High-order multilevel optimization strategies and their application to the training of artificial neural networks

E. Riccietti (IRIT-INP, Toulouse)

Joint work with: H. Calandra (Total) S. Gratton (IRIT-INP, Toulouse)

X. Vasseur (ISAE-SUPAERO, Toulouse)

Context

We consider large-scale nonlinear unconstrained optimization problems:

$$\min_{x} f(x)$$

Context

We consider large-scale nonlinear unconstrained optimization problems:

$$\min_{x} f(x)$$

Classical iterative optimization methods:

$$f(x_k + s) \simeq T_2(x_k, s)$$

with $T_2(x_k, s)$ Taylor model of order 2. At each iteration we compute a step s_k to update the iterate:

$$\min_{s} m_{q,k}(x_k, s) = T_2(x_k, s) + r(\lambda_k), \qquad \lambda_k > 0$$

 $r(\lambda_k)$ regularization term.

A classical example

2009

• Adaptive Cubic Regularization method (ARC):

$$m(x_k, s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T \nabla^2 f(x_k) s + \frac{\lambda_k}{3} ||s||^3$$

C. Cartis, N. Gould, Ph. Toint, 'Adaptive cubic regularisation methods for unconstrained optimization',

Extension to higher-order methods (q > 2)

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 'Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models', 2017

Model of order q:

$$\min_{s} m_{q,k}(x_k,s) = T_q(x_k,s) + \frac{\lambda_k}{q+1} ||s||^{q+1}, \qquad \lambda_k > 0.$$

$$T_q(x_k, s) = \sum_{i=1}^q \frac{1}{i!} \nabla^i f(x_k) (\overbrace{s, \dots, s}^{i \text{ times}})$$

Tensor of order 3

Definition

Let $T \in \mathbb{R}^{n^3}$, and $u, v, w \in \mathbb{R}^n$. Then $T(u, v, w) \in \mathbb{R}$, $T(v, w) \in \mathbb{R}^n$

$$T(u,v,w) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} T(i,j,k) u(i) v(j) w(k),$$

$$T(v,w)(i) = \sum_{i=1}^{n} \sum_{j=1}^{n} T(i,j,k)v(j)w(k), \quad i=1,\ldots,n.$$

Tensor of order i

Definition

Let
$$i \in \mathbb{N}$$
 and $T \in \mathbb{R}^{n^i}$, and $u \in \mathbb{R}^n$. Then $T(\underbrace{u, \dots, u}) \in \mathbb{R}$,

$$T(\underbrace{u,\ldots,u}_{i-1\,\mathrm{times}})\in\mathbb{R}^n$$
 and

$$T(\underbrace{u,\ldots,u}) = \sum_{j_1=1}^n \cdots \sum_{j_i=1}^n T(j_1,\ldots,j_i)u(j_1)\ldots u(j_i),$$

$$T(\underbrace{u,\ldots,u}_{j_2,\ldots,j_1})(j_1) = \sum_{j_2=1}^n \cdots \sum_{j_j=1}^n T(j_1,\ldots,j_j)u(j_2),\ldots u(j_j), \quad j_1=1,\ldots,n.$$

High order methods

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 'Worst-case evaluation complexity for unconstrained nonlinear optimization using high-order regularized models', 2017

Unifying framework for global convergence and worst-case complexity is presented.

- better complexity
- needs higher-order derivatives, model is expensive to minimize

Bottelneck: Subproblem solution

Solving

$$\min_{s} T_q(x_k, s) + \frac{\lambda_k}{q+1} ||s||^{q+1}$$

represents greatest cost per iteration, which depends on the size of the problem.

S. Gratton, A. Sartenaer, PH. Toint, 'Multilevel trust region method' 2008

Hierarchy of problems

- $\{f_I(x_I)\}, x_I \in \mathcal{D}_I$
- $|\mathcal{D}_I| < |\mathcal{D}_{I+1}|$
- f_l is cheaper to optimize compared to f_{l+1}

Our contributions

- E. G. Birgin, J. L. Gardenghi, J. M. Martinez, S. A. Santos and Ph. L. Toint. 2017
 - one level methods: non-scalable
- S. Gratton, A. Sartenaer, PH. Toint, 2008
 - method for second order models

We propose a family of scalable multilevel methods using high-order models.

Outline

- Part I: multilevel extension of iterative high-order optimization methods
 - global convergence
 - worst-case complexity
 - local convergence rate

Outline

- Part I: multilevel extension of iterative high-order optimization methods
 - global convergence
 - worst-case complexity
 - local convergence rate
- Part II: use of the multilevel methods for the training of artificial neural network
 - multilevel methods in the literature used just for problems with a geometrical structure

Part I

Multilevel extension of iterative high-order optimization methods

Multilevel setting

• At each level $I, x \in \mathbb{R}^{n_I}$. I_{max} finest level, 0 coarsest level.

- f^l represents f on the coarse spaces (it is e.g. the discretization of f on a coarse space)
- The functions μ^I are modifications of the f^I to ensure inter-level coherence.
- $R^I = \alpha(P^I)^T$, for some $\alpha > 0$.

One level strategy

At level $l = l_{\text{max}}$, let x_k^l be the current approximation. We look for a correction s_k^l to define the new approximation $x_{k+1}^l = x_k^l + s_k^l$.

$$x_k^I$$

One level strategy

At level $l = l_{\text{max}}$, let x_k^l be the current approximation. We look for a correction s_k^l to define the new approximation $x_{k+1}^l = x_k^l + s_k^l$.

$$x_k^l \xrightarrow{T_q^l} x_{k+1}^l = x_k^l + s_k^l$$

- minimize regularized Taylor model, get s_k^I ,
- 2 choose lower level model μ^{l-1} :

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

$$x_k^l \xrightarrow{T_q^l} x_{k+1}^l = x_k^l + s_k^l$$

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :
 - if $\|\nabla \mu_{a,k}^{l-1}(x_{0,k}^{l-1})\| = \|R\nabla f^{l}(x_{k}^{l})\| \ge \kappa \|\nabla f^{l}(x_{k}^{l})\|$, $\kappa > 0$,
 - if $||R\nabla f^I(x_k^I)|| > \epsilon^I$

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :
 - if $\|\nabla \mu_{a,k}^{l-1}(x_{0,k}^{l-1})\| = \|R\nabla f^{l}(x_{k}^{l})\| \ge \kappa \|\nabla f^{l}(x_{k}^{l})\|$, $\kappa > 0$,
 - if $||R\nabla f^I(x_k^I)|| > \epsilon^I$

$$x_k^I$$

- **1** minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :
 - if $\|\nabla \mu_{q,k}^{l-1}(x_{0,k}^{l-1})\| = \|R\nabla f^{l}(x_{k}^{l})\| \ge \kappa \|\nabla f^{l}(x_{k}^{l})\|$, $\kappa > 0$,
 - if $||R\nabla f^I(x_k^I)|| > \epsilon^I$

$$R^{l} \downarrow \\ R^{l} \downarrow \\ R^{l} x_{k}^{l} := x_{0,k}^{l-1}$$

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :
 - if $\|\nabla \mu_{a,k}^{l-1}(x_{0,k}^{l-1})\| = \|R\nabla f'(x_k^l)\| \ge \kappa \|\nabla f'(x_k^l)\|$, $\kappa > 0$,
 - if $||R\nabla f^I(x_k^I)|| > \epsilon^I$

- minimize regularized Taylor model, get s_k^l ,
- 2 choose lower level model μ^{l-1} :
 - if $\|\nabla \mu_{q,k}^{l-1}(x_{0,k}^{l-1})\| = \|R\nabla f^{l}(x_{k}^{l})\| \ge \kappa \|\nabla f^{l}(x_{k}^{l})\|$, $\kappa > 0$,
 - if $||R\nabla f^I(x_k^I)|| > \epsilon^I$

$$\begin{array}{c|c} x_k^I & x_{k+1}^I = x_k^I + s_k^I \\ \hline R^I & & & \\ R^I x_k^I := x_{0,k}^{I-1} & & & \\ \hline x_k^I = P^I (x_{*,k}^{I-1} - x_{0,k}^{I-1}) \\ \hline \end{array}$$

- minimize regularized Taylor model, get s_k^l ,
- ② choose lower level model μ^{l-1} : if $\|R\nabla f^l(x_k^l)\| \ge \kappa \|\nabla f^l(x_k^l)\|$

$$\begin{array}{c|c} x_k^I & x_{k+1}^I = x_k^I + s_k^I \\ \hline R^I & & & \\ R^I x_k^I := x_{0,k}^{I-1} & & \mu^{I-1} \\ \hline \end{array}$$

- The lower level model is cheaper to optimize.
- The procedure is recursive: more levels can be used.

Coherence between levels, q = 1

Lower level model:

• Let $x_{0,k}^{l-1} = Rx_k^l$. Model with first order correction:

$$\mu_{1,k}^{l-1} = f^{l-1}\big(x_{0,k}^{l-1},s^{l-1}\big) + \big(R^l \nabla f^l\big(x_k^l\big) - \nabla f^{l-1}\big(x_k^{l-1}\big)\big)^T s^{l-1}$$

This ensures that

$$\nabla \mu_{1,k}^{l-1}(x_{0,k}^{l-1}) = R^l \nabla f^l(x_k^l)$$

 \rightarrow first-order behaviours of f^I and μ^{I-1} are coherent in a neighbourhood of the current approximation. If $s^I = P^I s^{I-1}$

$$\nabla f^{I}(x_{k}^{I})^{T} s^{I} = \nabla f^{I}(x_{k}^{I})^{T} P^{I} s^{I-1} = \nabla \mu_{1,k}^{I-1} (x_{0,k}^{I-1})^{T} s^{I-1}.$$

Coherence between levels, q = 2

Lower level model: Let $x_{0,k}^{l-1} = Rx_k^l$. We define $\mu_{q,k}^{l-1}$ as

$$\begin{split} &\mu_{2,k}^{l-1}\big(x_{0,k}^{l-1}+s^{l-1}\big)=f^{l-1}\big(x_{0,k}^{l-1}+s^{l-1}\big)+\big(R^l\nabla f^l(x_k^l)-\nabla f^{l-1}(x_k^{l-1})\big)^Ts^{l-1}\\ &+\frac{1}{2}\big(s^{l-1}\big)^T\big((R^l)^T\nabla f^l(x_k^l)P^l-\nabla^2 f^{l-1}(x_k^{l-1})\big)s^{l-1} \end{split}$$

 \rightarrow We can generalize this up to order q to have the behaviours of f^l and $\mu_{q,k}^{l-1}$ to be coherent up to order q in a neighbourhood of the current approximation.

Coherence up to order q

We define

$$\mu_{q,k}^{l-1}(x_{0,k}^{l-1}, s^{l-1}) = f^{l-1}(x_{0,k}^{l-1} + s^{l-1}) + \sum_{i=1}^{q} \frac{1}{i!} \left[\mathcal{R}(\nabla^{i} f^{l}(x_{k})) - \nabla^{i} f^{l-1}(x_{0,k}^{l-1}) \right] \underbrace{(s^{l-1}, \dots, s^{l-1})}_{i \text{ times}},$$

where $\mathcal{R}(\nabla^i f^l(x_k^l))$ is such that for all i = 1, ..., q and $s_1^{l-1}, ..., s_i^{l-1} \in \mathbb{R}^{n_{l-1}}$

$$[\mathcal{R}(\nabla^i f^l(x_k^l))](s_1^{l-1},\ldots,s_i^{l-1}) := \nabla^i f^l(x_k^l,Ps_1^{l-1},\ldots,Ps_i^{l-1}),$$

where $\nabla^i f^I$ denotes the *i*-th order tensor of f^I .

Basic iterative optimization algorithm

Until convergence

- Define the local model m_k of f around x_k , depending on λ_k
- Compute a trial point $x_k + s_k$ that decreases this model
- Compute the predicted reduction $m_k(x_k) m_k(x_k + s_k)$
- Evaluate change in the objective function $f(x_k) f(x_k + s_k)$
- If achieved change ~ predicted reduction then
 - Accept trial point as new iterate $x_{k+1} = x_k + s_k$ else
 - Reject the trial point $x_{k+1} = x_k$
 - Increase λ_k

Recursive multilevel q-order methods

Until convergence

- Choose either a *q*-order Taylor model or the lower level model.
 - Taylor model: compute a Taylor step satisfying a sufficient decrease property
 - Lower level: apply the algorithm recursively
- Evaluate change in the objective function and in the model
- If achieved change ~ predicted reduction then
 - Accept trial point as new iterate

else

- Reject the trial point
- Increase λ_k

Theoretical results: Assumptions

Assumption 1

Let us assume that for all I the q-th derivative tensors of f^I are Lipschitz continuous.

Assumption 2

There exist strictly positive scalars κ_{EB} , $\rho > 0$ such that

$$\operatorname{dist}(x, \mathcal{X}) \leq \kappa_{EB} \|\nabla_x f(x)\|, \quad \forall x \in \mathcal{N}(\mathcal{X}, \rho),$$

where \mathcal{X} is the set of second-order critical points of f, $\operatorname{dist}(x,\mathcal{X})$ denotes the distance of x to \mathcal{X} and $\mathcal{N}(\mathcal{X},\rho) = \{x \mid \operatorname{dist}(x,\mathcal{X}) \leq \rho\}$.

Yue, M.C. and Zhou, Z. and So, A.M.C. 'On the Quadratic Convergence of the Cubic Regularization Method under a Local Error Bound Condition', 2018: generalized to higher-order methods

Theoretical results: 1) global convergence

Theorem

Let Assumption 1 hold. Then, the sequence of iterates generated by the algorithm converges globally to a first-order stationary point.

Theoretical results: 1) global convergence

Theorem

Let Assumption 1 hold. Then, the sequence of iterates generated by the algorithm converges globally to a first-order stationary point.

E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 2017: generalized to multilevel framework

Gratton, Sartenaer, Toint, 2008: extended to higher-order models and simplified

Theoretical results: 2) complexity

Theorem

Let Assumption 1 hold. Let f_{low} be a lower bound on f. Then, the method requires at most

$$K_3 \frac{(f(x_{k_1}) - f_{low})}{\frac{q+1}{\epsilon}} \left(1 + \frac{\left|\log \gamma_1\right|}{\log \gamma_3}\right) + \frac{1}{\log \gamma_3} \log \left(\frac{\lambda_{\max}}{\lambda_0}\right)$$

iterations to achieve an iterate x_k such that $\|\nabla f(x_k)\| \le \epsilon$, where

$$K_3 := \frac{q+1}{\eta_1 \lambda_{\min}} \max\{K_1^{1/q}, K_2^{1/q}\}.$$

📄 E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 2017: $k = O(\epsilon^{\frac{q+1}{q}})$ Complexity of standard method is maintained

Theoretical results: 2) complexity

Theorem

Let Assumption 1 hold. Let f_{low} be a lower bound on f. Then, the method requires at most

$$K_3 \frac{(f(x_{k_1}) - f_{low})}{\frac{q+1}{\epsilon}} \left(1 + \frac{\left|\log \gamma_1\right|}{\log \gamma_3}\right) + \frac{1}{\log \gamma_3} \log \left(\frac{\lambda_{\max}}{\lambda_0}\right)$$

iterations to achieve an iterate x_k such that $\|\nabla f(x_k)\| \le \epsilon$, where

$$K_3 := \frac{q+1}{\eta_1 \lambda_{\min}} \max\{K_1^{1/q}, K_2^{1/q}\}.$$

📄 E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 2017: $k = O(\epsilon^{\frac{q+1}{q}})$ Complexity of standard method is maintained

Theoretical result: 3) local convergence

Theorem

Let Assumptions 1 and 2 hold. Assume that $\mathcal{L}(f(x_k^h))$ is bounded for some $k \geq 0$ and that it exists an accumulation point x^* such that $x^* \in \mathcal{X}$. Then, the whole sequence $\{x_k^h\}$ converges to x^* and it exist strictly positive constants $c \in \mathbb{R}$ and $\bar{k} \in \mathbb{N}$ such that:

$$\frac{\left\|x_{k+1}^h-x^*\right\|}{\left\|x_k^h-x^*\right\|^q}\leq c, \quad \forall\, k\geq \bar{k}.$$

Theoretical result: 3) local convergence

Theorem

Let Assumptions 1 and 2 hold. Assume that $\mathcal{L}(f(x_k^h))$ is bounded for some $k \geq 0$ and that it exists an accumulation point x^* such that $x^* \in \mathcal{X}$. Then, the whole sequence $\{x_k^h\}$ converges to x^* and it exist strictly positive constants $c \in \mathbb{R}$ and $k \in \mathbb{N}$ such that:

$$\frac{\|x_{k+1}^h - x^*\|}{\|x_k^h - x^*\|^q} \le c, \quad \forall k \ge \bar{k}.$$

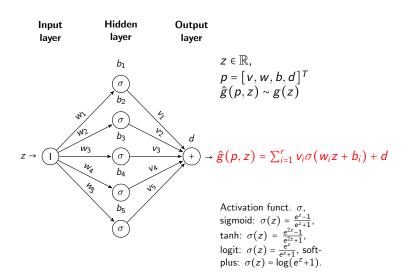
E. G. Birgin, J. L. Gardenghi, J. M. Martnez, S. A. Santos and Ph. L. Toint, 2017: local convergence not proved

Gratton, Sartenaer, Toint, 2008: local convergence not proved

Part II

• Use of the multilevel methods for the training of artificial neural networks

Artificial neural networks



Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$

$$\hat{g}(p, z) = \sum_{i=1}^{r} v_i \sigma(w_i z + b_i) + d$$

where \mathcal{L} is the loss function, \mathcal{T} training set.

Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$

$$\hat{g}(p, z) = \sum_{i=1}^{r} v_i \sigma(w_i z + b_i) + d$$

where \mathcal{L} is the loss function, \mathcal{T} training set.

Large-scale problem: can we exploit multilevel methods for the training?

Training problem:

$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$

$$\hat{g}(p, z) = \sum_{i=1}^{r} v_i \sigma(w_i z + b_i) + d$$

where \mathcal{L} is the loss function, \mathcal{T} training set.

Large-scale problem: can we exploit multilevel methods for the training?

 How to build the coarse problem? The variables to be optimized are the network's weights:

NO evident geometrical structure to exploit!

Training problem:

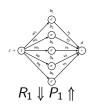
$$\min_{p} \mathcal{L}(p, z) = \mathcal{F}(\hat{g}(p, z) - g(z)), \qquad z \in \mathcal{T}$$

$$\hat{g}(p, z) = \sum_{i=1}^{r} v_i \sigma(w_i z + b_i) + d$$

where \mathcal{L} is the loss function, \mathcal{T} training set.

Large-scale problem: can we exploit multilevel methods for the training?

- How to build the coarse problem? The variables to be optimized are the network's weights:
 NO evident geometrical structure to exploit!
- The network possesses a purely algebraic structure: can we exploit it?



$$\mathcal{F}_1: \mathbb{R}^{3r_1} \to \mathbb{R}$$

$$\hat{g}(p, z) = \sum_{i \in I_1} v_i \sigma(w_i z + b_i) + d$$

$$|I_1| = r_1$$

$$\mathcal{F}_{2}: \mathbb{R}^{3r_{2}} \to \mathbb{R}$$

$$\hat{g}(p, z) = \sum_{i \in I_{2}} v_{i} \sigma(w_{i}z + b_{i}) + d$$

$$I_{2} \subset I_{1}, |I_{2}| = r_{2} < r_{1}$$

$$\mathcal{F}_3: \mathbb{R}^{3r_3} \to \mathbb{R}$$

$$\hat{g}(p,z) = \sum_{i \in I_3} v_i \sigma(w_i z + b_i) + d$$

$$I_3 \subset I_2, |I_3| = r_3 < r_2$$

How do we select the hierarchy of variables?

Algebraic multigrid: C/F splitting

Ruge and Stueben C/F splitting for Ax = b

- Two variables i, j are said to be *coupled* if $a_{i,j} \neq 0$.
- We say that a variable i is strongly coupled to another variable j, if $-a_{i,j} \ge \epsilon \max_{a_{i,k} < 0} |a_{i,k}|$ for a fixed $0 < \epsilon < 1$, usually $\epsilon = 0.25$.

Prolongation-Restriction operators

$$P = [I; \Delta], R = P^T$$
.

Which matrix should we use?

Assume to use a second-order model:

$$m(x_k, s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T \nabla^2 f(x_k) s + \frac{\lambda_k}{3} ||s||^3$$

$$m(x_k, s) = f(x_k) + s^T \nabla f(x_k) + \frac{1}{2} s^T B_k s + \frac{\lambda_k}{2} ||s||^2$$

At each iteration we have to solve a linear system of the form:

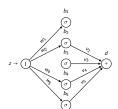
$$(B_k + \tilde{\lambda}_k I)s = -\nabla f(x_k), \quad \tilde{\lambda}_k > 0.$$

As in AMG for linear systems, we use information contained in matrix B_k .

Which matrix should we use?

Remark

Variables are coupled! $\{w_i, b_i, v_i\}$



We do not use the full matrix B_k and we define A as:

$$B_{k} = \begin{bmatrix} f_{v,v} & \dots & \dots \\ \dots & f_{w,w} & \dots \\ \dots & \dots & f_{b,b} \end{bmatrix} \rightarrow A = \frac{f_{v,v}}{\|f_{v,v}\|_{\infty}} + \frac{f_{w,w}}{\|f_{w,w}\|_{\infty}} + \frac{f_{b,b}}{\|f_{b,b}\|_{\infty}}$$

We define the coarse/fine splitting based on the auxiliary matrix A.

Application: solution of PDEs

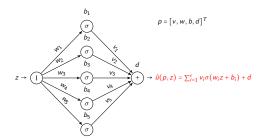
Approximate the solution u(z) of a PDE:

$$D(z, u(z)) = g(z), z \in (a, b);$$

 $u(a) = A, u(b) = B.$

We approximate the solution of the PDE with a neural network:

$$u(z) \sim \hat{u}(p,z), \quad p \in \mathbb{R}^n$$



Application: solution of PDEs

We select a training set \mathcal{T} s.t. $|\mathcal{T}| = t$:

$$z = [z_1, \ldots, z_t]^T$$
, $a \le z_1 < \cdots < z_t \le b$

We define

$$\mathcal{L}(p,z) = \frac{1}{2t} (\|D(z,\hat{u}(z)) - g(z)\|^2 + \lambda_p(\|\hat{u}(a) - A\|^2 + \|\hat{u}(b) - B\|^2))$$
 for $\hat{u}(z) \in \mathbb{R}^t$.

Advantages

- No need of discretization: we get an analytical expression of the solution, with good generalization properties (also for points outside the interval)
- We can solve also nonlinear equations, or equations with highly-nonlinear solution
- Overcome the curse of dimensionality

Choice of the true solution

$$D(z,u(z))=g(z),\ z\in(a,b);$$

• We choose g to have true solution $u_T(z, \nu)$ depending on ν

Remark

- As ν increases the function becomes more oscillatory and it is harder to approximate.
- The size of the problem increases with the number of nodes.
- \mathcal{T} : equispaced points in (0,1) with $h = \frac{1}{3\nu}$ (Shannon's criterion).

Least-squares problem → multi-level Levenberg-Marquardt method

Preliminary results: Poisson's equation 10 runs

1D		ν = 20	$r = 2^9$		ν = 25	$r = 2^{10}$
Solver	iter	RMSE	save	iter	RMSE	save
LM	869	1.e-4		1439	1.e-3	
MLM	507	1.e-4	1.1-2.6-4.3	1325	1.e-3	1.2-1.7-2.8

Table: 1D Poisson's equation, $u_T(z, \nu) = cos(\nu z)$, 10 runs

2D		ν = 5	$r = 2^{10}$		ν = 6	$r = 2^{11}$
Solver	iter	RMSE	save	iter	RMSE	save
	633			1213	1.e-3	
MLM	643	1.e-3	1.1-1.5-2.1	1016	1.e-3	1.2-1.9-2.4

Table: 2D Poisson's equation, $u_T(z, \nu) = cos(\nu z)$, 10 runs

save(min,average,max)=ratio between total number of flops required for
matrix-vector products

Helmholtz's and nonlinear equations, 10 runs

		ν = 5	$r = 2^{10}$
Solver	iter	RMSE	save
LM	1159	1.e-3	
MLM	1250	1.e-3	1.2-1.9-3.1

Table: Helmholtz's equations. $\Delta u(z) + \nu^2 u(z) = 0$, $u_T(z,\nu) = \sin(\nu z) + \cos(\nu z)$

		ν = 20	$r = 2^9$		ν = 1	$r = 2^9$
Method	1					save
LM	950	10^{-5}		270	10^{-3}	
MLM	1444	10^{-5}	0.8-2.9-5.3	320	10^{-3}	1.2-1.7-1.8

Table: Left:
$$\Delta u + \sin u = g_1$$
 (1D) $u_T(z, \nu) = 0.1 \cos(\nu z)$. Right: $\Delta u + e^u = g_1$ (2D), $u_T(z, \nu) = \log\left(\frac{\nu}{z_1 + z_2 + 10}\right)$

Conclusions

- Theoretical contribution: We have presented a class of multilevel high-order methods for optimization and proved their global and local convergence and complexity.
- Practical contribution: We have got further insight on the methods proposing a AMG strategy to build coarse representations of the problem to use some methods in the family for the training of artificial neural networks.

lultilevel (optimiz	ation	method
Artificial	neural	netw	orks

Thank you for your attention!

If q = 1, the regularized model is defined as

$$f(x_k) + \nabla f(x_k) + \frac{\lambda_k}{2} \|s\|^2, \tag{1}$$

where in case of a least-squares problem $\nabla f(x_k) = J(x_k)^T F(x_k)$. For a positive definite matrix $M \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$, we can define the following norm:

$$||x||_M = x^T Mx.$$

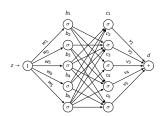
If we define $M = \frac{B_k}{\lambda_k} + I$, then we have $\frac{\lambda_k}{2} \|s\|_M^2 = \frac{1}{2} s^T B_k s + \frac{\lambda_k}{2} \|s\|^2$, so that the model

$$m_k(x_k,s) = f(x_k) + \nabla f(x_k) + \frac{\lambda_k}{2} ||s||_M^2,$$

corresponds to q = 1, just with a different norm for the regularization term.

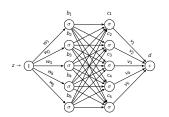
Future work 1: Extend the method to multilayer networks.

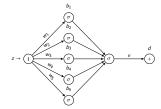
• Extend the method as it is: use a sparse network.



Future work 1: Extend the method to multilayer networks.

- Extend the method as it is: use a sparse network.
- Change strategy to build coarse problems: compress variables in a layer to exploit the structure of the multilayer network.





Future work 2: Hessian-free method

- Make it a competitive training method: method needs to compute and store the Hessian matrix (for step computation and to build transfer operators): too expensive for large-scale problems.
- Hessian complete calculation needed just once (first iteration) to compute R and P.

Thank you for your attention!

For more details:

On high-order multilevel optimization strategies and their application to the training of artificial neural networks

Prolongation operator

$$x_i^h = (Px^H)_i = \begin{cases} x_i^H & \text{if } i \in C, \\ \sum_{k \in P_i} \delta_{i,k} x_k^H & \text{if } i \in F, \end{cases}$$

with

$$\delta_{i,k} = \begin{cases} -\alpha_i a_{i,k}/a_{i,i} & \text{if } k \in P_i^-, \\ -\beta_i a_{i,k}/a_{i,i} & \text{if } k \in P_i^+, \end{cases} \qquad \alpha_i = \frac{\sum_{j \in N_i} a_{i,j}^-}{\sum_{k \in P_i} a_{i,k}^-}, \qquad \beta_i = \frac{\sum_{j \in N_i} a_{i,j}^+}{\sum_{k \in P_i} a_{i,k}^+},$$

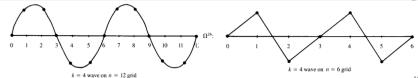
where $a_{i,j}^+ = \max\{a_{i,j}, 0\}$, $a_{i,j}^- = \min\{a_{i,j}, 0\}$, N_i is the set of variables connected to i (i.e. all j such that $a_{i,j} \neq 0$), P_i the set of coarse variables strongly connected to i, which is partitioned in P_i^- (negative couplings) and P_i^+ (positive couplings). The interpolation operator, assuming to have regrouped and ordered the variables to have all those corresponding to indexes in C at the beginning, is then defined as $P = [I; \Delta]$ where I is the identity matrix of size |C| and Δ is the matrix such that $\Delta_{i,j} = \delta_{i,j}$.

Classical multigrid methods

- Consider a linear elliptic PDE: D(z, u(z)) = f(z) $z \in \Omega + b.c.$
- Discretize on grid h. Get a large-scale linear system $A_h x_h = b_h$.

Consider the discretization of the same PDE problem on a coarser grid: $A_H x_H = b_H$, H > h.

- Relaxation methods fails to eliminate smooth components of the error efficiently.
- Smooth components projected on a coarser grid appear more oscillatory.



Coarse problem construction

Define transfer grid operators: P prolongation and R restriction to project vectors from a grid to another: $x_H = Rx_h$, $x_h = Px_H$, such that $R = \alpha P^T$.

Geometry exploitation

The geometrical structure of the problem is exploited to build R and P.

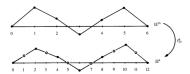


Figure 3.2: Interpolation of a vector on coarse grid Ω^{2h} to fine grid Ω^{h} .

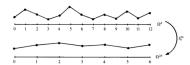


Figure 3.4: Restriction by full weighting of a fine-grid vector to the coarse grid.