
ENS de Lyon - M2 Tuesday, December 18, 2018

Stochastic calculus exam - Answers

EXERCISE I : A nonnegative semimartingale with a positive bias.

We consider B a standard Brownian motion, λ > 0 some fixed parameter, and X a
continuous semimartingale. For x ≥ 0, we denote by

Tx := inf{t ≥ 0, Xt = x}

the hitting time of x by the semimartingale X. We further suppose that X satisfies

Xt = 1 +Bt∧T0 +

∫ t∧T0

0

λ

Xs

ds.

In particular, X solves the SDE{
X0 = 1
dXt = 1Xt>0dBt + 1Xt>0

λ
Xt

dt.

1. Show that for b > 1, we have T0 ∧ Tb is almost surely finite.

Writing Tb(B) := inf{t ≥ 0, Bt = b}, we know Tb(B) is a.s. finite (1-dimensional
brownian motion is recurrent). Observing the elementary property Xt ≥ Bt1t≤T0, we
deduce T0 ∧ Tb ≤ Tb(B). So T0 ∧ Tb is a.s. finite.

2. For α ∈ R and a ∈ (0, 1), we consider Fα,a a C2 function that coincides with x 7→ xα

on [a,+∞). Write down Itō formula for the semimartingale Fα,a(Xt).

Itō formula gives

Fα,a(Xt) = 1 +

∫ t

0

F ′α,a(Xs)dBs +

∫ t

0

(
F ′′α,a(Xs)

2
+
λF ′α,a(Xs)

Xs

)
ds.

3. We suppose λ 6= 1/2. For a parameter α = α(λ) that you will determine, deduce
that the process (Xα

t∧Ta)t≥0 is a local martingale, for any a ∈ (0, 1).

We deduce from last question

Fα,a(Xt∧Ta) = 1 +

∫ t∧Ta

0

F ′α,a(Xs)dBs +

∫ t∧Ta

0

(
F ′′α,a(Xs)

2
+
λF ′α,a(Xs)

Xs

)
ds.
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But on [a,+∞), the function Fα,a and its derivatives coincide with those of x 7→ xα,
so we get, if α /∈ {0, 1},

Xα
t∧Ta = 1 +

∫ t∧Ta

0

αXα−1
s dBs +

∫ t∧Ta

0

(
α(α− 1)Xα−2

s

2
+ λαXα−2

s

)
ds.

Choosing now α = α(λ) = 1 − 2λ /∈ {0, 1}, the second integral giving the pro-
cess of finite variation part of the semimartingale is 0, and so (Xα

t∧Ta)t≥0 is a local
martingale.

4. For a ∈ (0, 1) and b > 1, compute P(Ta < Tb).

From question 1, we know that Ta∧Tb is a.s. finite. Now, (Xα
t∧Ta∧Tb)t≥0 is a bounded

martingale closed by Xα
Ta∧Tb , whence

1 = E[Xα
Ta∧Tb ] = aαP(Ta < Tb) + bαP(Tb < Ta).

This together with P(Ta < Tb) + P(Tb < Ta) = 1 easily gives

P(Ta < Tb) =
bα − 1

bα − aα
.

5. In this question only, we suppose λ > 1/2. Show Xt tends to +∞ a.s. as t→ +∞.
(One may observe that (Xα

t∧Ta)t≥0 is a bounded martingale).

In that case we have α = 1− 2λ < 0, and we deduce from last question

P(∃b > 1, Ta < Tb) = lim
b→∞

P(Ta < Tb) = a−α.

But Tb tends to +∞ as b→ +∞ so we get P(Ta < +∞) = a−α. On the event Ta =
+∞, we have a.s., for any b > 1, Tb = Ta ∧ Tb < +∞, and thus lim supXt = +∞.
But the process (Xα

t∧Ta)t≥0 is a bounded martingale, which therefore converges a.s.
We deduce that Xt tends to +∞ a.s. on the event Ta = +∞. Finally, Xt tends to
+∞ a.s. on the event

∪a∈(0,1){Ta = +∞},

which has probability lima→0(1− a−α) = 1.

6. In this question only, we suppose λ < 1/2. Show that T0 is a.s. finite.

In that case we have α = 1 − 2λ > 0. On the event T0 = +∞, we have Tb =
T0 ∧ Tb < +∞ a.s., and there exists a ∈ (0, 1) such that Tb < Ta. (This is statisfied
for a smaller than inf{Xt, t ≤ Tb} > 0). So

P(T0 = +∞) ≤ P(∃a ∈ (0, 1), Tb < Ta) = lim
a→0

P(Tb < Ta) = lim
a→0

1− aα

bα − aα
= b−α.

As b > 1 was arbitrary, we deduce P(T0 = +∞) = 0.
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7. Finally, we suppose λ = 1/2. Proceed similarly as in the previous questions to show
that a.s., the hittings times Tx are finite for all x ∈ (0,+∞). In other words, the
process Xt is recurrent on (0,+∞).

In the case λ = 1/2, we obtain similarly, for a ∈ (0, 1), that log(Xt∧Ta) is a local
martingale, and we deduce

P(Ta < Tb) =
log b

log(b/a)
.

But now we deduce, by letting b→∞,

P(Ta <∞) = P(∃b > 1, Ta < Tb) = 1,

and by letting a→ 0,

P(Tb =∞) = P(T0 < Tb) ≤ P(∀a ∈ (0, 1), Ta < Tb) = 0.

Finally, we deduce that a.s., for n ∈ N, the hitting times of n and of 1/n are finite,
and so the process is recurrent.

EXERCISE II : Hitting time of the sphere for the biased planar Brownian
motion.

We consider Bt = (B
(1)
t , B

(2)
t )t≥0 a planar Brownian motion started from 0, and T the

hitting time of the sphere S = {(x, y), x2 + y2 = 1}.
1. Explain briefly why (B

(1)
T , B

(2)
T ) is independent from T and uniform on the sphere.

This follows from the invariance of the law of planar Brownian motion (started from
0) by an isometry.

2. Introducing an appropriate martingale, deduce that the Laplace transform of T is
given for λ ≥ 0 by

E[e−λT ] =
1

φ
(√

2λ
) ,

where φ is the function defined for x ≥ 0 by

φ(x) =
1

2π

∫ 2π

0

ex cos tdt.

Note you are not asked to compute this integral.

For λ ≥ 0, we consider the exponential martingale Mt = exp(
√

2λB
(1)
t − λt), and

observe that (Mt∧T )t≥0 is a bounded martingale (bounded by exp(
√

2λ)), and closed
by MT . We thus have

1 = E[M0] = E[MT ] = E[Te
√
2λB

(1)
T ]

= E[T ]E[e
√
2λ cos(θT )] = E[T ]φ(

√
2λ),

where θT , defined uniquely in [0, 2π) by (B
(1)
T , B

(2)
T ) = (cos θT , sin θT ), is uniform on

[0, 2π).

3



3. For a parameter c ∈ R, we introduce now Ct = (C
(1)
t , C

(2)
t )t≥0 the Brownian motion

with drift ct, defined for t ≥ 0 by C
(1)
t = B

(1)
t +ct and C

(2)
t = B

(2)
t . We also let TC be

the hitting time of the sphere for the process C. Show that, for any F measurable
and bounded functional on the Wiener space C(R+) of continuous functions from
R+ to R, we have

E [F ((Ct∧TC )t≥0)] = E
[
F ((Bt∧T )t≥0)e

cBT− c2

2
T
]
.

Define the processes L and D by Lt := cB
(1)
t∧T and Dt := E(L)t = exp(cB

(1)
t∧T −

c2(t∧T )
2

). The local martingale D is actually a true bounded martingale, closed by

D∞ = exp(cB
(1)
T −

c2T

2
).

Moreover, we have 〈B(1), L〉t = c(t∧T ). We consider the probability measure Q which
is absolutely continuous with respect to P, and with Radon-Nikodym derivative D∞.
It follows from Girsanov theorem that the process (B

(1)
t −c(t∧T ), B

(2)
t )t≥0 is a planar

Brownian motion under Q (its coordinates are local martingales, with bracket those
expected from a Brownian motion). Thus the law of the process (Ct∧T )t≥0 (under
P) is equal to the law of (Bt∧T )t≥0 under Q. Thus, for F measurable and bounded
functional,

EP [F ((Ct∧TC )t≥0)] = EQ [F ((Bt∧T )t≥0)]

= EP

[
F ((Bt∧T )t≥0)e

cBT− c2

2
T
]
.

4. Deduce the Laplace transform of TC is given by

E[e−λTC ] =
φ(c)

φ
(√

2λ+ c2
) .

From last question, we have

E[e−λTC ] = E[ecB
(1)
T −

c2T
2 e−λT ]

= E[ecB
(1)
T ]E[e−(λ+

c2

2
)T ] =

φ(c)

φ(
√

2λ+ c2)
,

using the independence of T and B
(1)
T , and last questions.

PROBLEM : Local martingales with product of finite variation

This problem starts with two preliminary questions, and then studies the local mar-
tingales whose product is a process of finite variation.
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1. In this question, we consider Y a stochastic process with continuous paths started
from Y0 = 1, and staying null after its first hitting time of 0. Thus, writing T0 :=
inf{t ≥ 0, Yt = 0}, we have Yt = 0 for every t ≥ T0. We further suppose that there
exists a nondecreasing sequence of stopping times (Sn)n≥0 converging to T0 and such
that for every n ≥ 0, the stochastic process (Yt∧Sn)t≥0 is a local martingale. Prove
Y is a local martingale.

Hint : You may first suppose that the process Y is bounded.

As suggested by the hint, we first suppose that the process Y is bounded, in which
case the processes Y Sn defined by Y

(Sn)
t = Yt∧Sn are true martingales. Thus, for

0 ≤ s ≤ t, we have, for every n,

E[Y Sn
t |Fs] = Y Sn

s .

Moreover, the sequence (Y Sn
s )n≥0 converges a.s. to Yt and is bounded, thus we can

use the conditional dominated convergence theorem and get

E[Yt|Fs] = Ys.

In the general case, we define Tk = inf{t ≥ 0, Yt ≥ k} for k ≥ 2 integer. Then
Yt∧Tk is bounded and the processes Yt∧Tk∧Sn are of course still martingales. We thus
deduce that (Yt∧Tk)t≥0 is a martingale. Finally, Y is a local martingale reduced by
the sequence of stopping times (Tk)k≥2.

2. Suppose M is a local martingale started from 0 such that 〈M〉∞ is a.s. finite. Show

(a) The probability of the event {〈M〉∞ ≤ u,M∞ + 1
2
〈M〉∞ ≥ v} goes to 0 when

v →∞, uniformly on the chosen local martingale M .

(b) The probability of the event {M∞ + 1
2
〈M〉∞ ≤ u, 〈M〉∞ ≥ v} goes to 0 when

v →∞, uniformly on the chosen local martingale M .

We use the generalized version of Dubins-Schwarz theorem to write

Mt = B〈M〉t ,

for B a brownian motion started from 0. On the event Eu,v := {〈M〉∞ ≤ u,M∞ +
1
2
〈M〉∞ ≥ v}, there exists t ≤ u such that Bt+

t
2
≥ v. Thus, writing B?

u := supt≤uBt,
we can write

P(Eu,v) ≤ P(B?
u ≥ v − u

2
)

This gives an upper bound independent of the chosen local martingale M , and which
converges to 0 when v → +∞.

On the event Ẽu,v = {M∞ + 1
2
〈M〉∞ ≤ u, 〈M〉∞ ≥ v}, there exists t ≥ v such that

Bt

t
≤ u

t
− 1

2
. Thus, for v ≥ 4u,

P(Ẽu,v) ≤ P(inf
t≥v

Bt

t
≤ 1

4
).

Again, the upper bound does not depend on the choice of the local martingale. To see
it converges to 0, it suffices to use the property that Bt/t tends to 0 a.s. as t→ +∞.
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3. We now consider (X, Y ) a pair of local martingales and suppose their product Zt =
XtYt is a process of finite variation.

(a) Show the local martingale N defined by

Nt =

∫ t

0

XsdYs +

∫ t

0

YsdXs

is indistinguishable from 0.

The integration by parts for local martingales gives

Zt = Z0 +Nt + 〈X, Y 〉t.

But Z is by hypothesis a process of finite variation. It follows that N is both
a process of finite variation and a local martingale, therefore it is indistingui-
shable from 0.

(b) Compute 〈N〉 and deduce that the process

t 7→
∫ t

0

Zsd〈X, Y 〉s

is nonincreasing.

Since N is indistinguishable from 0, its quadratic variation is 0, from which
it follows, for t ≥ 0,∫ t

0

X2
sd〈Y 〉s +

∫ t

0

Y 2
s d〈X〉s + 2

∫ t

0

Zsd〈X, Y 〉s = 0.

Rewriting this as∫ t

0

Zsd〈X, Y 〉s = −1

2

(∫ t

0

X2
sd〈Y 〉s +

∫ t

0

Y 2
s d〈X〉s

)
,

it is now clear that this process is nonincreasing.

(c) Deduce that Z2
t is nonincreasing.

Using again the integration by parts formula (or Itō formula) for the process
of finite variation Z, we get

Z2
t = Z2

0 + 2

∫ t

0

ZsdZs = Z2
0 + 2

∫ t

0

Zsd〈X, Y 〉s,

and thus Z2 is nonincreasing.

As a consequence, if X0 = 0, then for every t ≥ 0, we have Z0 = 0 and thus either
Xt = 0 or Yt = 0. In the following, we suppose X0 = Y0 = 1 and the processes X
and Y stay still after their first hitting time of 0.
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4. In this question only, we further suppose that X and Y stay (strictly) positive. Show
there is a local martingale L starting from 0 such that Xt = E(L)t and Yt = E(−L)t.
Reciprocally, for every local martingale L starting from 0, show the product of the
local martingales E(L) and E(−L) is indeed a process of finite variation.

Under the hypotheses that the processes X and Y start from 0 and stay positive,
the unique way to write X = E(L) and Y = E(L̃) is by taking

Lt :=

∫ t

0

1

Xs

dXs, L̃t :=

∫ t

0

1

Ys
dYs.

Using the definition of N and the fact it is indistinguishable from 0, we deduce

0 =

∫ t

0

1

XsYs
dNs = Lt + L̃t.

Thus L̃ = −L. Reciprocally, if L is a local martingale starting from 0, then the
product of the local martingales E(L)E(−L) is equal to the process of finite variation
(e−〈L〉t)t≥0.

5. For ε ∈ (0, 1), we let Tε := inf{t ≥ 0, Xt = ε or Yt = ε} and define

Lεt :=

∫ t∧Tε

0

1

Xs

dXs.

(a) Show we have XTε = E(Lε) and Y Tε = E(−Lε).
We just use last question with the processes XTε and Y Tε.

(b) We also let T0 := inf{t ≥ 0, Xt = 0 or Yt = 0} and T0(X) := inf{t ≥ 0, Xt =
0}. On the event T0 = T0(X) < +∞, show that 〈Lε〉+∞ tends to +∞ a.s. when
ε decreases to 0.

Observe that 〈Lε〉∞ =
∫ Tε
0

1
X2

s
d〈X〉s is monotone in ε, therefore if it does not

go to +∞ then it is bounded.

Moreover, on the event T0 = T0(X) < +∞, we have XTε → 0, whence

Lε∞ −
1

2
〈Lε〉∞ →

ε→0
−∞.

Finally, it follows from question 2.(a) that the probability of the event

{〈Lε〉∞ is bounded,−Lε∞ +
1

2
〈Lε〉∞ →

ε→0
+∞}

is 0, and the result follows.

(c) Deduce that, on the event T0 < +∞, we have XT0 = YT0 = 0 a.s.

It suffices to prove that, on the event T0 = T0(X) < +∞, we have YT0 = 0
almost surely. To get this, observe first that we have on this event 〈Lε〉∞ → +∞
almost surely. Now, by question 2.(b), the probability of the event that 〈Lε〉∞
tends to +∞ but Lε∞ + 1

2
〈Lε〉∞ stays bounded, is 0. We deduce that, on the

event T0 = T0(X) < +∞, we have a.s. lim inf YTε = 0, whence YT0 = 0.
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6. In this question, suppose X is any local martingale starting from 1 and staying null
after its first hitting time of 0. Deduce from previous questions that there is a unique
local martingale Y starting from 1 and staying null after its first hitting time of 0
such that XY is a process of finite variation, and propose a description of it.

By previous questions and in particular 5.(a) and 5.(c), if Y is a process satisfying

the conditions, then we must have Yt = 1
Xt
e
−

∫ t
0

1

X2
s
d〈X〉s

for every t ≤ Tε, and the
process Y has to hit 0 at time T0(X). These properties actually define unambiguously
the process Y (up to indistinguishability). We thus now define the process Y by

Yt :=

{
1
Xt
e
−

∫ t
0

1

X2
s
d〈X〉s

if t < T0(X)

0 if t ≥ T0(X)

By question 4, the product XY , stopped at time Tε, is nonincreasing. We prove, just
like 1 in 5.(c), that YT0(X) = 0, and hence Y is continuous, as well as the product
XY , which is thus nonincreasing on the whole R+ (and stays null after hitting 0).
Finally, Y Tε is a local martingale for any ε > 0, and by question 1, we deduce that
Y is a local martingale.

1. The only reason why we cannot use directly 5.(c), is that in 5.(c) we already know that Y is a local
martingale
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