 3: Perform ν_1 epochs for the minimization of the fine problem
- 4: Freeze fine-network parameters, unfreeze coarse-network parameters
- 5: Perform ν_2 epochs for the minimization of the coarse problem
- 6: end for
- 7: Return : $u_H + u_h$





Multilevel PINNs: V-cycles

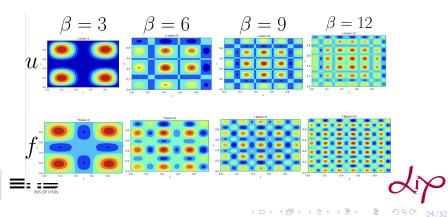


Low frequency training

イロト イタト イヨト イヨト 三日

A simple Poisson problem

 $u(x,y) = (\sin(\pi x) + \sin(\beta \pi x)) * (\sin(\pi y) + \sin(\beta \pi y))$



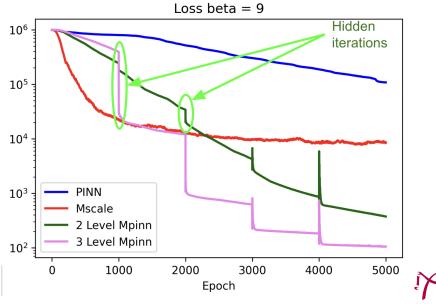
Experimental settings

In what follows:

- ► The PINNs have two hidden layers of 300 neurons each.
- The Mscale have four subnetworks of two hidden layers of 150 neurons each, the input scaling used are 1,2,4 and 8.
- ► The two-level MPINN is composed of two networks of two hidden layers of 210 neurons each and trained in a V-cycle with 1 and 8 input scalings ($\nu_1 = \nu_2 = 1000$).
- ► The three-level MPINN is composed of three networks of two hidden layers of 150 neurons each and trained in a V-cycle with 1,4 and 8 input scalings (v₁ = v₂ = v₃ = 1000).
- The input of all networks is a regular grid sample of 80 × 80 points

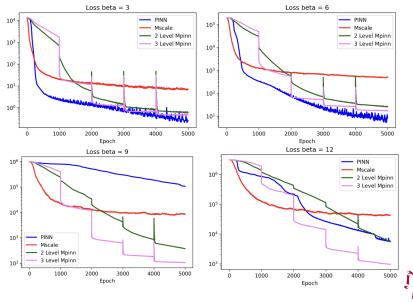
In all cases, we plot the median for ten random runs.

Experimental results



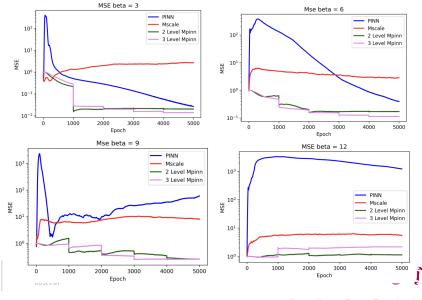
◆□▶ < @▶ < 图▶ < 图▶ ■ のへで 26/32</p>

Varying β (the frequency content)



▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 臣 - 釣�(ひ-27/)

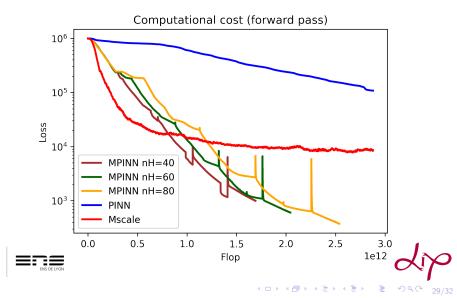
Convergence of MSE (extrapolation)



▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ■ 圖 - 釣 Q (2) - 28/32

Computational cost for two levels...

... as a function of coarse grid size (nH)



Conclusions

- We have presented a new multigrid-inspired training framework using recent advances in NN to efficiently solve PINN-type problems.
- We have proposed an algorithm which works without prior knowledge of frequency content and which is promising.
- We have demonstrated that exploiting spectral complementarity using our framework may bring significant computational benefits (faster convergence).

Perspectives

- Perform further extensive testing, including more complex problems.
- Pursue the sensitivity analysis for
 - the relative sizes of the grids,
 - the relative sizes of the networks.
- Investigate theoretical aspects:
 - convergence of the iterates from an optimization point of view,
 - convergence to the solution in functional space.

Thank you for your attention!

A few references

- S. Gratton, A. Sartenaer, Ph. L. Toint. Recursive trust-region methods for multiscale nonlinear optimization, SIAM J. Opt., 19:414–444, 2008
- W. Briggs, V. Henson, S. McCormick. A Multigrid Tutorial, SIAM, 2000
- H. Calandra, S. Gratton, E. Riccietti, X. Vasseur. On high-order multilevel optimization strategies. SIAM J. Opt., 31.1: 307-330, 2021.
- S. Wang, H. Wang, P. Perdikaris. On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks. CMAME, 384, 2021
- Z. Liu, W. Cai, Z. Xu. Multi-scale deep neural network (MscaleDNN) for solving Poisson-Boltzmann equation in complex domains. arXiv:2007.11207, 2020
- E. Riccietti, V. Mercier, S. Gratton, P. Boudier, Multilevel physics informed neural networks (MPINNs), technical report, 2021
- V. Mercier, S. Gratton, P. Boudier. A coarse space acceleration of deep-DDM, arxiv:2112.03732, 2022
- H. Calandra, S. Gratton, E. Riccietti, X. Vasseur. On a multilevel Levenberg-Marquardt method for the training of artificial neural networks and its application to the solution of partial differential equations, OMS, 2020

・ロト・日本・モート・ヨー シック・

