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Context: large scale optimization problems

min
x

f (x) → min
x∈Rn

f (x) =
m∑
i=1

fi (x)

Large scale problems

I f has a large number of unknowns: large n (ex: deep learning)

I f is the sum of a large number of terms: large m (ex:
classification of large datasets)
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Outline

I Part I: Brief recap on multigrid methods for the solution of
PDEs

I Part II: Their transposition to a nonlinear context: high-order
multilevel optimization methods

I Part III: Artificial neural networks for the solution of PDEs

I Part IV: Multilevel methods for their training



Part I

Multigrid methods
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The numerical solution of PDEs

I Classically PDEs are
discretized on a grid using
finite differences or finite
elements

I The resulting linear system
Au = f is solved using a
fixed point iterative
method (Gauss-Siedel or
Jacobi)

I The size of the grids
impacts the size of the
system and the accuracy of
the solution approximation
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Multigrid methods for PDEs

State-of-the-art methods for PDEs: exploit representation of the
problem at different scales

I Fine scales: eliminate
high frequency
components of the
error

I Coarse scales:
eliminate low
frequency
components of the
error
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The intuition behind multigrid methods

I A question of wavelength

I Example: consider ∆u = 0, and take an initial guess
consisting of the k-th Fourier mode vk(j) = sin(kjπn )
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The intuition behind multigrid methods

I The smoothing property: hard for fixed point iterative
methods to reduce the low frequency components of the error



10/51

The intuition behind multigrid methods

I How does a smooth component look like on a coarser grid?
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Two-level multigrid methods

Consider a linear PDE:

Au = f .

Consider two discretizations of
the same system:

I Fine grid: Ahuh = fh
I Coarse grid: AHuH = fH

Idea: write the solution u as the
sum of a fine and a coarse term:

u ∼ vh︸︷︷︸
∈Rh

+P( eH︸︷︷︸
∈RH

), H < h.
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Two-level multigrid methods
Build operators to transfer the information between the two levels
R:

P:
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Two-level multigrid methods

Update the two components in an alternate fashion:

u ∼ v + e

r = f − Av

Ae = r residual equation

I Fine level : get vh by iterating on

Ahu = fh

I Compute rh = f − Avh and project rH = Rrh
I Coarse level : compute correction by the residual equation:

AHeH = rH

I Correct: vh ← vh + P(eH)
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General multigrid methods



Part II

High-order multilevel optimization

methods
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The optimization methods

We consider large-scale nonlinear unconstrained optimization
problems:

min
x

f (x)

Classical iterative optimization methods:

f (xk + s) ' T2,k(xk , s)

with T2,k(xk , s) Taylor model of order 2.
At each iteration we compute a step sk to update the iterate:

min
s

mk(xk , s) = T2,k(xk , s) + r(λk), λk > 0

r(λk) regularization term. Set xk+1 = xk + sk
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Classical examples

I Trust region (TR) method:

Complexity: O(ε−2)

mk(xk , s) = f (xk) + sT∇f (xk) +
1

2
sT∇2f (xk)s +

λk
2
‖s‖2

I Adaptive Cubic Regularization (ARC):

Complexity: O(ε−3/2)

mk(xk , s) = f (xk) + sT∇f (xk) +
1

2
sT∇2f (xk)s +

λk
3
‖s‖3

Cubic regularization of Newton method and its global
performance, Y. Nesterov and B. Polyak, 2006

Adaptive cubic regularization methods for unconstrained
optimization, C. Cartis, N. Gould, Ph. Toint, 2009

Worst case complexity

Given ε > 0, compute the number of iterations required to achieve
an iterate xk such that ‖∇f (xk)‖ ≤ ε : k = O(ε?)
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Family of higher-order methods generalizing ARC

Model of order q → Complexity: O(ε−(q+1)/q)

mq,k(xk , s) = Tq,k(xk , s) +
λk

q + 1
‖s‖q+1, λk > 0

Tq,k(xk , s) =

q∑
i=1

1

i !
∇i f (xk)(

i times︷ ︸︸ ︷
s, . . . , s)

Unifying framework for global convergence and worst-case
complexity is presented → ARC q = 2.

Worst-case evaluation complexity for unconstrained nonlinear
optimization using high-order regularized models, E. G. Birgin, J. L.
Gardenghi, J. M. Mart́ınez, S. A. Santos and Ph. L. Toint, 2017
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Bottleneck: Subproblem solution

Solving

min
s

Tq,k(xk , s) +
λk

q + 1
‖s‖q+1

represents greatest cost per iteration, which depends on the size of
the problem.

S. Gratton, A. Sartenaer and Ph. L. Toint, 2008: second order
multilevel trust-region methods

Our proposition: family of multilevel methods using high-order
models

On high-order multilevel optimization strategies, H. Calandra, S.
Gratton, E. Riccietti, X. Vasseur, 2020
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Multilevel strategy

Hierarchy of problems

I {f `(x`)}, x` ∈ Rn`

I n`−1 < n` → f `−1 is cheaper to optimize compared with f `

I µ`−1 model for f `−1

x`k

x`−1
0,k := R`x`k

R`

x`−1
∗,k

minx µ
`−1(x)

x`k+1 = x`k + s`k

s`k = P`(x`−1
∗,k − x`−1

0,k )

The procedure is recursive: more levels can be used
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Lower level model

When to use the lower level model?
I Choose lower level model µ`−1 if

I if ‖∇µ`−1
q,k (x`−1

0,k )‖ = ‖R`∇f `(x`k)‖ ≥ κ‖∇f `(x`k)‖, κ > 0

I if ‖∇µ`−1
q,k (x`−1

0,k )‖ > ε`

I Minimize regularized Taylor model otherwise.

How to define the lower level model?
Modify f `−1 to ensure coherence among levels
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Coherence between levels, q = 1

Let x`−1
0,k = Rx`k . Model with first order correction:

µ`−1
1,k (x`−1

0,k , s
`−1) = f `−1(x`−1

0,k +s`−1)+(R`∇f `(x lk)−∇f `−1(x`−1
k ))T s`−1

This ensures that

∇µ`−1
1,k (x`−1

0,k ) = R`∇f `(x`k)

→ first-order behaviours of f ` and µ`−1 are coherent in a
neighbourhood of the current approximation. If s` = P`s`−1

∇f `(x`k)T s` = ∇f `(x`k)TP`s`−1 = ∇µ`−1
1,k (x`−1

0,k )T s`−1.
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Coherence between levels, q = 2

Let x`−1
0,k = Rx`k . We define µ`−1

2,k as

µ`−1
2,k (x`−1

0,k , s
`−1) = f `−1(x`−1

0,k + s`−1)

+ (R`∇f `(x lk)−∇f `−1(x`−1
k ))T s`−1

+
1

2
(s`−1)T ((R`)T∇2f `(x lk)P` −∇2f `−1(x`−1

k ))s`−1

→ We can generalize this up to order q to have the behaviours of
f ` and µ`−1

q,k to be coherent up to order q in a neighbourhood of
the current approximation.
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Coherence up to order q

We define

µ`−1
q,k (x`−1

0,k , s
`−1) =f `−1(x`−1

0,k + s`−1)+
q∑

i=1

1

i !
[R(∇i f `(xk))−∇i f `−1(x`−1

0,k )] (s`−1, . . . , s`−1)︸ ︷︷ ︸
i times

,

where R(∇i f `(x`k)) is such that for all i = 1, . . . , q and
s`−1

1 , . . . , s`−1
i ∈ Rnl−1

[R(∇i f `(x`k))](s`−1
1 , . . . , s`−1

i ) := ∇i f `(x`k ,P
`s`−1

1 , . . . ,P`s`−1
i ),

where ∇i f ` denotes the i-th order tensor of f `.
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Theoretical results: Assumptions

Assumption 1

Let us assume that for all ` the q-th derivative tensors of f ` are
Lipschitz continuous.

Assumption 2

There exist strictly positive scalars κEB , ρ > 0 such that

dist(x ,X ) ≤ κEB‖∇x f (x)‖, ∀x ∈ N (X , ρ),

where X is the set of second-order critical points of f , dist(x ,X )
denotes the distance of x to X and
N (X , ρ) = {x | dist(x ,X ) ≤ ρ}.

On the Quadratic Convergence of the Cubic Regularization Method
under a Local Error Bound Condition, M.C. Yue, Z. Zhou, and
A.M.C. So, 2018
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Theoretical results: global convergence

Theorem
Let Assumption 1 hold. Then, the sequence of iterates generated
by the algorithm converges globally to a first-order stationary point:

lim
k→∞

‖∇f (xk)‖ = 0

E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos
and Ph. L. Toint, 2017: generalized to multilevel framework

S. Gratton, A. Sartenaer and Ph. L. Toint, 2008: extended to
higher-order models and simplified
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Theoretical results: complexity

Theorem
Let Assumption 1 hold. Let flow be a lower bound on f . Then, the
method requires at most

K3
(f (xk1)− flow )

ε
q+1
q

(
1 +
|log γ1|
log γ3

)
+

1

log γ3
log

(
λmax

λ0

)
iterations to achieve an iterate xk such that ‖∇f (xk)‖ ≤ ε, where

K3 :=
q + 1

η1λmin
L1/q.

E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos

and Ph. L. Toint, 2017: k = O(ε−
q+1
q ) Complexity of standard

method is maintained
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Theoretical result: local convergence

Theorem
Let Assumptions 1 and 2 hold. Assume that L(f (xk)) is bounded
for some k ≥ 0 and that it exists an accumulation point x∗ such
that x∗ ∈ X . Then, the whole sequence {xk} converges to x∗ and
it exist strictly positive constants c ∈ R and k̄ ∈ N such that:

‖xk+1 − x∗‖
‖xk − x∗‖q

≤ c , ∀k ≥ k̄ .

E. G. Birgin, J. L. Gardenghi, J. M. Mart́ınez, S. A. Santos
and Ph. L. Toint, 2017: local convergence not proved

S. Gratton, A. Sartenaer and Ph. L. Toint, 2008: local
convergence not proved

M.C. Yue, Z. Zhou, and A.M.C. So, 2018: generalized to
q > 2
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Numerical results on the solution of PDEs

{
−∆u(z) + eu(z) = g(z) in Ω ⊂ Rd ,

u(z) = 0 on ∂Ω,

The following nonlinear minimization problem is then solved:

min
u∈Rnd

1

2
uTAu + ‖eu/2‖2 − gTu,

which is equivalent to the system Au + eu = g .

I Coarse approximations: coarser discretization of the problem
(2d times lower dimension).
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4 levels methods of order q = 2, 3

n = 1024 n = 4096
d = 2, q = 2 AR2 MAR2 AR2 MAR2

ū1 itT/itf 11/11 7/2 23/23 15/4
save 2.2 4.1

ū2 itT/itf 27/27 13/4 56/56 22/6
save 3.9 6.1

d = 1, q = 3 n = 256 n = 512
AR3 MAR3 AR3 MAR3

ū1 itT/itf 7/7 9/2 18/18 15/2
save 2.5 4.3

ū2 itT/itf 23/23 14/1 34/34 20/5
save 4.1 4.4



Part III

Artificial neural networks for PDEs
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Solution of PDEs with ANNs, an active field of research

Overcoming the curse of dimensionality in the numerical approximation of
high-dimensional semilinear parabolic partial differential equations (2020).

The Deep Ritz method: A deep learning-based numerical algorithm for
solving variational problems (2018)

A proof that deep artificial neural networks overcome the curse of
dimensionality in the numerical approximation of Kolmogorov partial
differential equations with constant diffusion and nonlinear drift
coefficients (2018).

Analysis of the generalization error: Empirical risk minimization over deep
artificial neural networks overcomes the curse of dimensionality in the
numerical approximation of Black-Scholes partial differential equations
(2019).

Solving stochastic differential equations and Kolmogorov equations by
means of deep learning (2018).

Deep Neural Networks motivated by Partial Differential Equations (2019).
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Why this approach ?

Compared with classical approaches (FDM, FEM), approaches
using ANNs present the following advantages.

Advantages of ANNs over classical approaches
I Natural approach for nonlinear equations

I Provides analytical expression of the approximate solution
which is continuously differentiable

I The solution is meshless, well suited for problems with
complex geometries

I The training is highly parallelizable on GPU

I Allows to alleviate the effect of the curse of dimensionality
(highly effective for more than 4 dimensions)
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General NN strategy for learning problems

I Database composed of inputs x = (x1, ..., xn) and outputs
y = (y1, ...ym).

I Loss function noted L(y , x , θ) =
∑m

i=1(NN(xi )− yi )
2

I The associated minimization problem : min
θ∈Θ

L(y , x , θ)

I Optimize by SGD

How to integrate further physical knowledge in the model?
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Physics Informed Neural Networks (PINNs)

General principle

How does a PINN work?
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Physics informed neural networks

1D case: D(z , u(z)) = g(z), z ∈ (a, b) u(a) = A, u(b) = B

Iz → σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

+ → û(θ, z) ∼ u(z)

w vector of
weights and bi-
ases

Input
layer

Hidden
layer

Hidden
layer

Output
layer

Training problem: find the network weights θ by minimizing

min
θ
‖D(z , û(θ, zt))− g(zt)︸ ︷︷ ︸

LR :Equation residual

‖2 + λp
(

(û(θ, a)− A)2 + (û(θ, b)− B)2︸ ︷︷ ︸
LB :Boundary conditions

)



Part IV

Multilevel training methods
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How to exploit multilevel method for training of ANNs?

Iz → σ

b3

σ

b4

σ

b5

σ

b2

σ

b1

+

dw2

w 1

w3

w
4

w
5

v2

v
1

v3

v4

v 5

R1 ⇓ P1 ⇑

Iz → σ

b3

σ

b4

σ

b1

+

d

w 1

w3

w
4

v
1

v3

v4

R2 ⇓ P2 ⇑

Iz → σ

b3

σ

b1

+

d
w3

w 1

v3

v
1

Large-scale problem

I How to build the hierarchy
of problems? The variables
to be optimized are the
network’s weights:
NO evident geometrical
structure to exploit!
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How do we select the hierarchy of variables?

I First attempt: exploit the algebraic structure: split the
variables based on an Algebraic multigrid (AMG) C/F splitting

I Works, but it requires the calculation of the Hessian of the
loss → too expensive for large problems

On a multilevel Levenberg-Marquardt method for the training
of artificial neural networks and its application to the solution
of partial differential equations, H. Calandra, S. Gratton, E.
Riccietti, X. Vasseur, 2020

How to overcome this problem? → Second attempt: Go back to
MG methods!
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Two-level multigrid methods

Update the two components in an alternate fashion:

u ∼ vh︸︷︷︸
∈Rh

+P( eH︸︷︷︸
∈RH

), H < h.

I Fine level : get vh by iterating on

Ah(u) = fh

I Coarse level : compute correction by the residual equation:

AH(Rvh + eH) = AH(Rvh) + R(fh − Ah(vh))

I Correct: vh ← vh + P(eH)
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Multilevel PINNs

Problem definition

D(z , u(z)) = g(z), z ∈ Ω,

usol(z) ∼ uh(θh, z) + uH(θH , z)

Lh(θh) = LR,h(θh) + LB,h(θh)

LR,h(θh) = ||D(ûh(θh) + uH)− g ||2

LB,h(θh) = ||ûh(θh) + uH − u||2

Computed on zh the fine sampling

LH(θH) = LR,H(θH) + LB,H(θH)

LR,H(θH) = ||D(ûH(θH) + uh)− g ||2

LB,H(θH) = ||ûH(θH) + uh − u||2

Computed on zH the coarse sampling
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Multilevel PINNs
Algorithm 1 2-levels training of PINNs

1: Freeze coarse-network parameters, unfreeze fine-network parameters
2: for i=1,2,. . . do
3: Perform ν1 epochs for the minimization of the fine problem
4: Freeze fine-network parameters, unfreeze coarse-network parame-

ters
5: Perform ν2 epochs for the minimization of the coarse problem
6: end for
7: Return : uH + uh
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Multilevel PINNs
Algorithm 2 2-levels training of PINNs

1: Freeze coarse-network parameters, unfreeze fine-network parameters
2: for i=1,2,. . . do
3: Perform ν1 epochs for the minimization of the fine problem
4: Freeze fine-network parameters, unfreeze coarse-network parame-

ters
5: Perform ν2 epochs for the minimization of the coarse problem
6: end for
7: Return : uH + uh
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Experimental results
A simple Poisson problem :

I Ω = [0, 1]× [0, 1]

I ∆u = f ∀x ∈ Ω

I u = 0 ∀x ∈ ∂Ω

I u(x , y) = (sin(πx) + sin(βπx)) ∗ (sin(πy) + sin(βπy))
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Experimental results

Experimental settings :

I The PINNs have two hidden layers of 300 neurons each.

I The Mscale have four subnetworks of two hidden layers of 150
neurons each

I The two-levels MPINN is composed of two networks of two
hidden layers of 210 neurons each and trained in a V-cycle
(ν1 = ν2 = 1000)

I The three level MPINN is composed of three networks of two
hidden layers of 150 neurons each and trained in a V-cycle
(ν1 = ν2 = 1000)

I The input of all network is a regular grid sample of 80× 80
points

I In all cases, we plot the median of ten random runs.
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Experimental results



47/51

Convergence of boundary conditions
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Computational cost for two levels. . .

. . . as a function of coarse grid size (nH)



49/51

Conclusions

I We have presented a general family of high-order multilevel
optimization methods.

I We have presented a new multigrid-inspired training
framework using recent advances in NN to efficiently solve
PINN-type problems.
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Perspectives

For the multigrid training method:

I Perform further extensive testing, including more complex
problems

I Pursue the sensitivity analysis for the relative sizes of the grids
I Investigate theoretical aspects:

I convergence of the iterates from an optimization point of view
I convergence to the solution in functional space

A new perspective: proximal mumtilevel methods for image
denoising (ongoing work)
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Thank you for your attention!

Slides and papers available here

bit.ly/elisaIRIT

On high-order multilevel optimization strategies, H. Calandra,
S. Gratton, E. Riccietti, X. Vasseur, 2020

On a multilevel Levenberg-Marquardt method for the training
of artificial neural networks and its application to the solution
of partial differential equations, H. Calandra, S. Gratton, E.
Riccietti, X. Vasseur, 2020

Multilevel physics informed neural networks (MPINNs), E.
Riccietti, V. Mercier, S. Gratton, P. Boudier, 2022
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