
HAL Id: tel-03969156
https://theses.hal.science/tel-03969156

Submitted on 2 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-determinism, explorable automata and cyclic proofs
Émile Hazard

To cite this version:
Émile Hazard. Non-determinism, explorable automata and cyclic proofs. Computational Complexity
[cs.CC]. Ecole normale supérieure de lyon - ENS LYON, 2022. English. �NNT : 2022ENSL0022�.
�tel-03969156�

https://theses.hal.science/tel-03969156
https://hal.archives-ouvertes.fr

Numéro National de thèse : 2022ENSL0022

THÈSE
en vue de l'obtention du grade de Docteur, délivré par
l’École Normale Supérieure de Lyon

Ecole Doctorale N°512
École Doctorale en Informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 30/09/2022, par :

Émile Hazard

Non-determinism, explorable automata
and cyclic proofs

Non-déterminisme, automates explorables
et preuves cycliques

Devant le jury composé de :
Nathalie Bertrand Directrice de recherche, Université de Rennes Rapporteure
Luigi Santocanale Professeur des universités, Université d’Aix-Marseille Rapporteur
Olivier Carton Professeur des universités, Université Paris Cité Examinateur
Damien Pous Directeur de Recherche, ENS de Lyon Directeur de thèse
Denis Kuperberg Chargé de Recherche, ENS de Lyon Co-encadrant de thèse

Abstract

This thesis is divided into two main parts, although a common denominator can be
found in the notion of non-determinism in automata, and its resolution.

The first part focuses on a notion of limited non-determinism, which is explorable au-
tomata. These are automata for which the non-determinism can be resolved by building
a finite number of simultaneous runs. This generalizes the notion of Good-For-Games
(GFG) automata, which correspond to the case where a single run is enough. We give an-
other link between these two notions, namely the fact that GFGness is decidable in PTime
for explorable automata. We prove that deciding whether an automaton is explorable is
an ExpTime-complete problem for finite and Büchi automata. We also consider the prob-
lem of ω-explorability, in which we allow for a countable number of simultaneous runs.
This problem is non-trivial for automata of infinite words, and we prove the ExpTime-
completeness of deciding the ω-explorability of a co-Büchi automaton.

In the second part, we describe a cyclic proof system designed to provide certificates
of inclusions between languages of infinite words. These languages are represented by ω-
regular expressions, or in the final version by a generalization of these expressions, allowing
for arbitrary nesting of the ω operator. We prove the soundness and completeness of that
system, along with some algorithmic results: the decidability of the validity of a cyclic
proof, and a PSpace proof search algorithm to decide the inclusion of languages.

Keywords: Non-determinism, automata, complexity, cyclic proofs, transfinite words

Résumé

Cette thèse est divisée en deux parties, qui ont en commun le problème du non-
déterminisme chez différents modèles d’automates, et la résolution de celui-ci.

La première partie s’intéresse à une forme de limitation du non-déterminisme, que
l’on nomme l’explorabilité. Un automate est explorable s’il est possible de résoudre le
non-déterminisme en créant un nombre finis d’exécutions en parallèle. Il s’agit d’une
généralisation de la notion d’automate Good-For-Games, i.e. Bon-Pour-les-Jeux (GFG),
qui correspond au cas où une seule exécution suffit. Nous commençons par fournir un lien
supplémentaire entre ces deux notions : le fait que l’on peut décider en temps polynomial
si un automate est GFG, à condition de savoir qu’il est explorable. Nous montrons
ensuite que la reconnaissance des automates GFG est un problème PSpace-complet dans
le cas des automates de mots finis ou de Büchi. Nous nous intéressons aussi au problème
de l’ω-explorabilité, qui correspond au cas où l’on s’autorise un nombre dénombrable
d’exécutions. Celui-ci est non trivial dans le cas des mots infinis, et nous montrons que
décider l’ω-explorabilité d’un automate de co-Büchi est ExpTime-complet.

Dans la seconde partie, nous présentons un système de preuves cycliques permettant
de fournir des certificats d’inclusions entre langages de mots infinis. Ces langages sont
représentés par des expressions ω-régulières dans un premier temps, puis par une générali-
sation de ces expressions, qui permet notamment des imbrications de l’opérateur ω. Nous
montrons la correction et la complétude de ce système, et fournissons deux résultats al-
gorithmiques : la décidabilité de la validité d’une preuve cyclique, ainsi qu’un algorithme
PSpace pour décider l’inclusion de deux langages par la recherche de preuve.

Mots-clefs : Non-déterminisme, automates, complexité, preuves cycliques, mots
transfinis

Résumé long en français

Une façon de présenter cette thèse est de commencer par introduire la notion de non-
déterminisme, qui y occupe une position centrale, et fait le lien entre les deux parties
présentées ici. Étant donné un problème de décision (i.e. auquel on répond par oui ou
non à toute entrée), une machine non-déterministe résolvant ce problème est une machine
qui peut se comporter de différentes façons face à une même entrée, avec la contrainte
suivante : il existe un comportement aboutissant à un résultat positif si et seulement si
l’entrée est une instance positive du problème. À l’inverse, une machine déterministe ne
fait jamais de choix, et il y a donc une unique exécution possible face à une entrée donnée
(et la réponse de la machine est donc celle obtenue en fin d’exécution).

Les machines auxquelles nous nous intéressons ici sont des automates, mais la rela-
tion entre modèle déterministe et non-déterministe est également étudiée dans d’autres
contextes, comme celui des machines de Turing. Chaque modèle présente ses avantages
et inconvénients : dans le cas des automates par exemple, un modèle déterministe sera
plus simple à manipuler, mais parfois exponentiellement plus gros que son équivalent non-
déterministe. C’est pourquoi il est intéressant de chercher des automates “intermédiaires”,
ce qui correspond à trouver des automates non-déterministes mais possédant de bonnes
propriétés. Un tel ensemble est celui des automates Good-For-Games (GFG), i.e. Bon-
Pour-les-Jeux, pour lesquels les choix non-déterministes peuvent être faits en connaissant
les calculs faits jusqu’à présent. Comme l’indique leur nom, ces automates ont un lien
privilégié avec la théorie des jeux : ils présentent l’avantage de se comporter comme des
automates déterministes lorsque l’on fait leur produit avec un jeu.

Dans la première partie, nous nous intéressons à une généralisation des automates
GFG, que l’on appelle les automates explorables. Il s’agit d’automates pour lesquels on
peut construire un nombre fini d’exécutions, avec la garantie qu’au moins l’une d’entre
elles sera acceptante si l’entrée est acceptée. Plus formellement, cela correspond à un jeu
entre un joueur choisissant les lettres d’entrée, et un autre qui choisit les transitions prises
par chaque exécution. Les automates GFG correspondent au cas où une unique exécution
suffit. Un intérêt de cette notion d’explorabilité est le fait qu’elle facilite la reconnaissance
des automates GFG. Nous montrons en effet que décider si un automate explorable est
GFG peut se faire en temps polynomial. Cependant, les résultats obtenus ne permettent
pas d’améliorer les algorithmes actuels de reconnaissance d’automates GFG, puisque nous
montrons que décider l’explorabilité est un problème ExpTime-difficile en général, avec
un algorithme ExpTime dans le cas des automates de mots finis ou des automates de
Büchi.

Dans un second temps, nous explorons le problème de l’ω-explorabilité, qui correspond
à autoriser un nombre infini dénombrable d’exécutions parallèles. L’intuition est que dans
ces conditions, l’adversaire choisissant les lettres doit être capable de cibler une exécution
à “éliminer”, là où précédemment toute élimination avait la même valeur. Malgré cette
difficulté supplémentaire pour l’adversaire, il s’avère que même une infinité dénombrable
de tentatives peut être insuffisante pour trouver une exécution acceptante dans le cas
de mots infinis. Nous montrons que le problème de décision associé (déterminer s’il est
possible de trouver une exécution en en lançant une infinité dénombrable) est ExpTime-
difficile ici aussi, dès lors que le modèle considéré contient les automates de sûreté (safety),

ce qui est le cas des modèles les plus usuels. Nous donnons également la borne supérieure
correspondante en ExpTime pour ce problème, cette fois-ci dans le cas des automates de
co-Büchi, en réduisant le jeu associé à un jeu à arène finie.

La seconde partie s’intéresse à un autre problème : celui du test d’inclusion de lan-
gages, que l’on approche à l’aide de la théorie de la preuve. Une instance du problème
correspond donc à deux langages, représentés par des expressions, et l’on souhaite savoir
si le premier est inclus dans le second. Le cas des langages réguliers (de mots finis) a
déjà été traité à l’aide de preuves cycliques, qui permettent de traduire des raisonnements
infinitaires, tels que la descente infinie. Nous étendons ce résultat en un système adapté
aux expressions ω-régulières, produisant également des arbres de preuves cycliques. Nous
montrons la correction (les preuves sont correctes) et la complétude (tout résultat correct
est prouvable) de ce système. Dans un second temps, nous cherchons à étendre ce système
à une généralisation des expressions ω-régulières, pour laquelle l’opérateur ·ω (concaté-
nation infinie) n’a plus de contraintes sur son positionnement dans l’expression. Ceci
correspond à des langages de mots transfinis, pouvant être indexés par tous les ordinaux
inférieurs à ωω. Notre incapacité à fournir un système d’arbres de preuve identique au
précédent nous a mené à une version modifiée. Dans celle-ci, une preuve n’est plus un ar-
bre cyclique, mais une forêt d’arbres cycliques, dans laquelle de nouveaux comportements
apparaissent, avec notamment la possibilité de passer d’un arbre à l’autre en suivant cer-
taines règles. Outre un résultat de correction similaire à celui du précédent système, le
résultat de complétude obtenu permet de se restreindre aux preuves contenant un nombre
fini d’arbres, ce qui engendre une représentation finie et donc la possibilité d’une exploita-
tion algorithmique. Nous prouvons ainsi qu’un algorithme de recherche de preuve PSpace
est possible pour exploiter ce système en vue de décider des inclusions de langages, ce qui
constitue un nouveau résultat dans le cas des langages de mots transfinis. Cet algorithme
est optimal puisque la borne inférieure PSpace est connue dès le cas des mots finis. Nous
fournissons également un algorithme PSpace de vérification de preuve.

Un lien entre ces deux parties (automates explorables et preuves cycliques d’inclusions)
peut être trouvé en considérant la place prépondérante qu’occupe la notion de non-
déterminisme dans ces deux sujets. Les automates explorables constituant une forme
de déterminisme partiel, que la première partie étudie dans le but d’améliorer notre com-
préhension du non-déterminisme. Son importance dans la première partie est donc claire.
En revanche, lorsque l’on s’intéresse aux preuves cycliques dans la seconde partie, cette
relation est moins évidente. Elle est pourtant bien présente, mais il est nécessaire pour la
voir d’entrer davantage dans les détails d’une preuve. Intuitivement, prouver l’inclusion
de langages L1 ⊆ L2 revient à fournir, pour chaque mot de L1, une méthode pour certifier
son appartenance à L2. Pour ce faire, les choix non-déterministes venant potentiellement
avec la définition de L2 doivent être résolus, ce qui constitue une des difficultés principales
d’un tel système. On peut ainsi voir une preuve de L1 ⊆ L2 comme un outil fournissant
une partielle résolution du non-déterminisme de L2. Un autre point à noter ici est le
fait que le problème de l’inclusion L1 ⊆ L2 devient significativement plus simple lorsque
l’on dispose d’un automate GFG pour L2, ou à défaut d’un automate explorable avec k
exécutions.

Remerciements

Voici venue la partie la plus délicate de la rédaction, dans laquelle je vais essayer de
n’oublier personne. Il n’y aura pas de plan très défini dans cette partie, donc l’ordre
importe peu (i.e. merci de ne pas me taper si vous venez après quelqu’un de clairement
moins important).

Tout d’abord, merci à toi, Denis, pour m’avoir accompagné pendant ces trois ans. Au
cours de cette période, la recherche et l’excellence académique ont connu des hauts et des
bas, mais j’espère que tu as apprécié le voyage. Nos discussions scientifiques m’ont souvent
évité des écueils, ou ont débloqué des situations, mais je suis également reconnaissant pour
les divers autres échanges que nous avons pu avoir, qu’il s’agisse de politique, de jonglage,
ou de n’importe quoi d’autre (moins intéressant que les deux premiers). Merci aussi à toi
Damien, nous t’avons moins souvent sollicité, mais nos interactions étaient fructueuses,
notamment au sujet des arbres de preuves.

J’aimerais ensuite remercier les membres du jury de ma soutenance de thèse : Nathalie
Bertrand, Olivier Carton et Luigi Santocanale. Merci à vous trois pour l’intérêt que vous
avez porté à mon travail, ainsi que pour les échanges que nous avons eus. Je remercie
tout particulièrement les deux rapporteurs, Nathalie et Luigi, pour le temps que vous avez
consacré à la lecture de mon manuscrit.

Merci également aux autres membres de l’ENS et aux chercheurs extérieurs avec
lesquels j’ai échangé au cours de cette thèse, notamment tous les (ex-)membres de l’équipe
Plume, et les co-bureaux successifs en particulier : Alexi, Christophe, Enguerrand, Lau-
reline, Rémi. Nos échanges n’étaient pas systématiquement consacrés à l’avancement de
la recherche (j’espère qu’elle s’en remettra), mais toujours intéressants. Une pensée parti-
culière pour l’agent d’entretien à l’origine du corbeau en sac-poubelle qui trôna sur notre
balcon pendant un moment, et qui, à défaut d’effrayer les pigeons, nous a fourni un sujet
de conversation à de multiples reprises.

J’ai aussi pu profiter de ces trois années pour enseigner face à des élèves de l’ENS, et
j’aimerais remercier les enseignants et TDmen avec lesquels j’ai partagé cette expérience :
Pascal, Natacha, Daniel, Rémi, Alexi et Hugues. Je ne sais pas si tout ça m’a préparé au
lycée, mais c’était en tout cas intéressant et apprécié. Merci également à tous les élèves
que j’ai vu passer sur cette période (sauf une personne qui se reconnaîtra).

Je souhaiterais également avoir quelques mots pour l’islamo-gauchisme (et ses porteurs
et porteuses), qui a gangréné mon travail de recherche pendant toutes ces années, et
auquel je ne pouvais me soustraire, tant il est profondément enraciné dans la structure
universitaire d’aujourd’hui. Je suppose que j’ai à son égard développé une forme de
syndrome de Stockholm, et j’ai bien peur que ma situation actuelle d’enseignant dans le
lycée le plus gréviste depuis la rentrée ne permette pas une rémission complète. Merci au
passage aux collègues enseignant avec lesquels j’ai déjà tissé des liens, basés sur des luttes
communes ou sur des vols de notes de cours.

Dans le prolongement de la veine islamo-gauchisme, je voudrais remercier les deux
équipes d’élu·es étudiant·es avec lesquels j’ai travaillé pendant les mandats 2019-2021.
J’ai beaucoup appris à vos côtés, sur le monde universitaire notamment, mais aussi sur
la vie associative en général.

Ah et merci Monsieur Macron pour les 100 euros.

Les copains de Lokifer, je ne vous oublie pas : je sais que vous êtes les plus susceptibles
de parcourir cette partie. Merci pour ce groupe où on a pu partager nos (més)aventures
de la thèse ou de la vraie vie (est-ce exclusif ? Cette question est laissée en exercice au
lecteur...). Je suis vraiment heureux d’avoir eu un tel groupe à Lyon pendant la thèse, qui
ne se serait sans doute pas déroulée de la même façon sans vous. Nos diverses aventures
furent souvent des distractions bienvenues. Merci plus globalement aux copains lyonnais,
dont certains ne sont maintenant plus si lyonnais, pour tous les bons moments depuis
mon arrivée à l’école.

Merci également à ma famille, qui a su me soutenir quand c’était nécessaire, notam-
ment pendant cette dernière ligne droite que j’ai passée plus proche de vous et qui a été
un moment compliqué pour moi. J’inclus aussi la future belle famille qui m’a déjà bien
accueilli. Je suis heureux de vous présenter mon travail à tous.

Ce dernier mois précédant la soutenance a été difficile, et les membres de ma famille
ne sont pas les seuls à avoir été présent pour m’aider à le traverser. Merci aux copains
avec lesquels j’ai pu parler : Jodie-Lou, Angèle, Hugo, Rédouane, Colin, et les autres que
j’ai moins vu, mais qui étaient quand même là régulièrement.

Les plus habitués à l’exercice des remerciements se doutent de ce que je réserve pour
la fin : merci, donc, à Frédérique Vidal Alice, pour m’avoir supporté (double sens tavu)
pendant tout ce temps. La confiance que tu as en moi a souvent compensé celle qu’il me
manquait, et je ne crois pas connaître de personne plus attentionnée que toi. La vie ça
fait parfois peur, mais moins avec toi.

Contents

Abstract 2

Résumé 3

Résumé long en français 4

Remerciements 6

1 Introduction 10
1.1 A word on notations . 10
1.2 Languages, automata and where to find them 10
1.3 Non-determinism and regular expressions 13
1.4 Infinite words . 15
1.5 Games . 17
1.6 (Cyclic) proofs . 18
1.7 Context and contributions . 25

2 Explorability 28
2.1 Introduction . 28
2.2 Explorable automata . 31

2.2.1 Preliminaries . 31
2.2.2 Explorability . 32
2.2.3 Link with GFG automata . 34

2.3 Decidability and complexity of explorability 36
2.3.1 2-ExpTime algorithm via a black box reduction 36
2.3.2 ExpTime-hardness of NFA explorability 37
2.3.3 ExpTime algorithm for Büchi explorability 39

2.4 Explorability with countably many tokens 46
2.4.1 Definition and basic results . 46
2.4.2 ExpTime algorithm for co-Büchi automata 48
2.4.3 ExpTime-hardness of the ω-explorability problem 50

2.5 Conclusion of Chapter 2 . 55

3 Cyclic proofs for transfinite expressions 56
3.1 Introduction . 56
3.2 The case of ω-regular expressions . 59

8

9

3.2.1 The proof system Sω . 59
3.2.2 Soundness of the system Sω . 63
3.2.3 Cut-free regular completeness of the system Sω 68
3.2.4 Deciding the validity criterion . 73
3.2.5 PSpace inclusion algorithm via proof search 74

3.3 Transfinite words and proof forests . 76
3.3.1 Ordinals and transfinite words . 76
3.3.2 Adapting the proof system . 81
3.3.3 Soundness . 83
3.3.4 Cut-free regular completeness of St 85
3.3.5 Decidability and Complexity . 88
3.3.6 Example of a transfinite proof . 90

3.4 Conclusion of Chapter 3 . 92

Bibliography 93

Index 98

Chapter 1

Introduction

In this part, we will first introduce a few notations, then present some notions that will be
needed to understand this thesis. This corresponds to Sections 1.2 to 1.6, with Sections
1.5 and 1.6 specific respectively to the contents of Chapter 2 and Chapter 3. After that,
we will give some context in Section 1.7, followed by a summary of the contributions
presented in this thesis.

1.1 A word on notations

In order to make this work as easy to read as possible, we will try to adhere to the following
guidelines concerning notations. Upper case letters (L,Q . . .) will be used to name sets,
while lower case letters (w, q . . .) will instead correspond to elements of these sets. For
bigger objects (automaton, tree, etc.), we will use upper case cursive letters (A, T . . .).
We might however forgo these rules in favor of more standard ones in some cases.

If S is a set, we call |S| the cardinal of S, and P(S) the powerset of S, i.e. the set
of all subsets of S. We use standard notations for sets, such as ∈, ⊆, ∪, ∩ and \ for
membership, inclusion, union, intersection and difference respectively. We will also call
[i, j] the set {i, i+1, . . . , j} for two integers i, j ∈ N (by convention, [i, j] is the empty set
∅ if j < i).

The name Σ will be used for a non-empty finite set, which we call alphabet . Its
elements are called letters .

We use the common notations for the main complexity classes: PTime, PSpace, Ex-
pTime, 2-ExpTime (doubly exponential time), etc. which we will not redefine formally
here. We also use the hardness notion: ExpTime-hard, etc.

1.2 Languages, automata and where to find them

This part aims at defining the objects around which the rest of this work will revolve:
languages of words, and ways to represent them (namely automata and expressions).

Automata are one possible answer to the question: “how can we model a computing
system?” There are several other answers to this question, such as Turing machines or
boolean circuits, but the one we want to describe here is the notion of automaton. This

10

1.2. LANGUAGES, AUTOMATA AND WHERE TO FIND THEM 11

corresponds intuitively to a machine with very limited memory, as opposed to a computer
that would never need all of its memory for a computation, and for which the model of
Turing machines is therefore usually preferred.

A machine with a user interface can be seen as a system that changes its current state
at each timestep, according to the input (e.g. the key(s) currently pressed by the user).
This can be formally described as a set of states, which we call Q, along with the set of
possible inputs Σ, and rules to change the state in reaction to an input. These rules can
be described by a function δ that associates a new state to any couple of a state and an
input.

Example 1.1:
Here is an automaton modeling a cookies and waffles dispenser. At the start, the machine
is in the state wait. The user needs to first pay the price, which sends the machine to
state paid, then type 1 for a cookie or 2 for a waffle. The machine goes to the associated
state, which corresponds to serving the item. Finally, the user can take the item, which
resets the machine to state wait.

waitstart paid

cookie

waffle

1, 2

pay

1

2

take

take

A second, more abstract example is the following automaton, which only has two
inputs: 1 and 0, corresponding for instance to pressing and not pressing a button. The
state of the automaton then tells the user if he pressed it an even or odd number of
timesteps.

evenstart odd

0

1

1

0

In order to give the formal definition of an automaton, we first need to introduce the
notions of word and language.

Definition (Word, language):
Let us take an alphabet Σ. A word w over Σ is a finite sequence of letters, i.e. a function
from [0, n − 1] (for some n ∈ N) to Σ. n is called the length of w, sometimes denoted

12 CHAPTER 1. INTRODUCTION

|w|. We usually use the compact notation w = w0w1 . . . wn−1, with wi = w(i) ∈ Σ for any
i ∈ [0, n− 1]. The empty word, i.e. the only word of length 0, will be denoted ε.

A language is defined as a set of words. The universal language over Σ, i.e. the set of
all words on this alphabet, is denoted Σ∗.

Definition (Deterministic finite automaton):
We can now define what we call a deterministic finite automaton (DFA), which consists
in a tuple A = (Σ, Q, q0, δ, F), where:

• Σ is the alphabet of the automaton, and its elements are called letters. In the
previous example (second automaton from Example 1.1) it is {0, 1}.

• Q is the finite set of states of the automaton, for instance {even, odd} above.

• q0 is an element of Q, called the initial state. It is usually marked using a “start”
arrow, like the state even, or simply an incoming arrow with no origin.

• δ is a function from Q × Σ to Q, called the transition function. It defines the
evolution of states according to the input. A transition δ(q, a) = p will often be
represented as q

a−→ p. In the example above, δ(even, 0) = δ(odd, 1) = even for
instance.

• F is a subset of Q called the set of accepting states. It is usually marked by a double
border in the drawing of a state, as for even above.

We say that a word w = w0 . . . wn−1 is accepted by the automaton if the sequence of states
q0, q1, . . . , qn defined inductively by qi+1 = δ(qi, wi) (and the first state is the initial state
of A) satisfies qn ∈ F . We call such a sequence a run, and we say that it is accepting if
that final condition is satisfied. We call L(A) the language of A, which is the set of its
accepted words.

Note that although a run of a DFA is defined from a complete input word, it can be
seen as a computation “on the fly” by jumping to the next state at each new letter of the
input. This is the intuition behind the notion of automaton, which is meant to represent
an actual machine.

Another thing to notice here is that an automaton can only answer a decision problem,
i.e. its answers are limited to “yes” and “no”, as opposed to Turing machines that can also
write on their tape, which can be considered as an output.

Example 1.2:
Here are two other automata, both recognising words over {a, b} with exactly one a.

q0start q1

b

a

b

q0start q1 q2

b

a

b

a

a, b

The arrow labelled “start” on the left indicates the initial state, and the accepting states
are those with a double border.

1.3. NON-DETERMINISM AND REGULAR EXPRESSIONS 13

Note that the left automaton does not have transitions from q1 labelled by a. This
is a simplified version of the right automaton, which is the complete version. We will
sometimes use this representation to save space, using the convention stating that when
an automaton reads a letter that yields no transition, the word is rejected.

1.3 Non-determinism and regular expressions
In the previous section, we defined languages along with a way to recognise them, using
automata. Intuitively, the relation between these two notions is that the automaton
describes the inner workings of a machine, while the language is a mathematical object
describing the expected behaviour of the machine, seeing it as a black box. The first is a
finite object, while the second can be infinite.

Here we will define a generalisation of the notion of automaton, that no longer corre-
sponds to a physically realistic machine. This is the notion of non-deterministic automa-
ton. We will then define a way to describe languages called regular expressions, and use
it to illustrate how non-determinism provides a middle ground between languages and
deterministic automata.

Definition (Non-deterministic finite automaton):
The definition of a non-deterministic finite automaton (NFA) looks similar to that of a
DFA: it will also be given by a tuple A = (Σ, Q, q0,∆, F), with the only difference that
∆ is now a set of possible transitions, with ∆ ⊆ Q × Σ × Q. As before, a transition
(q, a, p) ∈ ∆ can be represented as q

a−→ p. This definition implies that for given state
q ∈ Q and letter a ∈ Σ, the number of transitions from q labelled by a might be anywhere
between 0 and |Q|. The automaton is called complete if that number is never 0.

A word w = w0 . . . wn−1 is accepted by the automaton if there exists a run q0, q1, . . . , qn
(where q0 is the initial state) such that (qi, wi, qi+1) ∈ ∆ for any i ∈ [0, n−1], and qn ∈ F .
We still call L(A) the language of A.

Example 1.3:
Here is an NFA recognising words over the alphabet {a, b} that have the letter a in the
third to last position.

q0start q1 q2 q3

a, b

a a, b a, b

Upon reading a in state q0, this automaton can either stay in state q0 or go to q1, and
has to “guess” when the end of the word will arrive in order to provide an accepting run
on the fly. In this case, the non-determinism appears as a simple way to represent the
language of words with a a in third to last position.

It is worth noting at that point that NFAs are actually equivalent to DFAs, in the sense
that any language recognised by an NFA is also recognised by a DFA (and the reverse
is immediate). These languages are called regular . However, this equivalence hides a

14 CHAPTER 1. INTRODUCTION

size gap, as an NFA can be exponentially more succinct than a DFA. To illustrate that,
consider the previous automaton from Example 1.3. The general version of this automaton
uses n+1 states if we replace “third to last” with “nth to last”, but the smallest equivalent
DFA actually needs 2n states, as it must somehow “store” the last n letters read, which
corresponds to 2n different possibilities, each of which have a different set of accepted
suffixes.

In the following, we will define a way to describe languages, called regular expressions,
and detail their privileged relation with NFAs (rather than DFAs), which explains how
NFAs can be seen as an intermediary point between language and DFAs.

Definition (Regular expression):
A regular expression over an alphabet Σ is an expression generated by the following
grammar:

e, f := a | e+ f | e · f | e∗

where a is any letter from Σ. In other words, letters from Σ are regular expressions, and
if we take two regular expressions e and f , we can create new ones by taking e+ f , e · f
and e∗. These three operations are respectively called union, concatenation, and Kleene
star.

Any regular expression e represents a language L(e) that is defined inductively using
the following rules.

L(a) = {a} L(e+ f) = L(e) ∪ L(f) L(e · f) = L(e) · L(f) L(e)∗ =
⋃
n∈N

L(e)n

These use the concatenation of languages, which is defined, given two languages L and
M , by L ·M = {uv | (u, v) ∈ L×M} (uv is created by adding the word v at the end of
u). The iterated concatenation is defined inductively by L0 = {ε} and Ln+1 = Ln · L.

At that point, we can note that these expressions contain a form of symmetry that
NFAs lack, in the sense that the reading order for a word is not as important from the
point of view of the expression. If a language can be defined using a regular expression,
then the mirror language, which contain the same words but read in the opposite order,
can also be described using a similar expression, defined inductively.

One folklore result states the equivalence between NFAs and regular expressions: any
language recognised by one of these can also be recognised by the other (i.e. regular
expressions describe regular languages). Moreover, the transformations are polynomial,
meaning that these two representations have the same succinctness.

Example 1.4:
The expression (a+b)∗·a·(a+b)·(a+b) corresponds to the same language as in Example 1.3,
i.e. words over Σ = {a, b} that have the letter a in the third to last position. We sometime
replace the union of all letters of the alphabet with the alphabet itself, and remove the
concatenation operator for simpler expressions: Σ∗aΣΣ.

1.4. INFINITE WORDS 15

1.4 Infinite words

When we want to describe a machine that is expected to work forever, the notion of
automaton as described before becomes restrictive, as it only allows for finite inputs.
This is one reason to consider the notion of infinite words.

Definition (Infinite word):
An infinite word , or ω-word (used to differentiate those from words over bigger ordinals,
which are described in Section 3.3.1), is a labelling of N with letters from an alphabet Σ,
i.e. a function N → Σ. The ith letter of a word w (starting at 0 by convention) is still
denoted wi.

The language of all infinite words over Σ is denoted Σω.

Example 1.5:
We often use a notation with suspension points to represent these words, for instance
“abababab . . .” for the word with an infinite alternation of a and b. The general aspect of
an ω-word w is w0w1w2 . . .

To describe languages of such words, we use the following expressions.

Definition (ω-regular expression):
To describe languages of such words, we use ω-regular expressions , which are defined by
the grammar:

g, h := eω | g + h | e · g

where e stands for any regular expression. The operators + and · are interpreted similarly
as before, although in the case of · we now have an asymmetry, as we require that the
first word be a finite one. The expression eω corresponds to an infinite concatenation of
words from L(e), i.e. the words in L(e) are those that can be written w1 ·w2 ·w3 . . . with
wi ∈ L(e) for any i ∈ N. More formally, this corresponds to functions w : N → Σ such
that there is an increasing sequence of integers (ki)i∈N satisfying wki . . . wki+1−1 ∈ L(e) for
any i ∈ N.

Remark 1.1:
Note that to avoid the possibility of a finite (or even empty) word in L(eω), one might
require that ε /∈ L(e). If we wanted to allow these instead, we would need to change the
“increasing sequence” above to a condition saying that the limit of the sequence corre-
sponds to the length of the word. To avoid this problem altogether, what we will do later
in Chapter 3 is change the grammar of regular expressions to get rid of ε entirely.

With these ω-words defined, we can introduce deterministic and non-deterministic
automata reading them in a similar way as the ones used for finite words.

Definition (ω-automaton):
An ω-automaton is a tuple A = (Σ, Q, q0,∆, F) where Σ, Q, q0 and ∆ play the same roles
as for an NFA to create infinite runs for a given infinite word. F is still called the set of
accepting states. We say that A is deterministic if, for any a ∈ Σ and q ∈ Q, there is at
most one p such that (q, a, p) ∈ ∆. In that case, we can use the δ notation instead.

16 CHAPTER 1. INTRODUCTION

Formally, a run of A on w = w1w2w3 . . . is an infinite sequence q0, q1, q2 . . . where q0
is the initial state of A and for any i ∈ N, (qi, wi+1, qi+1) ∈ ∆ (or δ(qi, wi+1) = qi+1 in the
deterministic version).

A word is accepted by A if there is an accepting run (which is defined below) for that
word, and the language of A is the set L(A) of those accepted words. There are several
options for the acceptance condition:

• Reachability automaton: A run is accepting if an accepting state is reached.

• Safety automaton: A run is accepting if no non-accepting state is ever reached.

• Büchi automaton: A run is accepting if at least one accepting state (or Büchi state)
is seen infinitely often.

• Co-Büchi automaton: A run is accepting if every non-accepting state (or co-Büchi
state) is seen finitely often.

• Parity automaton: Here F is replaced with a function p that associate an integer
value to each state, called its priority. A run is accepting if the lowest priority of a
state seen infinitely often is even.

Note that there are a few other common acceptance conditions out there, but these are
the only ones that we will be using here.

The following property provides a link between the models of ω-automaton and ω-
regular expression.

Prop 1.1:
Non-deterministic ω-automata (with any acceptance condition) describe the same lan-
guages as ω-regular expressions. We called those languages ω-regular .

Example 1.6:
Here is a non-deterministic Büchi automaton, accepting words over {a, b} containing only
the letter a after some point. A corresponding expression is given by (a+ b)∗aω.

q0start q1

a, b

a

a

Note that we still use the double circle to mark Büchi states here.
One can also notice that there is no equivalent deterministic Büchi automaton. This

illustrates the fact that, contrarily to the case of finite words, there is not necessarily an
equivalence between deterministic and non-deterministic models here. This equivalence
however does hold for some models, such as parity automata.

1.5. GAMES 17

1.5 Games

This section gives some definitions concerning games, which will hold a central role in
Chapter 2. This notion is used to formalise the idea of an adversary, who often plays the
role of the input when we talk about non-determinism.

Definition (Arena, play):
Given two players A and B, an arena for those players is a set of positions P = PA ⊎ PB

along with a set of possible moves (or transitions) T ⊆ P × P , and an initial position
p0 ∈ P .

A play in the arena is a (possibly infinite) word over P , starting with p0 and such that
any two consecutive positions are linked by a transition from T .

Definition (Game):
A game is given by an arena and a winning condition, which is a partition of the plays
into those won by A and those won by B.

Note that this definition does not leave room for draws: any play is won by one of the
players. The winning condition can for instance be expressed as a reachability objective
for A, i.e. saying that A wins the game if any state from some given set is reached
(implying that B wins otherwise).

Example 1.7:
In a game of chess, the players can be called Black and White, and the positions are
given by the configuration of the board, i.e. the positions held by each piece. The initial
position is in PWhite, and the moves correspond to the allowed movements. Each move goes
from one of PBlack, PWhite to the other. To simplify, we forget about the rules enforcing
progression of the game, and we consider that White wins if and only if Black cannot play
while his king is in check (i.e. every case of draw is now winning for Black, to resolve the
issue mentioned above).

With this setup, the winning plays for White are those ending with a p ∈ PBlack that
is a starting point for no move (for any p′, (p, p′) /∈ T).

Remark 1.2:
We will sometimes describe the games in a more informal manner, by explaining verbally
the possible moves for each player. In some instances, we only describe the position at
the beginning of a “turn”, meaning that we go from a position to the next by letting A
play then B answer, for instance. Such a description corresponds to an implicit arena,
where we add the positions (p, t) for any position p and move t allowed from p for the
first player.

Definition (Strategy):
Consider a game G with positions P , including the initial position p0, and moves T .
A strategy for player X is a function σ from P ∗ × PX to P (P ∗ being the set of finite
words over P). Intuitively, σ(w, p) gives a move for X when the play has visited the
positions from w ∈ P ∗ before reaching p ∈ PX . It must use the transitions, meaning that
(p, σ(w, p)) ∈ T .

A play p0p1 . . . is consistent with a strategy σ for X if, for any i such that pi ∈ PX ,

18 CHAPTER 1. INTRODUCTION

we have pi+1 = σ(p0 . . . pi−1, pi).
A strategy for X is winning if all plays consistent with that strategy are won by X.
We say that a player wins a game if he has a winning strategy for that game.

As said before, those formal definitions will often in practice be replaced with a verbal
description of the way the player should react to the moves of the adversary, instead of
defining the function itself.

Several classes of games are known to be determined , meaning that they always have
a winner (i.e. one of the players has a winning strategy). This is for instance the case for
games with finite arena and either finite plays or an ω-regular winning condition. More
generally, any game with a Borel winning condition is determined [GS16]. This includes
most known games, and in particular all of those presented in this thesis.

Example 1.8 (Nim game):
The Nim game with n matches is played by letting players alternatively take between 1
and 3 matches to remove them from a stack initially containing n matches. The player
who removes the last one loses. We can describe this game formally, using the set of
positions [1, n]× {A,B} with the initial position (n,A). The moves are those going from
(i, A) to (i − j, B) or from (i, B) to (i − j, A), with i ∈ [2, n] and j ∈ [1, 3]. The second
component indicates whose turn it is, i.e. PX = [1, n] × PX for X ∈ {A,B}. The plays
won by A are therefore those ending in (1, B).

This game has a winning strategy for one of the players, depending on the initial
number of matches: if n = 4k + 1 for some k, then B wins by ensuring the preservation
of that property after each of his moves (he takes 4− j matches if A took j). Otherwise,
A can win using the same strategy.

Formally, the strategy for B in the 4k+1 matches game can be written as σ(w, (i, B)) =
(i − j, A) if i = 4k + 1 + j with j ∈ [1, 3]. The values on other inputs do not matter, as
those will never be used.

Note that here σ does not use the memory of the play w, but only the current position
(i, B). This is what we call a memoryless strategy, which takes only the current position
as an input. A game with such winning strategies is called positionally determined .

There are also finite memory strategies, which take as input the current position and
an element m from a finite set M , called memory. The value of m is updated after each
move using some function associated to the strategy.

1.6 (Cyclic) proofs

The subject of this section will no longer concern languages, automata or games. Here
we will instead talk about the notion of proof. We will start from the intuitive notion,
originating in the geometric reasoning that most people will know from early school, and
work our way up to the abstract notion of proof, which we will then generalize to give
the intuition of what a cyclic proof might look like. Note that this part only concerns
Chapter 3: it is not a prerequisite to Chapter 2.

Let us first look at the kind of reasoning one might see in a proof from Greek mathe-
matics. We can for instance consider the following sentence: “If the line A is perpendicular

1.6. (CYCLIC) PROOFS 19

to the line B, which in turn is perpendicular to C, then A must be parallel to C”. This
sentence contains two hypotheses: A ⊥ B (A is perpendicular to B) and B ⊥ C, and
one conclusion: A q C (parallel). It uses the deduction rule “Two lines perpendicular to a
third one are parallel”, which we call pepepa. The sentence can then be summarized into
the following representation:

A ⊥ B B ⊥ C pepepa
A q C

where the hypotheses are written above the conclusion, meaning that the reasoning is
proceeding downwards. This presents the advantage of allowing the representation of a
sequence of such arguments. For instance, if we knew that B ⊥ C because B ⊥ D and
D q C, (rule that we call pepape), we get this:

A ⊥ B

B ⊥ D D q C
pepape

B ⊥ C pepepa
A q C

We can keep building a proof that way, using statements that we know to be true at the
top, and rules such as pepepa and pepape to get to the conclusion at the bottom. This
creates a tree structure, which we can formally define as follows.

Definition (Tree):
A (finite) tree of degree k can be defined as a (finite) non-empty prefix-closed subset of
[0, k−1]∗, which is the set of finite words over [0, k−1] = {0, 1, 2, . . . , k−1}. The elements
of a tree will be called nodes. The empty word ε is necessarily a node of any tree, and is
called the root.

Given a tree T of degree k and a node v ∈ T , any node vn ∈ T for n ∈ [0, k − 1] is
called a parent of v, and v is its child. A node with no parents is called a leaf .

Remark 1.3:
The notions of parent and child in a tree are sometimes the opposite version of what we
define here, but this definition is more natural from a proof tree point of view, as the root
will hold the conclusion, and therefore should come last.

Another thing to note is that we will mostly be interested in binary trees in this thesis,
i.e. k = 2. However, general proof can use any value.

A proof tree will be defined as a tree with some additional information. To be able to
talk about this information, we need to define the following elements.

Definition (Sequent, abstraction):
We generally define a sequent as a couple of two (possibly empty) lists of expressions,
usually called left side (or antecedents), and right side (or succedents, consequents). The
expressions are usually provided by some grammar, and the whole sequent will be denoted
e1, . . . , en ⊢ f1, . . . , fm.

The interpretation of such a sequent may vary, but the standard one will be: “If ei is
true for any i, then fj is true for some j”. This is defined using a boolean interpretation
for the expressions. We say that a sequent is sound , or correct, if this interpretation holds.

20 CHAPTER 1. INTRODUCTION

We define informally an abstraction as a pattern that can be matched to some sequents,
using typed variables that correspond to either lists or expressions. A sequent S is matched
by an abstraction A if some valuation ν of the variables (respecting the types) transforms
the A into S: we note S = ν(A).

Usually we will use upper case Greek letters for variables of lists, and lower case Latin
letters for expressions.

Remark 1.4:
Later in Chapter 3, we will change the shape of sequents, replacing ⊢ with → and changing
the shape of the right side. The first change is simply made to be consistence with the
literature, but one justification is the Curry-Howard correspondence between proofs and
functional programs. The second change is due to our need for more intricate sequents
that store additional information.

We can now use these elements to define the notions of proof system and proof tree.

Definition (Proof system, proof tree):
Given a grammar G of sequents, a (well-founded) proof system for these sequents is given
by a set of inference rules . These rules are tuples that can be represented as follows:

H1 · · · Hn
r

C

r is the name of the rule, C,H1, . . . , Hn are abstractions with a shared set of variables,
and C is called the conclusion of r while the others are its hypotheses. If n = 0, then r
is called an axiom.

A (well-founded) proof tree is then given by a finite tree T , along with a labelling of
each node with both a sequent and a rule name. Moreover, for each node v, if we call r
the rule name at v, S0 the sequent of v, and S1, . . . , Sm those of its parents, then we can
represent this part of the tree as:

S1 · · · Sm
r

S0

and the rule r is given by the system as described above. This rule must be observed, i.e.
we require n = m, and there has to be a valuation ν such that ν(C) = S0 and ν(Hi) = Si

for any i ∈ [1, n]. Informally, this corresponds to using the rules as “bricks” to build the
proof tree.

We say that a sequent is derivable in a system is there is a proof tree from that system
with the sequent at the root.

Note that the example above can be seen as trees using such rules, where we omitted
the symbol ⊢ since we only considered sequents written ⊢ f . This can be extended to
allow for expression on the left side, see Example 1.9 below.

Example 1.9:
We can create the following system:

Γ ⊢ X ⊥ Y Γ ⊢ Y ⊥ Z pepepa
Γ ⊢ X q Z

Γ ⊢ X ⊥ Y Γ ⊢ Y q Z
pepape

Γ ⊢ X ⊥ Z

1.6. (CYCLIC) PROOFS 21

Γ ⊢ X q Y Γ ⊢ Y q Z
papapa

Γ ⊢ X q Z
Γ ⊢ X q Y

papa
Γ ⊢ Y q X

Γ ⊢ X ⊥ Y pepe
Γ ⊢ Y ⊥ X

But then we cannot create any proof tree because there is no way to end a branch.
However, if we add the following axiom rule:

ax
Γ, f,∆ ⊢ f

then we can for instance build this proof tree, where Γ is the list containing A q B, B ⊥ C
and C q D:

ax
Γ ⊢ B ⊥ C pepe
Γ ⊢ C ⊥ B

ax
Γ ⊢ A q B

papa
Γ ⊢ B q A

pepape
Γ ⊢ C ⊥ A pepape
Γ ⊢ A ⊥ C

ax
Γ ⊢ C q D

pepape
Γ ⊢ A ⊥ D

where each element of Γ is used at an ax rule.

This system from Example 1.9 gives some tools to formally prove geometrical results
using some axioms. However, we only talked about the syntactic aspect so far, and said
nothing concerning the semantic aspect, i.e. what “A ⊥ B” really means. In other words,
the system would work the same way if we replaced q by , and ⊥ by /. To make a link
between a proof system and mathematical truth, we now need to provide a link between
the interpretation of sequents and their derivability. This is done using the following
notions.

Definition (Soundness, completeness):
Given a proof system S with an interpretation for sequents, we say that S is sound if
every derivable sequent is sound. Conversely, we say that it is complete if every sound
sequent is derivable.

In the case of finite proof trees (as opposed to the infinite ones we will describe later),
the soundness is rather straightforward to prove, using the following property, which is
obtained through a simple induction on the height of the tree.

Prop 1.2:
A proof system is sound if and only if every rule is sound, i.e. any valuation that produces
sound hypotheses also gives sound conclusion.

The proof of completeness (when it does hold) is often harder in those systems. One
way to go about it is to use a (complete) algebraic axiomatization of the structure de-
scribed by the sequent. One can then show that every axiom can be proven, and that
their consequences therefore are derivable. We will not give many details here, as it is not
the method we will use later.

We will now talk about cyclic proofs, but let us first look at the following example.

Example 1.10:
We consider the types of lists and of lists of zeros, constructed using the empty list () and
the concatenation symbol “::”. The inductive definition is:

22 CHAPTER 1. INTRODUCTION

list (), if list l then list n :: l, 0list (), if 0list l then 0list 0 :: l.

where “list l” should be interpreted as “l is a list”. We can then define the following
rules, in a system where sequents are written Γ ⊢ A, to be interpreted as “the formula A
is a consequence of the set of formulas Γ”.

init list
Γ ⊢ list ()

Γ ⊢ list l iter list
Γ ⊢ list n :: l

Γ, l = () ⊢ A Γ, l = n :: l′, list l′ ⊢ A
case list

Γ, list l ⊢ A

We also add similar rules init 0list, iter 0list and case 0list, where n is replaced
with 0. With that and some reasonable deduction rules (mainly to deal with equalities),
we can for instance write these two proof trees:

init list
Γ ⊢ list ()

iter list
Γ ⊢ list 1 :: ()

iter list
Γ ⊢ list 2 :: 1 :: ()

nomatch
n :: l = () ⊢ n = 0

ax
n = 0, l = l′, list l′ ⊢ n = 0

match
n :: l = 0 :: l′, list l′ ⊢ n = 0

case 0list
0list n :: l ⊢ n = 0

However, the proofs we can do here with simple rules are rather limited. To prove some-
thing like 0list l ⊢ list l, we would need some notion of induction, for instance the
rule:

0list () ⊢ list () (0list l ⊢ list l) ⊢ (0list n :: l ⊢ list n :: l)
indu

0list l ⊢ list l

Instead of adding this rule, we will look at what happens when we switch to cyclic proofs,
once we have defined those.

Definition (Preproof):
Given a set of inference rules, a preproof is defined the same way as a finite proof tree,
except that we now remove the finiteness condition on the tree.

We say that a preproof is cyclic, or regular , if it has finitely many different labelled
subtrees. In that case we can represent it using a finite tree with back links as shown in
Example 1.11 below.

Example 1.11:
We can consider the following preproof using the previous rules (the substitution rule
subs simply lets us rename variables using unused names, and =i uses an equality to
replace expressions):

1.6. (CYCLIC) PROOFS 23

init list
⊢ list ()

=i
l = () ⊢ list l

0list l ⊢ list l subs
0list l′ ⊢ list l′ iter list

0list l′ ⊢ list 0 :: l′
=i

l = 0 :: l′, 0list l′ ⊢ list l
case 0list

0list l ⊢ list l

This actually represents the following infinite tree:

init list
⊢ list ()

=i
l = () ⊢ list l

init list
⊢ list ()

=i
l = () ⊢ list l

init list
⊢ list ()

=i
l = () ⊢ list l

... case 0list
0list l ⊢ list l subs
0list l′ ⊢ list l′ iter list

0list l′ ⊢ list 0 :: l′
=i

l = 0 :: l′, 0list l′ ⊢ list l
case 0list

0list l ⊢ list l subs
0list l′ ⊢ list l′ iter list

0list l′ ⊢ list 0 :: l′
=i

l = 0 :: l′, 0list l′ ⊢ list l
case 0list

0list l ⊢ list l subs
0list l′ ⊢ list l′ iter list

0list l′ ⊢ list 0 :: l′
=i

l = 0 :: l′, 0list l′ ⊢ list l
case 0list

0list l ⊢ list l

Intuitively, this preproof is creating a finite branch for every possible length of the list:
for length n, this branch goes n times to the right at the case list rule, then to the
left. This is another way of writing an inductive reasoning, by implementing it within the
proof structure instead of as an axiom.

However, we can also use this system to write proofs such as this one:

nomatch
l :: n = () ⊢ list l

ax
list l′ ⊢ list l′iter list

list l′ ⊢ list n :: l′

list n :: l ⊢ list a subs
list n :: l′ ⊢ list a weak

list l′, list n :: l′ ⊢ list a
cut

list l′ ⊢ list a weak
n = n′, l = l′, list l′ ⊢ list a

match
n :: l = n′ :: l′, list l′ ⊢ list a

case list
list n :: l ⊢ list a

This is obviously a behaviour that needs to be forbidden, as the root sequent is not sound.
Note that this preproof uses the rules weak (weakening the left side of the sequent) and
cut (corresponding to the modus ponens, which says ((A ⇒ B) ∧ A) ⇒ B), but we will
later give examples of unwanted preproofs that do not even require this (in Example 1.12
for this system, or later with another system in Figure 3.2).

In order to avoid proving such a statement using a circular reasoning, cyclic proof
systems generally come with a validity condition that ensures that every infinite branch
behaves correctly.

Definition (Validity condition, non-well-founded proof system):
A validity condition is a condition on infinite branches of a system.

A non-well-founded proof system is given by a set of rules along with a validity condi-
tion. Its proofs are every preproofs using these rules and satisfying the validity condition.

24 CHAPTER 1. INTRODUCTION

Sometimes we restrict that scope to cyclic preproofs. We can extend the notion of cyclicity
(or regularity) to proofs, i.e. valid preproofs.

The notion of derivability and the soundness and completeness of such a system can
be defined as before.

Remark 1.5:
Note that this kind of system does not exclude finite proofs, for which the validity con-
dition is empty. We can for instance imagine a non-well-founded system that extends a
well-founded one, adding some rules and a validity conditions, and thus preserving the
proofs from the original system.

The validity condition is often formulated as an ω-regular condition on branches. This
makes validity easier to decide, and the system can then be manipulated using algorithmic
tools.

Example 1.12:
In the list system described in Example 1.10 and Example 1.11, we can informally take
the validity condition saying that in any infinite branch, there must be a list that decreases
in size infinitely many times. This is what happens to the list l in the first preproof, but
it does not occur in the preproof for list n :: l ⊢ list a, meaning that this unwanted
preproof is indeed caught by the validity condition, as we would hope.

We can also extend this example by adding co-inductive notions, such as streams:

Γ ⊢ stream s iter stream
Γ ⊢ stream n :: s

Γ, s = n :: s′, stream s′ ⊢ A
case stream

Γ, stream s ⊢ A

This describes infinite lists (or ω-words), and the natural way to prove something on
such a structure is to use infinite branches in a preproof. We can for instance write a
similar proof to the one above for the case of streams:

0stream s ⊢ stream s subs
0stream s′ ⊢ stream s′ iter stream

0stream s′ ⊢ stream 0 :: s′
=i

s = 0 :: s′, 0stream s′ ⊢ stream s
case 0stream

0stream s ⊢ stream s

However we can also write the following preproof:

stream s ⊢ list s subs
stream s′ ⊢ list s′ iter list

stream s′ ⊢ list n :: s′
=i

s = n :: s′, stream s′ ⊢ list s
case stream

stream s ⊢ list s

Thankfully we can make this last preproof invalid by taking the usual approach to
the validity condition, which is more precise than the version described above. Along an
infinite branch, we want to see an inductive object being unfolded infinitely many times
on the left side of the sequents, or a co-inductive object being unfolded infinitely many
times on the right side of the sequents.

1.7. CONTEXT AND CONTRIBUTIONS 25

This duality can be understood as follows. In the first case, we unfold an inductive
structure on the antecedents side, and each resulting finite branch (taking the “initializing”
step at some point) corresponds to a proof for one instance of the hypothesis. The
infiniteness of the unfolding guaranties that each instance is considered. On the other
hand, the second case is that of an unfolding of a co-inductive structure on the consequents
side, so we need to make sure that the proof visits the whole object to prove the result,
hence the other part of the validity condition. A more theoretical approach would be to
look at the proof theory of fixed-point logics, which makes explicit the duality between
the two sides of a sequent, that goes hand in hand with the duality between inductive
and co-inductive objects.

1.7 Context and contributions

In this section, we give the main elements of context regarding each chapter, along with
the main results we brought. For a more thorough introduction to each of them, please
refer to the corresponding chapter introduction: Section 2.1 or Section 3.1. Note that
this does not reflect the chronology of the research in this thesis: the work presented in
Chapter 3 is anterior to that of Chapter 2.

Chapter 2 concerns a notion of partial non-determinism in automata that we intro-
duce here, called explorability. This is rather similar to the notion of width introduced in
[KM19]. Both can be defined using games in which a player chooses the input while the
other moves tokens in the automaton to find accepting runs. However, in the case of width
a token can “jump” to the position of another token, which is not possible for explorabil-
ity. A consequence of that difference is that the width of an automaton is bounded by
its number of states, while the number of tokens required to explore the same automaton
can be infinite, and even uncountable in the case of infinite words. This gives an interest
to the notion of explorable automata, which are those where a finite number of tokens is
enough for exploration.

The main motive to study explorability is its link to Good-For-Games (GFG) au-
tomata. These correspond to 1-explorable automata: there is a strategy to build an
accepting run on the fly. GFG automata behave like deterministic ones when composed
with games, which leads to an important application for the reactive Church synthesis
problem.

This problem consists in finding a reactive system (a transducer) that follows a given
specification. It can be represented as a game between a player choosing the input and
another answering with the output. The output player aims to respect the specification.
If he has a winning strategy, then it provides a solution to the Church synthesis problem
(and otherwise there is none). See e.g. [Tho08] for more details about this algorithm.

If we have a deterministic automaton for the specification, then we can combine this
automaton with the game, to get a new game that is equivalent but easier to solve (quasi-
polynomial time for a parity condition, or polynomial for fixed parity). This then gives
a solution to the Church synthesis problem, if it exists. The interest of GFG automata
is that they can actually be used instead of deterministic ones in this process. Since
they can be exponentially more succinct, this can greatly improve the complexity of the

26 CHAPTER 1. INTRODUCTION

algorithm when we know that the specification automaton is GFG. The problem that
naturally arises from here is that of recognizing GFG automata.

This new problem still contains several open questions. For instance, the only known
algorithm for deciding whether a parity automaton is GFG is the naive one, which is
ExpTime, with no matching lower bound. There is however a polynomial algorithm
(which we will describe) solving that problem once we know that the automaton we
consider is explorable. This gives the initial motivation for our interest in the problem of
deciding explorability. Although this hope of improving existing algorithms for recognizing
GFG automata was not satisfied, we did get results that might help better understand
the notion of non-determinism.

We provide ExpTime lower and upper bounds for both the problem of explorability
and the problem of ω-explorability (finitely or countably many tokens), in addition to
the PTime algorithm mentioned above to recognize GFG automata when we know the
input to be explorable. We do not consider the problem of k-explorability, where a finite
number of tokens is fixed, as it is mostly dealt with using the same proofs as for width.
Precisely, [KM19] provides an optimal ExpTime algorithm to decide whether the width
of an automaton is at most k, and this can be used to get a 2-ExpTime algorithm for
k-explorability (ExpTime if k is at most polynomial in the size of the automaton), along
with the preserved ExpTime lower bound.

Chapter 3 tackles another problem, which is that of the inclusion of languages de-
scribed by expressions. This problem is strongly correlated with non-determinism: decid-
ing whether A ⊆ B basically amounts to solving the non-determinism in the description
(automaton or expression) of B. In particular, if B is given by a GFG automaton, then
the problem can be reduced to a parity game in which one player chooses a word of A
and builds a corresponding accepting run, while the other must build an accepting run in
the GFG automaton for B. Solving such a game can then be done in quasi-polynomial
time. This reasoning could also be applied to some extent to k-explorable automata, al-
though the bound is less satisfying as the resulting game has a more complicated winning
condition.

In this thesis however, instead of the usual automaton approach, we look at this
problem from the point of view of proof theory. This has already been considered to
some extent by [DP17] and [DP18]. These articles present proof systems that provide
certificates of inclusion for regular expressions. In other words, given two expressions e
and f , the language inclusion L(e) ⊆ L(f) holds if and only if there is a proof for it
in those systems (⇒ is the completeness of the system, and ⇐ is its soundness). These
proofs are infinite, with a conclusion that can be derived from a chain of deductions with
no beginning. Among those proofs, some can be represented finally as the unfolding of a
finite graph, and thus can be used for an algorithmic application.

We first generalize these systems to a version suited to ω-regular expressions. For this,
we add the operator ·ω, which generates infinite concatenations of words. This operator
can be defined as a greatest fixed-point, while the Kleene star operator ·∗ used in regular
expressions is a smallest fixed-point. This provides a justification for adding ·ω, as it
behaves in a dual way to the Kleene star, and thus is not expected to create complicated
new phenomena. Going from regular to ω-regular expressions does however require some
adaptations to the proof system, mainly due to the fact that it now has to solve non-

1.7. CONTEXT AND CONTRIBUTIONS 27

determinism on limit behaviours. For instance, the inclusion L((a + b)ω) ⊆ L((b∗a)ω +
(b∗a)∗bω) intuitively requires knowing whether an infinite word over the alphabet {a, b}
contains finitely or infinitely many times the letter a. This is dealt with by adding more
structure to sequents, creating what is sometimes called hypersequents. The presented
proof system is shown to be sound and complete, even when restricted to its regular
fragment (i.e. cyclic proofs are enough).

We then tried to extend these results to more general expressions, in which the operator
·ω is no longer restricted to a single use at the end. We allow to keep writing after ·ω,
and even to nest them within each other (e.g. to write (aω)ω). Such expressions describe
languages of transfinite words, indexed by ordinals smaller than ωω (for instance, (aω)ω has
length ω2). Our first intuition was to simply use the rules from the previous system with
almost no change to get one for the transfinite case. The reason for that is the fact that we
did not add any new operator when going from infinite words to transfinite ones. However,
this approach turned out to be unable to deal with the amount of non-determinism in
transfinite expressions. The issue there is basically the fact that an expression can yield
words of very different lengths, and it is therefore hard to cut a couple of expressions into
matching sub-expressions to deal with them separately. This is why we ended up with
a system in which the proofs are no longer trees, but instead forests of trees, that can
interact together. Those proof forests embed transfinite descent in the same way as proof
tree embed infinite descent (a proof tree can be used several times in such a reasoning,
just as a same sequent could be used several times in an infinite descent).

We then prove this new system to be sound and complete, even when restricted to
its regular fragment, i.e. to finite forests of cyclic trees. We use this system to build a
PSpace proof search algorithm deciding the inclusion of languages represented by those
transfinite expressions. We can also verify a proof with a similar PSpace algorithm. Note
that this seemingly bad complexity for proof check is actually matched by several common
cyclic proof systems (see e.g. [NST19; Das18]), making it unsurprising.

Chapter 2

Explorability

I could have added some inspired quote about exploration here.
You know, those with retouched pictures in the background.

Just be thankful I did not.

Émile Hazard

In this part, we define the class of explorable automata on finite or infinite words. This is
a generalization of Good-For-Games (GFG) automata, where this time non-deterministic
choices can be resolved by building finitely many simultaneous runs instead of just one.
We show that recognizing GFG parity automata of fixed index among explorable ones
is in PTime, thereby giving a strong link between the two notions. We then show that
recognizing explorable automata is ExpTime-complete, in the case of finite words or
Büchi automata. Additionally, we define the notion of ω-explorable automata on infinite
words, where countably many runs can be used to resolve the non-deterministic choices.
We show that all reachability automata are ω-explorable, but this is not the case for safety
ones. We finally show ExpTime-completeness for ω-explorability of automata on infinite
words for the safety and co-Büchi acceptance conditions.

2.1 Introduction

In several fields of theoretical computer science, the tension between deterministic and
non-deterministic models is a source of fundamental open questions, and has led to im-
portant lines of research. The most famous of this kind is the P vs NP question in com-
plexity theory. This paper aims at further investigating the frontier between determinism
and non-determinism in automata theory. Although Non-deterministic and Deterministic
Finite Automata (NFA and DFA) are known to be equivalent, many subtle questions
remain about the cost of determinism, and a deep understanding of non-determinism will
be needed to solve them.

One of the approaches investigating non-determinism in automata is the study of
Good-For-Games (GFG) automata, introduced in [HP06]. An automaton is GFG if,
when reading input letters one by one, its non-determinism can be resolved on-the-fly

28

2.1. INTRODUCTION 29

without any need to guess the future. This constitutes a model that is intermediary
between non-determinism and determinism, and can sometimes bring the best of both
worlds. Like deterministic automata, GFG automata on infinite words retain good prop-
erties such as their soundness with respect to composition with games, making them
appropriate for use in Church synthesis algorithms [HP06]. On the other hand, like non-
deterministic automata, they can be exponentially more succinct than deterministic ones
[KS15]. There is a very active line of research trying to understand the various properties
of GFG automata, see e.g. [AK21; AKL21; Bok+20; BL22; LZ20; CF19; Sch20] for latest
developments. Notice that GFG automata are also called history-deterministic, a termi-
nology introduced originally in the theory of regular cost functions [Col09]. The name
“history-deterministic” corresponds to the above intuition of solving non-determinism on-
the-fly, while “good-for-games” refers to sound composition with games. These two notions
may actually differ in some quantitative frameworks, but coincide on boolean automata
[BL21].

The goal of this chapter is to pursue this line of research by introducing and study-
ing the class of explorable automata on finite and infinite words. The intuition behind
explorability is to limit the amount of non-determinism required by the automaton to
accept its language, in a more permissive way than GFG automata. If k ∈ N, an au-
tomaton is k-explorable if when reading input letters, it suffices to keep track of k runs
to build an accepting one, if it exists. An automaton is explorable if it is k-explorable for
some k ∈ N. This can be seen as a variation on the notion of GFG automaton, which
corresponds to the case k = 1. The present work can be compared to [KM19], where
a notion related to k-explorability (called width) is introduced and studied. In [KM19],
the notion of simultaneous runs is different and more permissive, and does not give any
meaningful notion of explorability, because n simultaneous runs always suffice for an au-
tomaton with n states. However, some results of [KM19] also apply to k-explorability,
notably ExpTime-hardness of deciding k-explorability of an NFA if k is part of the input.
The matching ExpTime algorithm from [KM19] can also be translated to a 2-ExpTime
one for k-explorability. Surprisingly however, the techniques used in [KM19] are quite
different from the ones we need here. This shows that fixing a bound k for the number
of runs leads to very different problems compared to asking for the existence of such a
bound.

One of the motivations to introduce the notion of explorability is to tackle one of
the important open questions about GFG automata: what is the complexity of deciding
whether an automaton is GFG? Recognizing GFG automata is known to be in PTime
for Büchi [BK18] and co-Büchi [KS15] automata, but even for 3 parity ranks, the only
known upper bound is ExpTime via the naive algorithm from [HP06]. We show how
explorable automata can simplify this question: if the input automaton is explorable,
then the problem becomes PTime. Therefore, the question of recognizing GFG automata
can be shifted to: how hard is it to recognize explorable automata?

We then proceed to study the decidability and complexity of the explorability problem:
deciding whether an input automaton on finite or infinite words is explorable. For this,
we establish a connection with the population control problem studied in [Ber+19]. This
problem asks, given an NFA with an arbitrary number of tokens in the initial state,
whether a controller can choose input letters, thereby forcing every token to reach a

30 CHAPTER 2. EXPLORABILITY

designated state, even if tokens are controlled by an opponent. It is shown in [Ber+19]
that the population control problem is ExpTime-complete, and we adapt their proof to
our setting to show that the explorability problem is ExpTime-complete as well, already
for NFAs. We also show that a direct reduction is possible, but at an exponential cost,
yielding only a 2-ExpTime algorithm for the NFA explorability problem. In the case
of infinite words, we adapt the proof to the Büchi case, thereby showing that the Büchi
explorability problem is in ExpTime as well. We also remark that, as in [Ber+19], the
number of tokens needed to witness explorability can go as high as doubly exponential in
the size of the automaton.

This ExpTime-completeness result means that we unfortunately cannot directly use
the intermediate notion of explorable automata to improve on the complexity of recog-
nizing GFG automata, as could have been the hope. We still believe however that this
explorability notion is of interest towards a better understanding of non-determinism in
automata theory.

Notice that interestingly, from a model-checking perspective, our approach is dual
to [Ber+19]: in the population control problem, an NFA is well-behaved when we can
“control” it by forcing arbitrarily many runs to simultaneously reach a designated state,
via an appropriate choice of input letters. On the contrary, in our approach, the input
letters form an adversarial environment, and our NFA is well-behaved when its non-
determinism is limited, in the sense that it is enough to spread finitely many runs to
explore all possible behaviours.

On infinite words, we push further the notion of explorability, by remarking that
for some automata, even following a countable number of runs is not enough. This
leads to defining the class of ω-explorable automata, as those automata on infinite words
where non-determinism can be resolved using countably many runs. We show that ω-
explorable automata form a non-trivial class even for the safety acceptance condition (but
not for reachability), and give an ExpTime algorithm recognizing ω-explorable automata,
encompassing the safety and co-Büchi conditions. We also show ExpTime-hardness of
this problem, by adapting the ExpTime-hardness proof of [Ber+19] to the setting of
ω-explorability.

Summary of the contributions. We show that given an explorable parity automa-
ton of fixed parity index, it is in PTime to decide whether it is GFG. The algorithm used
for Büchi in [BK18] is conjectured to work for any acceptance condition (this is the “G2

conjecture”), and it is in fact this algorithm that is shown here to work on any explorable
parity automaton.

We show that given an NFA or Büchi automaton, it is decidable and ExpTime-
complete to check whether it is explorable. Our proof of ExpTime-completeness for
NFAs uses techniques developed in [Ber+19], where ExpTime-completeness is shown for
the NFA population control problem. We generalize this result to ExpTime explorability
checking for Büchi automata, requiring further adaptations. We also give a black box
reduction using the result from [Ber+19]. This is enough to show decidability of the
NFA explorability problem, but it yields a 2-ExpTime algorithm. As in [Ber+19], the
ExpTime algorithm yields a doubly exponential tight upper bound on the number of
tokens needed to witness explorability.

On infinite words, we show that any reachability automaton is ω-explorable, but that

2.2. EXPLORABLE AUTOMATA 31

this is not the case for safety automata. We show that both the safety and co-Büchi
ω-explorability problems are ExpTime-complete.

Related Works. Many works aim at quantifying the amount of non-determinism in
automata. A survey by Colcombet [Col12] gives useful references on this question. Let
us mention for instance the notion of ambiguity, which quantifies the number of simulta-
neous accepting runs. Similarly to [KM19], we can note that ambiguity is orthogonal to
k-explorability. Remark however that our finite/countable/uncountable explorability hi-
erarchy is reminiscent of the finite/polynomial/exponential ambiguity hierarchy (see e.g.
[WS91]).

In [Hro+00], several ways of quantifying the non-determinism in automata are studied
from the point of view of complexity, including notions such as the number of advice bits
needed.

Another approach is studied in [PSA17], where a measure of the maximum non-
deterministic branching along a run is defined and compared to other existing measures.

Following the GFG approach, a hierarchy of non-determinism and an analysis of this
hierarchy via probabilistic models is given in [AKL21].

We define explorability via games with tokens, inspired by the approach in [BK18].
These games with tokens and their interplay with various quantitative acceptance condi-
tions were recently investigated in [BL22].

2.2 Explorable automata

2.2.1 Preliminaries

We recall that, if i ≤ j are integers, we will denote by [i, j] the integer interval {i, i +
1, . . . , j}. If S is a set, its cardinal will be denoted |S|, and its powerset P(S).

We work with a fixed finite alphabet Σ. We will use the following default notation
for the components of an automaton A: QA for its set of states, qA0 for its initial state,
FA for its accepting states, ∆A for its set of transitions. The subscript might be omitted
when clear from context. We might also specify its alphabet by ΣA instead of Σ for cases
where different alphabets come into play. If ∆ ⊆ Q × Σ × Q is the transition relation,
and (p, a) ∈ Q × Σ, we will note ∆(p, a) = {q ∈ Q, (p, a, q) ∈ ∆}. If X ⊆ Q, we note
∆(X, a) =

⋃
p∈X ∆(p, a).

We will consider non-deterministic automata on finite words (NFAs). A run of such
an automaton on a word a1a2 . . . an ∈ Σ∗ is a sequence of states q0q1 . . . qn ∈ Q∗ (q0 being
the initial state), such that, for all i ∈ [0, n − 1], we have qi+1 ∈ ∆(qi, ai−1). Such a run
is accepting if qn ∈ F , i.e. if the run belongs to Q∗F . As usual, the language of an
automaton A, denoted L(A), is the set of words that admit an accepting run.

We will also deal with automata on infinite words, and we recall here some standard
acceptance conditions for such automata. A run on an infinite word w ∈ Σω is now an
infinite sequence of states, i.e. an element of Qω, starting in q0 and following as before
transitions of the automaton according to the letters of w. Such a run of Qω is accepting
in a safety (resp. reachability, Büchi, co-Büchi) automaton if it belongs to F ω (resp.
Q∗FQω, (Q∗F)ω, Q∗F ω). States from F will be called Büchi states in Büchi automata,
and states from Q \ F will be called co-Büchi states in co-Büchi automata.

32 CHAPTER 2. EXPLORABILITY

Finally, we will also mention the parity acceptance condition: it uses a ranking function
rk from Q to an interval of integers [i, j]. A run is accepting if the minimal rank appearing
infinitely often is even (following the convention of [Ber+19]).

2.2.2 Explorability

We start by introducing the k-explorability game, which is the central tool allowing us to
define the class of explorable automata.

Definition (k-explorability game):
Consider a non-deterministic automaton A on finite or infinite words, and an integer k.
The k-explorability game on A is played on the arena Qk. The two players are called
Determiniser and Spoiler, and they play as follows.

• The initial position is the k-tuple S0 = (q0, . . . , q0).

• At step i from a position Si−1 ∈ Qk, Spoiler chooses a letter ai ∈ Σ, and Determiniser
chooses Si ∈ Qk such that for any token l ∈ [0, k−1], Si−1(l)

a−→ Si(l) is a transition
of A (where Si(l) stands for the l-th component in Si).

The play is won by Determiniser if for any β ≤ ω such that the word (ai)1≤i<β is in L(A),
there is a token l < k being accepted by A, meaning that the sequence (Si(l))i<β is an
accepting run1. Otherwise, the winner is Spoiler.
We will say that A is k-explorable if Determiniser wins the k-explorability game.
We will say that A is explorable if it is k-explorable for some k ∈ N.

Example 2.1:
The NFA Ak on alphabet {a, a1, . . . , ak} depicted below is k-explorable, but not (k − 1)-
explorable. It can easily be adapted to a binary alphabet, by replacing in the automaton
a1, . . . , ak by distinct words of the same length.

On the other hand, the NFA C is a non-explorable NFA accepting all words on alphabet
Σ = {a, b}. Indeed, Spoiler can win the k-explorability game for any k, by eliminating
tokens one by one, choosing at each step the letter b if q1 is occupied by at least one token,
and the letter a otherwise.

p0

p1 p2 . . . pk

pf

Explorable Ak

a
a

a

a1 a2
ak

q0

q1

q2

q3

Non-explorable C

Σ

Σ

a

b

b

a

Σ

1This condition β ≤ ω is actually accounting separately for the two cases of finite and infinite words,
corresponding respectively to β < ω and β = ω.

2.2. EXPLORABLE AUTOMATA 33

Example 2.2:
The following NFA Bk with 3k+1 states on alphabet Σ = {a, b} is explorable, but requires
2k tokens. Indeed, since when choosing the 2ith letter Spoiler can always pick the state
pi or ri containing the least amount of tokens to decide whether to play a or b, the best
strategy for Determiniser is to split his tokens evenly at each qi. This means he needs to
start with 2k tokens to end up with at least one token in qk after a word of Σ2k.

q0

p1

r1

q1

p2

r2

q2 . . . qk−1

pk

rk

qk

Σ

Σ

a

b

Σ

Σ

a

b

Σ

Σ

a

b

Automaton Bk

Let us mention a few facts that follow from the definition of explorability:

Lemma 2.1:
• Any automaton with a finite language is explorable.

• If A is k-explorable, then it is n-explorable for all n ≥ k.

• If A is k-explorable and B is n-explorable on the same alphabet, then

– A ∪ B (with states Q = {q0} ∪QA ∪QB) is (k + n)-explorable,

– the union product A × B (with F = (FA × QB) ∪ (QA × FB)) is max(k, n)-
explorable,

– the intersection product A× B (with F = FA × FB) is (kn)-explorable.

Proof. If L(A) is finite, it is enough to take k = |L(A)| tokens to witness explorability:
for each u ∈ L(A), the token tu assumes that the input word is u and follows an accepting
run of A over u as long as input letters are compatible with u. As soon as an input letter
is not compatible with u, the token tu is discarded and behaves arbitrarily for the rest of
the play.

If A is k-explorable and n ≥ k, then Determiniser can win the n-explorability game
by using the same strategy with the first k tokens and making arbitrary choices with the
n− k remaining tokens.

If A and B are k- and n-explorable respectively, then Determiniser can use both
strategies simultaneously with k + n tokens in A ∪ B, using k tokens in A and n tokens
in B. If the input word is in A (resp. B), then the tokens playing in A (resp. B) will win
the play.

In the union product A×B, it is enough to take max(k, n) tokens: if 0 ≤ i < min(k, n),
the token number i follows the strategy of the token i in A on the first coordinate, and
the strategy of the token i in B in the second one. If min(k, n) ≤ i < max(k, n), say wlog
k ≤ i < n, the token i follows an arbitrary strategy on the A-component and the strategy
of token i on the B-component.

34 CHAPTER 2. EXPLORABILITY

However, Determiniser may need up to kn tokens to play in A×B when the accepting
set is FA × FB: the token (i, j) will use the strategy of the token i in the k-explorability
game of A together with the strategy of the token j in the n-explorability game of B.
This lower bound of kn cannot be improved: consider for instance Ak×An, where Ak,An

are from Example 2.1.

Notice that a similar notion was introduced in [KM19] under the name width. In
[KM19], the emphasis is put on another version of the explorability game, where tokens
can be duplicated, and |Q| is an upper bound for the number of necessary tokens. In this
work, we will on the contrary focus on non-duplicable tokens, for which some results of
[KM19] already apply. In particular, the following holds:

Theorem 2.1 ([KM19, Rem. 6.9]):
Given an NFA A and an integer k, it is ExpTime-complete to decide whether A is
k-explorable (even if we fix k = |QA|/2).

We aim here at answering a different question:

Definition (Explorability problem):
The explorability problem is the question, given a non-deterministic automaton A, of
deciding whether it is explorable.

Questions : Is the explorability problem decidable ? If yes, what is its complexity ?
We will first give some motivation for this problem in Section 2.2.3.

2.2.3 Link with GFG automata

An automaton A is Good-for-Games (GFG) if it is 1-explorable, i.e. if there is a strategy
σ : Σ∗ → Q resolving the non-determinism based on the word read so far, with the
guarantee that the run piloted by this strategy is accepting whenever the input word is
in L(A). See e.g. [Bok+13] for an introduction to GFG automata.

We will give here an additional and stronger link between explorable and GFG au-
tomata. In this part, we will mainly be interested in automata on infinite words.

One of the main open problems related to GFG automata on infinite words is to decide,
given a nondeterministic parity automaton, whether it is GFG. For now, the problem is
only known to be in PTime for co-Büchi [KS15] and Büchi [BK18] automata. Extending
this result even to 3 parity ranks is still open, and only a naive ExpTime upper bound
[HP06] is known in this case. The following result shows that explorability is relevant in
this context:

Theorem 2.2:
Given an explorable parity automaton A of fixed parity index, it is in PTime to decide
whether it is GFG.

This is one of the motivations to get a better understanding of explorable automata.
Indeed, if we can obtain an efficient algorithm for recognizing them, or if we are in a context
guaranteeing that we are only dealing with explorable automata, this result shows that
we can obtain an efficient algorithm for recognizing GFG automata.

2.2. EXPLORABLE AUTOMATA 35

The rest of this section will be devoted to the proof of Theorem 2.2. The proof idea
is inspired by [BK18].

Let A be an explorable parity automaton, of fixed parity index [i, j].
We briefly recall the definition of the token game Gk(A) defined in [BK18], for an

arbitrary k ∈ N. At each round, Adam plays a letter a ∈ Σ, then Eve moves her
token according to an a-transition, and finally Adam moves his k tokens according to
a-transitions. Eve wins the play if her token builds an accepting run, or if all of Adam’s
tokens build rejecting runs.

We will prove that the game G2(A) is won by Eve if and only A is GFG. Since G2(A)
can be solved in PTime for fixed parity index [BK18], this is enough to conclude.

First, it is clear that if A is GFG, then Eve wins G2(A) [BK18]: Eve can simply play
her GFG strategy with her token, ignoring Adam’s tokens.

For the converse, assume Eve wins G2(A), we want to prove that A is GFG. We use
the following lemma:

Lemma 2.2 ([BK18, Thm. 14]):
Eve wins G2(A) if and only if Eve wins Gk(A) for all k ≥ 2.

Since A is explorable, there is k ∈ N such that A is k-explorable. Let τk be a winning
strategy for Determiniser in the k-explorability game of A, and σk be a winning strategy
for Eve in Gk(A). We show that we can combine these two strategies to yield a GFG
strategy σ for A. This proof follows the same idea as in [BK18] where the explorability
hypothesis is not available, but A is assumed to be Büchi.

Let us first sketch the remainder of the proof. The strategy σ will store k virtual
tokens in its memory. When the automaton reads a new letter a ∈ Σ, these k tokens
will be updated according to τk. Then the choice of σ will follow the strategy σk against
these k tokens. Notice that the strategies τk and σk might use additional memory, but
this is completely transparent in this proof scheme. If the input word is in L(A), then
by correctness of τk, one of the k virtual tokens will accept. Thus, by correctness of σk,
the run chosen by σ will be accepting. Therefore, σ is a correct GFG strategy, witnessing
that A is GFG. This concludes the proof sketch of Theorem 2.2.

We now write this proof more formally, by first describing the shape of strategies τk
and σk.

The strategy τk has access to the history of the play in the k-explorability game, and
must decide on a move for Determiniser. Notice that it is always enough to know the
history of the opponent’s moves (here the letters of Σ played so far), since this allows to
compute the answer of Determiniser at each step, and therefore build a unique play. Thus
we can take for τk a function Σ∗ → Qk. If the word played so far is u ∈ Σ∗, the tuple
of states reached by the k tokens moved according to τk is τk(u) ∈ Qk, with in particular
τk(ε) = (qA0 , . . . , q

A
0).

If w = a1a2 · · · ∈ Σω, and i ∈ N, let us note (qiw,1, . . . , q
i
w,k) = τk(a1 . . . ai). That is

qiw,j is the state reached by the jth token after i steps in the run induced by τk and u.
If j ∈ [1, k], let us note ρu,j the infinite run q0w,jq

1
w,jq

2
w,j . . . , followed by the jth token in

this play. By definition of τk, we have the guarantee that for all w ∈ L(A), there exists
j ∈ [1, k] such that ρw,j is accepting.

If u = a1 . . . an ∈ Σ∗ is a finite word, we define τ ′k(u) = (τk(ε), τk(a1), τk(a1a2) . . . , τk(u))

36 CHAPTER 2. EXPLORABILITY

the list of partial runs induced by τk on u.
Let us now turn to the strategy σk of Eve in Gk(A). The type of this strategy is

σk : Σ∗ × (Qk)∗ → Q. Indeed, this time, the history of Adam’s moves must contain his
choice of letters together with his choices of positions for his k tokens. So σk(u, γ) gives
the state reached by Eve’s token after a history (u, γ) for the moves of Adam. Notice that
at each step, Eve must move before Adam in this game Gk(A), so γ does not contain the
choice of Adam on the last letter of u. This means that, except for u = ε, we can always
assume |u| = |γ|+ 1 in a history (u, γ).

We have the guarantee that if Adam plays an infinite word w together with runs
ρ1, . . . , ρk on w, at least one of which is accepting, then the run yielded by σk against
(w, (ρ1, . . . , ρk)) is accepting.

We finally define the GFG strategy σ for A, of type Σ∗ → Q, by induction: σ(ε) = qA0 ,
and σ(ua) = σk(ua, τ

′
k(u)).

This amounts to playing the strategy σk in Gk(A), against Adam playing a word
w and moving his k tokens according to the strategy τk against w. If the infinite
word w = a1a2 . . . chosen by Adam is in L(A), then by correctness of τk one of the
k runs ρw,1, . . . , ρw,k yielded by τk is accepting. Hence, by correctness of σk, the run
σ(ε)σ(a1)σ(a1a2) yielded by σ (based on σk) is accepting. This concludes the proof that
σ is a correct GFG strategy for A, witnessing that A is GFG.

2.3 Decidability and complexity of explorability

In this section, we prove that the explorability problem is decidable and ExpTime-
complete for NFAs and Büchi automata.

We start by showing in Section 2.3.1 decidability of the explorability problem for NFAs
using the results of [Ber+19] as a black box. This yields an algorithm in 2-ExpTime.
We give in Section 2.3.2 a polynomial reduction in the other direction, thereby obtaining
ExpTime-hardness of the NFA explorability problem. To obtain a matching upper bound
and show ExpTime-completeness, we use again [Ber+19], but this time we must “open
the black box” and dig into the technicalities of their ExpTime algorithm while adapting
them to our setting. We do so in Section 2.3.3, directly treating the more general case of
Büchi automata.

2.3.1 2-ExpTime algorithm via a black box reduction

Let us start by recalling the population control problem (PCP) of [Ber+19].

Definition (k-population game):
Given an NFA B with a distinguished target state f ∈ QB, and an integer k ∈ N,
the k-population game is played similarly to the k-explorability game, only the winning
condition differs: Spoiler wins if the game reaches a position where all tokens are in the
state f .

The PCP asks, given B and f ∈ QB, whether Spoiler wins the k-population game for all
k ∈ N. Notice that this convention is opposite to explorability, where positive instances

2.3. DECIDABILITY AND COMPLEXITY OF EXPLORABILITY 37

are defined via a win of Determiniser. The PCP is shown in [Ber+19] to be ExpTime-
complete. We will present here a direct exponential reduction from the explorability
problem to the PCP.

Let A be an NFA. Our goal is to build an exponential NFA B with a distinguished
state f such that (B, f) is a negative instance of the PCP if and only if A is explorable.

We choose QB = (QA×P(QA))⊎{f,⊥}, where f,⊥ are fresh sink states. The alphabet
of B will be ΣB = Σ ⊎ {atest}, where atest is a fresh letter.

The initial state of B is qB0 = (qA0 , {qA0 }). Notice that we do not need to specify
accepting states in B, as acceptance plays no role in the PCP.

We finally define the transitions of B in the following way:

• (p,X)
a−→ (q,∆A(X, a)) if a ∈ Σ and q ∈ ∆A(p, a),

• (p,X)
atest−→ f if p /∈ FA and X ∩ FA ̸= ∅.

• (p,X)
atest−→ ⊥ otherwise.

We aim at proving the following Lemma:

Lemma 2.3:
For any k ∈ N, A is k-explorable if and only if Determiniser wins the k-population game
on (B, f).

Notice that as long as letters of Σ are played, the second component of states of B
evolves deterministically and keeps track of the set of reachable states in A. Moreover,
the letter atest also acts deterministically on QB. Therefore, the only non-determinism to
be resolved in B is how the first component evolves, which amounts to building a run in
A. Thus, strategies driving tokens in A and B are isomorphic. It now suffices to observe
that Spoiler wins the k-population game on (B, f) if and only if he has a strategy allowing
to eventually play atest while all tokens are in a state of the form (q,X) with q /∈ FA and
X ∩ FA ̸= ∅. This is equivalent to Spoiler winning the k-explorability game of A, since
X ∩ FA ̸= ∅ witnesses that the word played so far is in L(A).

This concludes the proof that A is explorable if and only if (B, f) is a negative instance
of the PCP. So given an NFA A that we want to test for explorability, it suffices to build
(B, f) as above, and use the ExpTime algorithm from [Ber+19] as a black box on (B, f).
Since B is of exponential size compared to A, we obtain the following result:

Theorem 2.3:
The NFA explorability problem is decidable and in 2-ExpTime.

2.3.2 ExpTime-hardness of NFA explorability

We will perform here an encoding in the converse direction: starting from an instance
(B, f) of the PCP, we build polynomially an NFA A such that A is explorable if and only
if (B, f) is a negative instance of the PCP.

It is stated in [Ber+19] that, without loss of generality, we can assume that f is a sink
state in B, and we will use this assumption here.

38 CHAPTER 2. EXPLORABILITY

Let C be the 4-state automaton of Example 2.1, that is non-explorable and accepts all
words on alphabet ΣC = {a, b}. Recall that, as an instance of the PCP, B does not come
with an acceptance condition. We will consider that its accepting set is FB = QB \ {f}.

We will take for A the product automaton B × C on alphabet ΣA = ΣB × ΣC, with
the union acceptance condition: A accepts whenever one of its components accepts. The
transitions of A are defined as expected: (p, p′)

a1,a2−→ (q, q′) in A whenever p
a1−→ q in B

and p′
a2−→ q′ in C.

Since L(C) = (ΣC)
∗, we have L(A) = (ΣA)

∗. The intuition for the role of C in this
construction is the following: it allows us to modify B in order to accept all words, without
interfering with its explorability status.

Lemma 2.4:
For any k ∈ N, A is k-explorable if and only if Determiniser wins the k-population game
on (B, f).

Proof. Assume that A is k-explorable, via a strategy σ. Then Determiniser can play in
the k-population game on (B, f) using σ as a guide. In order to simulate σ, one must
feed to it letters from ΣC in addition to letters from ΣB chosen by Spoiler. This is done
by applying a winning strategy for Spoiler in the k-explorability game of C. Assume for
contradiction that, at some point, this strategy σ reaches a position where all tokens are
in a state of the form (f, q) with q ∈ QC. Since f is a sink state, when the play continues
it will eventually reach a point where all tokens are in (f, q3), where q3 is the rejecting
sink of C. This is because we are playing letters from ΣC according to a winning strategy
for Spoiler in the k-explorability game of C, and this strategy guarantees that all tokens
eventually reach q3 in C. But this state (f, q3) is rejecting in A, and L(A) = (ΣA)

∗, so this
is a losing position for Determiniser in the k-explorability game of A. Since we assumed
σ is a winning strategy in this game, we reach a contradiction. This means that following
this strategy σ together with an appropriate choice for letters from ΣC, we guarantee that
at least one token never reaches the sink state f on its B-component. This corresponds
to Determiniser winning in the k-population game on (B, f).

Conversely, assume that Determiniser wins in the k-population game on (B, f), via a
strategy σ. The same strategy can be used in the k-explorability game of A, by making
arbitrary choices on the C component. As before, this corresponds to a winning strategy in
the k-explorability game of A, since there is always at least one token with B-component
in FB = QB \ {f}. This achieves the hardness reduction, and allows us to conclude:

Theorem 2.4:
The NFA explorability problem is ExpTime-hard.

Remark 2.1:
Using standard padding arguments, it is straightforward to extend Theorem 2.4 to Exp-
Time-hardness of explorability for automata on infinite words, using any of the acceptance
conditions defined in Section 2.2.1.

Let us give some intuition on why we can obtain a polynomial reduction in one di-
rection, but did not manage to do so in the other direction. Intuitively, the explorability
problem is “more difficult” than the PCP for the following reason. In the PCP, Spoiler is

2.3. DECIDABILITY AND COMPLEXITY OF EXPLORABILITY 39

allowed to play any letters, and the winning condition just depends on the current posi-
tion. On the contrary, the winning condition of the k-explorability game mentions that
the word chosen by Spoiler must belong to the language of the NFA. In order to verify
this, we a priori need to append to the arena an exponential deterministic automaton
for this language, and this is what is done in Section 2.3.1. This complicated winning
condition is also the source of difficulty of recognizing GFG parity automata.

2.3.3 ExpTime algorithm for Büchi explorability

Theorem 2.5:
The explorability problem can be solved in ExpTime for Büchi automata (and all simpler
conditions).

Before giving a complete proof of Theorem 2.5, we write a sketch that summarizes the
main elements in this proof.

Proof sketch

The algorithm is adapted from the ExpTime algorithm for the PCP from [Ber+19]. We
will recall here the main ideas of this algorithm, and describe how we adapt it to our
setting.

Let A be an NFA, together with a target state f . The idea in [Ber+19] is to abstract
the population game with arbitrary many tokens by a game called the capacity game. This
game allows Determiniser to describe only the support of his set of tokens, i.e. the set
of states occupied by tokens. The sequence of states obtained in a play can be analysed
via a notion of bounded capacity, in order to detect whether it actually corresponds to a
play with finitely many tokens. This notion can be approximated by the more relaxed
finite capacity, which is a regular property that is equivalent to bounded capacity in a
context where games are finite-memory determined. This property of finite capacity can
be verified by a deterministic parity automaton, yielding a parity game that can be won
by Spoiler if and only if (A, f) is a positive instance of the PCP. Since this parity game
has size exponential in A, this yields an ExpTime algorithm for the PCP.

Here, we will perform the following tweaks to this construction. We now start with a
Büchi automaton A, and want to decide whether it is explorable.

First, we need to control that the infinite word played by Spoiler is in L(A). This
requires to build a deterministic parity automaton D recognizing L(A), and incorporate it
into the arena. The size of D is exponential with respect to A. We then follow [Ber+19]
and build the capacity game augmented with D. This time, a sequence of supports
is winning if infinitely many of them contain an accepting state. We emphasize that
we use here a particularity of the Büchi condition: observing the sequences of support
sets of tokens is enough to decide whether one of the tokens follows an accepting run.
The same particularity was used in [BK18], and was a crucial tool allowing to give a
PTime algorithm for Büchi GFGness. Since this modification still allows us to manipulate
supports as simple sets, we can make use of the capacity game as before. We give in
Remark 2.3 (after the complete proof) an example showing that a naive adaptation of
this construction to co-Büchi automata would not be correct.

40 CHAPTER 2. EXPLORABILITY

Finally, we show that we can as in [Ber+19] obtain a parity game of exponential size
characterizing explorability of A, yielding the wanted ExpTime algorithm.

We also remark that, as in [Ber+19], this construction gives a doubly exponential
upper bound on the number of tokens needed to witness explorability. Moreover, the
proof from [Ber+19] that this is tight also stands here.

Complete proof of Theorem 2.5

In this part, A = (Σ, Q, qA0 ,∆A, FA) is a non-deterministic Büchi automaton. We start
by computing in exponential time an equivalent deterministic parity automaton D =
(Σ, QD, q

D
0 , δD, FD), via any standard method.

The algorithm described in this section is adapted from [Ber+19]. Many results from
this previous work still hold in our framework. We will however need to adapt some
constructions and give new arguments, both to fit our explorability framework, and to
generalize from NFA to Büchi automata.

Definition (Transfer graph):
A transfer graph G is a subset of Q × Q. We say that it is compatible with a letter a if
every edge in G corresponds to a transition in A labelled by a, i.e. for any (q, r) ∈ G, we
have (q, a, r) ∈ ∆A. In other words, G is a subgraph of the transition graph of the letter
a.

Given a transfer graph G and a set of states X ⊆ Q, we note G(X) = {q ∈ Q | ∃r ∈
X, (q, r) ∈ G}. We call respectively Dom(G) and Im(G) the projections of G on its first
and second coordinate, i.e. Dom(G) = {q ∈ Q | ∃r ∈ Q, (q, r) ∈ G} and Im(G) = G(Q).

The composition of transfer graphs is defined the natural way: G · H = {(x, z) |
∃y, (x, y) ∈ G ∧ (y, z) ∈ H}.

Definition (Support game):
The support game is played in the arena P(Q) × QD, called support arena. It is played
as follows by Determiniser and Spoiler.

• The starting support is S0 = ({qA0 }, qD0).

• At any given step with support (B, q), Spoiler chooses a letter a ∈ Σ, then Deter-
miniser chooses a transfer graph G compatible with a, and with Dom(G) = B. The
play then moves to (Im(G), δD(q, a)).

A play can be represented by a sequence (B0, q0)
a1,G1−→ (B1, q1)

a2,G2−→ (B2, q2)
We say that Spoiler wins the play if the run q0q1q2 . . . of D is parity accepting, while

only finitely many Bi contain Büchi states (from FA).

Note that a winning strategy for Determiniser in the support game cannot in general
be interpreted as a witness of explorability. This is illustrated by the automaton C from
Example 2.1. For any k ∈ N, the k-explorability game is won by Spoiler on that automa-
ton, while Determiniser wins the support game. Intuitively, the support game does not
account for the limits of resources for Determiniser.

On the other hand, a winning strategy for Spoiler in this support game does translate
into a non-explorability witness, i.e. a strategy for Spoiler in the k-explorability game for

2.3. DECIDABILITY AND COMPLEXITY OF EXPLORABILITY 41

any k. The support game is therefore “too easy” for Determiniser, and this is what we try
to correct in the following.

Definition (Projection of a play):
Given a play S0

a1−→ S1
a2−→ S2 . . . in the k-explorability game, the projection of that play

in the support arena is the play (B0, q0)
a1,G1−→ (B1, q1)

a2,G2−→ (B2, q2) . . ., where:

• Bi is the support of Si (states occupied in Si),

• q0 = qD0 and qi+1 = δD(ai+1, qi) for all i,

• Gi+1 = {(Si(j), Si+1(j)) | j ∈ [0, k − 1]}.

This corresponds to forgetting the multiplicity of tokens and only keeping track of the
transitions that are used.

Definition (Realisable play):
A play in the support arena is realisable if it is the projection of a play in the k-explorability
game for some k ∈ N.

We would like to restrict plays in the support arena to realisable ones only. To do so,
we define the notion of capacity as follows.

Definition (Accumulator and capacity [Ber+19]):
In a play (B0, q0)

a1,G1−→ (B1, q1)
a2,G2−→ (B2, q2) . . ., an accumulator is a sequence (Tj)j∈N such

that for any j, Tj ⊆ Bj and Tj+1 ⊇ Gi+1(Tj). An edge (q, r) ∈ Gj+1 is an entry for (Tj)j∈N
at index i if q /∈ Tj and r ∈ Tj+1.

A play has finite capacity if every accumulator has finitely many entries, and bounded
capacity if the number of entries of its accumulators is bounded.

This definition gives us tools to talk about realisable plays in a more practical way,
as shown by the following Lemma. Note that although the explorability game is replaced
by the population control game in [Ber+19], the same proof still applies here.

Lemma 2.5 ([Ber+19, Lem 3.5]):
A play is realisable if and only if it has bounded capacity.

Moreover, the proof of Lemma 2.5 can also be used to get the following result, which
we will use later. Note that we talk about the explorability game in this Lemma, but this
only concerns its arena, regardless of the winning condition. The proof holds because the
arena from [Ber+19] is identical.

Lemma 2.6 ([Ber+19, Lem 3.5]):
If Determiniser has a strategy τ in the support arena such that any play compatible with
τ has capacity bounded by c, then he has a strategy τ ′ in the 2c+1-tokens explorability
game such that any play compatible with τ ′ has its projection compatible with τ .

We will use the notion of capacity to define the following game, using finite capacity
instead of bounded to obtain a regular winning condition.

42 CHAPTER 2. EXPLORABILITY

Definition (Capacity game):
The capacity game is played in the support arena. Given a play (B0, q0)

a1,G1−→ (B1, q1)
a2,G2−→

(B2, q2) . . ., Spoiler wins if it is a winning play in the support game, or if it has infinite
capacity.

Lemma 2.7 ([Ber+19, Prop 3.8]):
Either Spoiler or Determiniser wins the capacity game, and the winner has a winning
strategy with finite memory.

Proof. Although this result talks about slightly different objects than in [Ber+19, Prop
3.8], their proof actually still holds with our definitions of capacity game and support
game. The proof proceeds by building a nondeterministic Büchi automaton verifying
that the capacity is infinite, determinising it into a parity automaton, and incorporating
it into the arena to yield a parity game equivalent to the capacity game. The winner of
this parity game has a positional strategy, which corresponds to a finite memory strategy
in the capacity game.

Lemma 2.8 (adapted from [Ber+19, Prop 3.9]):
If Spoiler wins the capacity game, then he wins the k-explorability game for any k.

Proof. Here Spoiler can simply apply the strategy for the capacity game to the explorabil-
ity game, by remembering only the information that is relevant from the point of view
of the capacity game (i.e. the supports and transfer graphs). This will simulate a real-
isable play of the capacity game, which has bounded capacity by Lemma 2.5. Since the
strategy is winning in the capacity game, and this simulated play cannot have infinite
capacity, Spoiler wins the underlying support game. This ensures the win for Spoiler in
the explorability game: he plays a word of L(A) as witnessed by the acceptance of D,
while finitely many Büchi states are witnessed by tokens of Determiniser. We use here the
particular property of Büchi condition: one of the tokens follows an accepting run if and
only if it occurs infinitely many times that the support set occupied by tokens contains a
Büchi state.

Lemma 2.9 (adapted from [Ber+19, Prop 3.10]):
If Determiniser wins the capacity game using finite memory M , then he wins the k-
explorability game for some k ∈ N.

Proof. We first prove that under these conditions, Determiniser can win the capacity
game while ensuring a capacity bounded by |M | × |QD| × 4|Q|.

Let us consider a winning strategy τ with memory M for Determiniser in the capacity
game. We take a play (B0, q0)

a1,G1−→ (B1, q1)
a2,G2−→ (B2, q2) . . . compatible with τ , and we

show that its capacity is bounded by |M | × |QD| × 4|Q|.
Given an accumulator T = (Ti)i∈N, if there are two integers i < j such that mi = mj

(memory states at steps i and j), Bi = Bj, qi = qj and Ti = Tj, then one can build
a play that loops on the corresponding interval, while still being compatible with τ .
This accumulator cannot have infinitely many entries, so T does not have any entry in
the interval [i, j]. As a consequence, if i and j are entry times, we have (mi, Bi, qi, Ti) ̸=

2.3. DECIDABILITY AND COMPLEXITY OF EXPLORABILITY 43

(mj, Bj, qj, Tj), which means there can be at most |M |×2|Q|×|QD|×2|Q| = |M |×|QD|×4|Q|

entries in the accumulator T .
We now know that the capacity of any play compatible with τ is bounded by |M | ×

|QD| × 4|Q|. Take k = 21+|M |×|QD|×4|Q| . Lemma 2.6 then provides a strategy for Deter-
miniser in the k-explorability game, that ensures that the successive supports (i.e. the
sets of states occupied by tokens) contain Büchi states infinitely often. This means that
at least one token visits Büchi states infinitely often, since there are finitely many tokens.
This ensures a win for Determiniser.

These Lemmas 2.8 and 2.9 give a way to solve the explorability problem if we can
efficiently find the winner of the corresponding capacity game. Note that we could use
the parity game built in the proof of Lemma 2.7 to solve the problem, but this would
yield a doubly exponential algorithm, since the parity automaton that we build in this
proof is itself doubly exponential.

The following gives an exponential time algorithm for solving the capacity game, and
therefore the explorability problem.

Definition (Leaks and separations):
If G and H are two transfer graphs, we say that G leaks at H if there are three states
q, x, y such that (q, y) ∈ G ·H, (x, y) ∈ H and (q, x) /∈ G.

We say that G separates states r and t if there is a q such that (q, r) ∈ G and (q, t) /∈ G.
The separator of G, noted Sep(G), is the set of all such (r, t).

Note that in a play denoted as before, whenever i < j < n, we have Sep(G[i, n]) ⊆
Sep(G[j, n]).

We will now define the tracking list of a play. The point of that list will be to provide
an easy way to detect indices that leak infinitely often.

Definition (Tracking list):
The tracking list Ln at step n is a list of transfer graphs {G[i1, n], . . . , G[ikn , n]}. It is
defined inductively, with L0 the empty list, and Ln computed as follows.

• We update every G[i, n− 1] in Ln−1 into G[i, n] by composing with Gn.

• We then add G[n− 1, n] = Gn at the end of the list.

• And finally, we clean the list by removing any graph with a separator identical to
the previous one.

If for some i, G[i, n] ∈ Ln for every n > i, we say that i is remanent .

To properly use these tracking lists, it suffices to know that the following result holds.
For more details, we refer the reader to [Ber+19].

Lemma 2.10 ([Ber+19, Lem 4.4]):
A play has infinite capacity if and only if there is a remanent index that leaks infinitely
often.

44 CHAPTER 2. EXPLORABILITY

We now define a game GA associated to A, that extends the support arena using
tracking lists to detect infinite capacity plays. Once again, this is an adaptation from
[Ber+19].

The states of GA are in P(Q)×QD ×G≤|Q|2 , where G≤|Q|2 is the set of lists of at most
|Q|2 transfer graphs. Each state can be written as (B, q, L) where B is a subset of Q, q
is a state of D, and L is a tracking list. The initial state is ({qA0 }, qD0 , ε).

The transitions are the ones that can be written (B, q, L)
p,a,G−→ (B′, q′, L′) with the

following conditions.

• (B, q)
a,G−→ (B′, q′) is a transition from the support arena.

• L′ is obtained by updating L with G, as detailed in the definition of tracking list.

• Take L = {H1, . . . , Hk} and L′ = {H ′
1, . . . , H

′
k′}. Let p′ be the smallest index such

that Hp′ leaks at G, or k + 1 if there is no such index. Let p′′ be the smallest index
such that H ′

p′′ ̸= Hp′′ ·G, or k+1 if there is none. We then take p = min(2p′+1, 2p′′)
(which implies that p ∈ [2, 2|Q|2 + 1]).

To choose a transition, Spoiler first chooses a letter, then Determiniser picks a transi-
tion graph compatible with that letter. The rest is determined by the conditions above.
This creates a play that can be denoted as (B0, q0, L0)

a1,G1,p1−→ (B1, q1, L1)
a2,G2,p2−→

The winning condition for Spoiler goes as follows. Either the inferior limit of (pi)i>0

is odd, or the run (qi)i≥0 is accepting while there are finitely many accepting states seen
in (Bi)i≥0.

Lemma 2.11 (adapted from [Ber+19, Thm 4.5]):
Spoiler wins GA if and only if he wins the capacity game.

Proof. First note that strategies in the support arena can be easily translated to GA
and conversely, since in both cases Spoiler only chooses letters while Determiniser picks
transfer graphs, and the rest is determined by these data.

If Spoiler has a winning strategy in GA, then he can play the same strategy in the
capacity game. Such a play can be written as (B0, q0)

a1,G1−→ (B1, q1)
a2,G2−→ . . ., and the play

of GA happening in the memory of Spoiler is (B0, q0, L0)
a1,G1,p1−→ (B1, q1, L1)

a2,G2,p2−→
We use the notation Ln = {H1

n, . . . , H
kn
n }.

Since Spoiler plays according to a winning strategy in the simulated game GA, at least
one of his winning conditions for that game hold in this play.

If the limit parity is 2p+1 for some p, then for any n large enough, Hp
n is the same as

Hp+1
n (otherwise there would be a parity less than 2p+1 later) and leaks infinitely often,

so Spoiler wins the capacity game.
If the run (qi)i≥0 is accepting while there are finitely many accepting states seen in

(Bi)i≥0, then this also ensures the win for Spoiler in the capacity game.
In both cases, the play is therefore won by Spoiler.
On the other hand, if Spoiler wins the capacity game, he can also use the same strategy

in GA, with the same correspondence between the winning conditions.

We can finally conclude with the main result of this section:

2.3. DECIDABILITY AND COMPLEXITY OF EXPLORABILITY 45

q0

q1

q2

a

a

a

b

a

b

Figure 2.1: A co-Büchi automaton on which the projection of a play in not enough to
determine the winner (the dotted lines represent co-Büchi transitions)

Theorem 2.6:
The Büchi explorability problem can be solved in ExpTime.

Proof. To prove this result, it is enough to prove that the game GA can be solved in
exponential time in the size of A, since the answer to that problem also answers the
explorability of A. We show that the winning condition of the game GA for Spoiler can be
seen as a disjunction of parity conditions. Formally, it is of the form Parity∨(Parity∧Co-
Büchi). But it is straightforward to turn the conjunction into a parity condition with
twice as many priorities. Thus GA can be seen as a generalized parity game. Such games
are studied in [CHP07], which gives us an algorithm for solving GA in time O(m4dm2) (2d)!

d!2
,

where d is the number of priorities and m the size of the game.
If we take n = |A|, using the fact that m = O(2n), we get the complexity O(24nd+2n) (2d)!

d!2
,

which can be simplified into O(24n
3+2n(2n2)n

2
) = O(25n

3+2n) using the fact that d = O(n2).
This gives us an exponential bound for the time complexity of this problem.

Remark 2.2:
We can also be interested in the number of tokens needed for Determiniser to witness
explorability of an automaton. By inspecting our proof, we can see that we obtain a
doubly exponential upper bound. Moreover, we can use the same construction as in
[Ber+19, Prop 6.3] to show that this is tight, i.e. some automata require a doubly
exponential number of tokens to witness explorability.

Remark 2.3:
This algorithm only works as such in the case of Büchi automata. The next step would be
to adapt it to co-Büchi, with the hope that a solution for both these models might lead to
one for parity automata. However, in order to use a similar method in the co-Büchi case,
we would want some way to check the winning condition for a play in the explorability
game using only the projection of that play in the support arena. This is not possible with
the current definitions of these games: we can create plays in the explorability game with
the same projection, but different winners. Take the automaton from Figure 2.1. If we
play the 2-explorability game on that automaton, Determiniser has a strategy to ensure
that the support are always maximal, alternating between {q0} and {q1, q2}. However,

46 CHAPTER 2. EXPLORABILITY

q0 q1 q2

a

a b

a, b

q0

q1

q2

a
a

a

b

Figure 2.2: Two safety automata. Left: ω-explorable, but not explorable. Right: not
ω-explorable.

Spoiler can either choose to always take the co-Büchi transition with the same token, or
to alternate between tokens. He only wins in the second case.

2.4 Explorability with countably many tokens
In this section, we look at the same problem of explorability of an automaton, but we
now allow for infinitely many tokens. More precisely, we will redefine the explorability
game to allow an arbitrary cardinal for the number of tokens, then consider decidability
problems regarding that game. This notion will mainly be interesting for automata on
infinite words.

2.4.1 Definition and basic results

The following definition extends the notion of k-explorability to non-integer cardinals:

Definition (κ-explorability game):
Consider an automaton A and a cardinal κ. The κ-explorability game on A is played on
the arena (QA)

κ, between Determiniser and Spoiler. They play as follows.

• The initial position is S0 associating q0 to all κ tokens.

• At step i, from position Si−1, Spoiler chooses a letter ai ∈ Σ, and Determiniser
chooses Si such that for any token α, Si−1(α)

a−→ Si(α) is a transition in A.

The play is won by Determiniser if for any β ≤ ω such that the word (ai)1≤i<β is in L(A),
there is a token α ∈ κ building an accepting run, meaning that the sequence (Si(α))i<β

is an accepting run. Otherwise, the winner is Spoiler.

We will say in particular that A is ω-explorable if Determiniser wins the game with
ω tokens. We use here the notation ω for convenience, it should be understood as the
countably infinite cardinal ℵ0. We will however explicitly use the fact that such an amount
of tokens can be labelled by N, in order to describe strategies for Spoiler or Determiniser
in the ω-explorability game. The following lemma gives a first few results on generalized
explorability.

Lemma 2.12:
• Determiniser wins the explorability game on A with |L(A)| tokens.

2.4. EXPLORABILITY WITH COUNTABLY MANY TOKENS 47

• ω-explorability is not equivalent to explorability

• There are non ω-explorable safety automata.

Proof. For the first item, a strategy for Determiniser is to associate a token to each word
of L(A) and to have it follow an accepting run for that word. Let us add a few details on
the cardinality of L(A). First, a dichotomy result has been shown in [Niw91] (even in the
more general case of infinite trees): if L(A) is not countable, then it has the cardinality
of continuum, and this happens if and only if L(A) contains a non-regular word. In this
case, we can simply associate a token with every possible run. In the other case where
L(A) is countable, we have to associate an accepting run to each word, and this can be
done without needing the Axiom of Countable Choice: a canonical run can be selected
(e.g. lexicographically minimal).

We now want to prove that there are automata that are ω-explorable but not ex-
plorable. One such automaton is given in Figure 2.2 (left), where the rejecting sink state
is omitted. Against any finite number of tokens, Spoiler has a strategy to eliminate them
one by one, by playing a while Determiniser sends tokens to q1, and b the first time q1
is empty after the play of Determiniser. On the other hand, with tokens indexed by ω,
Determiniser can keep the token 0 in q0, and send the token i to q1 at step i. Those
strategies are winning, which proves both non explorability and ω explorability of the
automaton.

The last item is proven by the second example from Figure 2.2. A winning strategy
for Spoiler against countable tokens consists in labelling the tokens with integers, then
targeting each token one by one (first token 0, then 1, 2, etc.). Each token is removed
using the correct two-letters sequence (a, then b if the token is in q1 or a if it is in q2).
With this strategy, every token is removed at some point, even if there might always be
tokens in the game.

The first item of Lemma 2.12 implies that the ω-explorability game only gets inter-
esting when we look at automata over infinite words: since any language of finite words
over a finite alphabet is countable, Determiniser wins the corresponding ω-explorability
game. We will therefore focus on infinite words in the following.

Let us emphasize the following slightly counter-intuitive fact: in the ω-explorability
game, it is always possible for Determiniser to guarantee that infinitely many tokens
occupy each currently reachable state. However, even in a safety automaton, this is not
enough to win the game, as it does not prevent that each individual token might be
eventually “killed” at some point. As the following Lemma shows, this phenomenon does
not occur in reachability automata.

Lemma 2.13:
Any reachability automaton is ω-explorable.

Proof. For every w ∈ Σ∗ such that there is a finite run ρ leading to an accepting state,
Determiniser can use a single token following ρ. This token will accept all words of w ·Σω.
Since Σ∗ is countable, we only need countably many such tokens to cover the whole
language, hence the result.

48 CHAPTER 2. EXPLORABILITY

Let us give another equally simple view: a winning strategy for Determiniser in the
ω-explorability game is to keep infinitely many tokens in each currently reachable state,
as described above. Since acceptance in a reachability automaton is witnessed at a finite
time, this strategy is winning.

2.4.2 ExpTime algorithm for co-Büchi automata

We already know, from the example of Figure 2.2, that the result from Lemma 2.13 does
not hold in the case of safety automata. However, we have the following decidability
result, which talks about co-Büchi automata, and therefore still holds for safety automata
as a subclass of co-Büchi.

Theorem 2.7:
The ω-explorability of co-Büchi automata is decidable in ExpTime.

To prove this result, we will use the following elimination game. A will from here on
correspond to a co-Büchi (complete) automaton. We start by building a deterministic
co-Büchi automaton D for L(A) (e.g. using the breakpoint construction [MH84]).

Definition (Elimination game):
The elimination game is played on the arena P(QA)×QA×QD. The two players are named
Protector and Eliminator, and the game proceeds as follows, starting in the position
({qA0 }, qA0 , qD0).

• From position (B, q, p) Eliminator chooses a letter a ∈ Σ.

• If q is not a co-Büchi state, Protector picks a state q′ ∈ ∆A(q, a).

• If q is a co-Büchi state, Protector picks any state q′ ∈ ∆A(B, a). Such an event is
called elimination.

• The play moves to position (∆A(B, a), q′, δD(p, a)).

Such a play can be written (B0, q0, p0)
a1−→ (B1, q1, p1)

a2−→ (B2, q2, p2) . . ., and Eliminator
wins if infinitely many qi and finitely many pi are co-Büchi states.

Intuitively, what is happening in this game is that Protector is placing a token that
he wants to protect in a reachable state, and Eliminator aims at bringing that token to a
co-Büchi state while playing a word of L(A). If Protector eventually manages to preserve
his token from elimination on an infinite suffix of the play, he wins.

Lemma 2.14:
The elimination game can be solved in polynomial time (in the size of the game).

Proof. To prove this result, we simply need to note that the winning condition is a parity
condition of fixed index. If we label the co-Büchi states qi with rank 1, the co-Büchi states
pi with rank 2, and the others with 3, then take the lowest rank in (Bi, qi, pi) (ignoring Bi),
Eliminator wins if and only if the inferior limit of ranks is even. As any parity game with
3 ranks can be solved in polynomial time [Cal+17], this is enough to get the result.

2.4. EXPLORABILITY WITH COUNTABLY MANY TOKENS 49

We want to prove the equivalence between this game and the ω-explorability game to
obtain Theorem 2.7.

Lemma 2.15:
A is ω-explorable if and only if Protector wins the elimination game on A.

Proof. First, let us suppose that Eliminator wins the elimination game on A. To build a
strategy for Spoiler in the ω-explorability game of A, we first take a function f : N → N
such that for any n ∈ N, |f−1(n)| is infinite (for instance f is described by the sequence
0, 0, 1, 0, 1, 2, 0, 1, 2, 3, . . .). The strategy for Spoiler will focus on sending token f(0),
then f(1), then f(2), etc. to a co-Büchi state.

Let σ be a memoryless winning strategy for Eliminator in the elimination game (recall
that parity games do not require memory [EJ91]). Spoiler will follow this strategy σ in
the ω-explorability game, by keeping an imaginary play of the elimination game in his
memory: M = P(QA)×QA ×QD × N.

• At first, the memory holds the initial state ({qA0 }, qA0 , qD0 , 0), and the current target
is given by the last component: it is the token f(0).

• From (B, q, p, n) Spoiler plays in both games the letter a given by σ.

• Once Determiniser has played, Spoiler sets the memory to (∆A(B, a), q′, δD(p, a), n)
where q′ is the new position of the token f(n), except if q was a co-Büchi state, in
which case we move to (∆A(B, a), q′, δD(p, a), n+ 1) where q′ is the new position of
the token f(n+ 1). We then go back to the previous step.

This strategy builds a play of the elimination game in the memory, that is consistent
with σ. We know that σ is winning, which implies that the word played is in L(A), and
that every n ∈ N is visited (each elimination increments n, and there are infinitely many
of those). An elimination happening while the target is the token f(n) corresponds, on
the exploration game, to that token visiting a co-Büchi state. Ultimately this means that
Determiniser did not provide any accepting run, while Spoiler did play a word from L(A),
and therefore won.

Let us now consider the situation where Protector wins the elimination game, us-
ing some strategy τ . We want to build a winning strategy for Determiniser in the ω-
explorability game. Similarly, this strategy will keep track of a play in the elimination
game in its memory. Determiniser will maintain ω tokens in any reachable state, while
focusing on a particular token which follows the path of the current target in the elimina-
tion game. When that token visits a co-Büchi state, we switch to the new token specified
by τ .

Since τ is winning in the elimination game, either the word played by Spoiler is not
in L(A), which ensures a win for Determiniser, or there are no eliminations after some
point, meaning that the target token at that point never visits another co-Büchi state,
which also implies that Determiniser wins.

With Lemmas 2.14 and 2.15 we get a proof of Theorem 2.7, since the elimination game
associated to A is of exponential size and can be built using exponential time.

50 CHAPTER 2. EXPLORABILITY

2.4.3 ExpTime-hardness of the ω-explorability problem

Theorem 2.8:
The ω-explorability problem for (any automaton model embedding) safety automata is
ExpTime-hard.

We will prove the result in the case of safety automata, since a simple reduction can
then generalize the result to any automaton model capable of simulating safety automata.
This includes all acceptance conditions treated in this thesis: Büchi, co-Büchi, parity, etc.
Note that a consequence of this result is the optimality of the algorithm provided in
Section 2.4.2 to prove Theorem 2.7.

We will again give a proof sketch before the complete proof of this theorem.

Proof sketch

The main idea will be to reduce the acceptance problem of a PSpace alternating Turing
machine (ATM) to the ω-explorability problem of some automaton that we build from the
machine. This reduction is an adaptation of the one from [Ber+19] showing ExpTime-
hardness of the NFA population control problem (defined in Section 2.3.1).

The computation of an ATM can be seen as a game between two players, who respec-
tively aim for acceptance and rejection of the input. These players influence the output
by choosing the transitions when facing a non-deterministic choice, that can belong to
either one of them.

Let us first describe the automaton built in [Ber+19]. In that reduction, the choices
made by the ATM players are translated into choices for Determiniser and Spoiler. The
automaton has two main blocks: one dedicated to keeping track of the machine’s configu-
ration, which we call Config, and another focusing on the simulation of the ATM choices,
which we call Choices. In Config, there is no non-determinism: the tokens move following
the transitions of the machine given as input to the automaton. In Choices, Determiniser
can pick a transition by sending his token to the corresponding state, while Spoiler uses
letters to pick his.

The automaton constructed this way will basically read a sequence of runs of the
ATM. At each run, some tokens must be sent into both blocks. Reaching an accepting
state of a run lets Spoiler send some tokens from Choices to his target state, specifically
those whose choices for the transitions of the ATM were followed. He can then restart
with the remaining tokens until all are in the target. This process will ensure a win for
Spoiler if he has a winning strategy in the ATM game. If he does not, then Determiniser
can use a strategy ensuring rejection in the ATM game to avoid the configurations where
he loses tokens, provided he starts with enough tokens.

This equivalence between acceptance of the ATM and the automaton being a positive
instance of the PCP provides the ExpTime-hardness of their problem.

In our setup, getting rid of tokens one by one is not enough: Spoiler needs to be able
to target a specific token and send it to the target state (which is now the rejecting state
⊥) in one run. If he can do that, repeating the process for every token, without omitting
any, ensures his win. If he cannot, then Determiniser has a strategy to pick a specific
token and preserving it from ⊥, and therefore wins.

2.4. EXPLORABILITY WITH COUNTABLY MANY TOKENS 51

This is why we adapt our reduction to allow Spoiler to target a specific token, no
matter where it chooses to go. To do so, we change the transitions so that winning a run
lets Spoiler additionally send every token from Config into ⊥. With that and the fact
that he can already target a token in Choices, we get a winning strategy for Spoiler when
the ATM is accepting.

If the ATM is rejecting, Spoiler is still able to send some tokens to ⊥, but he no longer
has that targeting ability, which is how Determiniser is able to build a strategy preserving
a specific token to win. To ensure the sustainability of this method, Determiniser needs
to keep ω additional tokens following his designated token, so that he always has ω tokens
to spread into the gadgets every time a new run starts.

Overall, we are able to compute in polynomial time from the ATM a safety automaton
that is ω-explorable if and only if the ATM rejects its input. Since acceptance of a
polynomial space ATM is known to be ExpTime-hard, we obtain Theorem 2.8.

Complete proof of Theorem 2.8

We reduce from the acceptance problem of a PSpace alternating Turing machine. This
is again inspired from [Ber+19].

We take an alternating Turing machine M = (ΣM, QM,∆M, qM0 , qMf) with QM =
Q∃ ⊎Q∀. It can be seen as a game between two players: existential (∃) and universal (∀).
On a given input, the game creates a run by letting ∃ (resp. ∀) solve the non-determinism
in states from Q∃ (resp. Q∀) by picking a transition from ∆. Player ∃ wins if the play
reaches the accepting state qMf , and w is accepted if and only if ∃ has a winning strategy.
We assume that M uses polynomial space P (n) in the size n of its input, i.e. the winning
strategies can avoid configurations with tape longer than P (n). We also fix an input word
w ∈ (ΣM)∗.

We will assume for simplicity that ΣM = {0, 1} and that the machine alternates
between existential and universal states, starting with an existential one (meaning that
q0 ∈ Q∃ and the transitions are either Q∃ → Q∀ or Q∀ → Q∃). In our reduction, this will
mean that we give the choice of the transition alternatively to Spoiler (playing ∃) and
Determiniser (∀).

We create a safety automaton A = (Q,Σ, q0,∆,⊥) with:

• Q = QM ⊎ Pos ⊎ Mem ⊎ Trans ⊎ {q0, store,⊥,⊤} where:

Pos = [1, P (n)]

Mem = {mb,i | b ∈ {0, 1}, i ∈ [1, P (n)]}
Trans = {E} ∪ {At | t ∈ ∆M}

• Σ = {at,p | t ∈ ∆M and p ∈ [1, P (n)]} ⊎ {init, end, restart, win} ⊎ {checkq | q ∈
QM} ⊎ {checkb,i | (b, i) ∈ {0, 1} × [1, P (n)]}.

• ⊥ is a rejecting sink state: a run is accepting if and only if it never reaches this
state.

Let us give the intuition for the role of each state of A. First, the states in QM,
Pos and Mem are used to keep track of the configuration of M, as described in Lemma

52 CHAPTER 2. EXPLORABILITY

2.16. Those in Trans are used to simulate the choices of ∃ and ∀ (played by Spoiler and
Determiniser respectively). The state store keeps tokens safe for the remaining of a run
when Spoiler decides to ignore their transition choice. The sinks ⊤ and ⊥ are respectively
the one Spoiler must avoid at all cost, and the one in which he wants to send every token
eventually.

We now define the transitions in ∆. The states ⊤ and ⊥ are both sinks (⊤ accepting
and ⊥ rejecting). We then describe all transitions labelled by the letter at,p with p ∈ Pos
and t = (q, q′, b, b′, d) ∈ ∆M, where q and q′ are the starting and destination states of t,
while b and b′ are the letters read and written at the current head position, and d ∈ {L,R}
is the direction taken by the head. These transitions are:

• q → q′.

• p → p′ with p′ = p+ 1 if d = R, or p− 1 if d = L. It goes to ⊤ if p′ /∈ [1, P (n)].

• mb,p → mb′,p, and mb′′,p′′ → mb′′,p′′ for any b′′ and any p′′ ̸= p.

• E → At′ for any transition t′.

• At → E.

• q′′ → ⊤ for any q′′ ̸= q.

• m1−b,p → ⊤ (1− b is the boolean negation of b).

• p′ → ⊤ for any p′ ̸= p.

• At′ → store for any transitions t′ ̸= t.

The first three bullet points manage the evolution of the configuration of M. The next
two deal with the alternation between players, and the next three punish Spoiler if the
transition is invalid (the check letters will handle the case where Determiniser is the one
giving an invalid transition). The last one saves the tokens that are not chosen for the
transition.

The other letters give the following transitions.

• init goes from q0 to the states E, qM0 , and 1 ∈ Pos, and also to the states mb,i

corresponding to the initial content of the tape, i.e. all mb,i such that b is the i-th
letter of w (or 0 if i > |w|).

• end labels transitions from any non-accepting state of M to ⊤, from store to q0,
and from any other state to ⊥.

• checkq creates a transition from At to ⊥ for any t ∈ ∆ starting from q. It also
creates a transition from q to ⊤. Any other state is sent back to q0. Intuitively,
playing that letter means that q is not the current state and that any transition
starting from q is invalid.

2.4. EXPLORABILITY WITH COUNTABLY MANY TOKENS 53

q0 E At

store ⊥

init
at,p, at′,p

at,p

at′,pΣ \ {end, checkq, checkb,i}

end
end

Σ

end

Figure 2.3: Gadget for simulating the choice of ∀ in the alternation (transitions labelled
by check are not represented, and t′ represents any transition different from t).

• checkb,i creates a transition from At to ⊥ for any t ∈ ∆ reading b on the tape. It
also creates transitions from any j ∈ Pos \ {i} and from mb,i to ⊤. Any other state
is sent to q0. Intuitively, playing that letter means that the current head position is
i, and that its content is not b, so any transition reading b is invalid.

To summarize, the states of A can be seen as two blocks, apart from q0, ⊤ and ⊥:
those dealing with the configuration of M (QM, Pos and Mem), and those from the
gadget of Figure 2.3 which deal with the alternation and non-deterministic choices.

The following result provides tools to manipulate the relation between A and M.

Lemma 2.16:
Let us consider a play of the ω-explorability game on A, that we stop at some point.
Suppose that the letters at,p played since the last init are at1,p1 , . . . , atk,pk . If ⊤ is not
reachable from q0 with this sequence, then we can define a run ρ of M on w taking the
sequence of transitions t1, . . . , tk. The following implications hold:

Token present in implies that at the end of ρ
q ∈ QM the current state is q
p ∈ Pos the head is in position p

mb,i ∈ Mem the tape contains b at position i
E it is the turn of ∃
At it is the turn of ∀

Proof. These results are obtained by straightforward induction from the definitions. The
unreachability of ⊤ is used to ensure that only valid transitions are played.

We will now prove that A is ω-explorable if and only if the Turing machine M rejects
the word w. Let us first assume that w ∈ L(M). There is a winning strategy σ∃ for ∃ in the
alternating Turing machine game, and Spoiler will use that strategy in the explorability
game to win against ω tokens. He will consider that the tokens are labelled by integers,
and always target the smallest one that is not already in ⊥. He proceeds as follows.

• Spoiler plays init from a position where every token is either in q0 or ⊥. We can
assume from here that Determiniser sends tokens to each possible state, and just
add imaginary tokens if he does not. Additionally, if the target token does not go
to E, then Spoiler creates an imaginary target token in E that will play only valid

54 CHAPTER 2. EXPLORABILITY

transitions (we will describe what this means later). Its purpose is to ensure that
we actually reach an accepting state of M to destroy the real target token.

• When there are tokens in E, Spoiler plays letters according to σ∃. More formally,
if the letters played since init are at1,p1 . . . ati,pi , then Spoiler plays ati+1,pi+1

where
ti+1 = σ∃(t1, . . . , ti) and pi+1 = pi +1 or pi − 1 depending on the head movement in
ti.

• After such a play, Determiniser can move tokens to any state At. If there are more
than one occupied state, Spoiler picks the one containing the current target token
(possibly imaginary).

– If that state corresponds to an invalid transition (wrong starting state or wrong
tape content at the current head position), then Spoiler plays the corresponding
check letter. Formally, if the target token (not the imaginary one, since Spoiler
can avoid invalid transitions for that one) is in At, Spoiler plays checkq if the
starting state q of t does not match the current state of the tape (given by
Lemma 2.16), or checkb,i if the current head position is i and does not contain
b. In both cases, the target token is sent to ⊥ with no other token reaching ⊤
(by Lemma 2.16). This sends us back to the first step, but with an updated
target.

– If the state instead corresponds to a valid transition, then Spoiler can play
the corresponding at,p, where p is the current head position (again, given by
Lemma 2.16), then go back to the previous step (where there are tokens in E).

• If no invalid transition is reached, the run eventually gets to an accepting state of
M because σ∃ is winning. This corresponds to a stage where Spoiler can safely
play end to get rid of the target token along with all tokens outside of store, by
sending them to ⊥ (the only reason not to play end would be the existence of tokens
in non-accepting states of QM). This sends us back to the first step, but with an
updated target.

This strategy guarantees that after k runs, at least the first k tokens are in state ⊥, and
therefore cannot witness an accepting run. We also know that the final word is accepted
by A, because an accepting run can be created by going to the state store as soon as
possible in each factor corresponding to a run of M.

Conversely, if there is a winning strategy σ∀ for the universal player in the alter-
nation game on M(w), then we can build a winning strategy for Determiniser in the
ω-explorability game. This strategy is more straightforward than the previous one, as we
can focus on the tokens sent to E (while still populating each state when init is played,
but these other tokens follow a deterministic path until the next init).

Determiniser will initially choose a specific token, called leader. He then sends ω
tokens to every reachable state when Spoiler plays init, with the leader going to E.
Determiniser then moves the tokens in the leader’s state according to σ∀. Spoiler cannot
send the leader to ⊥, since the only way to do that would be using the letter end, but
this would immediately ensure the win for Spoiler, as there will always be some token in
non-accepting states of M (because σ∀ is winning), and those tokens would be sent to ⊤

2.5. CONCLUSION OF CHAPTER 2 55

upon playing end. This means that Spoiler has no way to send the leader to ⊥ without
losing the game, and therefore that Determiniser wins.

Note that with that strategy, Spoiler can still safely send some tokens to ⊥ by playing
the wrong transition, which sends the tokens following the leader to store, then some
well-chosen check letter to send the remaining ones to ⊥. However, Determiniser will
start the next run with still ω tokens, including the leader. This is why the choice of a
specific leader is important, as it can never be safely sent to ⊥.

This proves that the automaton A created from M and w (using polynomial time) is
ω-explorable if and only if M rejects w. This completes the proof, since the acceptance
problem is ExpTime-hard for alternating Turing machines using polynomial space.

2.5 Conclusion of Chapter 2
We introduced and studied the notions of explorability and ω-explorability, for automata
on finite and infinite words. We showed that these problems are ExpTime-complete for
Büchi condition in the first case and co-Büchi condition in the second case.

It is plausible that these results could be generalized to higher parity conditions, for
instance by replacing the notion of support set by Safra trees, but this is outside the scope
of this paper, and we leave this investigation for further research.

Although we showed that the original motivation of using explorability to improve
the current knowledge on the complexity of the GFGness problem for all parity automata
cannot be directly achieved, since deciding explorability is at least as hard as GFGness, we
believe that explorability is a natural property in the study of degrees of nondeterminism,
and that this notion could be used in other contexts as a middle ground between deter-
ministic and non-deterministic automata. Moreover, a new objective from there might
be to try using the hardness results from this thesis to get better lower bounds for GFG
recognizability, in particular in the case of parity automata with at least three priorities
(for which the upper bound is ExpTime, with no matching lower bound). The hard-
ness result for explorability provides a closer candidate for reduction than most existing
problems.

We did not focus on the decision problem of k-explorability, which already has lower
and upper bounds inherited from the width problem in [KM19]. Those are respectively
ExpTime and 2-ExpTime, instead of the ExpTime-completeness of width. This dis-
crepancy is due to the lack of a bound on k in the case of explorability, which makes its
size significant in the size of an instance of the problem. Some future work might be to
tackle this problem in order to remove this gap between the two bounds.

Chapter 3

Cyclic proofs for transfinite expressions

You must obey the law,
because it’s illegal to break the law.

Unknown

In this chapter, we introduce a cyclic proof system for proving inclusions of transfinite
expressions, describing languages of words of ordinal length. We show that recognising
valid cyclic proofs is decidable, that our system is sound and complete, and well-behaved
with respect to cuts. Moreover, cyclic proofs can be effectively computed from expres-
sions inclusions. We show how to use this to obtain a PSpace algorithm for transfinite
expression inclusion.

3.1 Introduction

Language inclusion. Deciding inclusion of regular languages is a fundamental problem
in verification. For instance, if a program and a specification are modelled by regular lan-
guages P and S respectively, the correctness of the program is expressed by the inclusion
P ⊆ S.

The most standard approach to deciding regular language inclusion is via automata,
and this field of research is still active, see for instance [BP13] for well-performing non-
deterministic automata inclusion algorithms using coinduction techniques. Language in-
clusion is especially important in the framework of infinite words. Indeed, the standard
way to model possible behaviours of a system is via ω-regular languages. For instance, Lin-
ear Temporal Logic (LTL), which is a practical way to describe some ω-regular languages,
is heavily used for expressing specifications. Inclusion of ω-regular languages is still being
investigated, with recent works giving refined algorithms [Abd+10]. Finally, generalizing
further, some models of automata and expressions defining languages of transfinite words
(i.e. words of ordinal length) were studied in [Cho78; Bed96]. Transfinite expressions
allow any nesting of Kleene star and ω-power. Such expressions define languages of trans-
finite words, for instance the expression (a+bω)ω describes a language of words of length
ω2. This more general setting of transfinite words can be used for instance to model

56

3.1. INTRODUCTION 57

phenomena with Zeno-type behaviours, such as a ball bouncing at smaller and smaller
heights, and after infinitely many bounces it is considered stabilized and can perform
some other action.

Proofs systems. The above algorithms give only a yes/no answer, but in some cases
the user is interested in having a certificate witnessing inclusion, that he can check in-
dependently. This justifies the use of formal proof systems, where proofs can be easily
communicated. On finite words, the seminal work [Koz94] gives a complete axiomatic sys-
tem for regular expression inclusion. Complete axiomatisations for ω-regular expressions
were given as well [CLS15].

Cyclic proofs systems. A proof is usually a finite tree with axioms as leaves, built
using certain logical rules, and having the conclusion to prove as root. However, under
certain conditions, we can consider that infinite trees form valid proofs. Such proofs
are called non-well-founded, and can naturally express for instance reasoning by infinite
descent. Many proof systems based on non-well-founded proofs were shown to be sound
and complete in various frameworks, so these special proofs should be considered as a
perfectly valid way of establishing a result. Such proof systems often require a validity
condition on their infinite proofs, for instance of the form “on any infinite branch, such a
rule must be used infinitely many times”. Such a validity condition is often necessary to
impose some kind of progress along the branches of the proof, in order to avoid proving
false formulas by circular reasoning. These non-well-founded proofs have been studied in
several contexts, such as arithmetic [Sim17], first-order logic [Bro05], modal µ-calculus
[DHL06; AL17; Dou+16], LTL formulas [KS16], and others. Non-well-founded proofs
are especially suited to reason about objects defined via fixed points. Since a non-well-
founded proof is a priori an infinite object, it is often relevant to consider the special
case of cyclic (or regular) proofs: those are the proofs obtained as the unfolding of finite
graphs, so they are finitely describable.

One of the main advantages of moving to non-well-founded proofs is that in many cases
it removes the need to guess invariants (or auxiliary lemmas). See for instance [BS07],
where a cut-free completeness result is proved for a non-well-founded proof system. This
makes the system more amenable to proof search: in most non-well-founded systems, we
can prove any true formula φ using only formulas that are (in some sense) sub-formulas
of φ. In a context where automated proof assistants such as Coq are becoming standard
tools, this motivates the current growing interest in cyclic proofs.

Cyclic proofs for regular languages. Here, we aim at exploring the problem of
language inclusion in the framework of cyclic proofs. Notice that the Kleene star is a
least fixed point operator, and the ω power is a greatest fixed point, so we expect cyclic
proofs to be well-suited to deal with regular expressions using these operators.

Das and Pous [DP18] explored this question in the context of finite words, with stan-
dard regular expressions whose only fixed point operator is the Kleene star. They exhibit
a cyclic proof system for regular expression inclusion, that they prove sound and complete,
even in its cut-free variant. To our knowledge, the cyclic proof approach to inclusion of
regular expressions was not explored in the case of infinite and transfinite words, and this
is the purpose of the present work.

Contributions. We design a non-well-founded proof system for the inclusion of transfi-

58 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

nite expressions. The notion of proof tree is replaced by a proof forest, whose branches
can be of ordinal length. We show that our system is sound (in its most general version)
and complete (even for cut-free cyclic proofs). We also show that the validity criterion for
cyclic proofs is decidable. In the case of infinite words, our system is similar to systems
for linear µ-calculus as introduced in [DHL06], except that we use hypersequents as in
[DP18].

The main new difficulty when jumping from finite to infinite or transfinite words is
the explosion in the number of non-deterministic choices one is faced with when trying
to match a word to an expression. This explains the use of hypersequents, and leads to
a slightly more intricate system than [DP18]. In the transfinite case, the branches of the
proof tree become transfinite as well, thereby requiring additional care in the study of the
system.

In order to prove the completeness of our system, we show that cyclic proofs can
be effectively built from the expressions for which we want to prove inclusion. To show
that the resulting proofs are correct, we use a model of automata (close to the one from
[Cho78]) recognizing these transfinite languages. This allows us to show that cut-free,
finitely representable proofs are enough to prove any true inclusion, and that these proofs
can be computed.

The cyclic cut-free completeness of our system allows us to obtain a PSpace algorithm
for inclusion of transfinite expressions. This matches the known lower bound: inclusion
of regular expressions is PSpace-hard already for finite words. PSpace membership
is folklore for inclusion of ω-regular expressions as well, but to our knowledge, this up-
per bound is a new result for transfinite expressions. Let us note however that since
automata models were already defined for transfinite expressions [Cho78; Bed96], it is
plausible, that a PSpace algorithm can also be obtained more directly through these
models. This PSpace-completeness result can be compared with the result from [DR10],
stating PSpace-completeness of LTL satisfiability on transfinite words.

Related works. In addition to related works that were already mentioned, let us com-
ment on the link between our results and the recent paper [CR20], which studies cyclic
proofs for first-order logic extended with least and greatest fixed points. The validity cri-
terion in [CR20] is very similar to ours, and as they note, their general framework allows
to embed reasonings on infinite words as a special case. One advantage of our system
for ω-regular expressions is that although it is less general, it is much more convenient to
manipulate ω-regular languages. Moreover, the use of hypersequents allows us to obtain
cut-free regular completeness, which is not the case in [CR20]. On the other hand, our
work on transfinite expressions is orthogonal to [CR20], as in such expressions, the ω
operator is no longer a greatest fixed point.

Outline. We will start by describing the system for infinite words in Section 3.2, and
first prove our results in this restricted case. We then show in Section 3.3 how the system
can be modified to accommodate transfinite words, and how the results can be lifted to
this setting.

3.2. THE CASE OF ω-REGULAR EXPRESSIONS 59

3.2 The case of ω-regular expressions

In this part, we do not yet look at truly transfinite expressions such as (a+bω)ω, but only
at ω-regular ones, which are the ones describing languages of words of length at most ω.
More formally, these expressions can be described by the following grammar.

• Regular expressions: e, f ::= a | e+ f | e · f | e+

• ω-regular expressions: g, h ::= e | eω | e · g | g + h, where e ranges over regular
expressions.

To associate a language L(g) of finite or infinite words to an ω-regular expression g,
it suffices to interpret each constructor on languages in the standard way:

L(0) = ∅ L(e+ f) = L(e) ∪ L(f) L(e · f) = L(e) · L(f) = {uv | u ∈ L(e), v ∈ L(f)}
L(a) = {a} L(e+) =

⋃
n>0 L(e)n L(eω) = L(e)ω = {u1u2 · · · | ∀i, ui ∈ L(e)}

We avoid the use of ε, and we use e+ instead of e∗, to guarantee that an expression eω

only accepts infinite words.
We design a proof system Sω that will provide a certificate for any inclusion between the

languages of two such expressions. Starting with the special case of ω-regular expressions
allows us to introduce most proof techniques, while staying in a more familiar framework.
We also claim that already in this case, such a proof system can bring new insights, as it
can offer interesting trade-offs compared to automata models (see Conclusion).

3.2.1 The proof system Sω

The proof system described in this section is strongly inspired from [DP17], the novelty
being the introduction of ω.

Rules for building preproofs

We will first describe the sequents of the system Sω, i.e. the shape of any label of a
node in a proof tree. These are identical to the ones we use later, in the proof system for
generalized expressions.

Definition (Sequent):
We call sequent a pair (Γ, B), noted Γ → B, where Γ is a list of expressions and B is a
non-empty finite set of such lists. In the rest of the chapter, upper case Greek letters will
be used for lists of expressions, and upper case Latin letters for sets of lists. Γ will be
called the left side of the sequent and B its right side. Their contents will be denoted as
follows, with brackets isolating each list in B:

Γ = e1, . . . , en B = ⟨f 1
1 , . . . , f

k1
1 ⟩; . . . ; ⟨f 1

m, . . . , f
km
m ⟩

Languages are associated to such lists and sets of lists in the following way:
L(Γ) = L(e1 · . . . · en) L(B) = L(f 1

1 · . . . · fk1
1 + . . .+ f 1

m · . . . · fkm
m)

The sequent Γ → B is called sound if the inclusion L(Γ) ⊆ L(B) holds.

60 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

id
→ ⟨⟩

e,Γ → B f,Γ → B
+-l

e+ f,Γ → B

Γ → ⟨e,Λ⟩; ⟨f,Λ⟩;B
+-r

Γ → ⟨e+ f,Λ⟩;B

Γ → B wkn
Γ → B;C

Γ, e, f,Λ → B
·-l

Γ, e · f,Λ → B

Γ → ⟨Λ, e, f,Θ⟩;B
·-r

Γ → ⟨Λ, e · f,Θ⟩;B

Λ → ⟨Θ1⟩; . . . ; ⟨Θn⟩
match

Γ,Λ → ⟨Γ,Θ1⟩; . . . ; ⟨Γ,Θn⟩
e,Γ → B e, e+,Γ → B

∗-l
e+,Γ → B

Γ → ⟨e,Λ⟩; ⟨e, e+,Λ⟩;B
∗-r

Γ → ⟨e+,Λ⟩;B(
Λ → ⟨e⟩ Γ, e,Θ → B

cut
Γ,Λ,Θ → B

)
e, eω → B

ω-l
eω → B

Γ → ⟨e, eω⟩;B
ω-r

Γ → ⟨eω⟩;B

Figure 3.1: The rules of the system Sω for ω-regular expressions.
Γ,Λ,Θ are lists of expressions; B,C are sets of such lists; e, f are ω-regular expressions.
Rules wkn, match, cut will sometimes be abbreviated w,m,c.

Note that those sequents have more structure than those described in Section 1.6 (or
in [DP18]). We need that additional structure to be able to deal with non-determinism in
limit behaviours (e.g. L((a+ b)ω) ⊆ L((b∗a)ω+(b∗a)∗bω)). This kind of sequent is usually
called hypersequent, but we will keep calling them sequents as those are the only ones we
will use.

To describe our proof system, we now need to define the notion of proof tree. These
are usually finite objects, but in our setting we allow infinite trees.

A tree is a non-empty, prefix-closed subset of {0, 1}∗. We typically represent it with
the root ε at the bottom, and the sons v0 and v1 of a node v (if they exist) are represented
above v, respectively on the left and on the right.

A branch of a tree T ⊆ {0, 1}∗ is a prefix-closed subset of T that do not contain two
words of the same length, i.e. two nodes at the same depth of the tree. A branch of T is
maximal if it is not strictly contained in another branch of T .

A preproof is given by a tree and a labelling π of its nodes by sequents in such a
way that for any node v with children v1, . . . , vn (with n ∈ {0, 1, 2}), the expression
π(v1) · · · π(vn)

π(v)
is an instance of a rule from Figure 3.1.

A preproof is called cyclic or regular if it has finitely many distinct subtrees. Such a
proof can be represented using a finite tree, where each leaf x not closed with an id rule
is equipped with a pointer to a node y below x, indicating that the infinite trees rooted
in x and y are identical. Examples of this representation can be found in Figure 3.2.

Threads and validity condition

Some preproofs satisfying the conditions described above actually prove wrong inclusions,
meaning that we can build such a tree with an unsound sequent at its root. An example
of such a preproof can be found in Figure 3.2. This illustrates the need for a validity
condition that will rule out such unsound preproofs. We need a few more definitions
before we can state this validity condition.

3.2. THE CASE OF ω-REGULAR EXPRESSIONS 61

Definition (Occurrences):
We will need to consider particular occurrences of expressions in preproofs. To this end,
we define the notion of occurrence of an expression in a preproof, which is formally defined
as a tuple (v, i, j) where v ∈ {0, 1}∗ is a node of the tree, i is the index of a list in the
sequent labelling that node, and j the index of an expression in that list. This means
we actually need to represent the right side of any sequent by a sorted set of lists of
expressions, using some arbitrary order over lists. In the rest of the chapter, in order to
lighten notations, we will abstract away this formalism and just use the word “expression”
to point to particular occurrences of expressions in a preproof.

If S is a sequent, we will note pos(S) the set of expression positions in S, that is
identifiers (i, j) that are compatible with the sequent S.

Definition (Principal expression):
In a sequent of a preproof where a rule r is applied, an expression is called principal
for r if it is the one corresponding to the lower case expression in the lower side of the
rule r in Figure 3.1. Note that there is no principal expression when the rule is id, wkn,
cut or match, since these rules do not contain lower case letters in the lower sequent.
Ancestors: Given an expression e in the lower part of a rule, its immediate ancestors
are:

• if e is principal: the lower case expressions in the upper sequents of the rule

• if e is in a list Γ or a set of list B: its copies in the same position in each copy of Γ
(resp. B) on the upper sequents.

Note that an expression can have between 0 (expression in C in the wkn rule) and 3
(e+ in any ∗ rule) immediate ancestors.

Definition (Thread):
A thread is a path in the graph of immediate ancestry (also called the logical flow graph
[Bus91]). We say that a thread witnesses a v-unfolding if the current expression is principal
for either a ∗-l rule or an ω-r rule. As in Figure 3.2, threads will be represented by coloured
lines, with bullets to mark v-unfoldings.

Note that we purposely talk about the “graph” of immediate ancestry, and not the
“tree”. Since the right part of a sequent is a set, it does not keep track of multiplicity,
and two threads can merge when going upwards. For instance, if we apply the rule

Γ → ⟨e, eω⟩
ω-r

Γ → ⟨eω⟩; ⟨e, eω⟩
• , the red and blue threads are merged. We need to allow that

phenomenon in order to be able to build finitely representable proofs.
We can now define the validity condition, that makes a preproof into an actual proof.

Definition (Validity condition):
A thread is validating if it witnesses infinitely many v-unfoldings. A preproof is valid ,
and is then called a proof, if all its infinite branches contain a validating thread.

We will call ∗-l thread (resp. ω-r thread) a validating thread on the left side (resp.
right side) of sequents, as it witnesses infinitely many ∗-l (resp. ω-r) rules.

62 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

...
aω → ⟨a+, bω⟩

m
a, aω → ⟨a, a+, bω⟩

w
a, aω → ⟨a, bω⟩; ⟨a, a+, bω⟩

∗-r
a, aω → ⟨a+, bω⟩

ω-l
aω → ⟨a+, bω⟩

·-r
aω → ⟨a+bω⟩

...
bω → ⟨bω⟩

+-r
b, bω → ⟨b, bω⟩

ω-r
b, bω → ⟨bω⟩

ω-l
bω → ⟨bω⟩

m
a, bω → ⟨a, bω⟩

w
a, bω → ⟨a, bω⟩; ⟨a, a+, bω⟩

∗-r
a, bω → ⟨a+, bω⟩

...
a+, bω → ⟨a+, bω⟩

m
a, a+, bω → ⟨a, a+, bω⟩

∗-r
a, a+, bω → ⟨a+, bω⟩

∗-l
a+, bω → ⟨a+, bω⟩

·-l, ·-r
a+bω → ⟨a+bω⟩

•

•

•

Figure 3.2: An invalid preproof (left) and a valid one (right)

Let us give an intuition for this validity condition. A proof has to guarantee that any
word generated by the left side expression can be parsed in the right side one. Branches
with a ∗-l thread do not correspond to a word on the left side, so there is nothing to verify
and the branch can be accepted. On the other hand, when a legitimate infinite word from
the left side has to be parsed on the right side, it must involve an expression eω where e
is matched to infinitely many factors. This corresponds to an ω-r thread.

We give two examples of preproofs in Figure 3.2. The left one is an invalid preproof
of a wrong inclusion. The validity condition is not satisfied, since there are no ∗-l or ω-r
rules.

The right one is an actual proof. It is comb-shaped, with a “main” branch always
going to the right. We can get a validating thread for any branch of that preproof, by
taking the red thread on the rightmost branch, and a blue thread on all other branches.

We provide an example of a non-trivial inclusion in Example 3.1 below.

Example 3.1 (A cyclic proof of a non-trivial inclusion):
The proof in Figure 3.3 shows that L((a+ b)ω) ⊆ L((b∗a)ω + (a+ b)∗bω), i.e. any infinite
word on alphabet {a, b} has either infinitely or finitely many a’s. Black arrows, called
backpointers, identify sequents that are roots of isomorphic subtrees. To simplify the
reading, we temporarily suspend our naming convention regarding capital letters, and we
note A = (a+b)ω (for “All”), I = (b∗a)ω (for “Infinite”), and F = (a+b)+, bω (for “Finite”).
Note that our expressions cannot use the Kleene star : b∗a is just a shorthand for b+a+a,
and that is why (a+ b)∗bω is represented by ⟨F ⟩; ⟨bω⟩.

This proof forest is valid: the only options for limit branches are either going only
right after some point, or going left infinitely many times. In the first case, following the
expression bω (in red) gives us an ω-r thread, and in the second one we get such a thread
by following the sequent I (blue).

We recall the notions of soundness and completeness, which will be our main objective
with the systems presented here.

Definition (Soundness and completeness):

3.2. THE CASE OF ω-REGULAR EXPRESSIONS 63

A → ⟨I⟩; ⟨F ⟩; ⟨bω⟩
m

a,A → ⟨a, I⟩; ⟨a, F ⟩; ⟨a, bω⟩
w

a,A → ⟨a, I⟩; ⟨a, F ⟩; ⟨b, F ⟩; ⟨a, bω⟩; ⟨b, bω⟩
+-r

a,A → ⟨a, I⟩; ⟨a+ b, F ⟩; ⟨a+ b, bω⟩
∗-r

a,A → ⟨a, I⟩; ⟨F ⟩
w

a,A → ⟨a, I⟩; ⟨b+, a, I⟩; ⟨F ⟩; ⟨bω⟩

A → ⟨a, I⟩; ⟨b+, a, I⟩; ⟨F ⟩; ⟨bω⟩
m

b, A → ⟨b, a, I⟩; ⟨b, b+, a, I⟩; ⟨b, F ⟩; ⟨b, bω⟩
∗-r

b, A → ⟨b+, a, I⟩; ⟨b, F ⟩; ⟨b, bω⟩
ω-r

b, A → ⟨b+, a, I⟩; ⟨b, F ⟩; ⟨bω⟩
w

b, A → ⟨b+, a, I⟩; ⟨a, F ⟩; ⟨b, F ⟩; ⟨bω⟩
+-r

b, A → ⟨b+, a, I⟩; ⟨a+ b, F ⟩; ⟨bω⟩
w

b, A → ⟨b+, a, I⟩; ⟨a+ b, F ⟩; ⟨(a+ b), bω⟩; ⟨bω⟩
∗-r

b, A → ⟨b+, a, I⟩; ⟨F ⟩; ⟨bω⟩
w

b, A → ⟨a, I⟩; ⟨b+, a, I⟩; ⟨F ⟩; ⟨bω⟩
+-l

(a+ b), A → ⟨a, I⟩; ⟨F ⟩; ⟨b+, a, I⟩; ⟨bω⟩
ω-l

A → ⟨a, I⟩; ⟨b+, a, I⟩; ⟨F ⟩; ⟨bω⟩
·-r

A → ⟨a, I⟩; ⟨b+a, I⟩; ⟨F ⟩; ⟨bω⟩
+-r

A → ⟨b∗a, I⟩; ⟨F ⟩; ⟨bω⟩
ω-r

A → ⟨I⟩; ⟨F ⟩; ⟨bω⟩

•

•

•

A = (a+ b)ω, I = (b∗a)ω, and F = (a+ b)+, bω

Figure 3.3: A (valid) proof tree

A proof system is sound if the conclusions of all of its valid proofs are sound. It is complete
if, for any sound sequent Γ → B, there is a proof with conclusion Γ → B.

3.2.2 Soundness of the system Sω

In this part, we want to prove that any proof (i.e. any valid preproof) derives a sound
sequent. We will do that without any assumption of regularity, since we want every
proof from the Sω system to be correct, and not just the regular fragment. We will show
soundness of the system with cuts, since this is more general and it allows to write proofs
more conveniently. Notice that incorporating the cuts significantly increases the difficulty:
unlike what happens in a finitary proof system, it is not enough here to prove that the
cut rule is locally sound. Since the cuts can be used infinitely many times along a branch,
it calls for a careful argument.

The following first result is an easy consequence of the local soundness of our rules,
obtained by induction on the tree:

Lemma 3.1:
Any finite preproof derives a sound sequent.

To prove the general case, we take any valid proof tree P in Sω, with a root sequent
Γ0 → B0. We take an arbitrary w ∈ L(Γ0), and we show that w ∈ L(B0).

We create a tree P (w) that will be a subtree of the original one, with additional
information labelling its nodes. The purpose of the tree P (w) is to prove the membership
of w in L(B0).

64 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

Definition (Sequents of P (w), label-soundness):
The sequents of P (w) are similar to the ones of a preproof, but we additionally label each
expression e on the left side of sequents with a word u. Given a list of expressions Γ,
we will denote Γ′ a labelling of its expressions with words, represented as a list of pairs
(expression, word). If Γ′ = (e1, u1), . . . , (ek, uk), we say that (the labelling of) Γ′ is correct
if for each i ∈ [1, k], we have ui ∈ L(ei). We define concat(Γ′) as the word u1 . . . uk. We
additionally say that a sequent Γ′ → B is label-sound if concat(Γ′) ∈ L(B).

We will build P (w) by transforming the initial proof by induction from the root. First,
we take a correct labelling Γ′

0 of Γ0 such that concat(Γ′
0) = w. Then we move upwards

while replacing each rule by the corresponding one in the table below, while satisfying
the condition specified in the table (if possible). This tree will be a subtree of the initial
one, since we only keep one successor at rules +-l and ∗-l.

Rule New rule Condition
Γ, e, f,Λ → B

·-l
Γ, e · f,Λ → B

Γ′, (e, u), (f, v),Λ′ → B
·-l

Γ′, (e · f, uv),Λ′ → B
(u, v) ∈ L(e)× L(f)

Γ, e1,Λ → B Γ, e2,Λ → B
+-l

Γ, e1 + e2,Λ → B

Γ′, (ei, u),Λ
′ → B

+-l
Γ′, (e1 + e2, u),Λ

′ → B
u ∈ L(ei)

e,Γ → B e, e+,Γ → B
∗-l

e+,Γ → B

(e, u),Γ → B
∗-l

(e+, u),Γ → B
u ∈ L(e)

e,Γ → B e, e+,Γ → B
∗-l

e+,Γ → B

(e, u), (e+, v),Γ′ → B
∗-l

(e+, uv),Γ′ → B
(u, v) ∈ L(e)× L(e+)

Γ, e, eω → B
ω-l

Γ, eω → B

Γ′, (e, u), (eω, v) → B
∗-l

Γ′, (eω, uv) → B
(u, v) ∈ L(e)× L(eω)

Λ → ⟨e⟩ Γ, e,Θ → B
c

Γ,Λ,Θ → B

Λ′ → ⟨e⟩ Γ′, (e, u),Θ′ → B
c

Γ′,Λ′,Θ′ → B
u = concat(Λ′)

Notice that if the labelling of the bottom sequent is correct, this guarantees us that we can
choose a correct labelling for the upper sequent as well, while satisfying the condition in
the table. It is only because of the cut rule that we cannot simply propagate correctness
of labellings from the root. Moreover, all these rules are label-sound, in the sense that
their lower sequents are label-sound whenever the upper ones are.

If at some point the condition cannot be met, we stop there and call the current node
a dead leaf. This is only important for the sake of a complete definition, since we will
prove that this actually never occurs if the initial preproof is valid (Lemma 3.5).

We deal with the remaining rules (right rules, wkn and match) by simply copying the
pairs (expression, word) from bottom to top on the left side.

Lemma 3.2:
In P (w), any infinite branch has an ω-r thread.

Proof. This follows from the fact that any expression e+ on the left of a sequent in P (w)
is associated with a finite word, and therefore can only be principal for finitely many ∗-l
rules, each one decreasing the size of that word (notice that we use an infinite descent
argument here). The validity condition then ensures the result.

3.2. THE CASE OF ω-REGULAR EXPRESSIONS 65

Lemma 3.3:
In P (w), no branch goes infinitely many times to the left at cut rules.

Proof. Let us consider an infinite branch β of P (w). By Lemma 3.2, the branch β has an
ω-r thread. Since the right side of a sequent is not preserved when going to the left at a
cut rule, it can only happen finitely many times in β.

If β1, β2 are maximal branches of P (w), we note β1 < β2 if β1 is to the left of β2, i.e.
at the first cut where they differ, β1 goes left and β2 goes right. We call ≤ the reflexive
closure of <. We then get the following result.

Lemma 3.4:
The maximal branches of P (w) are well-ordered by ≤.

Proof. Let us call C the set of maximal branches in P (w), ordered from left to right. More
formally, we can see an element of C as a (finite or infinite) word over {0, 1}, in which
each letter corresponds to the choice made at a cut rule: 0 for left and 1 for right (cut
rules are the only branching rules in P (w)). With this, the left-to-right order is simply
the lexicographic order: β1 < β2 if their first different bit is 0 in β1 and 1 in β2.

We take a nonempty subset X ⊆ C. Consider the subtree TX of P (w) formed by the
branches in X. Note that this tree could contain branches that are not in X. For instance,
if X = {0, 10, 110, 1110, . . .}, then TX also contains the branch 11111 . . ., noted 1ω. We
call m the leftmost branch in TX : we can define it by induction, by going left whenever
possible. We want to show that m ∈ X. If m = 1ω, then clearly m ∈ X. Otherwise,
by Lemma 3.3, m can be noted τ01ω. There must be a branch β ∈ X starting with τ0
as well. By minimality of m, we have m ≤ β, and since m = τ01ω, we have m ≥ β.
Therefore m = β, and m ∈ X.

We finally get that m is the smallest element in X. Any subset of C has a smallest
element, so (C,≤) is well-founded.

The main result for the soundness proof is Lemma 3.5, which also ensures that there
is no dead leaf in P (w).

Lemma 3.5:
In P (w), all labellings are correct and all sequents are label-sound.

Proof. We first give the main idea, see below for the detailed proof. We proceed by well-
founded induction on the maximal branches, using the left-to-right order from Lemma
3.4. The only interesting case is when dealing with cuts.

When encountering a cut rule of the form
Λ′ → ⟨e⟩ Γ′, (e, u),Θ′ → B

cut
Γ′,Λ′,Θ′ → B

, we need

to show that the label (e, u) is correct, i.e. provided u ∈ L(Λ′), we have u ∈ L(e).
This will be obtained thanks to the induction hypothesis, guaranteeing that the sequent
Λ′ → ⟨e⟩ on the left of the cut rule is label-sound.

Let us now write the complete proof. We proceed by well-founded induction on the
maximal branches. The property we want to prove is the following one: “Given a maximal
branch β of P (w), any labelling on β is correct. Moreover, any sequent above the last left
cut of β is label-sound.”

66 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

We only show the branchings from cut rules is this drawing of P (w). The thick branch
is the induction step we just completed. Green nodes correspond to sequents that have
been proven both correctly labelled and label-sound, orange ones those we only proved to
be correctly labelled at that point, and red ones are the remaining ones.

Figure 3.4: Illustration of the proof of Lemma 3.5.

Assume that, for some maximal branch β, every other one on its left verifies the
property.

We prove by induction that the labellings of β are correct. By definition of P (w), this
is preserved when we go upwards at any rule other than cut. This is also the case when
we go on the left of a cut rule. We need to prove that it still works when we go on the

right, in a rule such as:
Λ′ → ⟨e⟩ Γ′, (e, u),Θ′ → B

cut
Γ′,Λ′,Θ′ → B

with u = concat(Λ′).

In this instance, u ∈ L(e) if and only if the sequent Λ′ → ⟨e⟩ is label-sound (because u
is the word in Λ′ by definition of P (w)). To prove that it is the case, we use the induction
hypothesis for the maximal branch going to that sequent, then always on the right at cut
rules. This branch is on the left of the current one, so according to the second part of the
induction hypothesis for this branch, the sequent Λ′ → ⟨e⟩ is label-sound. This completes
the proof of the first part of the induction.

In order to prove the second part, we call v the node just above the last left cut of β.
We are only interested in the proof rooted in v.

The branch β is the rightmost branch in that subtree. This means that if we take any
sequent S of that tree that is not in β, the branch going only right from S guarantees the
label-soundness of S by induction hypothesis. An illustration of this situation is provided
in Figure 3.4. Consequently, the label-soundness of a sequent in β above v implies that
of the sequent below.

If β is finite, we can get the label-soundness of any sequent above v by induction.
Suppose now that β is infinite, and therefore validated by an ω-r thread (Lemma 3.2).

In other words, the corresponding expression fω on the right is unfolded infinitely many
times. Figure 3.5 presents what happens between two consecutive ω-r rules applied to
that thread. We get the finite proof on the right by removing left rules and changing the
context. A segment of the word on the left has been matched to f by finite soundness
(Lemma 3.1), because we already proved that ui ∈ L(ei) if the couple appears on that
branch.

In the end, we found a match for every iteration of f , which proves that all sequents
of β above the first ω-r rule in the proof rooted in v are label-sound. We get the label-

3.2. THE CASE OF ω-REGULAR EXPRESSIONS 67

...
Γ′
n → ⟨f, fω⟩;B′

n
ω-r

Γ′
n → ⟨fω⟩;B′

n w, m
(en, un),Γ

′
n → ⟨en, fω⟩;Bn

...
Γ′
2 → ⟨Λ2, f

ω⟩;B′
2 w, m

(e2, u2),Γ
′
2 → ⟨e2,Λ2, f

ω⟩;B2

...
Γ′
1 → ⟨Λ1, f

ω⟩;B′
1 w, m

(e1, u1),Γ
′
1 → ⟨e1,Λ1, f

ω⟩;B1

...
Γ′
0 → ⟨f, fω⟩;B0

ω-r
Γ′
0 → ⟨fω⟩;B0

...

−→

id
→ ⟨⟩

m
en → ⟨en⟩

...
Γ2 → ⟨Λ2⟩

m
e2, . . . , en,Γ2 → ⟨e2,Λ2⟩

...
e2, . . . , en → ⟨Λ1⟩

w, m
e1, e2, . . . , en → ⟨e1,Λ1⟩

...
e1, e2, . . . , en → ⟨f⟩

Figure 3.5: Using finite soundness between two consecutive ω-r rules in P (w)

soundness of the remaining interval (between v and the first ω-r rule) by straightforward
induction using the local label-soundness of the rules in this branch.

This completes the last part of the induction hypothesis. By well-founded induction,
this is true for every maximal branch. In particular, this is true for the very last one: the
one that always goes on the right at a cut rule. The induction hypothesis for this branch
implies that the whole proof tree P (w) is label-sound, and that w ∈ L(B0) (recall that
the root of the initial proof is Γ0 → B0, with w ∈ Γ0).

Theorem 3.1:
Any valid proof from Sω is sound.

Proof. For any word w in L(Γ0), there is a way to correctly label Γ0 into a Γ′
0 with

concat(Γ′
0) = w. By Lemma 3.5, this correct labelling can be propagated through P (w),

and we obtain that the root sequent Γ′
0 → B0 is label-sound, so w ∈ L(B0). Thus we

have indeed L(Γ0) ⊆ L(B0), showing that any valid proof is sound.

Remark 3.1:
This result is similar to the soundness in [DHL06], but the shape of the sequents differs,
and the transfinite case that follows uses an extension of our proof.

68 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

3.2.3 Cut-free regular completeness of the system Sω

In order to prove the completeness of the system, we want to show that any sound sequent
can be derived. Moreover, if we want this system to be interesting from a computational
point of view, we need to obtain finitely representable proofs. Lemma 3.7 will help us
do that by ensuring a finite number of different sequents in a proof. Then we will build
a regular proof via a deterministic saturation process. However, we first need to define
the following closure that will help control the number of different expressions that can
appear in a proof.

Definition (Fischer-Ladner closure):
The Fischer-Ladner closure C of an expression is defined by induction as follows:

• C(a) = {a}

• C(e+ f) = C(e) ∪ C(f) ∪ {e+ f}

• C(e · f) = (C(e) · {f}) ∪ C(f)

• C(e+) = C(e) ∪ (C(e) · {e+}) ∪ {e+}

• C(eω) = (C(e) · {eω}) ∪ {eω}

where P ·Q stands for {u · v | u ∈ P and v ∈ Q}.

This is not exactly the original definition of the Fischer-Ladner closure. We adapted
it to better fit the unfolding from the left of our system, yet the main idea remains the
same. This closure respects the following property, proven by a straightforward induction.

Lemma 3.6:
The Fischer-Ladner closure satisfies the following properties.

• The Fischer-Ladner closure of an expression is finite.

• If f ∈ C(e), then C(f) ⊆ C(e).

With that, we can now bound the number of different sequents in a proof:

Lemma 3.7:
In a preproof without cut, there can only be finitely many different sequents.

Proof. Let us call expr(Γ) the expression formed by concatenating the expressions in Γ,
and similarly expr(B) is the expression

⋃
Γ∈B expr(Γ). We can verify that for every rule

except cut, if Γ0 → B0 is the conclusion sequent and if Γ1 → B1 is a premise sequent,
then expr(Γ1) is in the Fischer-Ladner closure of expr(Γ0), and similarly expr(B1) is
in the closure of expr(B0). We can also note that given an expression, there are only
finitely many ways to subdivide it into a list or into a set of lists, which gives us finitely
many possible sequents using Lemma 3.6. Notice that we rely here on the fact that we
allow unfolding of ·+ and ·ω only at the beginning of a list, thereby preventing multiple
consecutive unfoldings of the same expression.

3.2. THE CASE OF ω-REGULAR EXPRESSIONS 69

Outermost operation Left side Right side

+
e,Γ → B f,Γ → B

+-l
e+ f,Γ → B

a,Γ → ⟨e,Λ⟩; ⟨f,Λ⟩;B
+-r

a,Γ → ⟨e+ f,Λ⟩;B

·
e, f,Γ → B

·-l
e · f,Γ → B

a,Γ → ⟨e, f,Λ⟩;B
·-r

a,Γ → ⟨e · f,Λ⟩;B

·+
e,Γ → B e, e+,Γ → B

∗-l
e+,Γ → B

a,Γ → ⟨e,Λ⟩; ⟨e, e+,Λ⟩;B
∗-r

a,Γ → ⟨e+,Λ⟩;B

·ω e, eω → B
ω-l

eω → B

a,Γ → ⟨f, fω⟩;B
ω-r

a,Γ → ⟨fω⟩;B

Figure 3.6: Invertible rules of the system, without the match rule

We will now take a sound sequent, and build a preproof using only invertible instances
of our rules, i.e. rules that are locally sound in both directions: the premises are true if
and only if the conclusion is true. We proceed by induction on the outermost operation
of the first expression of a list.

We first apply greedily the invertible rules from Figure 3.6. Notice that at each step,
the first expression of the list becomes a (strict) subexpression of the previous one. Since
the subexpression relation is well-founded, we must at some point obtain a finite tree with
leaves of the form a,Γ → ⟨a1,Γ1⟩; . . . ; ⟨an,Γn⟩ (with a and ai letters). Moreover, each of
those leaves are sound sequents, since all the rules we applied were invertible. For each
leaf of this form, we can now remove each ⟨ai,Γi⟩ with ai ̸= a using the wkn rule, then
match the remaining as follows.

...
Γ → ⟨Γi1⟩; . . . ; ⟨Γik⟩ match

a,Γ → ⟨a,Γi1⟩; . . . ; ⟨a,Γik⟩ wkn
a,Γ → ⟨a1,Γ1⟩; . . . ; ⟨an,Γn⟩

...

Since the bottom sequent is sound, we know that the top one is too (we only removed
useless options). We can therefore repeat the process to get an infinite tree with only iden-
tity rules at the leaves. Any sequent in this tree is sound by a straightforward induction.
We now need to check that this is a valid tree.

First note that, as this process will always reach a match rule in a finite number of
steps, any infinite branch passes through infinitely many match rules, therefore processing
an ω-word (every match rule corresponds to a new letter in the word). In other words,
to each infinite branch β of the preproof, we can associate an infinite word word(β)
corresponding to the sequence of match rules performed along β.

Lemma 3.8:
If β is an infinite branch starting in the root sequent Γ0 → B0, then either β contains a
∗-l thread, or word(β) ∈ L(Γ0).

70 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

...
e, eω → . . .

ω-l
eω → . . .

...
Γ, eω → . . .

match
ak,Γ, e

ω → . . .

...
e, eω → . . .

ω-l
eω → . . .

...

−→

id
→ ⟨⟩

...
ak+1, . . . , an → ⟨Γ⟩

match
ak, . . . , an → ⟨ak,Γ⟩

...
a1, . . . , an → e

Figure 3.7: Using finite soundness between two consecutive ω-l rules

Proof. If the branch β does not have a ∗-l thread, then each expression ·+ is unfolded
finitely many times, meaning that there are necessarily infinitely many ω-l rules (to avoid
depletion of the list). These rules apply to the same expression eω, because the syntax
of the rule ω-l does not allow another expression ·ω on the left of the sequent. This
corresponds to unfolding infinitely many times this expression.

If we call w the word read between two consecutive instances of ω-l rules, then we want
to prove that w ∈ L(e). We can do that with a simple transformation of that segment of
a branch, which gets rid of eω and transfers the expression e from the left of the sequent
to its right. The transformation changes each left rule into its right counterpart (with
possibly a wkn rule), according to the following table. It keeps the match rules and ignores
any other rules. This process is described in Figure 3.7.

Initial left rule Condition New right rule
Γ, e, f,Λ, eω → B

·-l
Γ, e · f,Λ, eω → B

None
u → ⟨Γ, e, f,Λ⟩

·-r
u → ⟨Γ, e · f,Λ⟩

Γ, e0,Λ → B Γ, e1,Λ → B
+-l

Γ, e0 + e1,Λ → B
Branch goes to side i

u → ⟨ei,Γ⟩
+-r, w

u → ⟨e0 + e1,Γ⟩
e,Γ → B e, e+,Γ → B

∗-l
e+,Γ → B

Branch goes left
u → ⟨e,Γ⟩

∗-r, w
u → ⟨e+,Γ⟩

e,Γ → B e, e+,Γ → B
∗-l

e+,Γ → B
Branch goes right

u → ⟨e, e+,Γ⟩
∗-r, w

u → ⟨e+,Γ⟩
Γ, eω → B′

match
a,Γ, eω → B

None
u → ⟨Γ⟩

match
a, u → ⟨a,Γ⟩

We obtain a proof of w ∈ L(e), for any word w read between two unfoldings of eω. We
can prove the exact same way that the word read before the first ω-l is in the language
of the list Γ0 without the expression eω, which completes the proof.

3.2. THE CASE OF ω-REGULAR EXPRESSIONS 71

Theorem 3.2:
The regular and cut-free fragment of Sω is complete for ω-regular expressions.

Proof. Given a sound sequent Γ0 → B0, we consider the preproof defined above, and we
prove its validity.

Let us consider an infinite branch β without ∗-l thread. Let w = word(β), by Lemma
3.8 we have w ∈ L(Γ0). Since Γ0 → B0 is sound, we have w ∈ L(B0). We will use
this to build an ω-r thread validating the branch β. To do so, the intuition is that at
each disjunctive choice in the right-hand side, we choose according to a parsing witnessing
w ∈ L(B0). However we cannot do that in a greedy manner, as illustrated in Example 3.2.

Let us describe how we build a validating thread for our branch. We start with a
list from B0 that contains our word w, and take the last expression of this list (the one
containing ·ω) to begin our thread. We then build it going upwards and always staying
on an expression containing ·ω.

The only choices we have to make when building this thread upwards are when we

meet the rule
Γ → ⟨e,Σ⟩; ⟨e, e+,Σ⟩;B

∗-r
Γ → ⟨e+,Σ⟩;B

or the rule
a,Γ → ⟨e,Λ⟩; ⟨f,Λ⟩;B

+-r
a,Γ → ⟨e+ f,Λ⟩;B

. In the

first case (∗-r rule), there is a smallest integer n such that e+ can be replaced with en

in the lower sequent while preserving the fact that the current remainder of w is in the
language of the list. We will then continue while treating e+ as en, and at every ∗-r rule
on that thread we either go to e if n = 1 or e, en−1 otherwise. This replacement is purely
“virtual”: we simply keep it in mind as a guide to pick a thread.

In the second case (+-r rule), there is at least one side containing our word (without
the prefix we already read), so we simply choose it. Virtual replacements of some e+ by
en are still taken into consideration here, as can be seen in Example 3.2.

We will necessarily unfold infinitely many times the ·ω expression chosen at the be-
ginning, since we match all letters of w while keeping the invariant that it belongs to the
chosen list.

In the end, we get a valid proof for any sound sequent, which proves the completeness
of our system, using only regular proofs thanks to Lemma 3.7. Note that we could settle
here for a weaker match rule, that would only match the first letter.

The following example illustrates why we need some kind of look-ahead ability to build
a validating thread in the completeness proof, instead of a simpler greedy algorithm.

Example 3.2:
Let us consider the preproof from Figure 3.8, which only contains a single branch. We
want to produce a validating thread for that branch. If we proceed greedily at ∗-r rules
and +-r rules, with only the heuristic “choose the first disjunct containing the left-hand
side word”, then we will end up with the blue thread, that never gets rid of the expression
e+ and therefore never is principal for an ω-r rule.

This is why we need the previous construction to create a validating thread, like the
red one on the example, which gets rid of the e+ expressions by being able to look ahead.
We decide at the first ∗-r rule that e+ will be read as e2 in that branch, which means that
we no longer have a choice for the red thread at the +-r rule above. Indeed, virtually

72 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

c, (abc)ω → ⟨c, e+, fω⟩; ⟨fω⟩;B
...

c, (abc)ω → ⟨c, e+, fω⟩; ⟨cab, fω⟩;B
ω-r

c, (abc)ω → ⟨c, e+, fω⟩; ⟨fω⟩;B
...

bc, (abc)ω → ⟨bc, e+, fω⟩; ⟨bca, e+, fω⟩; ⟨e, fω⟩; ⟨e, e+, fω⟩
∗-r

bc, (abc)ω → ⟨bc, e+, fω⟩; ⟨bca, e+, fω⟩; ⟨e+, fω⟩
·-l, ·-r, m

abc, (abc)ω → ⟨abc, e+, fω⟩; ⟨abca, e+, fω⟩; ⟨a, e+, fω⟩
+-r, w

abc, (abc)ω → ⟨e, fω⟩; ⟨e, e+, fω⟩; ⟨a, e+, fω⟩
∗-r

abc, (abc)ω → ⟨e+, fω⟩; ⟨a, e+, fω⟩
ω-l

(abc)ω → ⟨e+, fω⟩; ⟨a, e+, fω⟩
·-r, m

abc, (abc)ω → ⟨abc, e+, fω⟩; ⟨abca, e+, fω⟩
+-r, w

abc, (abc)ω → ⟨e, fω⟩; ⟨e, e+, fω⟩
∗-r

abc, (abc)ω → ⟨e+, fω⟩
ω-l

(abc)ω → ⟨e+, fω⟩

•

•

e = abc+ abca+ bcab
f = cab

Figure 3.8: An example where a greedy process might fail to build a validating thread
(Lists that do not contain the infinite word from the left are grayed)

3.2. THE CASE OF ω-REGULAR EXPRESSIONS 73

replacing e+ by e2 at the beginning leads to forbidding the blue thread, since the list it
chooses is replaced by ⟨abc, e1, fω⟩, which does not contain (abc)ω.

3.2.4 Deciding the validity criterion

Given a preproof in our system, we want to decide whether it satisfies the validity criterion.
This section therefore is dedicated to proving the following theorem:

Theorem 3.3:
It is decidable in PSpace whether a given cyclic preproof of Sω is valid (more precisely
PSpace in the size of the largest sequent).

The arguments are similar to those in e.g. [LJB01; DHL06]. We summarize here the
main ideas, we will build on them in the next section and for the transfinite case in Section
3.3.5.

We start by introducing an auxiliary notion:

Definition (Sequent transition):
Given two sequents S1, S2, a transition from S1 to S2 is a function φ : pos(S1)×pos(S2) →
{ , , •}. It encodes a way of linking S1 to S2 by threads: the value φ(p1, p2) will be equal
to:

• if there is no thread from p1 to p2,

• if there is a thread with no v-unfolding from p1 to p2,

• • if there is a thread with v-unfolding from p1 to p2.

We only represent here non-trivial transitions, i.e. we consider only threads of length
at least 1. Notice that here S1 and S2 are sequents in the finite representation of the
proof tree, so they might represent an infinite set of sequents in the unfolded proof tree.
Therefore, there might be several ways of linking them by threads, yielding different
transitions φ.

Composing transitions: We define an order on { , , •} by setting < < •, and a
product law · by setting as absorbing and as neutral.

If we have transitions φ from S1 to S2, and φ′ from S2 to S3, they can be composed
to yield a transition φ′′ = φ ⊙ φ′ from S1 to S3. This composed transition is defined
by φ′′(p1, p3) = maxp2∈pos(S2) φ(p1, p2) · φ(p2, p3). This gives to the set of transitions a
structure of finite monoid.

Guessing a bad transition: A self-transition on a sequent S is a transition from S to
S. A self-transition φ is called idempotent if φ⊙ φ = φ. An idempotent transition on S
is called bad if, for all p ∈ pos(S), we have φ(p, p) ̸= •.

The validity algorithm is based on the following observation:

Lemma 3.9:
A regular proof is invalid if and only if it contains a bad idempotent transition.

Proof. This is a standard application of Ramsey’s Theorem, see e.g. [DHL06, Thm 4].

74 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

We can finally design a nondeterministic algorithm, which will guess such a bad idem-
potent transition. It amounts to guessing a branch and a segment along this branch
witnessing the idempotent bad transition. The transition φ is computed on-the-fly on
this segment. Since keeping a transition φ in memory only takes polynomial space, and
NPSpace =PSpace, we end up with a PSpace algorithm.

Remark 3.2:
If the size of sequents is logarithmic in the size of the proof, this algorithm is actually in
LogSpace. This is put to use in the next section.

3.2.5 PSpace inclusion algorithm via proof search

We will now combine the above algorithm with our completeness result, in order to ob-
tain a PSpace algorithm for inclusion of ω-regular expression. This matches the known
complexity of expression inclusion, which is PSpace-complete even in the case of finite
words.

We are now given only the sequent we aim to prove, and we will non-deterministically
explore its proof as built in Section 3.2.3. Notice that this proof can be exponential in
the size of the root sequent, but this is not a problem, since the algorithm only guesses a
branch and follows it on-the-fly. We only have to ensure that each sequent, and therefore
each transition φ, is polynomial in the size of the root sequent. This might however not be
the case, because a list ⟨e+,Λ⟩ can be unfolded into ⟨e,Λ⟩; ⟨e, e+,Λ⟩, thereby duplicating
an arbitrary sequent Λ. Iterating this could lead to sets of exponential size.

This is solved by adding some syntactic sugar in our system: the sequent ⟨e+,Λ⟩ will
be unfolded into ⟨e, e+?,Λ⟩. More precisely, we perform the following rule replacement:

Γ → ⟨e,Λ⟩; ⟨e, e+,Λ⟩;B
∗-r

Γ → ⟨e+,Λ⟩;B
⇝

Γ → ⟨e, e+?,Λ⟩;B
∗-r

Γ → ⟨e+,Λ⟩;B

The notation e? means that e optional. This is expressed by adding the following pseudo-
rule:

Γ → ⟨Λ⟩; ⟨e,Λ⟩;B
?

Γ → ⟨e?,Λ⟩;B
.

This does not change the behaviour of the system, but guarantees that all sequents
stay polynomial in the size of the root sequent. We will prove this fact using the following
generalization of Fischer-Ladner closure:

Definition (?-closure):
The ?-closure C? of an expression is defined by induction as follows:

• C?(a) = {a}

• C?(e+ f) = C?(e) ∪ C?(f) ∪ {e+ f}

• C?(e · f) = (C?(e) · {f}) ∪ C?(f)

• C?(e+) = (C?(e) · {e+?}) ∪ {e+} ∪ {e+?}

3.2. THE CASE OF ω-REGULAR EXPRESSIONS 75

• C?(eω) = (C?(e) · {eω}) ∪ {eω}

• C?(e?) = C?(e) ∪ {e?}

where P ·Q stands for {u · v | u ∈ P and v ∈ Q}

With that definition C? is indeed a closure: if f ∈ C?(e), then C?(f) ⊆ C?(e). Moreover,
C?(e) is polynomial in the size of e:

Lemma 3.10:
For any f ∈ C?(e), |f | ≤ 2|e|2, where | · | is the number of nodes in the parse tree of the
expression.

Proof. We proceed by induction on |e|.

• If e = a is a letter, then the result holds for any f in C?(e).

• If e = e1 + e2, then either f = e1 + e2, or f ∈ C?(e1) ∪ C?(e2). In the first case, the
result holds trivially, and in the second case, it follows from the induction hypothesis
for e1 and e2.

• If e = e1 · e2, then either f ∈ C?(e1) · {e2}, in which case |f | ≤ 2|e1|2 + |e2| ≤ 2|e|2,
or f ∈ C?(e2), and the result holds too.

• If e = e+1 , then if f ∈ C?(e1) ·e+1 ?, we have |f | ≤ 2|e1|2+ |e1|+2 ≤ 2(|e1|+1)2 = 2|e|2.
The other cases are f = e or f = e?, and the result holds.

• If e = eω1 and f ∈ C?(e) · {eω}, then |f | ≤ 2|e1|2 + |e1| + 1 ≤ 2|e|2 as above. The
remaining case is f = e, and the result holds.

• If e = e1? then either f ∈ C?(e1) or f = e, and the result still holds.

This completes the proof of the Lemma.

We can now bound the size of sequents using this result. For any list in the tree
constructed by the algorithm, the concatenation of that list is in the closure of the con-
catenation of some list at the root. This is proven by transfinite induction, since this is
preserved when going up any rule, and when jumping to a limit sequent. Moreover, with
our use of the · rules, there is only a linear number of possible lists resulting in a given
concatenation. This means that the total number of different lists in the tree is polyno-
mial. Moreover, we know with Lemma 3.10 that each expression in C?(e) is of polynomial
size in e, which means that any sequent contains a polynomial number of polynomial size
lists, and is therefore of polynomial size.

If the size of sequents is bounded by M , the size of any transition is in O(M2), so a bad
idempotent transition, if it exists, can be computed on-the-fly using polynomial space.
Since the rules used in the preproof described in Section 3.2.3 follow deterministically
from the root sequent, we can indeed use nondeterminism to guess a bad branch.

Thus we obtain a nondeterministic PSpace algorithm for inclusion of ω-regular ex-
pressions, via proof search in the system Sω.

76 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

3.3 Transfinite words and proof forests
The goal is now to adapt the system in order to deal with transfinite expressions, recog-
nizing language of transfinite words.

3.3.1 Ordinals and transfinite words

In this part we provide a brief summary of what is an ordinal, then define transfinite
words using this notion, and provide an automata model to read these words.

Ordinals

We start by giving Von Neumann’s definition of ordinals. Note that there are several
other definitions, which are equivalent under reasonable axioms1.

Definition (Ordinal):
Formally, an ordinal α is a set that is well-ordered by the membership relation ∈ (i.e.
every non-empty subset of α has a smallest element for ∈), and such that any element of
α is also a subset of α. We will generally use lower-case Greek letters to name ordinals,
and we will use < instead of ∈ when comparing ordinals, along with its reflexive closure
≤.

Remark 3.3:
This definition transfers to any element of an ordinal (since it is also a subset of that
ordinal), meaning that the elements of an ordinal are ordinals.

We will not get too much into the detailed definitions and properties related to ordinals,
but here are some basic ones that will be useful to us.

• We usually identify finite ordinals with integers: 0 = ∅, 1 = {∅}, 2 = {∅, {∅}}, etc.

• The successor of an ordinal α is α + 1 = α ∪ {α}. A non-zero ordinal that is not a
successor is called a limit ordinal . The limit of an increasing sequence of ordinals
(αi)i∈β indexed by a limit ordinal β is the smallest ordinal greater than all αi.

• The first limit ordinal (corresponding to the set of integers) is called ω.

• Inductive reasoning applies to ordinals:(
∀α < γ, (∀β < α, P (β)) ⇒ P (α)

)
⇒ ∀α < γ, P (α)

• The sum of two ordinals is defined inductively by:

α + 0 = α
α + (β + 1) = (α + β) + 1

α + limi∈γ βi = limi∈γ (α + βi)

and it is associative, but not commutative: ω + 1 = ω ∪ {ω} while 1 + ω = ω.
1The axiom of regularity is enough to prove the equivalence with the definition with transitive set for

instance.

3.3. TRANSFINITE WORDS AND PROOF FORESTS 77

|
0

|
1

|
2

| |
· · ·

|||| |
ω

|
ω + 1

| | |
· · ·

|||| |
ω2

Figure 3.9: Visualization of the ordinal ω + ω + 1 = ω2 + 1. Each line represents one
element, and they are ordered from left to right.

• The product and exponentiation can be defined similarly, but we do not detail those
here.

• If β is a limit ordinal and (xi)i<β is a sequence of length β, a subsequence (xij)j<ω

of length ω is said cofinal if, for all i < β, there exists j ∈ ω such that i < ij.

• Given two ordinals α ≤ β, there is a unique γ such that α + γ = β.

See Figure 3.9 for a visual representation of an ordinal.
Note that ω-words are words indexed by the ordinal ω. The next part generalizes this

definition to any ordinal.

Transfinite words and expressions

Once ordinals are defined, we can introduce words indexed by these ordered sets, and
some operations on these new words, which are slightly more intricate than the previous
ones.

Definition (Transfinite word):
A transfinite word over an alphabet Σ is given by a function α → Σ, where α is an ordinal
called the length of the word.

Remark 3.4:
The words studied before are particular cases of this definition: a transfinite word of
length α is a finite word if α < ω, and an ω-word if α = ω.

In this work, we will restrict the length α to be strictly smaller than ωω, i.e. α will be
smaller than ωk for some k ∈ N. These ordinals describe the length of words obtained with
expressions that are allowed to nest the ω-power finitely many times. These expressions
will be formally defined later.

Definition (Concatenation of transfinite words):
We define the concatenation of two words u : α → Σ and v : β → Σ, noted u·v : α+β → Σ,
as follows.

(u · v)(γ) =
{

u(γ) if γ < α
v(δ) if γ ≥ α, where δ is the only ordinal such that α + δ = γ

Prop 3.1:
The concatenation is associative.

78 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

Definition (Infinite concatenation):
Now suppose we are given a sequence of words U = (ui : αi → Σ)i∈ω. Let us call β the
limit of

∑n
i=0 αi for n ∈ ω. Then the concatenation of the words in U is a word

∏
U of

length β defined as follows:

∏
U(γ) = (u1 · . . . · un)(γ) where n is the smallest integer such that

n∑
i=0

αi > γ

Notice that we could more generally define the concatenation of a sequence of words
indexed by an ordinal greater than ω, but we will not need it here.

We can now define the expressions we will be using, called transfinite expressions.
They are similar to ω-regular expressions, except that the ω operator can now be used
freely.

Definition (Transfinite expressions):
The transfinite expressions we consider are the ones generated by the following grammar
[Cho78]:

e, f := a | e+ f | e · f | e+ | eω

Notice that this syntax generalizes ω-regular expressions, by allowing any nesting of ·ω
and ·+. We use the non-empty version ·+ of Kleene star to avoid having to deal with εω

as a special case. The language associated to an expression is defined by induction as
follows.

• L(a) := {a}.

• L(e+ f) := L(e) ∪ L(f).

• L(e · f) := L(e) · L(f) = {u · v | u ∈ L(e) and v ∈ L(f).

• L(e+) :=
⋃∞

i=1 L(e)i where L(e)i = L(e) · . . . · L(e) (concatenated i times).

• L(eω) := {
∏

U | U ∈ L(e)ω}.

Example 3.3:
The expression aωbωa corresponds to a singleton language, as it does not use the + or ·+
operators. This word can be created by taking the ordinal from Figure 3.9, and labelling
each element of the first block (i.e. the first ω elements) with a, then the second block
with b, and the single remaining element with a again.

An associated automata model

In order to manipulate these expressions, we shall use automata inspired from [Cho78].
Before that, we need to define the following objects.

Definition (A few tools):
• Given a set Q of atomic states, Pn(Q) is defined by induction with P0(Q) = Q and
Pk+1(Q) = (P(Pk(Q)) \ ∅) ∪Q. Note that if Q is finite, then so is Pn(Q).

3.3. TRANSFINITE WORDS AND PROOF FORESTS 79

• We say that a letter appears cofinally in a word of limit length if the letter can be
found after any position in the word.

• Given a limit ordinal β and a word w of length at least β, we define I(w, β) as the
set of letters seen cofinally in the prefix of w of length β (obtained by restricting
the domain of w to β).

Definition:
For n ∈ N, a (non-deterministic) n-automaton is given by (Q, q0,Σ,∆, F), where Q is a
finite set of atomic states, Σ is the alphabet, ∆ ⊆ Pn(Q)×Σ×Q is the set of transitions,
F ⊆ Pn(Q) is the set of final states.

Such an automaton will only be able to run on words of length smaller than ωn+1.
A run of an n-automaton A on a word w of length α is given by a word ρ of length

α + 1 over the alphabet Pn(Q) such that:

• ρ(0) = q0;

• (ρ(β), w(β), ρ(β + 1)) ∈ ∆ for any β < α;

• ρ(β) = I(ρ, β) for any limit ordinal β ≤ α.

The run r is accepting if r(α) ∈ F , and a word is accepted by the automaton if there is
an accepting run on this word, as is usual in non-deterministic models.

These automata look similar to those in [Cho78], but are slightly different in the fact
that they give us more control over the limit transitions. Since a limit transition is given
by all the states seen cofinally, it becomes easier to ensure that we remain in a given part
of the automaton.

The equivalence between these automata and the expressions above was known in the
formalism of [Cho78], we need a few adaptations here.

Lemma 3.11:
For any given expression, there is an associated automaton with the same accepted lan-
guage. Moreover, this automaton is defined by induction on the expression, and therefore
any sub-expression or unfolding of an expression is associated to a sub-automaton (with
chosen initial and accepting states).

Proof. Let us first give a few notations for the construction of these automata.

• We label a state q with an expression e for the language it recognises, with this

notation:
q : e

.

• We use
Ae · f

to denote a block containing the states and transitions from the
automaton Ae recognizing L(e), with a renaming of the states if needed, and with
·f added to each label (we extend this notation lo lists).

80 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

q0 : astart q1 : ε
a

Ae · fstart Af

q :
e+ f

start

Ae

Af

q : e+start

Ae

Ae · e+

Ae · eωstart

E1 : ε Ek : ε. . .

If Ae = (Q, q0,Σ,∆, F), then {Ei}1≤i≤k is the set of all subsets of Pn(Q) that contain an
element of F .

Figure 3.10: Inductive construction of the automaton associated to an expression

Such a block can either have a double outline, in which case the accepting states
of the global automaton are the ones of Ae, or an outgoing edge to a block Af , in
which case each final states takes the same transitions as the initial state of Af .

We can also add a start transition to such a block to indicate that we take its initial
state as the one of the global automaton.

As said in the lemma, we proceed by induction, each case being described in Figure
3.10. We can easily check that each step preserves the fact that the automaton recognizes
the same language. The only difficulty might be in the understanding of the eω step. The
only way to reach an accepting state for this automaton is to see infinitely many accepting
states of Ae without going out of Ae (at least after some point). Since these states have
no outgoing transitions except for those we added to go back to the beginning of Ae (as
can be seen in the constructions of Figure 3.10), this is equivalent to reading eω.

We however want to add a slight complication here. The only point of that part is to
make sure that the automaton resulting from an unfolding of e+ or eω is actually a sub-
automaton of the one for the initial expression (e+ or eω). For instance, the automaton
for b(ab)+ should not be the concatenation of those for b and (ab)+, but instead a sub-
automaton of (ab)+.

Let us look at the case of the concatenation of two expressions f and e+ (which can
be within some context) where the automaton for f can be embedded in the one for e
by simply changing the initial state (and possibly removing unattainable states). Then
instead of creating the automaton for concatenation from Figure 3.10, we can take the
following one:

Ae · e+start f Ae

3.3. TRANSFINITE WORDS AND PROOF FORESTS 81

where “start f ” designates the initial state for f instead of e (but the loop still follow
the same conventions and ignores that state). With that, we ensure that the automaton
associated to an unfolding of e+ is actually embedded into the automaton for e+.

We proceed similarly when e+ is replaced by eω, creating the following automaton.

Ae · eωstart f

E1 : ε Ek : ε. . .

This completes the proof, as it gives the last case for the unfolding of an expression.

Note that we can generalize this construction to lists of expressions by using the
concatenation step several times. This will give us an automaton associated to the list.

Another remark we can make at that point is that, in the inductive construction, some
states may become unattainable. For instance when building the automaton for a+ b, we
first build the ones for a and b, then we add an initial state that bypasses the ones of the
previous automata, which therefore become useless, as illustrated in Example 3.4 below.

Example 3.4:
Here are the automata for a and b (on the left), and the one for a + b (middle). In that
case, q0 and q′0 become unreachable, and we will not draw such states from now on, as
shown on the right.

q0start q1

q′0start q′1

a

b

q0 q1

q′0 q′1

q−1start

a

b

a

b

q1

q′1

q−1start
a

b

Notice that it is also shown in [Cho78] that expressions can be computed from au-
tomata, so the two models are expressively equivalent. This could be adapted to our
variant as well, but as we will not use this direction here, we omit it.

3.3.2 Adapting the proof system

The new proof system: To build a proof system dealing with transfinite expressions,
we will basically keep the same rules as in Sω, except that ω operators are not required
to appear at the end of lists anymore. This gives rise to the following relaxed rules for ω:

e, eω,Γ → B
ω-l

eω,Γ → B

Γ → ⟨f, fω,Λ⟩;B
ω-r

Γ → ⟨fω,Λ⟩;B
Another difference will be that a preproof will no longer be a tree, but a forest, i.e. a

set of trees with distinct roots. This will allow us to consider branches of ordinal length:
after taking ω steps in a tree, a branch can “jump” to the root of another tree via a limit
condition, analogous to the validity condition of the previous section.

82 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

Definition (Branches, threads and limit sequents):
We define inductively these notions as follows. These definitions are mutually recursive,
but well-founded: the notions are defined together for a fixed ordinal length, before going
to the next one or the limit.

• A transfinite (resp. limit) branch is a transfinite sequence of sequent positions in
the forest (resp. of limit length), starting at the main root sequent of the proof. The
successor of a sequent must be just above it in the forest, and any non successor
sequent must be the limit sequent of the limit branch before, as defined below.

• A transfinite (resp. limit) thread is a transfinite sequence of expression occurrences
following a transfinite (resp. limit) branch, while respecting immediate ancestry for
successor sequents, and going to the corresponding expression of the limit sequent
when jumping to the limit sequent, as defined below.

A limit thread with a cofinal sequence of expressions that are principal for a rule r
is called a r thread.

• The limit sequent of a limit branch, when it exists, is a root sequent from some
tree in the proof forest, possibly the tree containing this limit branch. We define it
by considering the ω-l and ω-r limit threads following the branch cofinally. On the
left side, there must be an ω-l thread, that is principal infinitely often on the same
sequent of the form eω,Γ, such that no rule is applied on Γ after some point. The
corresponding limit sequent will have Γ as left-hand side.

We proceed similarly to get the lists on the right side of the limit sequent. Given an
ω-r limit thread principal infinitely often on some list ⟨eω,Γ⟩, with Γ untouched after
some point, we will have a list ⟨Γ⟩ on the right-hand side of the limit sequent. Any
list on the right that cannot meet these conditions is discarded in the limit sequent.
In both cases (left and right of the sequent), we call eω the frontier expression of
that list.

The threads are prolonged to that limit sequent the natural way, by taking the
limit of an inactive thread on the right of a frontier expression as the corresponding
expression in the limit sequent.

These definitions are illustrated in Section 3.3.6, with an example of a transfinite proof,
and a visualization of a limit branch of length ω2 is given in Figure 3.11. Such a branch
goes through ω trees, not necessarily distinct.

Definition (Validity condition, cyclic proof forest):
A proof forest is valid if any limit branch either contains a cofinal ∗-l thread, or has its
limit sequent appearing as the root of a tree in the proof forest.

A proof forest is called cyclic (or regular) if it is the unfolding of a finite graph
(not necessarily connected), or equivalently if it contains finitely many non-isomorphic
subtrees.

Let us call St this proof system for inclusion of transfinite expressions.

3.3. TRANSFINITE WORDS AND PROOF FORESTS 83

Figure 3.11: Example of a limit branch of length ω2

3.3.3 Soundness

The soundness of St is shown in a similar way to the one of Sω. We first note that as
the rules are locally sound, Lemma 3.1 still holds for St, meaning that any finite proof is
sound.

Given a valid proof P in St, with root sequent Γ0 → B0, and a word w ∈ L(Γ0), we
can still build a labelled proof P (w) to witness w ∈ L(B0). This is done in the same way
as before, but we also add the limit sequents for every new limit branch that appears,
while preserving the labelling in the natural way.

Note that this process can lead to a bigger forest, since a single root sequent in the
initial proof P can lead to several ones with different labellings in this proof. We can still
build the forest using transfinite recursion, knowing that there are less than ωω trees.

We will reuse the concept of correct labelling and label-soundness of a sequent Γ′ → B,
meaning that the word concat(Γ′) is in L(Γ′) (and is correctly split if Γ′ is a list) and
L(B) respectively.

Lemma 3.12:
In P (w), any limit branch can be extended (i.e. has a limit sequent).

Proof. This is simply a consequence of the fact that we build P (w) according to a parsing
of w in Γ0. Therefore, we cannot unfold infinitely many times a same expression e+. Since
the validity condition asks for either a ∗-l thread or a limit sequent, we must be in the
second case on all limit branches of P (w).

Lemma 3.13:
In P (w), there is no transfinite branch that goes infinitely many times on the left at a
cut rule.

Proof. Suppose that there is a transfinite branch that does go infinitely many times on
the left. Let us take the smallest prefix of that branch that still respects that condition
(possible by well-foundedness). This is a limit branch (otherwise it can be made even
smaller), which goes to the left premise of a cut rule cofinally, which cuts any ω-r thread.
Since Lemma 3.12 ensures a limit sequent for that branch, there has to be an ω-r thread
(the right side of a sequent is nonempty), hence the contradiction.

84 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

As before, the maximal transfinite branches in P (w) can be ordered from left-to-right,
by comparing them at the first cut rule where they take a different direction (which exists
by well-order property). We denote that order by <.

Lemma 3.14:
The order < over the maximal transfinite branches of P (w) is well-founded.

Proof. The proof is similar to the one of Lemma 3.4, the only notable change being that
the word over {0, 1} associated to a branch is now transfinite.

Lemma 3.15:
In P (w), all lists on the left side are correctly labelled, and all sequents are label-sound.

Proof. As in Lemma 3.5, we prove this by a transfinite induction on the left-to-right order
< on branches, which is well-founded by Lemma 3.14.

Let us call C the set of maximal transfinite branches from P (w). Assume that, for
some branch β ∈ C, every β′ < β verifies the property.

The first thing we want to prove is the correct labelling in β. This part is done as
for Sω, by induction on the branch. We need to add the limit case, since the branch is
transfinite. Since limit sequents are untouched in the limiting process, the limit case of
the induction is straightforward i.e. limit sequents are correctly labelled.

We now want to prove the second part of the induction. Let us call v the vertex just
above the last left cut of β. We want to prove the label-soundness of the proof rooted in
v. We call βv the part of β above v. We know that in βv, a sequent is label-sound if its
successor in the branch is. We want to prove by transfinite induction on the length of βv

that the sequent at v is label-sound if the last sequent of the branch is (recall that in St,
all branches have a last sequent).

What we need for that is to prove that if the limit sequent of a limit branch is label-
sound, then so is (at least) one sequent in that branch.

Let us consider such a limit branch, with limit sequent Γ′ → B. The word concat(Γ′)
is in the language of some list Λ ∈ B. We can now use the exact same process as for Sω

(see Figure 3.5) to prove that there is a label-sound sequent Π′,Γ′ → ⟨fω,∆⟩;D in the
branch before. The only difference is that transfinite branches can be hidden between two
ω-r rules, but they are dealt with using the induction hypothesis for shorter branches.

This completes the inductive proof for the label-soundness of βv. Using the global
induction on the well-order < on branches, we get the final result.

Theorem 3.4:
Any valid proof in St is sound.

Proof. By Lemma 3.15, the root sequent of P (w) is label-sound, and this is true for any
w ∈ L(Γ0). This means that for any w ∈ L(Γ0), we have w ∈ L(B0), thus any valid proof
has a sound root sequent.

3.3. TRANSFINITE WORDS AND PROOF FORESTS 85

3.3.4 Cut-free regular completeness of St

We start with the following observation, a straightforward generalization of Lemma 3.7:

Lemma 3.16:
In a proof forest without cut and without useless trees (that can be removed while pre-
serving the validity), there can only be finitely many different sequents.

Theorem 3.5 (Completeness):
Given two expressions e and f such that L(e) ⊆ L(f), there exists a cut-free cyclic proof
forest for e → ⟨f⟩. Moreover, the construction is effective.

Proof sketch

We first provide a sketch of the proof, and the complete proof can be found below.
As before, we build the proof trees using a straightforward deterministic bottom-up

process, which can be done algorithmically. This time however, in order to show that
the obtained proof satisfies the validity condition, we use a model of transfinite automata
that helps us to exhibit a validating thread or a limit sequent for each limit branch.

The idea of the proof is to follow the runs of automata Ae and Af canonically associ-
ated to e and f , and to build a proof whose nodes are labelled by states of these automata.
A state will be associated to each list of expressions, so for each sequent, we will have one
state on the left side and possibly several on the right side. Notice that this intuitively
corresponds to building a run in a product automaton Ae × P(Af), where P(Af) is a
powerset automaton obtained from Af . Since the structure of automata closely follow
the structure of expressions, we can always keep the wanted invariants. Limit nodes are
built by looking at all the infinite threads in limit branches, and are labelled by the set
of states seen cofinally in the corresponding runs. We thereby ensure that the resulting
proof is valid.

Complete proof of Theorem 3.5

We will use the following notion in this proof:

Definition (Covering a state):
Given two states p and q in an automaton, we say that p covers q if for any transition
from q

a→ r, there is a transition p
a→ r.

We can note that the covering relation is transitive, and also that a language inclusion
follows from it: if p covers q, then the language recognized from q is included in the one
recognized from p.

We want to show that for any expressions e and f with L(e) ⊆ L(f), there exists a
proof forest for e → ⟨f⟩.

To reach this result, we will first transform our lists of expressions into automata, then
build proof forests from these automata. We will use the limit transitions of n-automata
to ensure the validity condition.

Suppose we are given automata Ae and Af associated to e and f respectively. We are
going to create a proof tree in which each sequent comes with a labelling of its lists by

86 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

states of these automata.
More precisely, when proceeding further in the proof, we associate to each list a state

in the automaton Ae if we are on the left, and Af on the right. This state must cover the
initial state of the automaton canonically associated to the list.

We will now build the proof inductively, starting with the sequent e → ⟨f⟩ in which
the lists (of one element) e and f are associated to the initial state of their respective
automaton. We first get rid of the two following cases on the sequent considered at any
point.

• If the sequent is → ⟨⟩;B (for some set of lists B), then we can use the w rule followed
by the id rule to close this branch, and the states associated to each list remain the
same (it has to be an accepting state by induction, since it must recognize the empty
word).

• If the sequent contains only lists starting with a single letter or empty (both on the
left and right sides), we can remove any list that does not start with the same letter
as the one on the left with the wkn rule, then use the match rule to get rid of this
letter. Since each state associated to a list covers the initial state of an automaton
for this list, we can take the transition labelled by the remaining letter from this
initial state. For instance, if we look at the first automaton from Example 3.5, we
jump from q0 (with list a, aω, a) to q1 (with aω, a) using the knowledge that we are
in the language of qinit.

With these two cases out of the way, and as long as we preserve the soundness of each
sequent by induction, we know that there are lists that have a first expression that is not
a single letter. We proceed inductively in the first of these lists.

• If the list starts with a concatenation: g · h,Γ, then we are in a state that covers

the initial state of the automaton
Ag · h · Γstart Ah · Γ AΓ

which also
is the one associated to g, h,Γ so we can stay in the same state and transform the
list into g, h,Γ using the ·-l or ·-r rule.

• If the list starts with a union: g+h,Γ, then we look at the corresponding automaton
from Figure 3.10, and we build the two corresponding lists using +-l or +-r (in the
first case, the lists are in different sequents while they stay in the same one in the
second case). Although we leave the state unchanged, we can notice that it covers
the initial states of both automata associated to g,Γ and h,Γ, provided that it did
cover the initial state of the automaton associated to g + h,Γ.

• The case g+,Γ is quite similar. We do the same thing as the previous case by reading
g+ as g + g · g+, using ∗-l or ∗-r rule. If the current state covers the initial state of
the automaton associated to g+,Γ, then it also covers the ones of the automata for
g, g+,Γ and g,Γ.

• This leaves us with the last case: gω,Γ, where the current state covers the initial
state of a sub-automaton for gω,Γ. Here we simply unfold the expression using ω-l
or ω-r, and remain in the same state which also works for g, gω,Γ.

3.3. TRANSFINITE WORDS AND PROOF FORESTS 87

This process allows us to create a single tree. We then repeat the following as long as
it spans more trees.

For each limit branch, we want to make sure that the corresponding limit sequent does
exist, so we create it if it was not already the root of a tree in the forest. The lists of such
a limit sequent are determined by the definition of a transfinite branch, but we also need
to label those with states. This is done by taking the set of states seen cofinally along the
ω-l or ω-r thread generating each list.

Once we have created all possible new root sequents, we can generate the corresponding
trees the same way as before, then repeat the process with any new limit branch. We
only create finitely many trees because of Lemma 3.16 together with the fact that there
are finitely many states.

This construction is illustrated in Example 3.5.
We now have a proof forest using the rules of our system (without cut), and we know

that the state associated to a list covers one recognizing the language of this list. Notice
that this proof forest can have several trees with same root. However, since the way we
build trees depends only on expressions and not on their state labelling, these trees having
the same root sequent will be isomorphic up to their labelling by states. We can therefore
consider that they correspond to a unique tree in the actual proof.

We now want to verify the validity condition in this proof forest, in order to finish the
completeness proof.

Let us consider a limit branch. We prove by induction on its length that it satisfies
the validity condition, and that its limit sequent is sound if there is one.

The branch gives a transfinite run in Ae, and there has to be an outermost loop
(considering the inductive construction of the automaton) that is used cofinally.

After some point, the run never goes out of this loop (because coming back would
mean using a more external loop). This loops corresponds to an unfolding in the left list,
of either a ·+ expression or a ·ω one.

In the first case, we get a validating ∗-l thread by simply following this expression in
the proof forest.

In the second case, we are unfolding an expression eω, so we see some sequent eω,Γ → B
at some point in the branch. The word u ∈ L(eω) unfolded by the branch from this sequent
on (we concatenate the letters from the m rules to form u) is of limit length (non successor
ordinal).

Since each node of the proof describes a sound inclusion by induction, we know that
L(eω,Γ) ⊆ L(B). If we take a word v ∈ L(Γ), we have u · v ∈ L(B). We therefore know
that u · v ∈ Λ for some list Λ ∈ B. But we also know that u is of limit length, and
the only way to match such a word in Λ is using a ·ω expression, so there has to be one
last such expression cofinally unfolded during the matching of u (last because no other
expression operator can create a word of limit length). We follow this expression to get an
ω-r thread for our branch, which completes the proof of the validity condition. Moreover,
the remaining list it kept in the limit sequent and contains v, which proves the soundness
of that limit sequent (since this is true for any v ∈ L(Γ)). This completes the proof of
Theorem 3.5, except for the effectiveness part, which is taken care of by the following
lemma.

88 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

q0start q1

{q1} {q0, q1}

q2

qinit

a
a

a

a

a
q′0start

q′1

q′2

{q′2} {q′0, q′2} {q′1, q′2} {q′0, q′1, q′2}

{q′0, q′1}

{q′1}

q′3

q′init

q′′init

a

b

ba

a

b

a

a

a

a

a

a

a

b

Figure 3.12: Automata for aω · a → ⟨(a+ b)ω · a⟩

Lemma 3.17:
The proof forest can be effectively built from the expressions e and f .

Proof. First note that the construction of each tree (given its root sequent) can be done
in a finite number of steps by following the proof of Theorem 3.5, since we can only create
finitely many sequents (and we simply have to loop back to a previous copy when we see
a sequent we have seen before). The difficulty resides in the computation of the limit
sequents.

This is very similar to the proof of Theorem 3.3. We do the same construction to get
limit sequents, then we add those sequents as said in the proof of Theorem 3.5. We then
build the corresponding trees and go on with the new transitions (without forgetting the
transitions created by the new tree). The iteration on this process will stop at some point,
when there is no new root sequent added.

Example 3.5:
To prove aω · a → ⟨(a+ b)ω · a⟩, we create the two automata from Figure 3.12. Note that
some states from the construction are inaccessible, represented in gray.

The proof forest we will obtain from this is given in Figure 3.13. We can see that the
states are only updated when going through a match rule.

3.3.5 Decidability and Complexity

We generalize here the decidability and complexity results obtained in Sections 3.2.4 and
3.2.5:

3.3. TRANSFINITE WORDS AND PROOF FORESTS 89

...
ω-r

q1 : a
ω, a → ⟨q′1 : (a+ b)ω, a⟩

match
q0 : a, a

ω, a → ⟨q′0 : a, (a+ b)ω, a⟩
wkn

q0 : a, a
ω, a → ⟨q′0 : a, (a+ b)ω, a⟩; ⟨q′0 : b, (a+ b)ω, a⟩

+-r
q0 : a, a

ω, a → ⟨q′0 : a+ b, (a+ b)ω, a⟩
ω-r

q0 : a, a
ω, a → ⟨q′0 : (a+ b)ω, a⟩

ω-l
q0 : a

ω, a → ⟨q′0 : (a+ b)ω, a⟩
·-r

q0 : a
ω, a → ⟨q′0 : (a+ b)ω · a⟩

·-l
q0 : a

ω · a → ⟨q′0 : (a+ b)ω · a⟩

id
q2 : → ⟨q′3 : ⟩ match

{q1} : a → ⟨{q′1} : a⟩

Figure 3.13: Proof created for aω · a → ⟨(a+ b)ω · a⟩

Theorem 3.6:
• Given a cyclic preproof in St, there is a PSpace algorithm deciding whether it is

valid (more precisely PSpace in the size of the largest sequent).

• Given a sequent Γ → B, there is a PSpace algorithm deciding whether there is a
valid proof of St with root Γ → B.

As before, the second item is deduced from the first, together with Theorem 3.5.
Given a regular preproof that can be explored (or built) on-the-fly, we will again use

the formalism of transitions : if S1 and S2 are sequents in the finite representation of a
proof, we will use a function φ : pos(S1)× pos(S2) → { , , •} to sum up the information
about threads from S1 to S2 in a particular path of the unfolded proof. We also mark the
unfoldings of ω on the left, since we need those to compute limit sequents.

Limit processes
We have to account for the fact that a transition may now represent a path containing

(nested) passages to the limit. We verify that such passages to the limit can be effectively
computed, and incorporated in our saturation procedure. Remark that the information
stored in a transition is enough to identify a frontier expression in an idempotent sequent.
By another application of Ramsey’s theorem, this will allow us to compute limit sequents,
and build transitions corresponding to branches of any length (by keeping only threads
to the right of frontier expressions). Now, according to the transfinite validity criterion,
an idempotent transition is bad if it does not have a ∗-l thread or a limit sequent. As
before, our goal is to guess a bad idempotent transition corresponding to a transfinite
branch, if any exists. Notice that guessing such a transition involves guessing a starting
point, and that starting points at different levels of ω nesting may differ. This means that
our nondeterministic algorithm has to store a current prefix of guessed transition for each
level, in order to build the final bad idempotent transition. An example of a run of this
algorithm can be found in Section 3.3.6.

Compact notation
When building the proof on-the-fly according to the construction of Section 3.3.4, we

also need to ensure that transitions stay of polynomial size. To this end, as in Section
3.2.5, we will use the compact notation e? to avoid an exponential blow-up of sequent

90 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

size. Note that this simplified representation allows passage to the limit sequent, in the
sense that the computation of the limit sequent of a branch using compact notation will
yield a compact notation of the correct sequent. As before, this compact notation allows
us to obtain a bound on the size of sequents which is polynomial with respect to the size
of the root sequent, see 3.2.5 for details.

Thus, we obtain the following corollary, which is a new result to the best of our
knowledge.

Corollary 3.1:
Deciding the inclusion of transfinite expressions is in PSpace.

3.3.6 Example of a transfinite proof

We give in Figure 3.14 an example of a non-trivial transfinite proof of the following sequent

(baω + b+)ω → ⟨((a+ b)ω)ω + ((a+ b)ω)+bω + bω⟩.

We use the notations e = baω + b+ and f = (a+ b)ω.
In order to avoid adding another tree, we directly start with the sequent

eω → ⟨f, fω⟩; ⟨f, bω⟩; ⟨f, f+, bω⟩; ⟨bω⟩.

Only the main threads are represented: some detours are allowed to them, but not
represented to keep the proof readable. For instance, the green threads can follow the red
ones for a finite number of times before returning to their branch.

Let us now consider what the validity checking algorithm would look like when applied
to this proof. This nondeterministic algorithm explores branches to check their validity.
Let us look at its run on the leftmost maximal branch of the proof.

We begin at the root sequent, which we chose as a starting point for the transition T2

of length ω2:

eω → ⟨fω⟩; ⟨f+, bω⟩; ⟨bω⟩

We then go up in the leftmost branch, while updating T2 at each step. When we reach
the following sequent, we choose it as a starting point for the transition T1 of length ω:

aω, eω → ⟨f, fω⟩; ⟨f, f+, bω⟩; ⟨f, bω⟩

We then keep going for 4 steps, at which point we are back to that same sequent, and
T1, T2 hold the following transitions:

T1 =
aω, eω → ⟨f, fω⟩; ⟨f, f+, bω⟩; ⟨f, bω⟩
aω, eω → ⟨f, fω⟩; ⟨f, f+, bω⟩; ⟨f, bω⟩• • • • T2 =

aω, eω → ⟨f, fω⟩; ⟨f, f+, bω⟩; ⟨f, bω⟩
eω → ⟨fω⟩; ⟨f+, bω⟩; ⟨bω⟩
• • •

Note that T1 is idempotent, and we can now take its limit, corresponding to the limit of
a branch of length ω. The associated transition is the following one.

3.3. TRANSFINITE WORDS AND PROOF FORESTS 91

Following the blue thread leads back to that same tree.

Following the green thread leads to the new tree:
id

→ ⟨⟩
w

→ ⟨fω⟩; ⟨bω⟩; ⟨f+, bω⟩; ⟨⟩

And following the orange thread: id
→ ⟨⟩

Figure 3.14: Example of a proof in St. The dotted line is used to continue building the
tree further up, so that it can fit in the page width.

92 CHAPTER 3. CYCLIC PROOFS FOR TRANSFINITE EXPRESSIONS

eω → ⟨fω⟩; ⟨f+, bω⟩; ⟨bω⟩
aω, eω → ⟨f, fω⟩; ⟨f, f+, bω⟩; ⟨f, bω⟩

And we can update T2 by composing its current value with that transition, to get this
one:

T2 =
eω → ⟨fω⟩; ⟨f+, bω⟩; ⟨bω⟩
eω → ⟨fω⟩; ⟨f+, bω⟩; ⟨bω⟩
• • •

It is also idempotent, with limit transition:

→ ⟨⟩
eω → ⟨fω⟩; ⟨f+, bω⟩; ⟨bω⟩

The only list on the right corresponds to the part of ⟨fω⟩ that is right of fω, i.e. the
empty list. The algorithm reached the end of the branch, since this sequent is proved by
the id rule, and has not found any invalid branch. Doing so for every branch ensures the
validity of the tree.

3.4 Conclusion of Chapter 3
In our completeness proof, the sets of lists on the right sides of sequents perform some kind
of powerset construction. In doing so, we avoid an intricate determinisation procedure
such as the Safra construction [Saf88]. We believe it can be considered that this complexity
of determinisation is “hidden” in the validity condition, following various infinite threads
simultaneously. This has the advantage of modularity: we separate the pure powerset
construction, located in the sequents of the proof, from the complexity of dealing with
the acceptance condition, located in the validity condition of the proof. Whereas when
determinising Büchi automata, these two causes for state-blowup are merged in the states
of the resulting deterministic Rabin automaton. A more detailed investigation of this
phenomenon and its advantages can be the subject of a future work.

Contrarily to what happens on ω words, the transfinite system St cannot be seen as an
instance of a proof system for linear µ-calculus, as ·ω is no longer a fixed point operator
in the transfinite setting. This manifests concretely by the loss of symmetry between ·+
and ·ω in the validity condition when going from Sω to St.

Although this was not the focus of this work, the computational content of systems
similar to the one presented here has been studied in the past: [KPP21] gives an equiv-
alence between a restriction of the systems from [DP17; DP18] and Gödel’s system T.
Our forest-based system (instead of trees) might allow for an interesting generalization of
those results, using some interpretation of those proofs that remains to be defined.

This system admits cut elimination, meaning that for any proof with cut, there is a
cut-free proof of the same result. This is sometimes called cut-admissibility to distinguish
from explicit cut elimination, i.e. an algorithm transforming a proof into a cut free one.
We did not provide any such algorithm (better than the PSpace naive one rebuilding the
proof), and this might be the focus of a future work.

Bibliography

[Abd+10] Parosh Aziz Abdulla et al. “Simulation Subsumption in Ramsey-Based Büchi
Automata Universality and Inclusion Testing”. In: CAV. Vol. 6174. LNCS.
Springer Verlag, 2010, pp. 132–147. doi: 10.1007/978-3-642-14295-6_14.

[AK21] Bader Abu Radi and Orna Kupferman. “Minimization and Canonization of
GFG Transition-Based Automata”. In: CoRR abs/2106.06745 (2021).

[AKL21] Bader Abu Radi, Orna Kupferman, and Ofer Leshkowitz. “A Hierarchy of
Nondeterminism”. In: 46th International Symposium on Mathematical Foun-
dations of Computer Science, MFCS 2021. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[AL17] Bahareh Afshari and Graham E. Leigh. “Cut-free completeness for modal
mu-calculus”. In: LICS. IEEE, 2017, pp. 1–12. doi: 10.1109/LICS.2017.
8005088.

[Bed96] Nicolas Bedon. “Finite Automata and Ordinals”. In: Theor. Comput. Sci.
156.1&2 (1996), pp. 119–144. url: https://doi.org/10.1016/0304-
3975(95)00006-2.

[Ber+19] Nathalie Bertrand et al. “Controlling a population”. In: Log. Methods Comput.
Sci. 15.3 (2019).

[BK18] Marc Bagnol and Denis Kuperberg. “Büchi Good-for-Games Automata Are
Efficiently Recognizable”. In: 38th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2018.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[BL21] Udi Boker and Karoliina Lehtinen. “History Determinism vs. Good for Game-
ness in Quantitative Automata”. In: 41st IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS
2021. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[BL22] Udi Boker and Karoliina Lehtinen. “Token Games and History-Deterministic
Quantitative Automata”. In: Foundations of Software Science and Compu-
tation Structures - 25th International Conference, FOSSACS 2022. Lecture
Notes in Computer Science. Springer, 2022.

[Bok+13] Udi Boker et al. “Nondeterminism in the Presence of a Diverse or Unknown
Future”. In: Automata, Languages, and Programming - 40th International Col-
loquium, ICALP 2013. Lecture Notes in Computer Science. Springer, 2013.

93

https://doi.org/10.1007/978-3-642-14295-6_14
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1016/0304-3975(95)00006-2
https://doi.org/10.1016/0304-3975(95)00006-2

94 BIBLIOGRAPHY

[Bok+20] Udi Boker et al. “On the Succinctness of Alternating Parity Good-For-Games
Automata”. In: 40th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2020. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[BP13] Filippo Bonchi and Damien Pous. “Checking NFA equivalence with bisimu-
lations up to congruence”. In: POPL. ACM, 2013, pp. 457–468. isbn: 978-1-
4503-1832-7. doi: 10.1145/2429069.2429124.

[Bro05] James Brotherston. “Cyclic Proofs for First-Order Logic with Inductive Def-
initions”. In: TABLEAUX. Vol. 3702. Lecture Notes in Artificial Intelligence.
Springer Verlag, 2005, pp. 78–92. doi: 10.1007/11554554_8.

[BS07] James Brotherston and Alex Simpson. “Complete Sequent Calculi for Induc-
tion and Infinite Descent”. In: 22nd Annual IEEE Symposium on Logic in
Computer Science (LICS 2007). 2007, pp. 51–62. doi: 10.1109/LICS.2007.
16.

[Bus91] Samuel Buss. “The Undecidability of K-Provability”. In: Annals of Pure and
Applied Logic 53.1 (1991), pp. 75–102. doi: 10.1016/0168-0072(91)90059-
U.

[Cal+17] Cristian S. Calude et al. “Deciding parity games in quasipolynomial time”.
In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017. ACM, 2017, pp. 252–263.

[CF19] Thomas Colcombet and Nathanaël Fijalkow. “Universal Graphs and Good
for Games Automata: New Tools for Infinite Duration Games”. In: Founda-
tions of Software Science and Computation Structures - 22nd International
Conference, FOSSACS 2019. Lecture Notes in Computer Science. Springer,
2019.

[Cho78] Yaacov Choueka. “Finite Automata, Definable Sets, and Regular Expressions
over ωn-Tapes”. In: J. Comput. Syst. Sci. 17.1 (1978), pp. 81–97. doi: 10.
1016/0022-0000(78)90036-3. url: https://doi.org/10.1016/0022-
0000(78)90036-3.

[CHP07] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. “General-
ized Parity Games”. In: Foundations of Software Science and Computational
Structures, 10th International Conference, FOSSACS 2007. Ed. by Helmut
Seidl. Lecture Notes in Computer Science. Springer, 2007.

[CLS15] James Cranch, Michael R. Laurence, and Georg Struth. “Completeness results
for omega-regular algebras”. In: J. Log. Algebr. Meth. Program. 84.3 (2015),
pp. 402–425. doi: 10.1016/j.jlamp.2014.10.002. url: https://doi.org/
10.1016/j.jlamp.2014.10.002.

[Col09] Thomas Colcombet. “The theory of stabilisation monoids and regular cost
functions”. In: Automata, languages and programming. Part II. Vol. 5556.
Lecture Notes in Comput. Sci. Berlin: Springer, 2009, pp. 139–150.

https://doi.org/10.1145/2429069.2429124
https://doi.org/10.1007/11554554_8
https://doi.org/10.1109/LICS.2007.16
https://doi.org/10.1109/LICS.2007.16
https://doi.org/10.1016/0168-0072(91)90059-U
https://doi.org/10.1016/0168-0072(91)90059-U
https://doi.org/10.1016/0022-0000(78)90036-3
https://doi.org/10.1016/0022-0000(78)90036-3
https://doi.org/10.1016/0022-0000(78)90036-3
https://doi.org/10.1016/0022-0000(78)90036-3
https://doi.org/10.1016/j.jlamp.2014.10.002
https://doi.org/10.1016/j.jlamp.2014.10.002
https://doi.org/10.1016/j.jlamp.2014.10.002

BIBLIOGRAPHY 95

[Col12] Thomas Colcombet. “Forms of Determinism for Automata (Invited Talk)”.
In: 29th International Symposium on Theoretical Aspects of Computer Sci-
ence, STACS 2012. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2012.

[CR20] Liron Cohen and Reuben N. S. Rowe. “Integrating Induction and Coinduction
via Closure Operators and Proof Cycles”. In: Automated Reasoning. Ed. by
Nicolas Peltier and Viorica Sofronie-Stokkermans. Cham: Springer Interna-
tional Publishing, 2020, pp. 375–394. isbn: 978-3-030-51074-9.

[Das18] Anupam Das. “On the logical complexity of cyclic arithmetic”. In: CoRR
abs/1807.10248 (2018).

[DHL06] Christian Dax, Martin Hofmann, and Martin Lange. “A Proof System for
the Linear Time µ-Calculus”. In: FSTTCS 2006: Foundations of Software
Technology and Theoretical Computer Science. Ed. by S. Arun-Kumar and
Naveen Garg. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 273–
284.

[Dou+16] Amina Doumane et al. “Towards Completeness via Proof Search in the Linear
Time µ-calculus: The case of Büchi inclusions”. In: LICS. ACM, 2016, pp. 377–
386. doi: 10.1145/2933575.2933598.

[DP17] Anupam Das and Damien Pous. “A Cut-Free Cyclic Proof System for Kleene
Algebra”. In: Automated Reasoning with Analytic Tableaux and Related Meth-
ods - 26th International Conference, TABLEAUX 2017, Brasília, Brazil, Septem-
ber 25-28, 2017, Proceedings. Ed. by Renate A. Schmidt and Cláudia Nalon.
Vol. 10501. Lecture Notes in Computer Science. Springer, 2017, pp. 261–277.

[DP18] Anupam Das and Damien Pous. “Non-Wellfounded Proof Theory For (Kleene+
Action)(Algebras + Lattices)”. In: 27th EACSL Annual Conference on Com-
puter Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK. 2018,
19:1–19:18.

[DR10] Stephane Demri and Alexander Rabinovich. “The complexity of linear-time
temporal logic over the class of ordinals”. In: Logical Methods in Computer
Science 6 (Sept. 2010). doi: 10.2168/LMCS-6(4:9)2010.

[EJ91] E. Allen Emerson and Charanjit S. Jutla. “Tree Automata, Mu-Calculus and
Determinacy (Extended Abstract)”. In: 32nd Annual Symposium on Founda-
tions of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. IEEE
Computer Society, 1991, pp. 368–377.

[GS16] David Gale and F. M. Stewart. “13. Infinite Games with Perfect Information”.
In: Contributions to the Theory of Games (AM-28), Volume II. Princeton
University Press, 2016, pp. 245–266. doi: doi:10.1515/9781400881970-014.

[HP06] Thomas A. Henzinger and Nir Piterman. “Solving Games Without Deter-
minization”. In: Computer Science Logic, 20th International Workshop, CSL
2006. 2006.

[Hro+00] Juraj Hromkovic et al. “Measures of Nondeterminism in Finite Automata”. In:
Electronic Colloquium on Computational Complexity (ECCC) 7 (Jan. 2000).

https://doi.org/10.1145/2933575.2933598
https://doi.org/10.2168/LMCS-6(4:9)2010
https://doi.org/doi:10.1515/9781400881970-014

96 BIBLIOGRAPHY

[KM19] Denis Kuperberg and Anirban Majumdar. “Computing the Width of Non-
deterministic Automata”. In: Log. Methods Comput. Sci. (LMCS) 15.4 (2019).

[Koz94] D. Kozen. “A Completeness Theorem for KLeene Algebras and the Algebra of
Regular Events”. In: Information and Computation 110.2 (1994), pp. 366–390.
doi: 10.1006/inco.1994.1037.

[KPP21] Denis Kuperberg, Laureline Pinault, and Damien Pous. “Cyclic proofs, system
t, and the power of contraction”. In: Proc. ACM Program. Lang. 5.POPL
(2021), pp. 1–28.

[KS15] Denis Kuperberg and Michał Skrzypczak. “On Determinisation of Good-
for-Games Automata”. In: Automata, Languages, and Programming - 42nd
International Colloquium, ICALP 2015. Lecture Notes in Computer Science.
Springer, 2015.

[KS16] Ioannis Kokkinis and Thomas Studer. “Cyclic proofs for linear temporal logic”.
In: Concepts of Proof in Mathematics, Philosophy, and Computer Science 6
(2016), p. 171.

[LJB01] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. “The Size-Change
Principle for Program Termination”. In: Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’01.
New York, NY, USA: Association for Computing Machinery, 2001, pp. 81–92.
isbn: 1581133367. doi: 10.1145/360204.360210. url: https://doi.org/
10.1145/360204.360210.

[LZ20] Karoliina Lehtinen and Martin Zimmermann. “Good-for-games ω-Pushdown
Automata”. In: LICS 2020: 35th Annual ACM/IEEE Symposium on Logic in
Computer Science. ACM, 2020, pp. 689–702.

[MH84] Satoru Miyano and Takeshi Hayashi. “Alternating finite automata on ω-
words”. In: Theoret. Comput. Sci. 32.3 (1984), pp. 321–330.

[Niw91] Damian Niwinski. “On the Cardinality of Sets of Infinite Trees Recogniz-
able by Finite Automata”. In: Mathematical Foundations of Computer Science
1991, 16th International Symposium, MFCS’91. Lecture Notes in Computer
Science. Springer, 1991.

[NST19] Rémi Nollet, Alexis Saurin, and Christine Tasson. “PSPACE-Completeness
of a Thread Criterion for Circular Proofs in Linear Logic with Least and
Greatest Fixed Points”. In: Automated Reasoning with Analytic Tableaux and
Related Methods - 28th International Conference, TABLEAUX 2019, London.
Lecture Notes in Computer Science. Springer, 2019.

[PSA17] Alexandros Palioudakis, Kai Salomaa, and Selim G. Akl. “Worst Case Branch-
ing and Other Measures of Nondeterminism”. In: Int. J. Found. Comput. Sci.
28.3 (2017), pp. 195–210.

[Saf88] S. Safra. “On the complexity of omega-automata”. In: [Proceedings 1988] 29th
Annual Symposium on Foundations of Computer Science. 1988, pp. 319–327.
doi: 10.1109/SFCS.1988.21948.

https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.1145/360204.360210
https://doi.org/10.1109/SFCS.1988.21948

BIBLIOGRAPHY 97

[Sch20] Sven Schewe. “Minimising Good-For-Games Automata Is NP-Complete”. In:
40th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2020. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[Sim17] Alex Simpson. “Cyclic Arithmetic Is Equivalent to Peano Arithmetic”. In:
FoSSaCS. Vol. 10203. Lecture Notes in Computer Science. Springer Verlag,
2017, pp. 283–300. doi: 10.1007/978-3-662-54458-7_17.

[Tho08] Wolfgang Thomas. “Church’s Problem and a Tour through Automata The-
ory”. In: Pillars of Computer Science, Essays Dedicated to Boris (Boaz) Trakht-
enbrot on the Occasion of His 85th Birthday. Lecture Notes in Computer
Science. Springer, 2008.

[WS91] Andreas Weber and Helmut Seidl. “On the Degree of Ambiguity of Finite
Automata”. In: Theor. Comput. Sci. 88.2 (1991), pp. 325–349.

https://doi.org/10.1007/978-3-662-54458-7_17

Index

Abstraction, 20
Accumulator, 41
Alphabet, 10
Alternating Turing machine (ATM), 50
Ancestor (immediate), 61
Arena, 17
Automaton, 12

ω-, 15
n-, 79
Büchi, 16
co-Büchi, 16
GFG, 34
parity, 16
reachability, 16
safety, 16

Axiom, 20

Branch, 60
maximal, 60
transfinite, limit, 82

Capacity (finite, bounded), 41
Capacity game, 42
Cofinal, 77
Complete automaton, 13
Completeness, 21
Covering (a state), 85
Cyclic, 22

Determined, 18
Determiniser, 32
Deterministic finite automaton (DFA),

12

Elimination game, 48
Eliminator, 48
Entry, 41

Explorability, 32
k-, 32
game, 32
infinite tokens, 46
problem, 34

Expression
ω-regular, 15, 59
regular, 14, 59
transfinite, 78

Fischer-Ladner closure, 68

Game, 17
Good-for-Games, 34

Inference rules, 20
Interpretation of a sequent, 19

Language, 12
ω-regular, 16
of an automaton, 13
of an expression, 14
regular, 13

Leaf, 19
Leak, 43
Letter, 10

Move, 17

Node, 19
parent, child, 19

Non-deterministic finite automaton
(NFA), 13

Occurrence, 61
Ordinal, 76

limit, 76
operations, 76
successor, 76

98

INDEX 99

Play, 17
consistent with a strategy, 17
realisable, 41

Population control problem (PCP), 36
Population game, 36
Positionally determined, 18
Preproof, 22

cyclic, regular, 22
Principal, 61
Projection of a play, 41
Proof system, 20

non-well-founded, 23
Proof tree, 20
Protector, 48

Regular, 22
Remanent, 43

Separation, 43
Sequent, 19, 59

derivable, 20
label-sound, 64
limit, 82
sound, correct, 19

Soundness, 21

Spoiler, 32
Strategy, 17

finite memory, 18
memoryless, 18
winning, 18

Support arena, 40
Support game, 40

Thread, 61
transfinite, limit, 82

Tracking list, 43
Transfer graph, 40
Transition (between sequents), 73

idempotent, 73
self-, 73

Tree, 19

Unfolding (v-), 61

Validity condition, 23, 61

Win, 18
Word, 11

ω-, 15
infinite, 15
transfinite, 77

	Abstract
	Résumé
	Résumé long en français
	Remerciements
	Introduction
	A word on notations
	Languages, automata and where to find them
	Non-determinism and regular expressions
	Infinite words
	Games
	(Cyclic) proofs
	Context and contributions

	Explorability
	Introduction
	Explorable automata
	Preliminaries
	Explorability
	Link with GFG automata

	Decidability and complexity of explorability
	2-ExpTime algorithm via a black box reduction
	ExpTime-hardness of NFA explorability
	ExpTime algorithm for Büchi explorability

	Explorability with countably many tokens
	Definition and basic results
	ExpTime algorithm for co-Büchi automata
	ExpTime-hardness of the omega-explorability problem

	Conclusion of Chapter 2

	Cyclic proofs for transfinite expressions
	Introduction
	The case of omega-regular expressions
	The proof system
	Soundness of the system
	Cut-free regular completeness of the system
	Deciding the validity criterion
	PSpace inclusion algorithm via proof search

	Transfinite words and proof forests
	Ordinals and transfinite words
	Adapting the proof system
	Soundness
	Cut-free regular completeness of the transfinite system
	Decidability and Complexity
	Example of a transfinite proof

	Conclusion of Chapter 3

	Bibliography
	Index

