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Sparse matrix factorization

Given a dense matrix A, find multiple factors S1, S5, ...S; such that:
A~ 5152 e S_/

where S; are sparse matrices.
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Sparse matrix factorization

Given a dense matrix A, find multiple factors S1, S5, ...S; such that:
A~ 5152 e SJ

where S; are sparse matrices.

AR5S...S = AxmSi(S(... (i)

dense sparse

Application: the Fast Fourier Transform, the Fast Hadamard Transform, etc.

A

The factorization of the Discrete Fourier Transform.
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A general formulation for sparse matrix factorization

Sparse Matrix Factorization Problem

J
Minimize [|[A— |1 S:|2
finimjz I Jl:[l il

subject to:  §; € &, vied{l,...,J}

Given a matrix A, J € N and &; some sets of sparse matrices, solve:
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A general formulation for sparse matrix factorization

Sparse Matrix Factorization Problem

Given a matrix A, J € N and &£j some sets of sparse matrices, solve:

Mi A— S;
|n|m5|ze I H |2

17 s j=1
subject to:  §; € &, vied{l,...,J}

Examples of matrix sets &:

1) &K, =1{S : |supp(Sie)| < k}: at most k nonzero entries per row.

2) X, ={S : |supp(S.)| < k}: at most k nonzero entries per column.

3) €K, ={S : |supp(S)| < k}: at most k nonzero entries in total.
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A general formulation for sparse matrix factorization

Sparse Matrix Factorization Problem

Given a matrix A, J € N and &£j some sets of sparse matrices, solve:

Mi A— S;
|n|m5|ze I H |2

17 s j=1
subject to:  §; € &, vied{l,...,J}

Examples of matrix sets &:

1) &K, =1{S : |supp(Sie)| < k}: at most k nonzero entries per row.

2) X, ={S : |supp(S.)| < k}: at most k nonzero entries per column.

3) €K, ={S : |supp(S)| < k}: at most k nonzero entries in total.

— A challenging problem, how to deal with it?

3/20



A classical related problem: sparse linear inverse problem

[ Mini%ize la— Xyll3 subject to:  [|ylo <s,s<n ]
y€eR"
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A classical related problem: sparse linear inverse problem

4 N

Mini%ﬂze la— Xyll3 subject to:  [|ylo <s,s<n
y€eR"

1) Support identification )

Finding a set / C [n] such that |/| = s.

2) Optimize coefficients inside support )

Minimize |la — Xy/||3
yGR",supp(y)QH vz
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A classical related problem: sparse linear inverse problem

4 N

Mini%\ize la— Xyll3 subject to:  [|ylo <s,s<n
y€eR"

1) Support identification )

Finding a set / C [n] such that |/| = s.

\ /

2) Linear regression problem )

Minimize ||a — X;y/|2
yi€RI
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Two sub-problems of two factors matrix factorization

[ Mig{ir{)ize |A=XYT||% subject to: X, Y sparse matrices ]

— The simplest non-trivial setting.
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— The simplest non-trivial setting.

1) Support identification

Find two sets | C [m] x [r] and J C [n] x [r] satisfying the sparse
matrix sets constraint £ such that supp(X) C /, supp(Y) C J.

5/20



Two sub-problems of two factors matrix factorization

[ Mig(i@ize |A— XY |2 subject to: X, Y sparse matrices

)

— The simplest non-trivial setting.

1) Support identification

Find two sets | C [m] x [r] and J C [n] x [r] satisfying the sparse
matrix sets constraint £ such that supp(X) C /, supp(Y) C J.

2) Optimize coefficients inside support

Minimize  L(X,Y)=|A-XY"|?
XERMXr Y cRnxr

Subject to: supp(X)
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A comparison between two problems

Linear inverse problem

Sparse matrix factorization

Minimize |la — Xy||, a, X
are known, y is sparse

Minimize ||[A — XY||, Ais
known, X, Y are sparse

due to exponential

growth of combinations

- Linear regression
problem

Unknown to the literature
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A comparison between two problems

Linear inverse problem Sparse matrix factorization
Pb | Minimize ||la — Xy||, a,X | Minimize ||[A — XY||, Ais
are known, y is sparse known, X, Y are sparse
1) due to exponential growth of combinations
2) - Linear regression
problem

Fixed support matrix factorization )

Minimize  L(X,Y)=||[A—-XYT|?
XeRer7yeRn><r

Subject to: supp(X) (FSMF)
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FSMF: motivation ()

Fixed support matrix factorization covers several existing frameworks:

Low rank matrix decomposition

LU decomposition
Hierarchical H and BLR matrices

Butterfly factorization

X yT X y T

D inside support
A= X A= X

H— L outside support
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FSMF: motivation (I1)

FSMF helps to understand the asymptotic behaviour of heuristics such as
PALM: alternate update of the factors by projected gradient step onto the
set of the constraints.

a) b)

support difference

0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration
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Main contributions
Fixed support matrix factorization

Minimize — L(X,Y) = ||A— XY "|?
XERMXr Y cRnxr

Subject to: supp(X)
supp(Y)

N\

c (FSMF)
-

/
J

1) Is the problem in P (polynomially tractable)?
— We have proved its NP-hardness.

2) Are there easy instances?
— We individuated a family of polynomially solvable instances, proved
the well-posedness of the problem and proposed an efficient algorithm.

3) How well does gradient descent tackle the problem of FSMF?
— We have studied the properties of the landscape of the function
L(X,Y) =|A— XYT||? under the support constraints.
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Main contributions
Fixed support matrix factorization

Minimize — L(X,Y) = ||A— XY "|?
XERMXr Y cRnxr

Subject to: supp(X)
supp(Y)

N\

c (FSMF)
-

/
J

2) Otherwise, are there easy instances?
— We individuated several polynomially solvable cases and proposed an
efficient algorithm.
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Polynomially solvable instances

Example (Unconstrained matrix factorization)

If I =[m] x [r], J=[n] x [r], i-e no constraints on the support of X and
Y:

Minimize L(X,Y)=||A— XY |
XeRanYeRan

A = X
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Polynomially solvable instances

Example (Unconstrained matrix factorization)

If I =[m] x [r], J=[n] x [r], i-e no constraints on the support of X and
Y:

Minimize L(X,Y)=||A— XY |
XeRanYeRan

A = X

— Solution: Use Singular Value Decomposition (SVD).
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SVD as a greedy algorithm

1) Decompose the problem:

r r
A-XYT=A= xy| =A- M (M;=xy)
- ~~
i=1 =1 rank one
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SVD as a greedy algorithm

1) Decompose the problem:

r

)
A=XYT=A=D iyl =A=3 M, (M= xy)
i=1 j

i=1 rank one

2) Finding the SVD:
bestRankOneApprox(A) — M
bestRankOneApprox(A — M) — M,

bestRankOneApprox(A— M;...— M,_1) — M,
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SVD as a greedy algorithm

1) Decompose the problem:

r r

A=XYT=A=3 xiyl =A=3" M (M;=xy)
i=1 =1 rank one
2) Finding the SVD:
bestRankOneApprox(A) — M
bestRankOneApprox(A — M) — M,
bestRankOneApprox(A— M;...— M,_1) — M,

— SVD is a greedy algorithm in disguise

Algorithm 1 Algorithm for unconstrained matrix factorization

1. forie{l,...,r} do '
2: M; := best rank one approximation of A — 374 M.
3: end for
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Notions of rank one support

How to generalize the greedy algorithm?
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Notions of rank one support

How to generalize the greedy algorithm?
Decompose XY T:

ZXYT Z My (M := X;Y;T)

i=1 rank one

XyT = M} + My, + M

o ot . . I . I . I .
constraint

With support E
constraint

] [ [
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Notions of rank one support

How to generalize the greedy algorithm?
Decompose XY T:

ZXYT Z My (M := X;Y;T)
i= 1rankone

XyT = M} + My, + M

o ot . . I . I . I .
constraint

With support E
constraint

] [ [

D 7108 . rank-one support

Finding optimal solution (X, Y) = Finding optimal entries in rank-one
support.
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Polynomial solvability characterized by rank-one supports

Theorem (Sufficient condition for tractability (Informal))

If the rank-one supports are pairwise disjoint or identical, the problem admits
an essentially unique solution and the greedy algorithm gives the optimal

solution.
My M

A M,

Q
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Polynomial solvability characterized by rank-one supports

Theorem (Sufficient condition for tractability (Informal))

If the rank-one supports are pairwise disjoint or identical, the problem admits

an essentially unique solution and the greedy algorithm gives the optimal
solution.

A M,
Step 1 i

A M, My
Step 2 _ m

A M My My
Step 3 — _ m E
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- Butterfly supports: Discrete Fourier Transform (DFT) or the Hadamard
transform (HT)

SmEEmEEE 2 m_'m "a"n == -
‘ m ] | [ [ ]
= [ | H x| EH N ® [ || =-1
| O | | [ [ ]
‘ .l .. l.I.I - | ] =0
=] || | ll -

YT
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An even more general result exists

e A more general condition for tractability is introduced in our paper that
allows partial overlapping*

A = My + My + Ms

Im

1Quoc-Tung Le, Elisa Riccietti, and Rémi Gribonval. “Spurious Valleys, Spurious
Minima and NP-hardness of Sparse Matrix Factorization With Fixed Support”. working
paper or preprint. May 2021. URL: https://hal.inria.fr/hal-03364668
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Hierarchical factorization algorithm

Extension: an efficient hierarchical algorithm to approximate any matrix
by a product of J > 2 butterfly factors.

Let A := X@XBC)IX@)XD) sych that:

supp(X@) C supp(X®)) €

supp(X) C supp(X™M) C
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Hierarchical factorization algorithm

Extension: an efficient hierarchical algorithm to approximate any matrix
by a product of J > 2 butterfly factors.

Let A := XHXGX@XD) sych that: XXX
supp(X@) C supp(X®)) € X(4) X(S)X(Z)X(l)
X @) X (2)x (1)
supp(X ) C supp(X(D) C
X((2) X (1)
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Hierarchical factorization algorithm

Extension: an efficient hierarchical algorithm to approximate any matrix
by a product of J > 2 butterfly factors.

Let A := XAXGIX@XD) such that: XOXOXOKD
supp(X@) C supp(X®)) € X ) XG)x@)x(1)
X3 X 2)x (1)
supp(X(2>) C supp(X(l)) -
X (2) X (1)

How to recover the partial products?
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Hierarchical factorization algorithm

Extension: an efficient hierarchical algorithm to approximate any matrix
by a product of J > 2 butterfly factors.

Let A := XAXGIX@XD) such that: XOXOXOKD
supp(X@) C supp(X®)) € X XB)IxX@xM®)
X3 X 2)x (1)
supp(X ) C supp(X(D) C
X (@) X (1)

How to recover the partial products? — use their known supports

Lemma (Supports of the partial products)

At each level the rank-one matrices have pairwise disjoint supports. We can
use our algorithm to recover the partial factors: solve a sequence of two
factors problems
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Numerical results: 2 factors

A the Hadamard matrix of size 2V x 2N a = [N/2],b= [N/2|, N =10

a) b)
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Numerical results: J factors

Approximation of the DFT matrix by a product of J = 9 butterfly factors.

Faster and more accurate in the Also more robust in the
noiseless setting noisy setting
103
] ——- Noi ~ lowW|
0 Gradient-based o Do e 2018
> Balanced hierarchical
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g 1076 Ours g T T TSI S B
< <
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18/20



Conclusion
Take home message )

For Fixed support matrix factorization, we have:
1) It is NP-hard to solve.

2) Easy instances with effective direct algorithm exists, competitive with
gradient descent
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Conclusion
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For Fixed support matrix factorization, we have:
1) It is NP-hard to solve.

2) Easy instances with effective direct algorithm exists, competitive with
gradient descent

|'
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Perspectives

Theory and algorithms for multiple factors?.

?Quoc-Tung Le et al. “Fast learning of fast transforms, with guarantees”. In:
ICASSP 2022 - |EEE International Conference on Acoustics, Speech and Signal
Processing. Singapore, Singapore, May 2022.
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To know more:

[ Q-T. Le, E. Riccietti, and R. Gribonval (2022)

Spurious Valleys, Spurious Minima and NP-hardness of Sparse Matrix
Factorization With Fixed Support

arXiv preprint, arXiv:2112.00386.

[A L. Zheng, E. Riccietti, and R. Gribonval (2022)
Efficient Identification of Butterfly Sparse Matrix Factorizations
arXiv preprint, arXiv:2110.01235.

[ Q-T.Le L. Zheng, E. Riccietti, and R. Gribonval (2022)
Fast learning of fast transforms, with guarantees
ICASSP 2022
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