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Large scale problems

@ f is the sum of a large number of functions: large m

e f depends on a large number of variables: large n
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Examples from machine learning

. large datasets

D ={(z1,%1),---,(Zm, ¥m)}, want to predict the hidden relation ¢ that
relates z to y

Look for a model m(x) such that m(x; z) ~ ¢(y) for all couples (z, y).
Given a loss function ¢, we define

F) = 3 Umix,z) — i) = 3 ()
i=1 i=1

: deep neural networks

m(x) is a deep neural network, n=#edges + # neurons
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mXin f(x) — minf(x)= i fi(x)
i=1

x€eR"
1

Large scale problems

o f is the sum of a large number of functions: large m (ex:
classification of large data sets)

e f depends on a large number of variables: large n (ex: deep learning)

Common objective

Exploit approximations of the objective function to reduce the
computational cost of the solution
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mXin f(x) — minf(x)= i fi(x)
i=1

x€eR"
1

Large scale problems

o f is the sum of a large number of functions: large m (ex:
classification of large data sets) — subsampled methods

e f depends on a large number of variables: large n (ex: deep learning)
— multilevel methods )

Common objective
Exploit approximations of the objective function to reduce the
computational cost of the solution
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o Background material: introduction to trust-region methods.
o | part: Subsampled methods
o |l part: Multilevel methods

@ Opportunities for mixed precision?
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Optimization methods

The solution is approximated by a sequence x, converging to a stationary
point x* such that Vf(x*) = 0.

First order Second order
-1
Xk+1 = Xk — Oszf(Xk), Xk+1 = Xk — H(Xk) Vf(Xk)
where ay is the step length (learning where H is the Hessian matrix.
rate). ® Need for linear systems solution,
© Low computational cost and high computational cost and
memory consumption memory consumption
® Better suited for convex © Efficient on nonconvex
problems, dependent on the problems, robust, fast
choice of ay, slow convergence convergence
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Newton's method

It builds {xx} such that xx11 = xx + px where py is the solution of:

. 1
min my(p) = f(xk) + V()" p+ =p " Hix)p
pER” 2

where H is the Hessian of f.

Pk is the solution of

H(Xk)pk = —Vf(Xk)

S j/X2X1 Xo

/

optimal point
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Properties of Newton's method

@ Very fast convergence: requires few iterations to reach the solution

o Each iteration is expensive

@ No global convergence: convergence not guaranteed for any initial
guess
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Newton trust-region method

Globally convergent improvement over Newton's method: restrict the
minimization to a ball (the trust region)

. 1
min mi(p) = fxc) + V() p+ EPTH(Xk)P
s.t. lpll < Ak

where H is the Hessian of f.

| A

Remark
Pk is the solution of

(H(xk) + Al )px = =V (xk)

with Ay implicitly defined by the trust region radius Ay

9/28
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Trust-region methods

@ Given x, and the trust-region radius Ay > 0 find the step pk solving

: 1
min mi(p) = f(xk) + VF(xk) p + §pTH(xk)p,
s.t. [|pl] < Ak
o Compute
f(xk) — f(xk + px)
my(0) — mk(px)
@ Step acceptance and trust-region radius update. Given 7 € (0, 1):

pr(px) =

o If px < nthen set Axi1 < Ay and Xpp1 = Xk.
o If py > n then set Ayi1 > Ay and X1 = Xk + P
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Part I: Large datasets

Collaboration with: Stefania Bellavia, University of Florence
S. Gratton, INP-ENSEEIHT, Toulouse
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Large datasets

Subsampling techniques

o Large set of data at disposal: {1,..., N}.
Subsampling: X, C {1,...,N}.

@ Sequence of approximations {fs, } of the original objective function

f(x) = > fi(x) ~ f(x)

ie€Xy

@ 0y is the accuracy level of the approximations:
|5 (i) — F(xi)| < 0.

@ We assume that the accuracy level can be changed along the
optimization process
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Inexact trust-region method

@ Approximated model:

1
mi(pi) = f5,(x) + V5, (x)Tp + EPTHék(Xk)P-

@ At each iteration the step is found minimizing the noisy model, i.e.
solving a linear systems of the form:

(Hs,(xk) + Ml )pic = = Vs, (xx)
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Step acceptance

@ After the step is computed, we have to decide whether to accept the
step.

@ Step acceptance is based on the ratio:

Ik _ ﬁsk(xk) - fék(Xk + pk)
PP = O - mip)

o If the noise is too high, the reduction in f5, can be just an effect of
the presence of the noise.
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Step acceptance

@ After the step is computed, we have to decide whether to accept the
step.

@ Step acceptance is based on the ratio:

fs, (k) — s, (X + px)
mi(0) — mi(p)

b
P (pk) =

o If the noise is too high, the reduction in f5, can be just an effect of
the presence of the noise.

Need for a strategy to control the noise!!

Elisa Riccietti (ENS Lyon) Rennes, 08/03/2022 14 /28



Noise control

Noise control

Let
5, () = F(x0)| < 2 [mic(0) — mue(pie)].
If
Ser\ fa () — 5, Ok + pr)
PP =, ©) = melon)
then also F050) — £ i)
_ F(xk) — F(xk + Pk
pr(pk) = m(0) — mi(e) )

— True reduction in the noise-free objective function f
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Algorithm : k-th iteration of the subsumpled trust-region method

Given 6.

For k =0,1,2,
1.
2
3.
4

Compute a solution px of the TR subproblem.

. Estimate 0, = |f5, (xk) — (xk)|

If 0k < Z[m(0) — mi(px)], continue with the classic TR update

. Else, else reduce dx by providing a new approximation to f and go

back to 1.
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Numerical results

o Data assimilation problem. We look for the initial state x of a
system, from the knowledge of observations y;, t; > 0:

[ A ZHH 5l

e Machine learning problem. Binary classification problem: {(z’,y’)}
with z' e R", y' € {-1,+1}and i=1,...,N.
Training objective function: logistic loss with / regularization

N
1 ; ; 1
F(x) = 55 D log(1 +exp(—y/xT21)) + 5 x|
2
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Data Assimilation

Machine learning

All samples | Subsampled | All samples | Subsampled
it 9 12 52 38
costs 10 3 53 16
costp 67 15 808 316
RMSE 1.2e-2 3.8e-2 5.4e-2 6.0e-2
saves 67% 70%
save, 78% 61%
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Figure: Solution approximation, Left: all samples, Right: Subsampled
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Can this be extended to mixed precision?

@ Theoretical results: we recover "good” convergence results with the

assumption that d, — 0, while in mixed precision we have a discrete
setting
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Can this be extended to mixed precision?

@ Theoretical results: we recover "good” convergence results with the

assumption that d, — 0, while in mixed precision we have a discrete
setting

o First attempt: A note on solving nonlinear optimization problems in
variable precision, S. Gratton, Ph. L. Toint, COAP, 2019

Idea: Select 6, < Z[my(0) — my(px)], if 6 < &k, improve the
approximation

e They consider second order methods: what about gradient method?
e They don't allow inexactness in the hessian
o Not tested on neural networks
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Part Il: high-dimensional problems

Collaboration with: , H.Calandra, Total, S. Gratton, INP-ENSEEIHT,
Toulouse, X.Vasseur, ISAE-SUPAERO, Toulouse
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|dea for dimensionality reduction: multigrid methods for

PDEs

State-of-the-art methods for PDEs: exploit representation of the problem
at different scales

@ Fine scales: eliminate
high frequency
components of the error

prolongation

infermediate grids

Level 3

HES o Coarse scales: eliminate
) low frequency
S components of the error

coarsest (last) grid
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Transposition of this idea to optimization: multilevel
methods

Hierarchy of problems

o {fi(xe)}, xo € R™
@ ny_1 < np — fp_q1 less expensive to optimize than f;

Example

Solve
Au =g — miny f(x) = ||Ax — gH2 :

Restriclion \-)
o Discretize over a fine grid:

{fl(Xl)}, X1 € R81 < Imerpaa
@ Discretize over a coarse grid:
{L(x)} x2 € R®
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Transposition of this idea to optimization: multilevel

methods

How to exploit the lower levels?

Need to update xx+1 = Xk + Pk
Look for py in the lower dimensional space and project back!

¢
X
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Transposition of this idea to optimization: multilevel

methods

How to exploit the lower levels?

Need to update xx+1 = Xk + Pk
Look for py in the lower dimensional space and project back!

;
X
Ry

-1 . l
Xok = Rex).
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Transposition of this idea to optimization: multilevel

methods

How to exploit the lower levels?

Need to update xx+1 = Xk + Pk
Look for py in the lower dimensional space and project back!

¢
X

Ry

(1. po miny fi—1(x)
X0,k = ReXy X k
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Transposition of this idea to optimization: multilevel

methods

How to exploit the lower levels?

Need to update xx+1 = Xk + Pk
Look for py in the lower dimensional space and project back!

¢ ¢ _ 0
Xy X1 = X T Py
0 _ -1 -1
Re P = PZ(X*,k — X0,k )
miny fr—1(x)
-1 ._ p ¢ x -1
Xok = Rex). X,
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Transposition of this idea to optimization: multilevel

methods

How to exploit the lower levels?

Need to update xx+1 = Xk + Pk
Look for py in the lower dimensional space and project back!

¢ ¢ _ 0
Xy X1 = X T Py
0 _ -1 -1
Re P = PZ(X*,k — X0,k )
miny fr—1(x)
-1 ._ p ¢ x -1
Xok = Rex). X,

o If ||R/Vf| > k||Vf_1]| is go to go down !

fa () < foa (1) = fulxk) < fulk + pi)
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Multilevel training methods for DNN

by
by
5 R
. @K d ﬁ
w3 : v3 é

by
R:
Ry s

= .
by d P2

< bs & w3 C v3 @ —

% K “y bs NS

bs

@ Networks are algebraic objects, no geometry = how to chose the
hierarchy?
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Multilevel training methods for DNN

by
by
%
W b &N ¢
w3 ( : V3

b
il R 1
Ry s
P, ¢ = \
— b3 d P, o
& bs N w3 C v3 @ —
% ¥ 4y be NS
bs

@ Networks are algebraic objects, no geometry = how to chose the
hierarchy?

@ We use a algebraic multigrid (AMG) strategy from PDEs on the
Hessian
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Numerical results

D(z,u(z)) = g.(2), z€ Q c R?, u(z) =1,(z) z € 0Q

2D Helmholtz's equation

v=>5 r =210

Solver | iter RMSE save
TR 1159 1.e-3

MTR | 1250 1.e-3 1.2-1.9-3.1

Nonlinear equations

v=20 r=29

V= r=2°9
Method | iter  RMSE save iter RMSE save
TR 950  107° 270 1073
MTR | 1444 107> 082953 320 1073 122331
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Numerical results

Poisson’s equation Method ‘ ADAM 1 level 2 levels
(2D, n = 4096). Iterations \ 10000 200 200
101 ; —— ADAM
— M
—— Multilevel LM
10 4
é 101
102 4
1073 4

1000 1500 2000

Temps (s)

0 500
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Perspectives: can we use mixed precision?

@ Build hierarchy based on precision levels
@ Provides an automatic rule to switch the precision

@ How to design the transfer operators?
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Thank you for your attention!
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