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Context

min
x

f (x) → min
x∈Rn

f (x) =
m∑
i=1

fi (x)

Large scale problems

f is the sum of a large number of functions: large m

f depends on a large number of variables: large n
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Examples from machine learning

Large m: large datasets

D = {(z1, y1), . . . , (zm, ym)}, want to predict the hidden relation φ that
relates z to y
Look for a model m(x) such that m(x ; z) ∼ φ(y) for all couples (z , y).
Given a loss function `, we define

f (x) =
m∑
i=1

`(m(x , zi )− yi ) =
m∑
i=1

fi (x)

Large n: deep neural networks

m(x) is a deep neural network, n=#edges + # neurons
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f (x) → min
x∈Rn

f (x) =
m∑
i=1

fi (x)

Large scale problems

f is the sum of a large number of functions: large m (ex:
classification of large data sets)

→ subsampled methods

f depends on a large number of variables: large n (ex: deep learning)

→ multilevel methods

Common objective

Exploit approximations of the objective function to reduce the
computational cost of the solution
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Outline

Background material: introduction to trust-region methods.

I part: Subsampled methods

II part: Multilevel methods

Opportunities for mixed precision?
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Optimization methods

The solution is approximated by a sequence xk converging to a stationary
point x∗ such that ∇f (x∗) = 0.

First order

xk+1 = xk − αk∇f (xk),

where αk is the step length (learning
rate).

, Low computational cost and
memory consumption

/ Better suited for convex
problems, dependent on the
choice of αk , slow convergence

Second order

xk+1 = xk − H(xk)−1∇f (xk)

where H is the Hessian matrix.

/ Need for linear systems solution,
high computational cost and
memory consumption

, Efficient on nonconvex
problems, robust, fast
convergence
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Newton’s method

It builds {xk} such that xk+1 = xk + pk where pk is the solution of:

min
p∈Rn

mk(p) = f (xk) +∇f (xk)Tp +
1

2
pTH(xk)p

where H is the Hessian of f .

Remark

pk is the solution of

H(xk)pk = −∇f (xk)

Elisa Riccietti (ENS Lyon) Rennes, 08/03/2022 7 / 28



Properties of Newton’s method

Remark

Very fast convergence: requires few iterations to reach the solution

Each iteration is expensive

No global convergence: convergence not guaranteed for any initial
guess
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Newton trust-region method

Globally convergent improvement over Newton’s method: restrict the
minimization to a ball (the trust region)

min
p

mk(p) = f (xk) +∇f (xk)Tp +
1

2
pTH(xk)p

s.t. ‖p‖ ≤ ∆k

where H is the Hessian of f .

Remark

pk is the solution of

(H(xk) + λk I )pk = −∇f (xk)

with λk implicitly defined by the trust region radius ∆k
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Trust-region methods

Given xk and the trust-region radius ∆k > 0 find the step pk solving

min
p

mk(p) = f (xk) +∇f (xk)Tp +
1

2
pTH(xk)p,

s.t. ‖p‖ ≤ ∆k

Compute

ρk(pk) =
f (xk)− f (xk + pk)

mk(0)−mk(pk)
.

Step acceptance and trust-region radius update. Given η ∈ (0, 1):

If ρk < η then set ∆k+1 < ∆k and xk+1 = xk .
If ρk ≥ η then set ∆k+1 ≥ ∆k and xk+1 = xk + pk .
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Part I: Large datasets

Collaboration with: Stefania Bellavia, University of Florence
S. Gratton, INP-ENSEEIHT, Toulouse
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Large datasets

Subsampling techniques

Large set of data at disposal: {1, . . . ,N}.
Subsampling: Xk ⊆ {1, . . . ,N}.
Sequence of approximations {fδk} of the original objective function

fδk (x) =
∑
i∈Xk

fi (x) ∼ f (x)

δk is the accuracy level of the approximations:

|fδk (xk)− f (xk)| ≤ δk .

We assume that the accuracy level can be changed along the
optimization process
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Inexact trust-region method

Approximated model:

mk(pk) = fδk (x) +∇fδk (x)Tp +
1

2
pTHδk (xk)p.

At each iteration the step is found minimizing the noisy model, i.e.
solving a linear systems of the form:

(Hδk (xk) + λk I )pk = −∇fδk (xk)
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Step acceptance

After the step is computed, we have to decide whether to accept the
step.

Step acceptance is based on the ratio:

ρδkk (pk) =
fδk (xk)− fδk (xk + pk)

mk(0)−mk(pk)
.

If the noise is too high, the reduction in fδk can be just an effect of
the presence of the noise.

Need for a strategy to control the noise!!
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Noise control

Noise control

Let
|fδk (xk)− f (xk)| ≤ η

2
[mk(0)−mk(pk)].

If

ρδkk (pk) =
fδk (xk)− fδk (xk + pk)

mk(0)−mk(pk)
> η

then also

ρk(pk) =
f (xk)− f (xk + pk)

mk(0)−mk(pk)
> η.

→ True reduction in the noise-free objective function f
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Algorithm : k-th iteration of the subsumpled trust-region method

Given δ0.

For k = 0, 1, 2, ...

1. Compute a solution pk of the TR subproblem.

2. Estimate δk = |fδk (xk)− f (xk)|
3. If δk ≤ η

2
[mk(0)−mk(pk)], continue with the classic TR update

4. Else, else reduce δk by providing a new approximation to f and go
back to 1.
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Numerical results

Data assimilation problem. We look for the initial state x of a
system, from the knowledge of observations yj , tj > 0:

min
x∈Rn

1

2
‖x − xb‖2B−1 +

1

2

Nt∑
j=0

‖Hj(x(tj))− yj‖2R−1
j

Machine learning problem. Binary classification problem: {(z i , y i )}
with z i ∈ Rn, y i ∈ {−1,+1} and i = 1, . . . ,N.
Training objective function: logistic loss with l2 regularization

f (x) =
1

2N

N∑
i=1

log(1 + exp(−y ixT z i )) +
1

2N
‖x‖2.

Elisa Riccietti (ENS Lyon) Rennes, 08/03/2022 17 / 28



Data Assimilation Machine learning

All samples Subsampled All samples Subsampled

it 9 12 52 38
costf 10 3 53 16
costp 67 15 808 316
RMSE 1.2e-2 3.8e-2 5.4e-2 6.0e-2

savef 67% 70%
savep 78% 61%
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Figure: Solution approximation, Left: all samples, Right: Subsampled
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Perspectives

Can this be extended to mixed precision?

Theoretical results: we recover ”good” convergence results with the
assumption that δk → 0, while in mixed precision we have a discrete
setting

First attempt: A note on solving nonlinear optimization problems in
variable precision, S. Gratton, Ph. L. Toint, COAP, 2019

Idea: Select δ+k ≤
η
2 [mk(0)−mk(pk)], if δ+k < δk , improve the

approximation

They consider second order methods: what about gradient method?
They don’t allow inexactness in the hessian
Not tested on neural networks
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Part II: high-dimensional problems

Collaboration with: , H.Calandra, Total, S. Gratton, INP-ENSEEIHT,
Toulouse, X.Vasseur, ISAE-SUPAERO, Toulouse
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Idea for dimensionality reduction: multigrid methods for
PDEs

State-of-the-art methods for PDEs: exploit representation of the problem
at different scales

Fine scales: eliminate
high frequency
components of the error

Coarse scales: eliminate
low frequency
components of the error
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Transposition of this idea to optimization: multilevel
methods

Hierarchy of problems

{f`(x`)}, x` ∈ Rn`

n`−1 < n` → f`−1 less expensive to optimize than f`

Example

Solve
∆u = g → minx f (x) = ‖∆x − g‖2 .

Discretize over a fine grid:
{f1(x1)}, x1 ∈ R81

Discretize over a coarse grid:
{f2(x2)}, x2 ∈ R25
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Transposition of this idea to optimization: multilevel
methods

How to exploit the lower levels?

Need to update xk+1 = xk + pk
Look for pk in the lower dimensional space and project back!

x`k

x`−10,k := R`x
`
k

R`

x`−1∗,k
minx f`−1(x)

x`k+1 = x`k + p`k

p`k = P`(x
`−1
∗,k − x`−10,k )

If ‖R`∇f`‖ > κ‖∇f`−1‖ is go to go down !

f`−1(x`−1∗,k ) < f`−1(x`−10,k )→ f`(x
`
k) < f`(x

`
k + p`k)
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Multilevel training methods for DNN
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Networks are algebraic objects, no geometry ⇒ how to chose the
hierarchy?

We use a algebraic multigrid (AMG) strategy from PDEs on the
Hessian
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Numerical results

D(z , u(z)) = gν(z), z ∈ Ω ⊂ R2, u(z) = fν(z) z ∈ ∂Ω

2D Helmholtz’s equation

ν = 5 r = 210

Solver iter RMSE save

TR 1159 1.e-3
MTR 1250 1.e-3 1.2-1.9-3.1

Nonlinear equations

ν = 20 r = 29 ν = 1 r = 29

Method iter RMSE save iter RMSE save

TR 950 10−5 270 10−3

MTR 1444 10−5 0.8-2.9-5.3 320 10−3 1.2-2.3-3.1
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Numerical results

Poisson’s equation
(2D, n = 4096).

Method ADAM 1 level 2 levels

Iterations 10000 200 200

0 500 1000 1500 2000
Temps (s)

10 3

10 2

10 1

100

101

Er
re

ur
ADAM
LM
Multilevel LM
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Perspectives: can we use mixed precision?

Build hierarchy based on precision levels

Provides an automatic rule to switch the precision

How to design the transfer operators?

Elisa Riccietti (ENS Lyon) Rennes, 08/03/2022 27 / 28



Thank you for your attention!
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