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Sparse matrix factorization

Given a dense matrix A, find multiple factors S1,S2, . . .SJ such that:

A ≈ S1S2 . . . SJ

where Si are sparse matrices.

A︸︷︷︸
dense

≈ S1S2 . . . SJ︸ ︷︷ ︸
sparse

⇒ Ax ≈ S1(S2(. . . (SJx)))

Application: the Fast Fourier Transform, the Fast Hadamard Transform, etc.

The factorization of the Discrete Fourier Transform.
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A general formulation for sparse matrix factorization

Sparse Matrix Factorization Problem

Given a matrix A, J ∈ N and Ej some sets of sparse matrices, solve:

Minimize
S1,...,SJ

‖A−
J∏

j=1

Sj‖2F

subject to: Sj ∈ Ej , ∀j ∈ {1, . . . , J}

Examples of matrix sets E :
1) Ekrow = {S : |supp(Si ,•)| ≤ k}: at most k nonzero entries per row.
2) Ekcol = {S : |supp(S•,i )| ≤ k}: at most k nonzero entries per column.
3) Ektot = {S : |supp(S)| ≤ k}: at most k nonzero entries in total.

→ A challenging problem, how to deal with it?
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A classical related problem: sparse linear inverse problem

Minimize
y∈Rn

‖a− Xy‖22 subject to: ‖y‖0 ≤ s, s � n

1) Support identification

Finding a set I ⊆ JnK such that |I | = s.
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A classical related problem: sparse linear inverse problem

Minimize
y∈Rn

‖a− Xy‖22 subject to: ‖y‖0 ≤ s, s � n

1) Support identification

Finding a set I ⊆ JnK such that |I | = s.

2) Linear regression problem

Minimize
yI∈R|I |

‖a− XI yI‖22
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Two sub-problems of two factors matrix factorization

Minimize
X ,Y

‖A− XY>‖2F subject to: X ,Y sparse matrices

→ The simplest non-trivial setting.

1) Support identification

Find two sets I ⊆ JmK× JrK and J ⊆ JnK× JrK satisfying the sparse
matrix sets constraint E such that supp(X ) ⊆ I , supp(Y ) ⊆ J.
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A comparison between two problems

Linear inverse problem Sparse matrix factorization
Pb Minimize ‖a − Xy‖, a,X

are known, y is sparse
Minimize ‖A − XY ‖, A is
known, X ,Y are sparse

1) Hard due to exponential growth of combinations
2) Easy - Linear regression

problem
Unknown to the literature
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FSMF: motivation (I)

Fixed support matrix factorization covers several existing frameworks:
• Low rank matrix decomposition
• LU decomposition
• Hierarchical H and BLR matrices
• Butterfly factorization
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FSMF: motivation (II)

FSMF helps to understand the asymptotic behaviour of heuristics such as
PALM: alternate update of the factors by projected gradient step onto the
set of the constraints.

8 / 20



Main contributions

Fixed support matrix factorization

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2

Subject to: supp(X ) ⊆ I

supp(Y ) ⊆ J

(FSMF)

1) Is the problem in P (polynomially tractable)?
→ We have proved its NP-hardness.

2) Are there easy instances?
→ We individuated a family of polynomially solvable instances, proved
the well-posedness of the problem and proposed an efficient algorithm.

3) How well does gradient descent tackle the problem of FSMF?
→ We have studied the properties of the landscape of the function
L(X ,Y ) = ‖A− XY>‖2 under the support constraints.
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Is the problem in P (polynomially tractable)?
→ We have proved its NP-hardness.

2) Otherwise, are there easy instances?
→ We individuated several polynomially solvable cases and proposed an
efficient algorithm.

How well does gradient descent tackle the problem of FSMF?
→ We have studied the properties of the landscape of the function
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Polynomially solvable instances

Example (Unconstrained matrix factorization)
If I = JmK× JrK, J = JnK× JrK, i.e no constraints on the support of X and
Y :

Minimize
X∈Rm×r ,Y∈Rn×r

L(X ,Y ) = ‖A− XY>‖2

A = ×

→ Solution: Use Singular Value Decomposition (SVD).
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SVD as a greedy algorithm

1) Decompose the problem:

A− XY> = A−
r∑

i=1

xiy
>
i = A−

r∑
i=1

Mi︸︷︷︸
rank one

(Mi := xiy
>
i )

2) Finding the SVD:

bestRankOneApprox(A) → M1

bestRankOneApprox(A−M1) → M2

· · ·
bestRankOneApprox(A−M1 . . .−Mr−1) → Mr

→ SVD is a greedy algorithm in disguise

Algorithm 1 Algorithm for unconstrained matrix factorization

1: for i ∈ {1, . . . , r} do
2: Mi := best rank one approximation of A−

∑i−1
k=1 Mk .

3: end for
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Notions of rank one support

How to generalize the greedy algorithm?

Decompose XY>:

XY> =
r∑

i=1

XiY
>
i =

r∑
i=1

Mi︸︷︷︸
rank one

(Mi := XiY
>
i )

Finding optimal solution (X ,Y ) � Finding optimal entries in rank-one
support.
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Polynomial solvability characterized by rank-one supports

Theorem (Sufficient condition for tractability (Informal))
If the rank-one supports are pairwise disjoint or identical, the problem admits
an essentially unique solution and the greedy algorithm gives the optimal
solution.

A M1 M2 M3

+ +≈
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Examples

- Butterfly supports: Discrete Fourier Transform (DFT) or the Hadamard
transform (HT)

- Hierarchically off-diagonal low-rank (HODLR) matrices
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An even more general result exists

• A more general condition for tractability is introduced in our paper that
allows partial overlapping1

A M1 M2 M3≈ + +

1Quoc-Tung Le, Elisa Riccietti, and Rémi Gribonval. “Spurious Valleys, Spurious
Minima and NP-hardness of Sparse Matrix Factorization With Fixed Support”. working
paper or preprint. May 2021. URL: https://hal.inria.fr/hal-03364668.
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Hierarchical factorization algorithm

Extension: an efficient hierarchical algorithm to approximate any matrix
by a product of J ≥ 2 butterfly factors.
Let A := X(4)X(3)X(2)X(1) such that:

How to recover the partial products? → use their known supports

Lemma (Supports of the partial products)
At each level the rank-one matrices have pairwise disjoint supports. We can
use our algorithm to recover the partial factors: solve a sequence of two
factors problems
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Numerical results: 2 factors

A the Hadamard matrix of size 2N × 2N , a = dN/2e, b = bN/2c, N = 10
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Numerical results: J factors

Approximation of the DFT matrix by a product of J = 9 butterfly factors.

Faster and more accurate in the
noiseless setting

Ours

Gradient-based

Also more robust in the
noisy setting

Ours

Gradient-based
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Conclusion

Take home message

For Fixed support matrix factorization, we have:
1) It is NP-hard to solve.
2) Easy instances with effective direct algorithm exists, competitive with

gradient descent

Perspectives

Theory and algorithms for multiple factorsa.
aQuoc-Tung Le et al. “Fast learning of fast transforms, with guarantees”. In:

ICASSP 2022 - IEEE International Conference on Acoustics, Speech and Signal
Processing. Singapore, Singapore, May 2022.
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To know more:
Q.-T. Le, E. Riccietti, and R. Gribonval (2022)
Spurious Valleys, Spurious Minima and NP-hardness of Sparse Matrix
Factorization With Fixed Support
arXiv preprint, arXiv:2112.00386.

L. Zheng, E. Riccietti, and R. Gribonval (2022)
Efficient Identification of Butterfly Sparse Matrix Factorizations
arXiv preprint, arXiv:2110.01235.

Q.-T. Le, L. Zheng, E. Riccietti, and R. Gribonval (2022)
Fast learning of fast transforms, with guarantees
ICASSP 2022
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