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Abstract

In this paper we propose a probabilistic analysis of the relaxation time of elementary finite
cellular automata (i.e., {0, 1} states, radius 1 and unidimensional) for which both states are
quiescent (i.e., (0, 0, 0) 7→ 0 and (1, 1, 1) 7→ 1), under α-asynchronous dynamics (i.e., each
cell is updated at each time step independently with probability 0 < α 6 1). It has been
experimentally shown in previous work that introducing asynchronism in the global function of
a cellular automaton may perturb its behavior, but as far as we know, only few theoretical work
exist on the subject. This work generalizes previous work in [3], in the sense that we study here
a continuous range of asynchronism that goes from full asynchronism to full synchronism. We
were able to characterize formally the relaxation times for 52 of the 64 considered automata,
and to provide a complete study of their sensitivity to asynchronism. Our work relies on the
design of several probabilistic tools that enable to predict the global behaviour by counting
local configuration patterns. These tools may be of independent interest since they provide a
convenient framework to deal exhaustively with the tedious case analysis inherent to this kind
of study. The remaining 12 automata (only 5 after symmetries) exhibit interesting complex
phenomena (such as polynomial/exponential/infinite phase transitions on their relaxation time),
for which we provide a comprehensive set of hints that yield a set of conjectures.

1 Introduction

The aim of this article is to analyze the asynchronous behavior of unbounded finite cellular au-
tomata. Cellular automata are widely used to model systems involving a huge number of interacting
elements such as agents in economy, particles in physics, proteins in biology, distributed systems,
etc. In most of these applications, in particular in many real system models, agents are not syn-
chronous. One typical example consists of a network where each cell have two states, e.g., “I have
a token” and “I don’t have a token”, and where transitions from one state to the other depends
on the states of the neighbours, e.g., “I get a token if both of my neighbors have one” or “I have
a token if and only if my right neighbor has one”, etc. One natural question for such systems, ask
for the relaxation time, i.e. the time needed to reach a stable configuration (e.g., “everyone has a
token” or “no one has a token”). Depending on the transition rules, the behaviour of the system
may vary widely when asynchronism perturbs the dynamics. More generally one can ask how much
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does asynchronous in real system perturbs computation. Interestingly enough, in spite of this lack
of synchronism, real living systems are very resilient over time. One might then expect the cellular
automata used to model these systems to be robust to asynchronism and other kind of failure as
well (such as misreading the state of the neighbors). Surprisingly enough, it turns out that the
resilience to asynchronism widely varies from one automata to another (e.g., [1, 2]).

Only few theoretical studies exist on the influence of asynchronism. Most of them usually
focused on one specific cellular automata (e.g., [6, 5, 10]) and do not address the problem globally.
Recently, Gács shows in [7] that it is undecidable to determining if in a given automota, the
sequences of states followed by a given cell is independent of the history of the updates. Related
work on the existence of stationary distribution on infinite configurations for probabilistic automata
can be found in [9]. One can see cellular automata has physical systems where cell states changes
according to local constraints (the transition rules). As opposed to classic work in asynchronous
distributed computing, where one tries to design efficient transitions rules that guarantees fast
convergence to a stable configuration (e.g., [4]), we study here how asynchrony affects the global
evolution of the system given an arbitrary set of local constraints, and in particular how does
asynchronicity affects its relaxation time.

In [3], the authors carried out a complete analysis of the class of one-dimensional double quies-
cent elementary automata (DQECA), where each cell has two states 0 and 1 which are quiescent
(i.e., a cell such that every cell in its neighbourhood are in the same state, remains in the same state)
and where each cell updates according to its state and the states of its two immediate neighbours.
They study the behaviour of these automata under fully asynchronous dynamics, where only one
random cell is updated at each time step. They show that one can classify the 64 DQECAs in six
categories according to their relaxation times (constant, logarithmic, linear, quadratic, exponential
or infinite) and furthermore that the relaxation time characterizes their behaviour, i.e., that all
automata with equivalent relaxation times present the same kind of space-time diagrams.

The present paper extends this study to a continuous range of asynchyronism from fully asyn-
chronous dynamics to fully synchronous dynamics: the α-asynchronous dynamics, where 0 < α 6 1.
In this setting, each cell is updated independently with probability α at each time step. When α
varies from 1 to 0, the α-asynchronous dynamics evolves from the fully synchronous regime to a
more and more asynchronous regime. As α approaches 0, the probability that updates take place
on a single cell, tends to 1, and the dynamics gets closer and closer to a kind of fully asynchronous
dynamics up to a time rescaling by a factor 1/α. Abusing of the notation, we thus refer the fully
asynchronous dynamics as the 0-asynchronous regime.

Figure 1 page 6 presents the space-time diagrams of the 24 representatives of the DQECAs
as α increases (by steps of 0.25) starting from the same random configuration of length n =
100. The last column plots the density of black cells at time step t = 1000/α from one single
random configuration. This class exhibits a rich variety of behaviours. Thirteen representatives
of the DQECAs (ECAs 204 to 128, 198, and 142 on Fig. 1) appear to be marginally sensitive to
asynchronism. Six of them (ECAs 242 to 170, 194, and 138 on Fig. 1) present a brutal transition
from the synchronous to asynchronous dynamics: they converge in polynomial time to an all-zero
or all-one configuration as soon as (even a small amount of) asynchronism is introduced, while
diverge under synchronous dynamics. One can observed that their space-time diagrams exhibit
random walks like behaviour. The most interesting behaviour are observed for the remaining five
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representants. The relaxation time of ECAs 210 and 214 are respectively exponential and infinite
under fully asynchronous dynamics, and both infinite under synchronous dynamics, but appears
to be polynomial under α-asynchronous dynamics. The relaxation time as well as the time-space
diagrams of EACs 178 and 146 evolve continuously as α increases, but seem to present an interesting
phase transition at some αc and α′

c, respectively, such that the relaxation time appears to be
polynomial for α < α

(′)
c , and exponential for α > α

(′)
c . Finally, the relaxation time of ECA 150

appears to be exponential when 0 < α < 1, but is infinite otherwise.
Section 2 introduce the main definitions and presents our main result. Section 3 presents the

key phenomena that differentiate the different dynamics: fully synchronous, α-asynchronous, and
fully asynchronous. These observation will guide the design of probabilistic tools that are presented
in Section 4 and used in Section 5 to boudn the relaxation time. The last section 6 sum up the
intuitions, hints and conjectures on the behaviours of the remaining automata that could not be
treated theoretically here, leaving the determination of their relaxation time open.

2 Definitions, Notations and Main Results

In this paper, we consider two-state cellular automata on finite size configurations with periodic
boundary conditions.
Definition 1 An Elementary Cellular Automata (ECA) is given by its transition function δ :
{0, 1}3 → {0, 1}. We denote by Q = {0, 1} the set of states. A state q is quiescent if δ(q, q, q) = q.
An ECA is double-quiescent (DQECA) if both states 0 and 1 are quiescent.

We denote by U = Z/nZ the set of cells. A finite configuration with periodic boundary condi-
tions x ∈ QU is a word indexed by U with letters in Q.
Definition 2 For a given pattern w ∈ QU , we denote by |x|w = #{i ∈ U : xi+1 . . . xi+|w| = w} the
number of occurrences of w in configuration x.

We will use the following labeling introduced in [3] which will simplify the analysis of the prob-
abilistic evolution of the ECAs.
Notation 1 We say that a transition is active if it changes the state of the cell where it is applied.
Each ECA is fully determined by its active transitions. We label each active transition by a letter
as follow:

label A B C D E F G H
x y z 000 001 100 101 010 011 110 111

δ(x, y, z) 1 1 1 1 0 0 0 0

We label each ECA by the set of its active transitions.
Note that with these notations, the DQECAs are exactly the ECAs having a label containing
neither A nor H. We consider three kinds of dynamics for ECAs: the synchronous dynamics, the
α-asynchronous and the fully asynchronous dynamics. The synchronous dynamics is the classic
dynamics of cellular automata, where the transition function is applied at each (discrete) time step
on each cell simultaneously.

Definition 3 (Synchronous Dynamics) The synchronous dynamics Sδ : QU → QU of an ECA
δ, associates deterministically to each configuration x the configuration y, such that for all i ∈ U ,
yi = δ(xi−1, xi, xi+1).
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Definition 4 (Asynchronous Dynamics) An asynchronous dynamics ASδ of an ECA δ as-
sociates to each configuration x a random configuration y, such that yi = xi for i 6∈ S, and
yi = δ(xi−1, xi, xi+1) for i ∈ S, where S is a random subset of U chosen by a daemon. We
consider two types of asynchronous dynamics:
• in the α-asynchronous dynamics, the daemon puts each cell i in S independently with proba-

bility α where 0 < α 6 1. The random function which associates the random configuration y
to x according to this dynamics is denoted ASα

δ .
• in the fully asynchronous dynamics, the daemon chooses a cell i uniformly at random and sets

S = {i}. The random function which associates the random configuration y to x according to
this dynamics is denoted ASF

δ .
For a given ECA δ, we denote by xt the random variable for the configuration obtained by t appli-
cations of the asynchronous dynamics function ASδ on configuration x, i.e., xt = (ASδ)t(x). Note
that (xt)t∈N is an homogeneous Markov chain on QU . ASδ could equivalently be seen as a function
with two arguments, the configuration x and the random subset S ⊆ U chosen according to the
processes listed above.

Definition 5 (Fixed point) We say that a configuration x is a fixed point for δ under asyn-
chronous dynamics if ASδ(x) = x whatever the choice of S (the cells to be updated) is. Fδ denotes
the set of fixed points for δ.

The set of fixed points of the asynchronous dynamics is clearly identical to {x : Sδ(x) = x} the
set of fixed points of the synchronous dynamics. The set of fixed points of an automaton can be
easily deduce from its labeling as shown in [3]. Every DQECA admits two trivial fixed points, 0n

and 1n.

Definition 6 (Relaxation Time) Given an ECA δ and a configuration x, we denote by Tδ(x)
the random variable for the time to reach a fixed point from configuration x under asynchronous
dynamics, i.e., Tδ(x) = min{t : xt ∈ Fδ}. The relaxation time of ECA δ is maxx∈QU E[Tδ(x)].

The process (xt)t∈N always converges to a stationary distribution, but we will abusively say that
an ECA diverges from an initial configuration x if the probability to reach a fixed point from x
is 0. We can now state our main theorem.

Theorem 1 (Main result) Under α-asynchronous dynamics, among the sixty-four DQECAs, we
can determine the behaviour of 52 of them:
• forty-eight converge almost surely to a random fixed point from any initial configuration,

and the relaxation times of these forty-eight convergent DQECAs are 0, Θ( ln n
ln(1−α)), Θ(n

α),

Θ(n
α + 1

α(1−α)), O( n
α(1−α)), O( n

α2(1−α)
), Θ( n2

α(1−α))
• two diverge from any initial configuration that is neither 0n, nor 1n, nor (01)n/2 when n is

even.
• two converge with a small probability from few initial configurations when n is even and di-

verge otherwise.
The twelves others have different behaviours that we cannot prove for the moment. Some seem

to exhibit a phase transition but their mathematical analysis remains a challenging problem. All
the results and the conjectures (with question marks) are summed up in table 1.
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Figure 1: Behaviour of DQECAs as a function of the synchronicity rate α (Zoom in for details).
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3 Key Observations

Due to 0/1 and horizontal symmetries of configurations, we shall w.l.o.g. only consider the 24
DQECAs listed in Tab. 1 among the 64 DQECAs. For each of these 24 DQECAs, the number of
the equivalent automata under symmetries is written within parentheses after their classic ECA
code in the table.

From now on, we only consider the α-asynchronous dynamics; this will be implicit in all the
following propositions. Our results rely on the observation of the evolution of the 0-regions and
1-regions in the space-time diagram (i.e., of the intervals of consecutive 0s or consecutive 1s in
configuration xt). We will now enumerate the different ways to affect the regions.

First we consider the case where a cell updates and none of its two neighbours update:
• Transitions D and E are thus responsible for decreasing the number of regions in the space-

time diagram: D “erases” the isolated 1s and E the isolated 0s.
• Transitions B and F act on patterns 01. Intuitively, transition B moves a pattern 01 to the

left, and transition F moves it to the right. In particular, patterns 01 perform a kind of
random walk for DQECA with both transitions B and F if no others phenomena occurs. The
arrows in Tab. 1 represent the different behavior of the patterns: ← or →, for left or right
moves of the patterns 01 or 10; !, for random walks of these patterns.

• Similarly, transitions C and G act on patterns 10. Transition C moves a pattern 10 to the
right, and transition G moves it to the left.

One important observation made during the study of the fully asynchronous in [3] is that the
number of regions can only decrease and each activation of D or E makes the number of regions
decrease by one. This statement is not true anymore in the case of the α-asynchronous dynamics,
as we will see now. Here are the new phenomena when two or three neighboring cells update at
the same time:

B F B E C F GB E

time t+1

time t

Shift Spawn Fork Annihilation

• Shift phenomenon appears with the activation of rules B and E or C and E or F and D or G
and D together: in this case an isolated 0 or an isolated 1 is shifted. Here a transition D or
E is activated but no regions is erased.

• Spawn phenomenon appears with the activation of rules B and F or C and G together: a
pattern 0011 could create a new region. This is an important phenomenon because it makes
the number of regions increase by one each time it occurs.

• Fork phenomenon appears with the activation of rules B, C and E or F, G and D together:
here three neighboring cellules upadte at the same time and an isolated point is duplicated.
This phenomenon makes the number of regions increasing by one each time it occurs.

• Annihilation phenomenon appears with the activation of rules B and C or F and G together:
the activation of two rules could erase a region of length 2. This is a very important phe-
nomenon because it is another way to make the number of region decrease. In particular,
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it is the only way to make the number of regions decrease in automaton where neither D or
neither E is activated.

The next section is devoted to the tools which will be used to prove our main theorem.

4 Lyapunov functions based on local neighbourhoods

Definition 7 (Mask) A mask ṁ is a word on {0, 1, 0̇, 1̇} containing exactly one dotted letter
in {0̇, 1̇}. We say that the cell i in configuration x matches the mask ṁ = m−k . . .m−1ṁ0m1 . . .ml

if xi−k . . . xi . . . xi+l = m−k . . .m0 . . .ml. We denote by m the undotted word m−k . . .m0 . . .ml.
Fact 2 The number of cells matching a given mask ṁ in a configuration x is exactly |x|m, the
number of occurrences of the undotted word m.
Definition 8 (Masks basis) A masks basis B is a finite set of masks such that for any configu-
ration x and any cell i, there exists an unique ṁ ∈ B that matches cell i.

A masks basis B can be represented by a binary tree where the children of a node are labelled by
adding 0 and 1 to the node label, on the right or the left (the children of the root receive 0̇ and 1̇), and
where the masks of B are the labels of the leaves. Reciprocally, any binary tree observing these prop-
erties defines a masks basis by taking the labels of its leaves. Figure (b) page 10 illustrates the con-
struction of the tree for the masks basis B = {11̇, 001̇0, 001̇1, 0101̇, 1101̇, 0̇0, 00̇10, 00̇11, 010̇1, 110̇1}.

Masks basis will be used to define Lyapunov weight functions from local patterns and provide
an efficient tool to validate exhaustive case analysis.

Definition 9 (Local weight function) A local weight function f is a function from a masks
basis B to Z. The local weight of the cell i in configuration x given by f is F (x, i) = f(ṁ) where
ṁ is the unique mask in B matching cell i. The weight of a configuration x given by f is defined
as F (x) =

∑
i F (x, i).

Fact 3 Given a local weight function f : B → Z, the weight of configuration x is equivalently de-
fined as: F (x) =

∑
ṁ∈B f(ṁ) · |x|m.

Notation 2 For a given random sequence of configurations (xt)t∈N and a weight function F on
the configurations, we denote by (∆F (xt))t∈N the random sequence ∆F (xt) = F (xt+1)− F (xt).

The next lemma provides upper bounds on stopping times for the markovian sequence of con-
figurations (xt)t∈N subject to a weight function F decreasing or remaining constant on average
(a Lyapunov function). Their proofs can be found in [3] and are based on classical results from
Lyapunov functions and martingale theory [8]. We assume that the values of F on configurations
belongs to {0, . . . ,m} where m is a non-negative integer, and ε is a positive real. Two other similar
lemmas has been postponed to the appendix due to space constraints.

Lemma 4 Assume that if F (xt) > 0, then E[∆F (xt)|xt] 6 −ε. Let T = min{t : F (xt) 6 0} denote
the random variable for the first time t where F (xt) 6 0. Then with c0 = E[F (x0)], E[T ] 6 m+c0

ε .

5 Relaxation Times

Due to space constraints, we only present the theorems on the relaxation time for the DQECAs EF,
EFG and BEF. The results for Identity, E, DE, B, BC, BDE, BE, BCDE, BCE, BCDEF,
BEFG, BDEG, BEG, BDEF, BF, BG are given in Tab. 1. The full statements and proofs are
postponed to the appendix.
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5.1 Automata EF(192) and EFG(128)

The fixed points of these automata are 0n and 1n. The fixed point 1n cannot be reached from any
other configuration.

Theorem 5 Under α-asynchronous dynamics, DQECAs EF and EFG converge a.s. to a fixed
point from any initial configuration. The relaxation time is O

(
n
α

)
.

Patterns 01 decrease the number of 1s as they are moved. The difference beetween EF and
EFG is that in the case of EFG, the number of 1s decrease also when patterns 01 are moved. But
the same proof is true in the two cases. Under totally asynchronous, α-asynchronous or synchronous
dynamics, the behaviour of these automata are almost identical.

Proof. We use the masks basis and local weight function f below. We have F (x) = |x|1. Note
that for all configuration x, F (x) ∈ {0, . . . , n} and F (x) = 0 if and only if x = 0n.

1

0

masks 0̇ 1̇

f(ṁ) 0 1

(a) Weight function

11

01
1

0

(b) Analysis

Lemma 6 E[∆F (x)] 6 −α|x|01.
By linearity of expectation, E[∆F (x)] = E

[∑n−1
i=0 ∆F (x, i)

]
=

∑n−1
i=0 E[∆F (x, i)].

We evaluate the variation of F (x, i) using the masks basis (b).
Consider that at step t, cell i matches:

• mask 0̇: With probability 1 at the step t + 1, cell i matches mask 0̇. Thus, E[∆F (xt, i)] = 0.
• mask 11̇: F (xt, i) = 1 thus F (xt+1, i) 6 F (xt, i), and, E[∆F (xt, i)] 6 0.
• mask 01̇:

With probability α 1 − α

at the step t + 1, cell i matches mask 0̇ 1̇

and ∆F (xt, i) = −1 = 0

Thus, E[F (xt, i)] 6 −α. Finally,
∑n−1

i=0 E[∆F (xt, i)] 6 −α|x|01. So, as long as xt is not a fixed
point, we have: E[∆F (xt)] 6 −α|x|01 6 −α. Using Lemma 4, automata EF and EFG converge
a.s. from any initial configuration (except 1n) to 0n. The relaxation time is O

(
n
α

)
. �

5.2 Automaton BEF(194)

The fixed points of this automaton are 0n and 1n. Fixed point 1n cannot be reached from any
other configuration.

Theorem 7 Under α-asynchronous dynamics, DQECA BEF converges a.s. to a fixed point from
any initial configuration. The relaxation time is O

(
n

α2(1−α)

)
.
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Under fully asynchronous dynamics, the length of any 1-region follows a random walk, and thus
converges in O(n3) in expectation. Here, the Spawn phenomenon(rule B and F applied together
to cells i− 1 and i) can transform the pattern 0001̇11 into the pattern 001011 with probability α2.
Even if the number of 0s and 1s are the same in these two patterns, in the pattern 001011 two 1s
can become 0s at the next step (by applying rules E and F), while only one 0 can become a 1 at
the next step (by applying rule B). So the creation of isolated 0s tends to decrease the number
of 1s at the next step.

Proof. Let a = −2c + 2, b = −1, c = −b 3
αc − 1. We use the masks basis and local weight

function f below. We have: F (x) = a|xt|1 + b|xt|011 + c|xt|101. For all configuration x, F (x) ∈
{0, . . . , 2n(b 3

αc+ 4)} and F (x) = 0 if and only if x = 0n.

11
011

111

10
010

1101

00
100

000

01
101

001
0

masks 10̇1 00̇0, 00̇1, 10̇0 01̇1 11̇0, 11̇1, 01̇0
f(ṁ) c 0 a + b a

(a) Weight function

11

01

101
1101

0101

001
0011

0010

1

00

01

101
1101

0101

001
0011

0010

0

(b) Analysis

Lemma 8 E[∆F (x)] 6 −α(1− α)|x|01
By linearity of expectation:E[∆F (x)] = E

[∑n−1
i=0 ∆F (x, i)

]
=

∑n−1
i=0 E[∆F (x, i)].

We evaluate the variation of F (x, i) using the masks basis of Figure (b).
Consider that at step t, cell i matches:

• mask 11̇: F (xt, i) = a. With probability 1 at the step t + 1, cell i matches mask 1̇.
So F (xt+1, i) ∈ {a, a + b}. Since b < 0, F (xt+1, i) 6 F (xt, i). Thus, E[(∆F (xt, i)] 6 0.

• mask 0̇0: F (xt, i) = 0. With probability 1 at the step t + 1, cell i matches mask 0̇.
So F (xt+1, i) ∈ {0, c}. Since c < 0, F (xt+1, i) 6 F (xt, i). Thus, E[(∆F (xt, i)] 6 0.

• mask 001̇0 (and 00̇10 together):
With probability α(1 − α) α(1 − α) (1 − α)2 α2

At the step t + 1, cell i matches mask 00̇ 11̇ 01̇ 10̇

and ∆F (xt, i − 1) = 0 = a + b = 0 = a
and ∆F (xt, i) = −a = 0 = 0 = −a

Thus, E[∆F (xt, i) + ∆F (xt, i− 1)] = −aα(1−α) + (a + b)α(1−α) = bα(1−α) = −α(1−α).

• mask 001̇1 (and 00̇11 together):
With probability α(1 − α) α(1 − α) (1 − α)2 α2

at the step t + 1, cell i matches mask 00̇ 11̇ 01̇ 10̇

and ∆F (xt, i − 1) = 0 = a + b = 0 = c − a − b
and ∆F (xt, i) = −a − b = −b = 0 = a

Thus, E[∆F (xt, i)+∆F (xt, i−1)] = (−a−b)α(1−α)+aα(1−α)+(c−b)α2 6 α(1−α)−2α 6
−α(1− α).
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• mask 1101̇ (and 110̇1 together):
With probability α (1 − α)

at the step t + 1, the cell i matches mask 00̇ 01̇

and ∆F (x, i − 1) = −c = 0
and ∆F (x, i) = −a − b = 0

Thus, E[∆F (xt, i) + ∆F (xt, i− 1)] = (−a− b− c)α(1− α) 6 −α(1− α).

• mask 0101̇ (and 010̇1 together):
With probability α (1 − α)2 α(1 − α)

at the step t + 1, the cell i matches mask 00̇ 101̇ 001̇

and ∆F (xt, i − 1) = −c = 0 = −c
and ∆F (xt, i) = −a − b = 0 = 0

Thus, E[∆F (xt, i) + ∆F (xt, i− 1)] = (−a− b− c)α(1− α)− cα(1− α) 6 −α(1− α).

Finally
∑n−1

i=0 E[∆F (xt, i)] 6 −α(1−α)(|xt|0010+ |xt|0011+ |xt|1011+ |xt|0101) 6 −α(1−α)|xt|01.
So, as long as xt is not a fixed point, we have E[∆F (xt)] 6 −α(1 − α)|xt|01 6 −α(1 − α). Using
Lemma 4, automaton BEF converges a.s. from any intial configuration (except 1n) to 0n. The
relaxation time is O

(
n
α ×

1
α(1−α)

)
= O

(
n

α2(1−α)

)
. �

6 Conjectures

This section gathers the remaining DQECAs for which the mathematical analysis is not achieved
yet. However by means of simulation and by the study of special patterns, we can give some insights
of the phenomena which guide their dynamics and differentiate them from the other DQECAs.

Automaton BCDEFG(178). The fixed points of this automaton are exactly 0n and 1n. Simu-
lations show a phase transition concerning the convergence time, which can be also clearly observed
on time-space diagrams and seems to appear when α = αc ≈ 0, 5. If α < αc, the overall behaviour
of the automaton does not drastically change when α varies: regions of 0 and 1 merge into larger
regions reducing their number, and it seems to converge to 0n or 1n with an O(n2/α) expected
time. While if α > αc, large regions of 0 or 1 crumble quickly at their frontiers and patterns
of 0101 · · · 01 fill the space between the regions. The closer α is to 1, the smaller is the probability
of formation of large regions. In that case, we conjecture that the relaxation time is exponential in n.
Automaton BCEFG(146). The fixed points of this automaton are exactly 0n and 1n. This
automaton shows a phase transition which seems to appear when α = α′

c ≈ 0, 6. When α < α′
c,

regions of 1 quickly disappear and the expected convergence time is conjectured to be polynomial
in n. When α is close to 1, like the automaton BCDEFG, large regions of 1 do not survive
because they tend to crumble very quickly. On the other hand, isolated 1s are easily deleted and
seem to multply faster than they disappear. In that case, we conjecture that the relaxation time is
exponential in n.
Automaton BCF(214). The fixed points of this automaton are 0n, 1n and (01)n/2 (if n is
even). When starting from another configuration, it is impossible to reach one of these fixed points
in the fully asynchronous dynamics, since the number of regions remains constant. With the α-
asynchronous dynamics, due to the Annihilation phenomenon, any configuration converges a.s. to
a fixed point within a finite time. The sizes of large regions of 0 decrease quickly. Only regions
with two 0s may disappear, but 10011 patterns may evolve into 11111 or 10101 with the same
probability. This could lead to an increase of small regions, tending to slow down the convergence.
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However small regions of 0 which are consecutive prevent from this splitting: in a 1001001 pattern,
the first 00 region can not split. Thus the number of regions tends to decrease. We conjecture
that the relaxation time is polynomial in n and contains an O( 1

α2(1−α)
) term corresponding to the

deletion of 00 regions.
Automaton BCFG(150). The fixed points of this automaton are 0n, 1n and (01)n/2 (if n is
even). In the fully asynchronous dynamics, this automaton does not converge to a fixed point since
it is impossible to suppress a region. However in the α-asynchronous dynamics, due to the Annihi-
lation phenomenon, this automaton converges a.s. to a fixed point within a finite time. Simulations
suggest that the relaxation time is exponential in n.
Automaton BCEF(210). The fixed points of this automaton are exactly 0n and 1n. In the
fully asynchrnous dynamics, this automaton converges to 0n with a exponential expected time. In
both fully asynchrounous and α-asynchronous, dynamics, the sizes of regions of 0 tends to decrease
quickly. However in the fully asynchronous dynamics, they may only disappear by merging and
the last region of 0 will converge to 0 in exponential expected time. The α-asynchronous dynamics
introduces the Annihilation phenomenon. On simulations, the convergence to fixed points seems
to be polynomial. This case looks like the BCF automaton, but the analysis is a bit more compli-
cated since regions of 0 may merge which must be taken into account in the proof of bounds for
the convergence time.
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A Lyapunov functions based on local neighbourhoods (Omitted
lemmas)

Lemma 9 Assume that for all t, E[∆F (xt)|xt] = 0 and if 0 < F (xt) < m then Pr{∆F (xt) >
1|xt} = Pr{∆F (xt) 6 −1|xt} > ε. Let T = min{t : F (xt) ∈ {0,m}}. Then with c0 = E[F (x0)],

E[T ] 6
c0(m− c0)

2ε
.

Lemma 10 Assume that for all t, if F (xt) < m then E[∆F (xt)|xt] = 0, if 0 < F (xt) < m then
Pr{∆F (xt) > 1|xt} = Pr{∆F (xt) 6 −1|xt} > ε and if F (xt) = m then Pr{F (xt) 6 m − 1} > ε.
Let T = min{t : F (xt) = 0}}. Then with c0 = E[F (x0)],

E[T ] 6
c0(2m + 1− c0)

2ε
.

B Relaxation Times (Omitted proofs)

B.1 Automaton E(200)

The fixed points of this automaton are all the configuration without pattern 010.

Theorem 11 Under α-asynchronous dynamics, DQECA E converges a.s. to a fixed point from
any initial configuration. The relaxation time is O

(
n
α

)
.

Proof. At each time step, each isolated 1 disappears with probability α. No other phenomenon
occurs for this automaton. This is a classical coupon collector problem.

�

B.2 Automata B(206) and BC(222)

The fixed points of these automata are 0n, 1n and all configuration without patterns 00.

Theorem 12 Under α-asynchronous dynamics, DQECAs B and BC converge a.s. to a fixed point
from any initial configuration. The relaxation time is O

(
n
α

)
.

The length of the big regions of 1 increase until there are only isolated 0s.

Proof. We use the masks basis and local weight function f of Figure 2a.
And so:

F (x) =
∑
ṁ∈B

f(ṁ) · |x|m = |x|0

For all configuration x, F (x) ∈ {0, . . . , n} and F (x) = 0 if and only if x = 1n.

13



1

0

masks 1̇ 0̇
f(ṁ) 1 0

(a) Weight function

1

00

01
101

0010

(b) Analysis

Figure 2: Masks basis for B and BC.

Lemma 13 E[∆F (x)] 6 −α|x|001.

By linearity of expectation:

E[∆F (x)] = E

[
n−1∑
i=0

∆F (x, i)

]
=

n−1∑
i=0

E[∆F (x, i)].

We evaluate the variation of F (x, i) using the masks basis of Figure 2b.
Consider that at step t, cell i matches:

• mask 10̇1, 1̇,: with probability 1 at the step t + 1, cell i matches the same mask at the time
t. Thus, E[∆F (xt, i)] = 0.

• mask 0̇0,: F (xt, i) = 1. Thus , E[∆F (xt, i)] 6 0.

• mask 00̇1: F (xt, i) = 1. With probability α at the step t + 1, cell i matches mask 1
and ∆F (x, i) = −1. Otherwise, it matches the mask 0̇ and ∆F (x, i) = 0. Thus, E[∆F (xt, i)] =
−α.

Finally:

n−1∑
i=0

E[∆F (xt, i)] 6 −α|xt|001

So, as long as xt is not a fixed point, we have:

E[∆F (xt)] 6 −α|xt|001
6 −α

Using Lemma 4, the automata B and BC converge a.s. to a fixed point from any initial
configuration (except 0n). The relaxation time is O

(
n
α

)
. �
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B.3 Automata BDE(234) and BCDE(250)

The fixed points of these automata are 0n and 1n.

Theorem 14 Under α-asynchronous dynamics, DQECAs BDE and BCDE converge a.s. to a
fixed point from any initial configuration. The relaxation time is O

(
n
α + 1

α(1−α)

)
.

Only rule E can erase 1s in the configuration and this rule can only be applied to isolated 1s.
So, as soon as a configuration has a pattern 11, it cannot be erased anymore. Rule B and rule D
are sufficient to make this pattern grow and make the automaton converge to 1n. So the proof
has two parts. First, we estimate the relaxation time for a configuration without pattern 11 to
generate such a pattern (assuming that the automaton has not converged to 0n meanwhile). Second
we compute the relaxation time for a configuration with a pattern 11 to reach the fixed point 1n.

Proof. First, we bound from below the probability that a cell i matching mask 01̇0 creates a
pattern 11.

With probability (1− α)2 α(1− α) α(1− α) α2

at the step t + 1, cell i matches the mask 01̇ 11̇ 00̇ 10̇

So each pattern 010 creates a pattern 11 with a probability α(1 − α). The expected time for
a configuration with a pattern 010 to create a pattern 11 assuming that the automaton has not
converged to 0n meanwhile is O( 1

α(1−α)).
Now we calculate the relaxation time for a configuration x to reach the fixed point 1n assuming

that |x|11 > 1.
We use the masks basis and local weight function f of Figure 3a.

1

0

masks 0̇ 1̇
f(ṁ) 1 0

(a) Weight function

01
010

11
1

00

01
010

0110

011

(b) Analysis

Figure 3: Masks basis for BDE and BCDE.

And so:

F (x) =
∑
ṁ∈B

f(ṁ) · |x|m = |x|0

For all configuration x, F (x) ∈ {0, . . . , n− 2} and F (x) = 0 if and only if x = 1n.
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Lemma 15 E[∆F (x)] 6 −α|x|011.

By linearity of expectation:

E[∆F (x)] = E

[
n−1∑
i=0

∆F (x, i)

]
=

n−1∑
i=0

E[∆F (x, i)].

We evaluate the variation of F (x, i) using the masks basis of Figure 3b.
Consider that at step t, cell i matches:

• mask 11̇, 01̇1: F (xt, i) = 0. With probability 1 at the step t + 1, cell i matches mask 1̇ and
F (xt+1, i) = 0. Thus, E[∆F (xt, i)] = 0.

• mask 0̇0: F (xt, i) = 1. Thus, E[∆F (xt, i)] 6 0.

• mask 0̇11: F (xt, i) = 1. With probability α at the step t+1, cell i matches mask 1̇. Otherwise,
it matches mask 0̇. Thus, E[∆F (xt, i)] = −α.

• mask 01̇0 (and 0̇10 together):

With probability (1− α)2 (1− α)α (1− α)α α2

at the step t + 1, cell i matches mask 0̇1 1̇1 0̇0 1̇0
and ∆F (xt, i− 1) = 0 = −1 = 0 = −1

and ∆F (xt, i) = 0 = 0 = 1 = 1

Thus,
E[∆F (xt, i)] = 0.

Finally:

n−1∑
i=0

E[∆F (xt, i)] 6 −α|xt|011.

So, as long as xt is not the fixed point 1n, we have:

E[∆F (xt)] = E

[
n−1∑
i=0

∆F (xt, i)

]

6
n−1∑
i=0

E[∆F (xt, i)]

6 −α|xt|011
6 −α.
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Using the Lemma 4, automata BDE and BCDE converge a.s. from any initial configuration
with a pattern 11 to 1n. The relaxation time is O

(
n
α

)
.

Thus, automata BDE and BCDE converge a.s. from any initial configuration. The relaxation
time is O

(
n
α + 1

α(1−α)

)
.

�

B.4 Automata BE(202) and BCE(218)

The fixed points of these automata are 0n, 1n and all configurations without patterns 00 and 010.

Theorem 16 Under α-asynchronous dynamics, DQECAs BE and BCE converge a.s. to a fixed
point from any initial configuration. The relaxation time is O

(
n
α + 1

α(1−α)

)
.

These cases are almost the same as the previous ones. The first step consists in waiting the
spawning of a pattern 11. The second step is slightly different since several fixed points can be
reached and patterns 01011 could slow down the expansion of 1-regions.

Proof. The first part is similar to the previous automaton. We evaluate the relaxation time for
a configuration x to reach a fixed point assuming that |x|11 > 1

We use the masks basis and local weight function f of Figure 4a.

1

0

masks 0̇ 01̇0 0101̇1 otherwise
f(ṁ) 3 3 1 0

(a) Weight function

11
011

1011

0011
111

10
010

110
1

00

01
011

1011

0011

0100

11011

01011

(b) Analysis

Figure 4: Masks basis for BE and BCE.

And so:

F (x) =
∑
ṁ∈B

f(ṁ) · |x|m = 3|x|0 + 3|x|01̇0 + |x|0101̇1

For all configuration x, F (x) ∈ {0, . . . , 3n− 6} and F (x) = 0 if and only if x = 1n.

Lemma 17 E[∆F (x)] 6 −α(|x|0011 + |x|0101̇1).
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By the linearity of the expectation:

E[∆F (x)] = E

[
n−1∑
i=0

∆F (x, i)

]
=

n−1∑
i=0

E[∆F (x, i)].

So we evaluate the variation of F (x, i) using the masks basis of Figure 4b.
Consider that at step t, cell i matches:

• mask 10̇11, 11̇0, 11̇1, 1101̇1: with probability 1 at the step t + 1, cell i matches the same
mask at the time t. Thus, E[∆F (xt, i)] = 0.

• mask 0̇0, 0̇10, 01̇0: F (xt, i) = 3. Thus, E[∆F (xt, i)] 6 0.

• mask 00̇11: F (xt, i) = 3. With probability α cell i updates and at the step t+1, F (xt+1, i) 6 1.
Otherwise, it matches mask 0̇. Thus, E[∆F (xt, i)] = −2α.

• mask 001̇1: F (xt, i) = 0. With probability lower than α, cell i − 2 updates and cell i
matches mask 0101̇1 at the step t + 1 and ∆F (xt, i) = 1. Otherwise, ∆F (xt, i) = 0.
Thus, E[∆F (xt, i)] 6 α.

• mask 0101̇1: F (xt, i) = 1. With probability at least α, cell i− 2 updates and cell i matches
mask 001̇1 at the step t + 1 and F (xt+1, i) = 0. Otherwise, it matches the mask 0101̇1.
Thus, E[∆F (xt, i)] = −α.

Finally:

n−1∑
i=0

E[∆F (xt, i)] 6 −α(2|xt|0011 − |xt|0011 + |xt|01011)

6 −α(|xt|0011 + |xt|01011)

Thus, as long as xt is not the fixed point 1n, we have:

E[∆F (xt)] =
n−1∑
i=0

E[∆F (xt, i)]

6 −α(|xt|0011 + |xt|01011)
6 −α

Using Lemma 4, automata BE and BCE converge a.s. from any initial configuration with a
pattern 11. The relaxation time is O

(
n
α

)
.

Thus, automata BE and BCE converge a.s. from any initial configuration. The relaxation
time is O

(
n
α + 1

α(1−α)

)
.

�
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B.5 Automaton BEFG(130)

The fixed points of this automaton are 0n and 1n. The fixed point 1n cannot be reached from any
other configuration.

Theorem 18 Under α-asynchronous dynamics, DQECA BEFG converges a.s. to a fixed point
from any initial configuration. The relaxation time is O

(
n

α(1−α)

)
.

The lengths of the large zones of 1 tend to decrease. Because of the rule G, the moves of
patterns 110 tend to erase the 1s. But for the borders 00̇11, the Spawn phenomon (rules B on
cell i and F on cell i + 1 together) creates new zones. These zones 001̇011 can be shifted (ruled B
on cell i − 1 and E on cell i together). Nevertheless the spawning rate of these zones is not large
enough to change the global behaviour of this automaton.

Proof. We use the masks basis and local weight function f of Figure 5a.

01
011

11
1

0

010

masks 0̇ 01̇0 otherwise (01̇1, 11̇)
f(ṁ) 0 6 5

(a) Weight function

11
110

111
0111

1111

01
010

011

1

00

01
011

0100

01111

01110

(b) Analysis

Figure 5: Masks basis for BEFG.

And so:

F (x) = 5(|x|011 + |x|11) + 6|x|010
= 5(|x|011 + |x|11 + |x|010) + |x|010
= 5|x|1 + |x|010.

Note that, for all configuration x, F (x) ∈ {0, . . . , 5n} and F (x) = 0 if and only if x = 0n.

Lemma 19 E[∆F (x)] 6 −α(1− α)|x|01.

By linearity of expectation:

E[∆F (x)] = E

[
n−1∑
i=0

∆F (x, i)

]
=

n−1∑
i=0

E[∆F (x, i)].
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So we evaluate the variation of F (x, i) using the masks basis 5b.
Consider that at step t, cell i matches:

• mask 0̇0: With probability 1 at the step t+1, cell i matches mask 0̇. Thus, E[∆F (xt, i)] = 0.

• mask 111̇1 (resp. 011̇11): With probability 1 at the step t + 1, cell i matches mask 11̇ (resp.
01̇1 or 11̇). Thus, E[∆F (xt, i)] = 0.

• mask 0̇11:

With probability > 1− α 6 α(1− α) 6 α2

at the step t + 1, cell i matches mask 0̇ 1̇1 1̇0
and ∆F (xt, i) = 0 = 5 6 6

The two last cases are possible only if xt
i−1 = 0. Thus,

E[∆F (xt, i)] 6 5α(1− α) + 6α2

6 6α(1− α) + 6α2

6 6α.

• the mask 01̇0 (and 0̇10 together):

With probability > α(1− α) > (1− α)2 6 α(1− α) 6 α2

at the step t + 1, cell i matches mask 00̇ 01̇ 11̇ 10̇
and ∆F (xt, i− 1) = 0 = 0 = 5 6 6

and ∆F (xt, i) = −6 = 0 = −1 = −6

The two last cases are possible only if xt
i−2 = 0. Thus,

E[∆F (xt, i− 1) + ∆F (xt, i)] 6 −2α(1− α).

• the mask 01̇1:

With probability α > (1− α)2 6 α(1− α)
at the step t + 1, cell i matches mask 0̇ 1̇1 1̇0

and ∆F (xt, i) = −5 = 0 6 1

The last case is possible only if xt
i+2 = 0. Thus,

E[∆F (xt, i)] 6 −5α + α(1− α) 6 −4α.
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• the mask 11̇0:

With probability α > (1− α)2 6 α(1− α)
at the step t + 1, cell i matches mask 0̇ 11̇ 01̇

and ∆F (xt, i) = −5 = 0 = 1

The last case is possible only if xt
i−2 = 0. Thus,

E[∆F (xt, i)] 6 −4α.

• the mask 011̇10:

With probability α2 1− α2

at the step t + 1, cell i matches mask 01̇0 other than 01̇0
and ∆F (xt, i) = 1 = 0

Thus,
E[∆F (xt, i)] = α2 6 α.

Finally:

n−1∑
i=0

E[∆F (xt, i)] 6 6α|x|011 − 2α(1− α)|x|010 − 4α|x|011

− 4α|x|110 + α|x|01110

Since |x|011 = |x|110 (these patterns count the two borders of any 1-regions of length at least 2)
and since |x|01110 6 |x|110, we have:

n−1∑
i=0

E[∆F (xt, i)] 6 −2α(1− α)|x|010 − α|x|011

6 −α(1− α)|x|01

So, as long as xt is not a fixed point, we have:

E[∆F (xt)] 6 −α(1− α)|x|01
6 −α(1− α)

Using Lemma 4, automaton BEFG converges a.s. from any initial configuration (except 1n)
to 0n. The relaxation time is O

(
n

α(1−α)

)
.

�
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B.6 Automaton BCDEF(242)

The fixed points of this automaton are 0n and 1n.

Theorem 20 Under α-asynchronous dynamics, DQECA BCDEF converges a.s. to a fixed point
from any initial configuration. The relaxation time is O

(
n

α(1−α)

)
.

Because of Spawn phenomenon (rules B and F applied together to cells i − 1 and i), any
pattern 001̇1 can create a new zone. Nevertheless, because of rule C, the moves of the patterns 110
tend to erase the 0s and this is enough to have a fast convergence to a fixed point. the factor 1

1−α
is necessary for the elimination of the isolated 0s.

Proof. We use the masks basis and local weight function f of Figure 6a.

1
01

00
0

masks 0̇0 0̇1 1̇
F (ṁ) 1 2 0

(a) Weight function

01

11
1

01

00

100
1000

1001

000
0000

1000

0

(b) Analysis

Figure 6: Masks basis for BCDEF.

And so:
F (x) = |xt|0 + |xt|01.

For all configuration x, F (x) ∈ {0, . . . , n} and F (x) = 0 if and only if x = 1n.

Lemma 21 E[∆F (x)] 6 −α(1− α)|xt|01.

By linearity of expectation:

E[∆F (x)] = E

[
n−1∑
i=0

∆F (x, i)

]
=

n−1∑
i=0

E[∆F (x, i)].

We evaluate the variation of F (x, i) using the following masks basis of Figure 6b.
Consider that cell i matches at the step t:

• mask 00̇00: with probability 1 at the step t+1, cell i matches mask 0̇0. Thus, E[∆F (x, i)] = 0.

• mask 11̇: with probability 1 at the step t + 1, cell i matches mask 1̇. Thus, E[∆F (x, i)] = 0.
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• mask 10̇00: with probability α at the step t+1, cell i matches mask 1̇. Otherwise, it matches
mask 0̇0. Thus, E[∆F (x, i)] = −α.

• mask 00̇01: with probability α at the step t+1, cell i matches mask 0̇1. Otherwise, it matches
mask 0̇0. Thus, E[∆F (x, i)] = α.

• mask 10̇01:

With probability α (1− α)α (1− α)2

at the step t + 1, cell i matches mask 1̇ 0̇1 0̇0
and ∆F (x, i) = −1 = 1 = 0

Thus,

E[∆F (x, i)] = −α + α(1− α) 6 0.

• mask 01̇ (and 0̇1 together):

With probability (1− α)2 α(1− α) α(1− α) α2

at the step t + 1, cell i matches mask 01̇ 11̇ 00̇ 10̇
and ∆F (x, i− 1) = 0 = −2 = −1 = −2

and ∆F (x, i) = 0 = 0 6 2 6 2

Thus,

E[∆F (x, i− 1) + ∆F (x, i)] 6 −α(1− α).

Finally:

n−1∑
i=0

E[∆F (xt, i)] 6 −α|xt|1000 + α|xt|0001 − α(1− α)|xt|01

Since |xt|1000 = |xt|0001 (these patterns counts the borders of 0-regions of length at least 3) , we
have:

n−1∑
i=0

E[∆F (xt, i)] 6 −α(1− α)|xt|01.

So, as long as xt is not a fixed point, we have:

E[∆F (xt)] 6 −α(1− α)|xt|01
6 −α(1− α)

Using Lemma 4, automaton BCDEF converges a.s. from any intial configuration. The relax-
ation time is O

(
n

α(1−α)

)
.

�
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B.7 Automaton BG(142)

The fixed points of this automaton are 0n, 1n and (01)n/2(only if n is even). These fixed points
cannot be reached by any other configuration.

Proof. The number of regions is fixed by the initial configuration. No regions could be destroyed
(rules D or E or Annihilation phenomenon) or created (Spawn or Fork phenomena). So the fixed
points cannot be reached by any other configuration. �

Theorem 22 Under α-asynchronous dynamics, DQECA BCDEF diverges a.s. from any initial
configuration (except for the fixed points).

Under totally asynchronous, α-asynchronous or synchronous dynamics, the behaviour of this
automaton is identical.

B.8 Automaton BF(198)

The fixed points of this automaton are 0n, 1n and (01)n/2(only if n is even). The fixed points 0n

and 1n cannot be reached by any other configuration.

Proof. The number of regions can only increase. No region can be destroyed (rule D, rule E
or Annihilation phenomenon). Spawn phenomenon makes the number of regions increase. So the
fixed points 0n and 1n cannot be reached by any other configuration. �

If n is even, the fixed point (01)n/2 can be reached by a few configurations. A pattern 10i1j0
can create new regions if i + j > 3. If i = j = 1, then this pattern is 1010 and it will never change
during the next steps. If i+j = 3 then the third cell of this pattern will change of state each time it
is activated, the pattern oscillates between 10010 and 10110. So as soon as i+ j is odd, it will lead
to the creation of one of these patterns and so the fixed point (01)n/2 cannot be reached anymore.

So even if all fixed points are unreachable. The automaton will divergence in a set of few con-
figurations. The patterns 1010, 10010 and 10110 are the only ones present in these configurations.

Theorem 23 Under α-asynchronous dynamics, DQECA BF diverges into a set of configurations.
The relaxation time for reaching this set is O

(
n
α2

)
.

Proof. We use the masks basis and local weight function f of Figure 7a.
And so:

F (x) = |xt|0011 + d 3
α
e|xt|10.

For all configuration x, F (x) ∈ {0, . . . , d 3
αe

n
2 } and F (x) = 0 if and only if x = 1n.

Lemma 24 E[∆F (x)] > α(|xt|10111 + |xt|00010 + |xt|0011)
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Figure 7: Masks basis for BF.

By linearity of expectation:

E[∆F (x)] = E

[
n−1∑
i=0

∆F (x, i)

]
=

n−1∑
i=0

E[∆F (x, i)].

So we evaluate the variation of F (x, i) using the masks basis of Figure 7b.
Consider that cell i matches at the step t:

• mask 11̇, 01̇0: with probability 1 at the step t+1, cell i matches the same mask that the one
at time t. Thus, E[∆F (xt, i)] = 0.

• mask 101̇10, 100̇10, 0̇00, 10̇1, 10̇010, 000̇10: F (xt, i) = 0. With probability 1 at the step t+1,
F (xt+1, i) = 0. Thus, E[∆F (xt, i)] = 0.

• mask 0̇011, 001̇1: F (xt, i) = 0. Thus , E[∆F (xt, i)] > 0.

• mask 101̇11, 00̇010: F (xt, i) = 0. With probability α at the step t + 1, cell i matches mask
00̇11. Otherwise, it matches the same mask at the time t. Thus, E[∆F (xt, i)] = α.

• mask 00̇11:

With probability (1− α)2 (1− α)α (1− α)α α2

at the step t + 1, cell i matches mask 0̇1 1̇1 0̇0 1̇0
and ∆F (xt, i) = 0 = −1 = −1 = d 3

αe − 1

Thus,
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E[∆F (xt, i)] = −2(1− α)α− α2 + d 3
α
eα2

= −α− (1− α)α + d 3
α
eα2

> −2α + 3α

> α.

Finally:

n−1∑
i=0

E[∆F (xt, i)] > α|xt|0011 + α|xt|10111 + α|xt|11101

So, as long as xt is not a configuration of the final set, we have:

E[∆F (xt)] > α|xt|0011 + α|xt|10111 + α|xt|11101
> α(1− α)

Using Lemma 4, automaton BF reaches the final set. The relaxation time for reaching this set
is O

(
n
α ×

1
α

)
= O

(
n
α2

)
.

�

B.9 Automata BEG(138), BDEF(226) and BDEG(170)

The fixed points of these automata are 0n and 1n.

Theorem 25 Under α-asynchronous dynamics, DQECAs BEG, BDEF and BDEG converge
a.s. to a fixed point on any initial configuration. The relaxation time is O

(
n2

α(1−α)

)
.

For these automata, the regions follow a random walk. The expected number of moves before
reaching a fixed point is O(n2), and a move can be done with probability α(1− α).

Proof. Here we directly defined F (x) for a configuration x like this:

F (x) = |x|1
Each time a transition B or D is activated the number of 1 increases by one. Each time a

transition E, F or G is activated the number of 1 decreases by one.
So for BEG:
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∆F (xt) = α(|xt|001 − |xt|010 − |xt|110)
6 0

For BDEF:

∆F (xt) = α(|xt|001 + |xt|101 − |xt|010 − |xt|011)
6 0

For BDEG:

∆F (xt) = α(|xt|001 + |xt|101 − |xt|010 − |xt|110)
6 0

Thus for any of these automata ∆F (x) 6 0.
Now we have to calculate the probability of decreasing or increasing F (x) by one or more. We

only make the proof for BDEF(other ones are almost the same). We look at the evolution of
pattern 0̇1 (and 01̇ together):

With probability (1− α)2 (1− α)α (1− α)α α2

at the step t + 1, cell i matches mask 0̇1 1̇1 0̇0 1̇0
and ∆F (xt, i) + ∆F (xt, i + 1) = 0 = 1 = −1 = 0

So |∆F (xt, i) + ∆F (xt, i)| > 1 with probability 2α(1 − α). But there may be several patterns
like this one and the sum of their contributions could be equal to 0. Nevertheless using generating
functions of the sum of the contributions of these patterns [8], we can conclude that |∆F (x)| > 1
with probability greater than α(1− α).

So using Lemma 9 and 10, DQECA BEG, BDEF and BDEG converge a.s. to a fixed point
from any initial configuration. The relaxation time is O

(
n2

α(1−α)

)
.

�
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