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Context: With the rise of computationally intensive deep learning applications such as large language
models (LLM), reducing the power consumption, memory footprint, and training and inference time of
neural network computations has become one of the most pressing and important challenges. Two very
different classes of methods have been explored and have encountered much success: first, low precision
arithmetics (e.g., 16-bit or lower), nowadays ubiquitous in deep learning, are used to quantize the net-
work weights to smaller sizes, while accuracy is retained with the use of stochastic rounding or mixed
precision arithmetic. Second, the matrices associated with the network layers are compressed by exploit-
ing structured representations, such as sparse, low-rank, or butterfly representations. Butterfly matrices in
particular have attracted growing interest due to their extreme sparsity and strong expressivity, as they are
a fundamental tool in many fast linear transforms such as the Fast Fourier Transform (FFT). While both
techniques (quantization and compression) have been extensively studied independently, their combined
use remains largely unexplored, and raises several important questions, both theoretical and practical.

Objectives: This internship will investigate the accuracy of the FFT and related operations with structured
matrices in the presence of rounding errors, and in settings typical of deep learning applications. The FFT
was introduced in 1965 by Cooley and Tukey in its modern form [4, 5, 10]. There is a large literature on
the error analysis of the FFT (see [13, 7, 11, 12]), most authors bounding the relative mean-square error. For
some of our applications, we also need bounds in terms of the infinity norm; in particular, such an analysis
was made by Henrici [6] and, recently, an improved bound was given in [2] together with the construction
of “bad input cases”, for which the attained error is close to this new bound.

While providing suitable worst-case models, such error analyses tend to be highly pessimistic for aver-
age case situations. Indeed these analyses do not exploit specific features of the hardware or the application
that lead to small errors in practice. In particular, deep learning computations commonly employ mixed
precision matrix-multiply accumulate operations [1] and/or stochastic rounding [3], both of which can re-
duce the error accumulation. Moreover, in the recent years probabilistic analyses have been proposed to
model the somewhat random nature of both rounding errors [8] and the matrix coefficients [9] in typical
neural network applications. However, these more refined analyses have been focused on dense (unstruc-
tured) linear algebra computations. The goal of this internship is therefore to extend these analyses to
structured computations, including the FFT, in order to improve the current worst-case bounds. The im-
provement of the error bounds will be experimentally validated by performing an empirical study of the
average accuracy of structured matrix products in deep learning applications.

Practical details

• The internship will take place at LIP laboratory of ENS de Lyon.

• The intern will receive indemnities if her/his status allows.

• Depending on the results of the internship, an opportunity to continue with a PhD thesis could be
available.
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