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Abstract. Polychotomic Encoding is an algorithm for producing bit
vector encodings of trees. Polychotomic Encoding is an extension of the
Dichotomic Encoding algorithm of Raynaud and Thierry. Polychotomic
and Dichotomic Encodings are both examples of hierarchical encoding
algorithms, where each node in the tree is given a gene—a subset of
{1,...,n}. The encoding of each node is then the union of that node’s
gene with the genes of its ancestors. Reachability in the tree can then be
determined by subset testing on the encodings.

Dichotomic Encoding restructures the given tree into a binary tree, and
then assigns two bit, incompatible (chotomic) “genes” to each of the
two children of a node. Polychotomic Encoding substitutes a multibit
encoding for the children of a node when the restructuring operation of
Dichotomic Encoding would produce a new heaviest child (child requir-
ing the most bits to represent a tree of its children) for that node. The
paper includes a proof that Polychotomic Encoding never produces an
encoding using more bits than Dichotomic Encoding. Experimentally,
Polychotomic Encoding produces a space savings of up to 15% on exam-
ples of naturally occurring hierarchies, and 25% on trees in the randomly
generated test set.

1 Introduction

Bit-vectors encodings are a popular mechanism for quickly determining reach-
ability in a directed graph. Let the reachability relation be <. A bit-vector
encoding is a function, v, from the nodes of the graph to a subset of {1,...,n}.
With a bit-vector encoding, * < y <= 7(y) C vy(z). Figure 1 shows a bit-
vector encoding of a simple tree. Since subsets of integers can be represented by
bit vectors and bit-vector subset testing requires only a few instructions on most
hardware, bit vector encodings can be both a time and space efficient way of
testing reachability. Reachability is important for object-oriented programming
languages, as determining if an element of direct class X can be safely cast to
class Y is frequently required. Similarly, method dispatch in object-oriented lan-
guages requires dynamic subclass testing [2, 7,8, 10]. Membership testing is also
found in many AI applications [6, 13]. Directed graph reachability is a common
problem throughout Computer Science.
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Fig. 1. A bit-vector encoding

Bit-vector encodings have been a subject of much research. Good algorithms
quickly determine an encoding for a graph using as few as bits as possible. Bit-
vector encoding algorithms divide into algorithms over trees versus all acyclic
graphs, and algorithms that demand the entire graph before deciding the en-
coding (static algorithms) versus algorithms that can incrementally modify the
encoding on the addition of new nodes and relations (dynamic algorithms).

Here we are concerned with algorithms encoding static trees. This paper
describes the Polychotomic Encoding (PE) algorithm. Polychotomic Encoding
combines elements of both the Dichotomic Encoding (DE) encoding of Raynaud
and Thierry [11] and the 2-dimensional (multibit) encoding of Caseau et al. [4]
(CHNR). Succinctly, Polychotomic Encoding performs Dichotomic Encoding of
a node’s children until doing so would create a new heaviest child (child requir-
ing the most bits to represent a tree of its children), and then uses a multibit
encoding to encode the remaining children. Polychotomic Encoding has the same
time and space complexity as Dichotomic Encoding. Section 8 contains a proof
that Polychotomic Encoding never produces an encoding requiring more bits
than Dichotomic Encoding. Experimentally, Polychotomic Encoding produces a
savings of up to 15% over Dichotomic Encoding on naturally occurring examples
of hierarchies, and up to 25% on some randomly generated trees.

2 Hierarchies

A hierarchy, H is a set 7" and a transitive, reflexive and anti-symmetric re-
lation <, H = (T,=<). The transitive reduction of H, x <y, is defined as
r K y,x #y, and ~Jz.x K z K y,x # z # y. Often, given T and the
various < relationships, one infers <« by closing over < (extended with z < z).
A common example of a hierarchy is subclass relationships in object-oriented
languages, where < is the parent-child relation.

The computational problem is to build a representation and algorithm that
can answer the question z <% y. The developer of such an algorithm can perform
tradeoffs about the time taken to build the representation, the space required by
the representation, the time needed to perform the test, and the cost of modifying
the representation dynamically if new elements of T or new < relationships are



asserted. Some algorithms apply to arbitrary partial orders (multiple inheritance,
or MI), while others are restricted to trees (single inheritance, or SI).
Hierarchies are important in object-oriented systems technology, because ob-
ject types over subclass form a hierarchy, and the <X test is used to determine if
one object can be viewed as an instance of another class. For this reason, this is
sometimes called the subtyping problem, though the results are clearly applicable
to any partial order. Subtyping is a frequent operation in the compiled code of
object systems. Zibin and Gil provide a good discussion of the space of tradeoffs
and the impact of the performance of the subclassing test in OO systems [17].

3 Encodings

In a bit-vector encoding, the root of the tree is assigned the null set. Every other
node in the hierarchy has some non-null subset of {1,...,n} (its gene) associated
with that node. The encoding of a node () is the union of the gene of the node
with the encoding of its parents. Thus, the encoding of a node is the union of
the gene of a node with genes of its ancestors. Such a coding scheme is called a
hierarchical encoding.

Figure 2, adapted from [11], shows three different representations of a bit-
vector encoding. The complete code lists the elements of the set {1,...,n} used
to encode each node. Since the code is hierarchical, the encoding can also be
represented in the reduced code as just the gene of the node. The complete code
can be obtained by taking the union this gene with the genes of its ancestors.
The bit-vector encoding is obtained by associating a one in a vector of bits
with the corresponding elements of the complete code. The three are equivalent
representations: each can be straightforwardly derived from any other. This close
correspondence between the bit-vector encoding and the numeric encodings leads
us to refer to individual numbers in an encoding as bits.

A set of genes are chotomic if no element of the set is a subset of another.
The genes {1} and {2} (represented as the two bit bit-vectors [10] and [01]) are a
two-element, two bit chotomic set; the genes {1,2}, {1,3}, {1,4}, {2, 3}, {2,4},
and {3,4} ([1100], [1010], [1001], [0110], [0101], and [0011]) represent a set of six
four-bit chotomic genes.

In general, our desired relationship

Ty <= v(y) Cv(2)

is always true of a hierarchical encoding if the sibling nodes in the tree have
chotomic genes, and the bits of these genes are not reused in the genes of any of
the descendants of the siblings. (The bits can, however, be safely reused in the
cousins of the siblings.) The forward part of this equivalence:

<y =) Cv(z)

is true by the definition of a hierarchical encoding—since y(x) includes all the
bits of its ancestors, v of any ancestor, y, is a subset of v(z). The reverse part
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Fig. 2. Three representations of bit-vector encoding

of the equivalence
1(y) Sy(x) =z Ky

can be seen to be true by a proof by contradiction. Assume that in our tree,
~v(y) C v(x) and y is not an ancestor of z. (x cannot be a proper ancestor of
y, as each level of the tree extends v by a non-null gene.) Since this is a tree, y
and z have a least common ancestor, z, and each of y and z have ancestors (or
y or z itself) y" and z' that are siblings and children of z. The genes of y(y')
and ~y(z') are chotomic—neither is a subset of the other, and the gene of each
is not included in its sibling’s descendants. Hence, there is at least one bit, b, of
the gene of ¥’ that is not in the gene of z’. Since the genes of chotomic siblings
can’t be the genes of their descendants, this number, b, is not in y(x). But this
contradicts our assumption that y(y) C v(z).

4 Prior Work

The naive approach to bit vector encoding associates a unique single bit gene
with each type (node). This then requires |T'|> space—a vector of |T'| bits for
each of the |T'| nodes. While in the worst case (a tree of single-child nodes), this
space complexity is unavoidable, several researchers have developed algorithms
that are usually considerably more space efficient.

Aft-Kaci et al. [1] proposed a modulation algorithm, which started by assign-
ing a unique single-bit gene to each node of the tree and then applied a repeated
binary splitting and dichotomic coding to the recursive subtrees.



Another early study of bit vector encodings for MI hierarchies was Caseau [3].
That work used single bit genes. Caseau’s algorithm was based on embedding the
partial order in a lattice, determining which nodes have incompatible encodings,
and parceling out gene assignments as a search process, where failure can prompt
a change in earlier decisions. Unfortunately, completing the lattice from a partial
order can take exponential time.

Vitek, Horspool and Krall [14] extended this approach. Like Caseau, they
constructed a conflict graph and colored this graph, using one bit for each gene.
However, to get a better encoding, they preceded this step by “balancing” the
original hierarchy. One of the results that came out of this work was the recogni-
tion that that the gene allocation problem can be expressed as a graph coloring
problem. Thus, the literature of graph-coloring algorithms is applicable to the
bit-vector encoding problem.

Caseau et al presented a method [4] centered on conflict graphs, but also
included an algorithm for trees. The key idea of that work was to use multi-bit
genes for distinguishing the children of a node.

Most relevant to the current paper is the work of Raynaud and Thierry
on Dichotomic Encoding [11]. Dichotomic Encoding performs a quick balancing
that experimentally often produces shorter encodings. Dichotomic Encoding is
discussed in detail in Section 5.

There are also many non-bit-vector approaches to the subtyping problem.
The most straightforward way of computing <% is to literally represent the re-
lation in a binary matrix. This requires space proportional to |T'|* and provides
access in constant time. At the opposite extreme is the graph encoding, where
only the < relations are stored and the system dynamically searches to establish
the path at each request. This requires space only proportional to the number
of links (in an SI system, |T'|), but work at runtime(in SI systems) proportional
to the height of the graph for each <X test.

Algorithms for efficiently minimizing the space needed to represent inheri-
tance hierarchies have been a fertile area for research. For SI hierarchies, relative
numbering (Schubert numbering) [12] associates with each node of the tree, a,
its index, i, in a preorder traversal. Relative numbering also stores its upper
bound, u,, the maximum index of its descendants (nodes for which z <« a is
true). With Schubert numbering,

T<Ka = 1 <1z < Ug.

Cohen’s algorithm [5], for a tree of height h, stored for each node, a, both
its depth in the hierarchy (distance from the root), d,, and an array, p, of h
elements. It stored each of its ancestors in this array, putting an ancestor = at
the d, element of this array. For this algorithm,

a <K <= p,ld.] =z

Vitek, Horspool and Krall [14] generalized Cohen’s algorithm to Bit-Packed
Encoding (BPE) which handled multiple inheritance by slicing, partitioning 7'
into chunks. Recently, Zibin and Gil [17] extended the ideas of BPE with a more
efficient slicing algorithm based on PQ-trees.



5 Dichotomic Encoding

At the last ECOOP, Raynaud and Thierry [11] presented Dichotomic Encoding,
a quick (linear in |T'| times klog k in the branching factor of the tree) algorithm
for creating a bit vector encoding. Dichotomic Encoding transforms the initial
hierarchy into a binary tree by introducing new nodes, and giving 2-bit, chotomic
(that is, dichotomic) genes to the children in the transformed tree. The trans-
formation is driven by the goal of balancing the binary tree, so that the number
of bits required to represent the two children of a node are both relatively low
and equal.

In general, chotomic encoding algorithms are given a node, x, and a value,
nextFreeBit of the next free integer for assignment. The algorithm determines
the number of bits needed to code the number of children of z (cHat), which we
call neededBits. It then assigns chotomic genes to its children using the values
nextFreeBit,nextFreeBit + 1,...,nextFreeBit + neededBits — 1, and then
recursively encodes its children starting at nextFreeBit + neededBits. Figure 3
illustrates this is pseudo-code, where code(n, k) returns chotomic sets of &
elements based at n.

chotomic(node x, int nextFreeBit)

{
int neededBits = cHat (x.children.size);
for child in x.children
as ¢ in code (nextFreeBit, neededBits)
{
child.gene = c;
chotomic (child, nextFreeBit + neededBits);
}
}

Fig. 3. Chotomic encoding algorithm.

CHNR is a chotomic algorithm that works on the original tree and uses as
many bits as needed to distinguish the children of a node. Dichotomic Encoding
relies on restructuring the tree into a binary tree before applying the chotomic
algorithm, with the goal of reducing the number of bits needed. For a node
x with children [a,b,...], the algorithm first (recursively) computes the weight
(number of bits needed to represent) of each child. Nodes with no children have
weight 0. Nodes with one child, weigh 1 more than that child. Nodes with two
children weigh 2 more than the heavier child. For a node with more than two
children, the algorithm sorts the children by weight and selects the two “lightest”
children, call them a (the lightest) and b (the second lightest). It then constructs
a new node y (of weight b + 2), changes the parentage of a and b to be y, and
inserts y into the child-set of = in their place. The algorithm iterates this process
until z has only two children. The algorithm then uses the chotomic encoding
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Fig. 4. Dichotomic Encoding with weights



algorithm (Figure 3) to assign the actual genes. Thus, the tree is a binary tree;
except for the root, every node has one bit of two in its gene; and the genes of
siblings are chotomic, hence, Dichotomic Encoding. The encoding of a node is
then the union of its gene with the genes of its ancestors.

Figure 4 illustrates the Dichotomic Encoding process. That figure shows the
emerging binary tree with the computed weights of the nodes. In their ECOOP
paper, Raynaud and Thierry proved that this algorithm produces the minimal
size dichotomic encoding. Dichotomic encoding has the virtues of being fast, easy
to code, and of producing reasonably compact encodings. Raynaud and Thierry
report that on benchmark OO hierarchies, Dichotomic Encoding produced a
13-36% improvement over the previously best algorithm, VHK.

In the discussion that follows, the elements of a bag S are [z1,...,z,], where
the z; are sorted. Thus, x; of a bag is the smallest element of that bag; the z
is the second smallest. The rightmost element of a bag is the largest. The use
of two ellipses (e.g., [#1,...®;...xy]) indicates that we can’t specify where an
element goes in the bag’s sort. The cardinality of S is |S|. All logarithms are in
base 2.

More formally, the behavior of Dichotomic Encoding is illuminated by defin-
ing D(S), the function that takes a bag of child weights and computes the weight
of a node. D(S) is computed as

0 1S| =0
1+z Sl=1
b(s) = 2+x; ISI:2

D([zs,...,22+2,...,25]) |S]>2

6 Polychotomic Encoding

For some graphs, Dichotomic Encoding is strikingly inefficient. For example, a
parent with, say, ten equal weight children requires 8 bits in Dichotomic En-
coding to differentiate its children. The multiple-bit encoding of CHNR needs
only 5. Dichotomic is particularly clever when a node has a child that weighs
a lot more than its other children—it efficiently combines these other children
into a subtree. When the weight of that subtree is dwarfed by the weight of
the heaviest child, the weight of the parent is just two more than that heaviest
child’s weight. On the other hand, Dichotomic Encoding gets into trouble with
nodes that have more than a few equally heavy child nodes—it tends to find
itself in an escalation of biggest child weights as it combines its children.

Polychotomic Encoding ameliorates this problem. It behaves like Dichotomic
Encoding for nodes with zero, one or two children. Before performing the joining
step of Dichotomic, where the two smallest children are combined into a single
node of weight two more than the heavier, it checks to make sure that doing so
would not create a new heaviest child. If it doesn’t, like Dichotomic Encoding, it
builds the new node and iterates. If it would, it stops joining children and uses
a multi-bit, chotomic (CHNR) encoding for all the remaining children. Figure 5
illustrates the behavior of the Polychotomic algorithm.
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Fig. 5. Polychotomic Encoding

The function C defines the number of different chotomic genes using n bits:

C(n) = (Ln72J> =22 T (2i-1)/i

1<i<[n/2]

Note that adding two bits to a multibit encoding covers three to four times as
many cases:

Vn.3C(n) < C(n +2) <4C(n).

The function é(n) is the “inverse” of C—the number of bits needed to create

n different chotomic genes.

¢é(n) = the smallest k such that C(k) > n.

Thus, &(9) = ¢(10) = 5; &(11) = 6.

Once again, the structure of the algorithm is revealed in its weight function,

P(S). The Polychotomic Encoding weight function is

0 15| = 0
14 a1 |S|:1
P(S) = 2+ 25 15| = 2

P(zs,...,x2+2,...,25]) [S]>2,22+2< 2z,
T, +¢(n) IS| > 2,20 +2 > 2,



7 Computational Complexity

The computational complexity of Polychotomic Encoding is the same as that
of Dichotomic Encoding. Each algorithm requires work proportional to |T'|; the
sorting step implies that for a tree with a largest branching factor of k, klogk
additional steps may be needed at each node. (The actual assignment of bits to
each gene can be done in time proportional to k; memoization can be used to
pay this charge only once for each value of k.) That the worst case behavior of
Polychotomic Encoding is the same as Dichotomic Encoding is not surprising,
as Polychotomic Encoding algorithm is just a pruning of some of the work done
under Dichotomic Encoding. The pruning is itself inexpensive (just a comparison
at each split step), and for some trees, no pruning takes place at all.

In the worst case, for a “straight line” hierarchy composed single-child nodes,
bit vector encoding needs one bit for each node except the root. Thus, the worst
case space complexity of all bit vector encoding algorithms is proportional to
|T)?. In practice, the required space seems more on the scale of |T'|log(|T]).

8 Polychotomic Encoding Is Never Worse than
Dichotomic Encoding

This Section is a proof that Polychotomic Encoding never produces an encoding
using more bits than Dichotomic Encoding. (Of course, it often produces one
that uses fewer.) This is equivalent to showing that for bags of child weights, S,

VS.P(S) < D(S).
Definition 1. A flat bag is a bag in which x2 = x,, or x5 = x,, — 1.

That is, in a flat bag, the second smallest element is either equal to the largest,
or one less than the largest. It follows that all the elements of a flat bag except
the smallest are either z,, or x,, — 1. Flat bags are the key place where PE and
DE differ: for non-flat bags, each builds a subnode and recurses.

Lemma 1. For a flat bag of cardinality a power of 2, S = [z1,...,z,],n = 2%
D(S) =y + 22 = zp, + 2logn.
Proof by induction over the value of z. For z = 1,5 = [z}, 22], by the definition

of D, D(S) = x5 + 2.
Assume the lemma is true of (z — 1).

D([xla'er v 7'2777,—173777,])
=D([z3, T4, .., Tpn, T2+ 2])
=D([zs,26,- -, Tn, T2 + 2,24 + 2])

: After n/2 steps
D([w2 + 2,04 +2,...,2p—2+ 2,7, +2]) A bag of size 2571
(X +2) + 2log(n/2) Induction assumption
=z, +2logn



Lemma 2. For a flat bag S = [z1,...,z,],n > 3,
D(S) = Ty (—2105(n-1)1) + 2[log n]

Proof, by strong induction, over the size of the bag S.
For a flat bag of size 3,

D([z1, z2, 23])= D([23, 22 + 2])
=ay+4
= x5 + 2[log 3]
= Ty(3_sles3-1)1) + 2[log 3]

Assume the theorem is true for all flat bags up to size n — 1. We have three
cases: (1) even n that is a power of 2, (2) even n not a power of two, and (3) odd
n.

Case 1. Even n that is a power of 2

D([ml,xz, ey Lp—1, xn])
=xn +2logn Lemma 1
=z, + 2[logn] For powers of 2, [logn] = logn

= Ta(n-n/2) T 2[logn]
= Ty(n_sliesn—1)1) + 2[logn]

For cases 2 and 3, after |n/2] recursions, the argument bag is once again
flat, allowing application of the induction assumption.

Case 2. Even n, not a power of 2

D([-'I:lam%' .. 7-'L'n717$n])
=D([z3,Z4,...,Tpn, T2+ 2])
=D([z5,Z6,...,Tpn, T2+ 2,24 + 2])

: After n/2 steps,
D([x2 + 2,24+ 2,...,8p—2+ 2,2, +2]) A flat bag of n/2 elts.
To.5(n/2—2l0e(n/2-1)1) + 2 + 2[log(n/2)] Induction, as the k"
elt. of this set is xop,

= Ty(n_21.2l0s(n/2-11) T 2 + 2[log(n/2)]
= Ty(p—21.2lles(n-1)1-1) + 2 4 2[log(n/2)]
= Ty(n_sliesn—1)1) + 2[log(n)]

Case 3. Odd n
D([ml,xz, ey Lp—1, xn])

=D([zs, T4, .., T, 22 + 2])
=D([z5,%6,...,Tpn, T2+ 2,24 + 2])



: After |n/2] steps
=D(zn,z2+2,...,8p-3+2,2,-1+2]) A flat bag of
n/2 + 1 elements.
= To.p((nt1)/2—2les(n+1)/2-)]) o + 2+ 2[log((n + 1) /2)]
Induction, as for k > 2,
the k' elt. of this
set is Top_o
= Ty((n41)—2-2bes(m+n/2-11 _1) + 2+ 2[log((n + 1)/2)]
Ta(n—2-2les((n+1)/2-1)]) + 2|—10g Tﬂ
= Ty(n2llogn—1)1) + 2[logn]

Lemma 3.
xn — 1+ 2[logn] < D([z1,...,2,]) < 2y + 2[logn]

This follows from Lemma 2, as n — 2U1°8(*=1) > 1 and for flat bags, Vi.i > 2 =
Tz, —1<z; <z,

Theorem 1. VS.P(S) < D(S)

Proof by induction.

For |S| < 2,P(S) =D(S).

For |S| = 3, we have the bag S = [z1, 22, 23]. If 22 + 2 < 23, P(S) = D(5).
If T2 + 2> xs,

P(S)=x3+¢3) =23 +3

If 23 + 2 > x5, then o +4 > x3 + 2, and (since we'’re dealing with integers
here), z2 +4 > 3 + 3. So for bags of cardinality 3, P(S) < D(S). Table 1 shows
the results of D and P for flat bags of size up to 17. Keep in mind that for
1> 2,x; is at most one less than z,,.

Bag Size DE PE Bag Size DE PE
2 $2+2 $2+2 10 Tra+ 8 $10+5
3 Tro+4 r3+3 11 re+ 8 z11+6
4 r4+4 r4+4 12 rs+ 8 r12+6
5 z2+6 r5+4 13 z10+ 8 z13+6
6 r4+6 re+4 14 r12+ 8 r14+6
7 T6+6 T7+5 15 r1a+ 8 x15+6
8 zs+6 Ts+H 16 T16+ 8 z16+6
9 T2+8 To+H 17 z2+10 z17+6

Table 1. Dichotomic and Polychotomic Encoding for small flat bags



Assume the theorem is true for bags of size up to n — 1. There are two
possibilities, either S is not flat, or flat. If S is not flat, D(S) = D([zs, ..., 22 +
2,...,zy,)) and P(S) = ([x3,..., 22+ 2,...,2y]). We’ve reduced the problem to
comparing P and D on the same bag of size n—1, so by the induction assumption,
the theorem follows.

If S is flat, from Lemma 3, D(S) > =, — 1+ 2[logn] and P(S) = z,, + &(n).
Table 1 shows that by bags of size 16, P is already two bits smaller than D.
For larger bags, where D is more than a couple of bits larger than ¢, with each
additional 2 bits, D allows us to cover twice as many elements. However, with an
additional 2 bits, ¢ allows us to cover 2(2i—1)/i (or between three and four times
as many) elements. On flat bags, D is thus larger. In the limit, D(S) = 2P(S);
for large flat bags, D uses almost twice as many bits.

9 Greedy Polychotomic Encoding

Polychotomic Encoding is based on the idea of doing Dichotomic Encoding until
it would create a new heaviest child, and then switching to a multi-bit encoding.
But consider the tree of Figure 2. Dichotomic Encoding requires 8 bits; Poly-
chotomic Encoding 7 bits, and CHNR (pure multibit encoding) also 7. However,
multibit encoding the six single leaves and then dichotomically combining the
resulting node with the multibit encoding of the rightmost node yields a 6 bit
code (Figure 6). This suggests the Greedy Polychotomic Encoding (GPE) algo-
rithm: combine as many small children as possible using a multi-bit encoding
until doing so would create a new heaviest child, and then use a multibit en-
coding on the remainder. Experiments with variations on this theme—splitting
some of the children of a node into a subtree for multibit encoding, then recur-
sively processing the child set—failed to find any algorithm that was consistently
better than PE. While we can not recommend greedy PE algorithms, we include
GPE in the results of Section 10 for the sake of comparison.

10 Experimental Results

There are three ways to experimentally evaluate algorithms: by examining their
results on “natural” hierarchies, consistent structures (for example, complete
trees of a given branching factor and depth), and by their performance on ran-
dom trees. Natural hierarchies occur in the class structures of object-oriented
programs, in the hierarchies of Al systems that attempt to model the world,
in databases, and in other computer applications. This experiment compared
the CHNR, Dichotomic Encoding, Polychotomic Encoding and Greedy Poly-
chotomic Encoding algorithms. For programming class hierarchies, five examples
are shown: VisualWorks2 and Digitalk3, SMALLTALK-80 class libraries; types
extracted from the NextStep libraries; the ET++ graphical user interface; and
the Java 1.3 class library. The first four of these are the benchmarks of [14]. As
an example of an AT hierarchy, the algorithms were applied to the biological tax-
onomy of Mammalia (see [16], after correcting for the inconsistent indentation.)
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Fig. 6. Alternative encodings

Nodes INodes MaxB MeanB SDB MaxH MeanH SDH
Program classes

NextStep 311 65 142 4.76 17.578 7 2.93 1.156

ET 371 82 87 4.51 11.131 8 3.29 1.935

Digitalk3 1357 434 142 3.12 9.873 13 5.39 2.190

Java 1.3 classes 1478 307 572 4.81 32.804 7 2.47 1.502

Visual Works2 1957 625 181 3.12  10.400 15 6.39 2.905
Real classes

Mammals 6059 1431 151 4.23 8.682 7 499 1.130
Databases

Darwin 66991 1770 529  37.84 27.306 4 3.97 0.170
File directories

Java 1.3 directory 1980 99 173 19.98 27.962 8 4.85 1.016

010725 C Drive 33130 1707 3139 19.40 122.338 13 6.01 2.021

010725 F Drive 114598 7286 1724  15.72 54.455 15 7.18 1.865
Complete trees

Depth 4, width 6 1555 259 6 6.00  0.000 4 3.80 0.486

Depth 6, width 4 5461 1365 4 4.00  0.000 6 5.66 0.664

Key:: Nodes = Nodes in tree. INodes = interior (non-leaf) nodes. MaxB = maximum
branching factor. MeanB = average Inode branching factor. SDB = standard deviation,
branching factor. MaxH = maximum height. MeanH = mean height. STD = standard
deviation, heights.

Table 2. Tree Parameters



As an example of a database system, we used the DARWIN wind-tunnel
system [15]. Wind tunnel test data are hierarchical. The set of measurements
about a model are a test. A given test can be checked for different configurations
(e.g., orientation of the model or arrangements of sensors), a given configuration
can be checked for a specific run, and for a run, data is collected at points
(temporal instants). Thus, tests contain configurations which contain runs which
contain points. Rather than having a single table of point data, where each line is
a (fairly redundant) quadruple, the database stores this information in separate
tables for each kind of data. Because access control is also hierarchical, it can be
important to quickly determine if a given data element is a piece of something
to which a user has access. A bit-vector encoding, at each data point, could be
used to vet access.

Y14

As examples of other “naturally occurring” “computational” hierarchies, the
algorithms were run on the file structure trees of the Java 1.3 distribution, and
the file/directory trees of my C and F drives on July 25, 2001. I also considered
two “Complete trees,” one of branching factor 4 and depth 6, and other of
branching factor 6 and depth 4.

Table 2 presents the structural statistics on these trees; Table 3 the number
of bits each of the four algorithms requires for that tree. These examples suggest
that Polychotomic Encoding is almost always better than Dichotomic Encoding,
though how much better can vary considerably.

Running PE and DE on random trees enabled a better understanding of the
algorithms’ relative strengths.! The “jar graph” of Figure 7 shows the results
of running DE and PE on such random trees. For each experimental point, 30
trees were generated, D and P calculated and averaged. The experiment was
run with tree sizes of 200, 2,000, 20,000, and 200,000; mean branching factors of
2, 8, 32, and 128 nodes, and standard deviations that varied from one half the
mean (the narrow jars), the mean (the medium jars) and twice the mean (the
fat jars). The upper number on each jar is the average number of bits needed
for Dichotomic Encoding; the lower number, the average number of bits needed
for Polychotomic Encoding. Visually, each jar is as “full” as the ratio of these
two numbers.

The increasing white space in the jars as one moves to the right suggests that
PE has greater advantage when dealing with trees with higher branching factors,
that this advantage is relatively independent of the tree size, and that greater
variance in the branching factor produces only a minor boost to the performance
of PE, perhaps as wider nodes are more likely to be in the tree.

! For this experiment, the random tree generator G was parameterized by the number
of nodes to be generated, a mean branching factor, and a standard deviation of the
branching factor. (G(n, m, sd)). When n = 0 the algorithm would just generate a leaf
node. Otherwise, a Gaussian random number generator would be repeatedly invoked
with the given mean and standard deviation until it returned a positive number, b.
If b < n, the node received n leaf children. If not, the allocation of n — b nodes was
randomly divided among the children by picking dividing points at random, and G
recursively invoked to generate the child trees.
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Fig. 7. Dichotomic and Polychotomic performance on random trees. Each bar shows
the portion of the number of bits required by DE used by PE. The three jars in each
entry show the test run with different standard deviations of the branching factor (half
the mean, the mean, and twice the mean.)



CHNR DE PE GPE
Program classes

Java 1.3 classes 36 23 21 21

Digitalk3 52 29 28 30

ET 41 20 20 22

NextStep 28 20 19 18

VisualWorks2 58 33 31 35
Real classes

Mammals 41 30 26 29
Databases

Darwin 30 36 28 27
File directories

Java 1.3 directory 40 27 23 23

010725 C Drive 60 38 33 36

010725 F Drive 73 43 38 40
Complete trees

Depth 6, width 4 24 24 24 24

Depth 4, width 6 16 24 16 16

Key:: CHNR = Multi-bit encoding. DE = Dichotomic Encoding. PE = Polychotomic
Encoding. GPE = Greedy Polychotomic Encoding.

Table 3. Algorithm results

11 Discussion

This paper described the Polychotomic Encoding algorithm, an improvement
to the Dichotomic Encoding algorithm of Raynaud and Thierry. Polychotomic
Encoding, like its predecessor, is near-linear in execution and produces good (but
not optimal) bit-vector encodings. (The problem of taking an arbitrary directed
acyclic graph finding the minimal encoding is NP-hard [9]. The difficulty of trees
is an open question.) An open research question suggested by this work is how
best to apply hierarchical encoding algorithms to multiple inheritance graphs. A
promising direction is to partition the hierarchy into slices, each of which could
be quickly encoded with a different bit-set. The recent work of Zibin and Gil on
PQ-trees [17] suggests a possible approach to the partitioning problem.
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