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The context

The problem: numerical approximation of PDE’s solutions.

» Classical approaches: discretization and multigrid methods
(MG)

» New advances in machine learning: Physics Informed Neural
Networks (PINNs)

Our objective:
Transfer the advantages of the first approach to the second.
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Multilevel PINNs (MPINNs)



Outline

Multigrid methods (MG)

uuuuuu



The numerical solution of PDEs
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» Classically PDEs are
discretized on a grid using
finite differences or finite
elements

» The resulting linear system

Au = f is solved using a

fixed point iterative

method (Gauss-Siedel or

Jacobi)

» The size of the grids

impacts the size of the
system and the accuracy of
the solution approximation



The intuition behind multigrid methods

» Example: Au=0, v(j) = sin(kj—:), k-th Fourier mode
» The smoothing property: hard for fixed point iterative
methods to reduce the low frequency components of the error

!
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Figure 221 The modes v; = sin (%), 0 < j < n, with wavenumbers k = 1,3,6.

erations
The kth mode consists of & full sine waves on the interval.
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The intuition behind multigrid methods

» How does a smooth component look like on a coarser grid?

m:/\ /\
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k= dwaveon n = 12grid
e /\ /\
0 1 w 4 \/

k = 4waveon n = 6grid

12

Figure 3.1: Wave with wavenumber k = 4 on Q" (n = 12 points) projected onto
Q2! (n = 6 points). The coarse grid “sees” a wave that is more oscillatory on the
coarse grid than on the fine grid.

et
B

R == o(l



Multigrid methods for PDEs

State-of-the-art methods for PDEs: exploit representation of the
problem at different scales

> Fine scales: eliminate
high frequency
components of the
|” error

s : » Coarse scales:
| eliminate low
o frequency
l components of the
error

coarsest (last) grid
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Two-level multigrid methods
Consider a linear PDE:
Au="f.

Consider two discretizations of
the same system:

» Fine grid: Apup =1y
» Coarse grid: Apyuy = fy

Idea: write the solution u as the
sum of a fine and a coarse term:

un~ vy —I—P(eH),H<h.
— =~

ERM €RH
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Two-level multigrid methods

Update the two components in an alternate fashion:

u~v-+e
r=f—Av

Ae = r residual equation

» Fine level: get vy, by iterating on Apu = fp,

» Compute r, = f — Avy, and project ry = Rry,
» Coarse level: compute correction: Apey = ry
» Correct: vj < v+ P(en)
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Two-level multigrid methods

Update the two components in an alternate fashion:

u~v+e
r=f—Av

Ae = r residual equation

» Fine level: get vy, by iterating on Apu = fy
» Compute r, = f — Avy, and project ry = Rry,
» Coarse level: compute correction: Apey = ry

» Correct: vy < vy + P(eH)

nnnnnnnnn
nnnnnn



General multigrid methods
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ﬁ W. Briggs, V. Henson, S. McCormick. A Multigrid Tutorial, SIAM, 2000.

ENS DE LYON




Outline

uuuuuu

Physics Informed Neural Networks (PINNs)



A new approach for PDEs

A recent development: use neural networks to approximate the
solution of a PDE

@ M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A deep learning framework for

solving forward and inverse problems involving nonlinear partial differential equations, 2019.

Why this approach ?
» Natural approach for nonlinear equations

» Provides analytic and continuously differentiable expression of
the approximate solution

» The solution is meshless, well suited for problems with
complex geometries

» The training is highly parallelizable on GPU

> Allows to alleviate the effect of the curse of dimensionality



General NN strategy for learning problems
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» Dataset composed of input/output couples (x;, ), i=1,...,

> Loss function L(0;x,y) = L > (NN(x;,0) — y;)> = MSE

» The associated minimization problem : gnigL(G;x,y)
€

» Optimize by SGD

m.
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General NN strategy for learning problems

» Dataset composed of input/output couples (x;, ), i=1,...,m.
> Loss function L(0;x,y) = L > (NN(x;,0) — y;)> = MSE
» The associated minimization problem : gnigL(G;x,y)
€
» Optimize by SGD

How to integrate the physical knowledge in the model?
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Physics Informed Neural Networks (PINNs)

PDE: L(u(x,t),6) = g
VNN(W, b) ',"—:\ 777777777777777777777 ‘\\\

‘C(U(X’ t)v 9) = g(Xa t)
+ BC + IC
in Q x [0, T]

Given x;, t; sampled randomly, and y; = u*(x;, t;),

1
MSE; ., Bc,icy= N EQU;E[O T](NN(Xia t)) — i),

1
oW —_— MSEr= — Z R(xi, ti)z

=2 = N OL'
W] ame " x€Q,t€[0,T]



On the spectral bias of neural networks

On the Spectral Bias of Neural Networks
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= PINNs are not effective in approximating highly oscillatory
solutions
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Mscale networks

B Z.Q. Liu, W. Cai, and Z.Q. John Xu, Multi-scale Deep Neural Network (MscaleDNN) forSolving

Poisson-Boltzmann Equation in Complex Domains, 2020

Idea: simultaneous training of frequency-selective subnetworks

00 02 04 06 08 10

(b) sReLU
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Multilevel PINNs: the architecture
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Idea: usoi(x) ~ up(On, x) + up(04, x)
Also exploit frequency-selective subnetworks
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Multilevel PINNs: the loss
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Problem definition

L(u(x)) = 8&(x), x€Q,

Usol(x)  ~  up(bn, x) + un(On, x)

Fine problem

I\/ISE;,(@,,) = MSER,h(Qh) + MSEB,,,(HI,)
MSEg.n(04) = ||£(0n(6h) + ur) — glI?
MSEB,,,(Q,,) = ||ﬁh(9h) + upy — U||2

Computed on z;, the fine sampling

Coarse problem

MSEH(GH) - MSER,H(HH) + MSEBJ-/(@H)
MSEr 1(01) = ||£(8r(601) + un) — g|I?
MSEs 1(01) = ||a1(0n) + up — ul[®

Computed on zy the coarse sampling
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Multilevel PINNs: the training
Algorithm 1 2-level training of PINNs

1: Freeze coarse-network parameters, unfreeze fine-network parameters
2: for i=1,2,... do
3: Perform 14 epochs for the minimization of the fine problem
4 Freeze fine-network parameters, unfreeze coarse-network parame-
ters

Perform v, epochs for the minimization of the coarse problem
end for
7: Return : uy + up

U




Multilevel PINNs: the training
Algorithm 2 2-level training of PINNs

Freeze coarse-network parameters, unfreeze fine-network parameters
for i=1,2,... do
Perform 14 epochs for the minimization of the fine problem
Freeze fine-network parameters, unfreeze coarse-network parame-
ters
Perform v, epochs for the minimization of the coarse problem
end for
7: Return : uy + up
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Multilevel PINNs: V-cycles

Initial training High frequency training High frequency training

up

extract the required

values 02111
i

0x2

x1

Low frequency training Low frequency training
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A simple Poisson problem

> Q=10,1] x [0, 1]

> Au=fVVxeQ

> u=0Vxeco

» u(x,y) = (sin(mx) + sin(Brx)) * (sin(mwy) + sin(Bmy))

=3 B=6 =9 =12
-= s

u;: e N e o o el




Experimental settings

e

In what follows:

» The PINNs have two hidden layers of 300 neurons each.
» The Mscale have four subnetworks of two hidden layers of 150

>

>

| 2

neurons each, the input scaling used are 1,2,4 and 8.

The is composed of two networks of two
hidden layers of 210 neurons each and trained in a V-cycle
with 1 and 8 input scalings (11 = v, = 1000).

The is composed of three networks of two
hidden layers of 150 neurons each and trained in a V-cycle
with 1,4 and 8 input scalings (1 = v» = v3 = 1000).

The input of all networks is a regular grid sample of 80 x 80
points

In all cases, we plot the median for ten random runs.



Experimental results
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Varying (3 (the frequency content)
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Convergence
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Computational cost for two levels. . .

... as a function of coarse grid size (nH)

Computational cost (forward pass)
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Conclusions

> We have presented a new multigrid-inspired training
framework using recent advances in NN to efficiently solve
PINN-type problems.

» We have proposed an algorithm which works without prior
knowledge of frequency content and which is promising.

» We have demonstrated that exploiting spectral
complementarity using our framework may bring significant
computational benefits (faster convergence).
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Perspectives

» Perform further extensive testing, including more complex
problems.

» Pursue the sensitivity analysis for
P the relative sizes of the grids,
P the relative sizes of the networks.
P Investigate theoretical aspects:

P convergence of the iterates from an optimization point of view,
P convergence to the solution in functional space.
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Thank you for your attention!
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