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The context

The problem: numerical approximation of PDE’s solutions.

I Classical approaches: discretization and multigrid methods
(MG)

I New advances in machine learning : Physics Informed Neural
Networks (PINNs)

Our objective:
Transfer the advantages of the first approach to the second.
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The numerical solution of PDEs

I Classically PDEs are
discretized on a grid using
finite differences or finite
elements

I The resulting linear system
Au = f is solved using a
fixed point iterative
method (Gauss-Siedel or
Jacobi)

I The size of the grids
impacts the size of the
system and the accuracy of
the solution approximation
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The intuition behind multigrid methods

I Example: ∆u = 0, vk(j) = sin(kjπn ), k-th Fourier mode

I The smoothing property: hard for fixed point iterative
methods to reduce the low frequency components of the error
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The intuition behind multigrid methods

I How does a smooth component look like on a coarser grid?
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Multigrid methods for PDEs

State-of-the-art methods for PDEs: exploit representation of the
problem at different scales

I Fine scales: eliminate
high frequency
components of the
error

I Coarse scales:
eliminate low
frequency
components of the
error
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Two-level multigrid methods

Consider a linear PDE:

Au = f .

Consider two discretizations of
the same system:

I Fine grid: Ahuh = fh
I Coarse grid: AHuH = fH

Idea: write the solution u as the
sum of a fine and a coarse term:

u ∼ vh︸︷︷︸
∈Rh

+P( eH︸︷︷︸
∈RH

), H < h.

R ⇓ P ⇑
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Two-level multigrid methods

Update the two components in an alternate fashion:

u ∼ v + e

r = f − Av

Ae = r residual equation

I Fine level: get vh by iterating on Ahu = fh
I Compute rh = f − Avh and project rH = Rrh
I Coarse level: compute correction: AHeH = rH
I Correct: vh ← vh + P(eH)
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General multigrid methods

W. Briggs, V. Henson, S. McCormick. A Multigrid Tutorial, SIAM, 2000.
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A new approach for PDEs

A recent development: use neural networks to approximate the
solution of a PDE

M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear partial differential equations, 2019.

Why this approach ?
I Natural approach for nonlinear equations

I Provides analytic and continuously differentiable expression of
the approximate solution

I The solution is meshless, well suited for problems with
complex geometries

I The training is highly parallelizable on GPU

I Allows to alleviate the effect of the curse of dimensionality
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General NN strategy for learning problems

I Dataset composed of input/output couples (xi , yi ), i = 1, . . . ,m.

I Loss function L(θ; x , y) = 1
m

∑m
i=1(NN(xi , θ)− yi )

2 = MSE

I The associated minimization problem : min
θ∈Θ

L(θ; x , y)

I Optimize by SGD

How to integrate the physical knowledge in the model?
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Physics Informed Neural Networks (PINNs)

L(u(x , t), θ) = g(x , t)
+ BC + IC
in Ω× [0,T ]

Given xi , ti sampled randomly, and yi = u∗(xi , ti ),

MSE{u,BC ,IC}=
1

Nm

∑
xi∈Ω∪∂Ω,ti∈[0,T ]

(NN(xi , ti )− yi )
2,

MSER=
1

Nr

∑
xi∈Ω,ti∈[0,T ]

R(xi , ti )
2
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On the spectral bias of neural networks

⇒ PINNs are not effective in approximating highly oscillatory
solutions
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Mscale networks

Z.Q. Liu, W. Cai, and Z.Q. John Xu, Multi-scale Deep Neural Network (MscaleDNN) forSolving

Poisson-Boltzmann Equation in Complex Domains, 2020

Idea: simultaneous training of frequency-selective subnetworks
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Multilevel PINNs: the architecture

Idea: usol(x) ∼ uh(θh, x) + uH(θH , x)
Also exploit frequency-selective subnetworks
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Multilevel PINNs: the loss

Problem definition

L(u(x)) = g(x), x ∈ Ω,

usol(x) ∼ uh(θh, x) + uH(θH , x)

Fine problem

MSEh(θh) = MSER,h(θh) + MSEB,h(θh)

MSER,h(θh) = ||L(ûh(θh) + uH)− g ||2

MSEB,h(θh) = ||ûh(θh) + uH − u||2

Computed on zh the fine sampling

Coarse problem

MSEH(θH) = MSER,H(θH) + MSEB,H(θH)

MSER,H(θH) = ||L(ûH(θH) + uh)− g ||2

MSEB,H(θH) = ||ûH(θH) + uh − u||2

Computed on zH the coarse sampling



21/32

Multilevel PINNs: the training
Algorithm 1 2-level training of PINNs

1: Freeze coarse-network parameters, unfreeze fine-network parameters
2: for i=1,2,. . . do
3: Perform ν1 epochs for the minimization of the fine problem
4: Freeze fine-network parameters, unfreeze coarse-network parame-

ters
5: Perform ν2 epochs for the minimization of the coarse problem
6: end for
7: Return : uH + uh
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Multilevel PINNs: the training
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Multilevel PINNs: V-cycles
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A simple Poisson problem

I Ω = [0, 1]× [0, 1]

I ∆u = f ∀x ∈ Ω

I u = 0 ∀x ∈ ∂Ω

I u(x , y) = (sin(πx) + sin(βπx)) ∗ (sin(πy) + sin(βπy))
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Experimental settings

In what follows:

I The PINNs have two hidden layers of 300 neurons each.

I The Mscale have four subnetworks of two hidden layers of 150
neurons each, the input scaling used are 1,2,4 and 8.

I The two-level MPINN is composed of two networks of two
hidden layers of 210 neurons each and trained in a V-cycle
with 1 and 8 input scalings (ν1 = ν2 = 1000).

I The three-level MPINN is composed of three networks of two
hidden layers of 150 neurons each and trained in a V-cycle
with 1,4 and 8 input scalings (ν1 = ν2 = ν3 = 1000).

I The input of all networks is a regular grid sample of 80× 80
points

I In all cases, we plot the median for ten random runs.
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Experimental results



27/32

Varying β (the frequency content)
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Convergence of MSE (extrapolation)
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Computational cost for two levels. . .

. . . as a function of coarse grid size (nH)
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Conclusions

I We have presented a new multigrid-inspired training
framework using recent advances in NN to efficiently solve
PINN-type problems.

I We have proposed an algorithm which works without prior
knowledge of frequency content and which is promising.

I We have demonstrated that exploiting spectral
complementarity using our framework may bring significant
computational benefits (faster convergence).
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Perspectives

I Perform further extensive testing, including more complex
problems.

I Pursue the sensitivity analysis for
I the relative sizes of the grids,
I the relative sizes of the networks.

I Investigate theoretical aspects:
I convergence of the iterates from an optimization point of view,
I convergence to the solution in functional space.
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Thank you for your attention!
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