
Discrete Event Dyn Syst (2008) 18:3–49
DOI 10.1007/s10626-007-0028-x

An Algorithmic Toolbox for Network Calculus

Anne Bouillard · Éric Thierry

Received: 10 January 2007 / Accepted: 24 August 2007 /
Published online: 16 October 2007
© Springer Science + Business Media, LLC 2007

Abstract Network calculus offers powerful tools to analyze the performances in
communication networks, in particular to obtain deterministic bounds. This theory
is based on a strong mathematical ground, notably by the use of (min,+) algebra.
However, the algorithmic aspects of this theory have not been much addressed
yet. This paper is an attempt to provide some efficient algorithms implementing
network calculus operations for some classical functions. Some functions which
are often used are the piecewise affine functions which ultimately have a constant
growth. As a first step towards algorithmic design, we present a class containing
these functions and closed under the main network calculus operations (min, max,
+, −, convolution, subadditive closure, deconvolution): the piecewise affine functions
which are ultimately pseudo-periodic. They can be finitely described, which enables
us to propose some algorithms for each of the network calculus operations. We finally
analyze their computational complexity.

Keywords Network calculus · Functional (min,+) algebra · Algorithmics ·
Computational complexity

1 Introduction

Network calculus is a theory of deterministic queuing systems encountered in
communications networks. It is based on (min,+) algebra and it can be seen as a
(min,+) filtering theory by analogy with the (+, ×) filtering theory used in traditional

A. Bouillard (B)
IRISA/ENS Cachan (Bretagne), Campus de Ker Lann, 35170 Bruz, France
e-mail: Anne.Bouillard@bretagne.ens-cachan.fr

É. Thierry
LIP (ENS Lyon, CNRS UMR 5668, INRIA, UCBL),
46, allée d’Italie, 69364 Lyon Cedex 07, France
e-mail: Eric.Thierry@ens-lyon.fr

4 Discrete Event Dyn Syst (2008) 18:3–49

system theory. More than just a formalism, it enables to analyze complex systems and
to prove deterministic bounds on delays, backlogs and other quality-of-service (QoS)
parameters. The information about the system features are stored in functions, such
as arrival curves for data flows or service curves for service guarantees of the network
nodes. These functions can be combined together thanks to special network calculus
operations, in order to analyze the system and compute bounds.

At the present time, the theory has encompassed and yielded many results
which are mainly recorded in two reference books: Chang’s book (Chang 2000) and
Le Boudec and Thiran’s book (Le Boudec and Thiran 2001).

However, a central question has not been much addressed for now: which algo-
rithms efficiently implement the network calculus operations?

Several results presented in the reference books (Chang 2000; Le Boudec and
Thiran 2001) have an algorithmic flavor. They present some formularies with alge-
braic rules of transformation when combining the different network calculus opera-
tions, they give some examples of functions for which the output of some operations
can be easily described (such as convex piecewise affine functions, concave functions
or star-shaped functions). Moreover, they illustrate their results by examples and
sometimes provide closed formulas for very special cases. For instance, an exact value
of the deconvolution of some variable bit rate (VBR) arrival curves by rate-latency
services is given in (Le Boudec and Thiran 2001). The implementation of network
calculus is not treated. Some authors have explored the Legendre–Fenchel transform
(f (t) �→ C(λ) = supt(λt − f (t))) in order to simplify calculations. This transform, also
called convex conjugate function or C-transform (Chang 1999), is a powerful tool
of convex analysis (Rockfellar 1996). It is an analogue in the (min, +) setting of
the Fourier Transform or the Laplace Transform in (+, ×) conventional signal and
system theory (Oppenheim et al. 1997). Its use seemed promising (e.g. convolution
becomes addition for the transformed functions) and proves to be useful for convex
and concave functions (Fidler and Recker 2006). However, one important issue is
that this transform is not injective for non-convex functions. Attempts to use such a
transform to achieve computations have not succeeded yet for general cases (Pandit
et al. 2004a; Pandit 2006).

Several attempts also aimed at providing some closed formulas for special cases.
For instance, the authors of (Pandit et al. 2004a; Pandit 2006) managed to give a
closed formula for the convolution of two piecewise affine functions with three pieces
each. Their formula already contains a lot of cases and they could not avoid a very
heavy case by case proof. There is little hope to generalize such a proof since the
number of cases seems to explode quickly. For an interesting discussion about all
these attempts, the reader is referred to Pandit et al. works (Pandit et al. 2004a,b,
2006; Pandit 2006).

From a practical point of view, some implementations of network calculus have
been proposed, but as far as we know they either work for very restricted sets of
functions or do not cover all the classical network calculus operations. One must
mention the DISCO Network Calculator which is a network calculus Java library
aimed at analysing feed-forward networks (DISCO 2006). Its principles are detailed
in (Schmitt and Zdarsky 2006; Schmitt et al. 2006). The algorithms are specially
designed for arrival/service curves which are piecewise affine concave and convex
functions. Another software is available: the real-time calculus toolbox (RTC) is
a Matlab toolbox for performance analysis of distributed real-time and embedded

Discrete Event Dyn Syst (2008) 18:3–49 5

systems (Wandeler and Thiele 2006; Wandeler 2006). Its Java kernel implements
the main network calculus operations, except the subadditive closure. It deals with
piecewise affine functions defined over R+ which are not necessarily increasing nor
positive, but which have a periodic behaviour from a point. Infinite values are also
allowed. This class is very close to the classes we will introduce in our paper where
this asymptotic behaviour is called ultimate pseudo-periodicity. However, it appears
from the documentation that RTC does not use functions in the usual sense: at a
discontinuity, the function is interpreted as either left- or right-continuous depending
on the “context of the curve” (which seems to be the operations applied to it).
Moreover the set of input functions for which it produces an exact output is not
clearly specified (e.g. computing the minimum presented in Remark 3 is allowed
but then the program crashes). Besides correctness, no complexity analysis has been
given as far as we know. Another software called CyNC is based on Matlab and
Simulink, and implements the network calculus operations, except the subadditive
closure (CyNC 2007; Schioler et al. 2005). It only considers input functions defined
over R+ which are staircases up to a point from which they are affine. It seems that
it uses some brute force algorithms, but apparently their correctness and complexity
have not been precisely studied.

Among the works related to these questions, one must also mention the studies
of (min, +) or (max, +) linear systems in the book by Baccelli et al. (Baccelli et al.
1992) and in Gaubert’s thesis (Gaubert 1992). In particular, they introduce formal
power series in two variables γ and δ, which can be used to represent some functions
from N into R or from R+ into R, and to perform calculations close to the network
calculus operations. In (Pandit et al. 2004b, 2006; Pandit 2006), their use is shortly
discussed as the �-transform, but dismissed by those authors for exact calculations
due to discretizations which lead to approximative representations. However, this
tool provides exact results for a large class of functions. Moreover, the manipulation
of these series has been implemented by Gaubert (Gaubert 2007) and Hardouin’s
team (Cottenceau et al. 2007) for Scilab. Our results are actually related to the ones
presented in (Baccelli et al. 1992; Gaubert 1992), in particular our stability theorems.
We will discuss it in the paper.

Our approach has two steps:

1. Finding a good class of functions for the network calculus operations;
2. Designing algorithms which implement these operations for this class.

Section 2 presents the main network calculus operations, namely +, −, min,
max, ∗, � and the sub-additive closure.

The first step consisting of finding a good class of functions is developed in
Section 3.

Transferring the mathematical theory into the algorithmic field involves making
choices to restrict a little the general theory so that we can apply effective methods:
functions with a finite representation and that are stable for the network calculus
operations constitute a good class of functions.

Our first concern was to include some usual functions of network calculus like the
piecewise affine functions which ultimately have a constant growth. They are used for
instance to describe arrival curves which constrained input flows (such as γr,b (t) =
rt + b arrival curves) and service curves which guarantee the services provided by
network elements (such as βR,T(t) = R(t − T)+ service curves).

6 Discrete Event Dyn Syst (2008) 18:3–49

We were also confronted to the choice of the definition sets of our functions.
Functions are usually defined from a set X into a set Y, where these two sets are
chosen among N, Z, Q or R. In this paper, we will both focus on functions from N

into R (discrete model) and functions from R+ into R (fluid model). We will carefully
discuss the associated issues when switching between all these sets.

The main result of this section is the characterization of a set of functions closed
under all the operations and containing the usual functions. The good news is that
the functions of this closed set are ultimately pseudo-periodic and thus can be finitely
described which enables algorithmic design.

The second part of our work, developed in Section 4, consists of finding efficient
algorithms that compute the network calculus operations for this closed set of
functions. The algorithms are derived from the stability results of the first part and
their proofs. In particular, they use the decomposition of functions into elementary
functions, for which the calculations are simple. We point out how computational
geometry may help.

In network calculus, the manipulated functions are usually supposed to be positive
and non-decreasing. However we will not restrict ourselves to these conditions since
we wish to design algorithms as general as possible and the theoretical results of
Section 3 do not impose such conditions. This generality allows to perform some
intermediate calculations that may use some non-increasing or negative functions,
even if they do not have a direct “physical” interpretation. Note that it is unclear
that one can take advantage of the positivity and non-decrease of input functions to
improve algorithms (see Bouillard and Thierry 2007b, for a discussion).

Section 5 concludes the paper with a discussion and some perspectives.

2 Definitions and notation

2.1 The main operations

In the usual setting, network calculus functions take their values in the dioid (min, +),
denoted (Rmin, min,+), which is defined on Rmin = R ∪ {+∞} and where the two
basic operations are the usual minimum min and addition +. These functions are
also commonly supposed to be non-decreasing.

However, for the sake of generality, we will allow functions which are not
necessarily increasing and with values within R = R ∪ {−∞,+∞}.

Let X = N or R+ and f, g be two functions from X into R, the network calculus
makes use of the following operations:

1. Minimum: ∀t ∈ X, min(f, g)(t) = min(f (t), g(t)). We will also use the infix nota-
tion ⊕: f ⊕ g = min(f, g).

2. Addition: ∀t ∈ X, (f + g)(t) = f (t) + g(t).
3. Convolution: ∀t ∈ X, (f ∗ g)(t) = inf

0≤s≤t
(f (s) + g(t − s)).

4. Deconvolution: ∀t ∈ X, (f � g)(t) = sup
u≥0

(f (t + u) − g(u)).

5. Subadditive closure: ∀t ∈ X, f ∗(t) = inf
n≥0

f (n)(t), where f (n)(t) = (f ∗ · · · ∗ f
︸ ︷︷ ︸

n times

)(t)

for n ≥ 1, and f (0)(t) = 0 if t = 0 and +∞ if t > 0.

Discrete Event Dyn Syst (2008) 18:3–49 7

Note that we can similarly define the maximum (max) and the subtraction (−) of
two functions. Remark that if f (0) < 0, then ∀t ∈ X, f ∗(t) = −∞.

Depending on whether X = N or X = R+, we will denote by D the set of all
functions from N into R (discrete model) and by F the set of all functions from R+
into R (fluid model). Let f ∈ D or F , the subset Supp(f) = {t ∈ X | | f (t)| < +∞} is
called the support of f .

The first comment on these operations is that the output function is always well-
defined, unless some infinite values interfere. We actually consider that (+∞) +
(−∞), (+∞) − (+∞) and (−∞) − (−∞) are undefined values and any operation on
two given functions whose definition involves such cases will lead to an undefined
output. Checking whether a combination of functions and operations is unde-
fined for some arguments is easy (from both mathematical and algorithmic points
of view).

Let f, g ∈ D or F , min(f, g) and max(f, g) are always defined, f + g is undefined
if ∃t, f (t) = +∞ and g(t) = −∞ (or the contrary), f − g is undefined if ∃t, f (t) =
g(t) = +∞ (or −∞), f ∗ g is undefined if ∃t1, t2, f (t1) = +∞ and g(t2) = −∞ (or the
contrary), f � g is undefined if ∃t1 ≤ t2, f (t2) = g(t1) = +∞ (or −∞), f ∗ is undefined
if ∃t1, t2, f (t1) = +∞ and f (t2) = −∞.

Thus in the paper, each time we write formulas, we will assume that all conditions
are fulfilled so that they are well-defined for all arguments.

Note that most of the results presented in this paper remain true when forbidding
the infinite values. Moreover, allowing them has the drawback to lengthen the proofs
because it introduces each time a few special cases to deal with. However, these new
cases can be solved quickly, and allowing infinite values proves to be interesting
for modeling purposes as well as for algebraic manipulations and decompositions.
Consequently, for the sake of generality and commodity, we allow them.

When f ∈ D or F , and f (0) ≥ 0, the subadditive closure can be equivalently
defined as f ∗(0) = 0 and for t > 0,

f ∗(t) = inf
k∈N, t1,...,tk>0, t1+···+tk=t

(f (t1) + · · · + f (tk)). (1)

When f ∈ D and f (0) ≥ 0, the subadditive closure also has an equivalent recursive
definition: f ∗(0) = 0 and for t > 0, f ∗(t) = min[f (t), min

0<s<t
(f ∗(s) + f ∗(t − s))] (see

Chang 2000).
Concerning the deconvolution, we should say truncated deconvolution since the

usual definition gives a function f � g which is defined on Z in the discrete model or
on R in the fluid model, rather than N or R+. However, in the context of network
calculus, where we will combine all these operations starting from functions in D
or F , we can restrict ourselves to the definition on N or R+ without loss of generality,
as it can be seen from the definitions of the operations (where the arguments of
functions are always non negative).

In the sequel of the paper, we will focus on some functions that can be finitely
described, which is interesting from a computational point of view. Note that working
with R for values or arguments of the functions presents some issues. The main one is
not the storage of the functions, which can be approximated with floats if e.g. they are
piecewise affine, but rather the change of behavior of some operations. We will come
back to this problem and see that the use of Q instead of R ensures good behaviors
such as the preservation of nice asymptotic shapes.

8 Discrete Event Dyn Syst (2008) 18:3–49

These operations have some good behaviors when combined. For example, it is
known that ∀ f, g, h ∈ D or F , as long as all the combinations below are defined over
all R+:

• min(f, g) ∗ h = min(f ∗ h, g ∗ h);
• min(f, g)∗ = f ∗ ∗ g∗;
• max(f, g) � h = max(f � h, g � h);
• f � min(g, h) = max(f � g, f � h).

We will use some of these algebraic properties in our proofs and algorithms. Those
properties are usually stated for non-negative and non-decreasing functions, but one
can check from the definitions that they can be extended to D and F .

For a comprehensive survey on these properties, the reader is referred to Le
Boudec and Thiran’s book (Le Boudec and Thiran 2001) as well as Chang’s book
(Chang 2000). A few other simple properties are listed in (Bouillard and Thierry
2007b).

2.2 Classes of functions

Stability of classes A class of functions is closed under some set of operations if
combining members of the class with any of these operations outputs (if defined) a
function which remains in the class. The closure of a class of functions under some set
of operations is the smallest class containing these functions and closed under these
operations.

Asymptotic behaviors

Definition 1 Let f be a function from X into R where X = N or R+, then, with
X∗ = X \ {0}:
• f is affine if ∃σ, ρ ∈ R,∀t ∈ X, f (t) = ρt + σ or ∀t ∈ X, f (t) = +∞ (resp. −∞).
• f is ultimately affine if ∃T ∈ X, ∃σ, ρ ∈ R, ∀t > T, f (t) = ρt + σ or ∀t >

T, f (t) = +∞ (resp. −∞).
• f is pseudo-periodic if ∃(c, d) ∈ R × X∗, ∀t ∈ X, f (t + d) = f (t) + c.
• f is ultimately pseudo-periodic if ∃T ∈ X, ∃(c, d) ∈ R × X∗, ∀t > T, f (t + d) =

f (t) + c.

σ

a b c d

σ
T

c
c

d d

ρ ρ

T

Fig. 1 Classes of functions: a affine function; b ultimately affine function; c pseudo-periodic function;
d ultimately pseudo-periodic function

Discrete Event Dyn Syst (2008) 18:3–49 9

• f is ultimately plain if ∃T ∈ X, ∀t > T, f (t) ∈ R, or ∀t > T, f (t) = +∞, or ∀t >

T, f (t) = −∞.
• f is plain if it is ultimately plain as above, and ∀ 0 ≤ t < T, f (t) ∈ R, and f (T) ∈

R or possibly f (T) = +∞ (resp. −∞) in case ∀t > T, f (t) = +∞ (resp. −∞).

For affine and ultimately affine functions, ρ is the growth rate. For a pseudo-
periodic function f , d is called a period of f , c is its associated increment, and
the period of f is its smallest period (if different from 0). For an ultimately affine
(resp. ultimately pseudo-periodic) function, we also say that it is ultimately affine
(resp. ultimately pseudo-periodic) from T, and we say that T is a rank of the function
(Fig. 1). Given an ultimately pseudo-periodic function, there exists a smallest rank
of pseudo-periodicity, called the rank of the function. More generally let f, g ∈ F ,
we say that ultimately f = g if ∃T ∈ N, ∀t > T, f (t) = g(t). Note that being plain is
equivalent to have a support equal to [0, T] or [0, T[where T ∈ R ∪ {+∞}. A non-
decreasing function is always ultimately plain, and if f (0) ∈ R, it is plain.

Remark 1 An ultimately affine function is clearly ultimately plain and pseudo-
periodic, and admits any ε > 0 as a period.

Piecewise affine functions

Definition 2 We say that a function f ∈ F is piecewise affine (Fig. 2) if there exists an
increasing sequence (ai)i∈N which tends to +∞, such that a0 = 0 and ∀i ≥ 0, f is affine
on]ai, ai+1[, i.e. ∀t ∈]ai, ai+1[, f (t) = +∞ or ∀t ∈]ai, ai+1[, f (t) = −∞ or ∃σi, ρi ∈ R,
∀t ∈]ai, ai+1[, f (t) = σi + ρit. The (ai)’s are called discontinuities.

Let f ∈ F a piecewise affine function and a ∈ R+, the right limit of f at a is
defined as f (a+) = limt→a,t>a f (t) and the left limit of f at a is defined as f (a−) =
limt→a,t<a f (t). Those limits exist.

Let X ⊆ R+ and Y ⊆ R, we denote by F [X, Y] the set of all piecewise affine
functions in F such that there exists a sequence (ai)i∈N with the properties above and
satisfying ∀i ≥ 0, ai ∈ X and f (ai), f (ai+), f (ai−) ∈ Y ∪ {−∞,+∞}.

Such functions are left-continuous (resp. right-continuous) if ∀i ≥ 0, f (ai) =
f (ai−) (resp. f (ai) = f (ai+)).

We will mainly consider F [N, R], F [Q+, R], F [R+, R] or F [Q+, Q].
Note that a piecewise affine function up to T + d which is ultimately pseudo-

periodic of period d from T is clearly piecewise affine with regard to Definition 2.

Fig. 2 A piecewise affine
function with respect to
Definition 2

10 Discrete Event Dyn Syst (2008) 18:3–49

2.3 Links between discrete and fluid calculations

Let f ∈ F , we denote by [f]N its restriction on N. Let f ∈ D, we denote by [f]R its
continuous piecewise affine interpolation: ∀n ∈ N, [f]R(n) = f (n) and if f (n), f (n +
1) ∈ R, then [f]R on]n, n + 1[is the affine interpolation between the two points, if
f (n) ∈ R and f (n + 1) = +∞ (resp. −∞), then [f]R(t) = +∞ (resp. −∞) on]n, n +
1[(do symmetrically if f (n + 1) ∈ R and f (n) = +∞ or −∞), and if f (n), f (n + 1) ∈
{−∞,+∞}, then [f]R is equal to f (n) on]n, n + 1

2] and f (n + 1) on]n + 1
2 , n + 1[.

Thus [f]R ∈ F [N, R].
Let � be a network calculus operation, we denote by �R its version for functions

in F and by �N its version for functions in D. The difference is mainly for ∗, � and
the subadditive closure which use indices in the corresponding spaces, whereas the
other operations are just point-wise operations.

The following lemma draws a first link between the discrete model and the fluid
model: it provides a way to transfer results about calculations in F to calculations
in D.

Proposition 1 Let f, g ∈ D, whenever � = min, max, +,−, ∗,�, we have

[[f]R �R [g]R]N = f �N g.

Moreover [[f]∗
R
]N = f ∗.

Proof The result is clear for the operations min, max,+, −, because the result of
these operations at a point only depends on the values of the functions at that point.

Consider the operator ∗. The support of [f]R ∗R [g]R is clearly a union of closed
intervals of R+. Let t ∈ N, then [f]R ∗R [g]R(t) = inf0≤s≤t[f]R(s) + [g]R(t − s). Sup-
pose that it has a finite value and that this minimum (this is a minimum because
s �→ [f]R(s) + [g]R(t − s) is continuous on the support within [0, t] which is compact)
is reached for s0 /∈ N. Then [f]R ∗R [g]R(t) = [f]R(s0) + [g]R(t − s0).

Let ρ f = f (�s0�) − f (�s0�) and ρg = g(t − �s0�) − g(t − �s0�). If ρ f ≥ ρg then

f (�s0�) + g(t − �s0�) ≤ [f]R(s0) + [g]R(t − s0).

On the other hand, if ρ f ≤ ρg then

f (�s0�) + g(t − �s0�) ≤ [f]R(s0) + [g]R(t − s0).

In both cases, we could have taken s0 ∈ N. To find a value of [f]R ∗R [g]R at an integer
coordinate, it is sufficient to consider the functions [f]R and [g]R on their integer
coordinates, which is the same as computing f ∗N g. In case [f]R ∗R [g]R(t) is +∞
or −∞, it can be easily seen that the minimum can be also reached for an integer
coordinate.

Using the same kind of reasoning gives the proof for the subadditive closure (with
the characterization of Eq. 1) and the deconvolution (choose s0 as the index in R+
which approaches the supremum as close as we want). ��

However note that this correspondence only works for “depth 1” level of op-
erations. Given a formula with functions in D and operations over N, doing all
the calculations in F with the interpolated functions and then going back to D by
restricting the output function to N does not always provide the right result.

Discrete Event Dyn Syst (2008) 18:3–49 11

3

in R+ in N

max(3, 2t) max(3, 2t) * max(3, 2t)

Fig. 3 Computation of max(3, 2t) ∗ max(3, 2t) in R+ and in N

Example 1 Let f : t �→ 3 and g : t �→ 2t. Figure 3 gives on the left the result of the
computation of max(f, g) in R and in N. Restricted to the natural numbers, the result
of this computation is the same. But the result of max(f, g) ∗ max(f, g) on the right
shows that the values for t = 3 differ.

The continuity and the linearity of that piecewise affine interpolation on its
support play an important role. Some other ways to interpolate functions defined
on N into functions defined on R+, such as f �→ 〈 f 〈R(t) = f (�t�) or f �→〉 f 〉R(t) =
f (�t�), do not yield the same general lemma (see Bouillard and Thierry 2007a, for
examples).

3 Stability under network calculus operations

In this section, we give the proofs of the main theorems of this paper, that is the
stability of the discrete functions and piecewise affine functions which are plain and
ultimately pseudo-periodic. Let us first give some additional notations.

For all x ∈ R, we use the notation x+ = max(0, x). By extension, let f ∈ D or F ,
we denote by f+ the function such that f+(t) = (f (t))+ for all t. For all a, b ∈ N,
and by extension for a, b ∈ R+ such that a/b ∈ Q, we will denote by gcd(a, b) their
greatest common divisor and lcm(a, b) their lowest common multiple.

3.1 Stability of asymptotic behaviors

We now study the behavior of the classes of affine, ultimately affine and ultimately
pseudo-periodic functions. Unless specified, the following results are true for both
the discrete model and the fluid model. Each result could be presented in both
settings with corresponding proofs which would be identical. However some of the
proofs are only stated for the fluid model, then one can refer to Proposition 1 to
ensure that the same result holds for the discrete model.

12 Discrete Event Dyn Syst (2008) 18:3–49

To get rid of some special cases involved by infinite values, we first set the
following lemma.

Lemma 1 Let f ∈ F (resp. D) such that ∃a ∈ R+ (resp. N), f (a) = −∞. Then for
all t ≥ a, f ∗(t) = −∞. Moreover for all g ∈ F (resp. D), if f ∗ g is well defined, then
∀t ≥ a, (g ∗ f)(t) = −∞.

Let g ∈ F (resp. D) such that ∃t ∈ R+ (resp. N), g(t) = −∞. If f � g is well defined,
∀t ≥ 0, (f � g)(t) = +∞.

Proof The proof is a direct application of the definitions of the operations. ��

3.1.1 Stability of plain and ultimately plain functions

Before addressing ultimate affine and pseudo-periodic behaviors, we state a propo-
sition concerning plain and ultimately plain functions.

Proposition 2 The classes of plain and ultimately plain functions in D (resp. F) are
closed under min, max, +, − and ∗, but not under �. Plain functions are closed under
the subadditive closure, but ultimately plain functions are not.

Proof The result is a clear for min, max, + and −. For the convolution, if f1

(resp. f2) is ultimately plain from T1 (resp. T2), then f1 ∗ f2 is clearly ultimately plain
from T1 + T2 (with values either in R or equal to +∞ or equal to −∞ depending of
the ultimate values of f1 and f2). Moreover, for plain functions, if the support of f1

(resp. f2) is [0, T1[, [0, T1], N or R+ (resp. [0, T2[, [0, T2], N or R+) then the support
of f1 ∗ f2 is clearly [0, T1 + T2[, [0, T1 + T2], N or R+. For the subadditive closure,
let f ∈ D (resp. F) be plain, if f (0) < 0 then f ∗ = −∞ over R+, if f = +∞ over R

∗+,
then f ∗ = f and the case of ∃a ∈ R+, f (a) = −∞ is treated in Lemma 1. In all other
cases, f (1) ∈ R (resp. ∃ε > 0, ∀t ∈ [0, ε], f (t) ∈ R) and thus ∀t ∈ R+, f ∗(t) ∈ R.

We now illustrate the negative statements of the proposition. The subadditive
closure of ultimately plain function is not necessarily ultimately plain: let f ∈ D
(or F) such that f (t) = 0 if t = 2 and = +∞ otherwise, it is ultimately plain but
f ∗(t) = 0 if t is an even integer and = +∞ otherwise, is not.

For the deconvolution, let f ∈ D (or F) such that f (t) = t if t is an odd integer and
= 0 otherwise, a careful application of the definition of f � f gives (f � f)(t) = t if
t is an even integer and = +∞ otherwise. Although f is plain, this output is not
ultimately plain. Note that with [f]R being the affine interpolation of f ∈ D above,
[f]R � [f]R gives the same output (see Bouillard and Thierry 2007b). ��

Non-decreasing functions f such that f (0) ∈ R are a particular case of plain
functions which remain plain under all the network calculus operations since the
deconvolution preserves the non-decrease (Le Boudec and Thiran 2001).

3.1.2 Stability of the ultimately affine functions

It is easy to see that the affine functions are closed under +, −, ∗, �, but not under
min, max and the subadditive closure (Bouillard and Thierry 2007a, see). We now
deal with ultimately affine functions.

Discrete Event Dyn Syst (2008) 18:3–49 13

Proposition 3 Let f1, f2 ∈ F two ultimately affine functions from respectively T1 and
T2 such that ∀t ≥ Ti, fi(t) = ρit + σi, with ρi, σi ∈ R. then:

1. min(f1, f2) is ultimately affine from T = max
(

T1, T2,
σ1−σ2
ρ2−ρ1

)

if ρ1 �= ρ2 and from
max(T1, T2) otherwise, and its rate is min(ρ1, ρ2),

2. max(f1, f2) is ultimately affine from T = max
(

T1, T2,
σ1−σ2
ρ2−ρ1

)

if ρ1 �= ρ2 and from
max(T1, T2) otherwise, and its rate is max(ρ1, ρ2),

3. f1 + f2 is ultimately affine from max(T1, T2), with rate ρ1 + ρ2,
4. f1 − f2 is ultimately affine from max(T1, T2), with rate ρ1 − ρ2,
5. f1 ∗ f2 is ultimately affine from T1 + T2 if ρ1 = ρ2 and from max(T1 + T2, T ′) with

T ′ = σ1−σ2
ρ2−ρ1

+ inf0≤u≤T2 (f2(u)−ρ1u)−inf0≤s≤T1 (f1(s)−ρ2s)
ρ2−ρ1

if ρ1 < ρ2 and in both cases its rate
is min(ρ1, ρ2) (unless ∃t ≥ 0, f1(t) or f2(t) = −∞, then it is equal to −∞ from
T1 + T2).

6. f1 � f2 is ultimately affine from T1, with rate ρ1 (unless ∃t ≥ 0, f2(t) = −∞, then
it is equal to +∞ from 0).

To deal with functions which are ultimately infinite, consider that f1 = +∞ (resp. −∞)
from T1 is equivalent to ρ1 = +∞ (resp. −∞), idem for f2 and apply the cases above.
Moreover if f1 and f2 are plain, then all the outputs are also plain.

Proof

1. (and 2.) Suppose first that f1 and f2 are both affine: fi(t) = ρit + σi, i = 1, 2. If
ρ1 �= ρ2, then there exists a unique point t0 such that f1(t0) = f2(t0),
and t0 = σ2−σ1

ρ1−ρ2
. If ρ1 = ρ2, then min(f1, f2) is either f1 if σ1 ≤ σ2, or f2

otherwise.
If f1 and f2 are ultimately affine, then it is easy to see that min(f1, f2)

is ultimately affine from T = max
(

T1, T2,
σ2−σ1
ρ1−ρ2

)

if ρ1 �= ρ2 or T =
max(T1, T2) if ρ1 = ρ2.
Note that T may be arbitrarily large if ρ1 and ρ2 are close.

3. (and 4.) Clear since adding two affine functions remains affine.
5. Let t ≥ T1 + T2. Let us calculate f1 ∗ f2(t):

f1 ∗ f2(t) = inf
0≤s≤t

f1(s) + f2(t − s)

= inf
0≤s≤T1

f1(s) + f2(t − s) ⊕ inf
T1≤s≤t−T2

f1(s) + f2(t − s)

⊕ inf
t−T2≤s≤t

f1(s) + f2(t − s)

= inf
0≤s≤T1

(f1(s) + f2(t − s)) ⊕ inf
T1≤s≤t−T2

(f1(s) + f2(t − s))

⊕ inf
0≤u≤T2

(f1(t − u) + f2(u))

= inf
0≤s≤T1

(f1(s) + ρ2(t − s) + σ2)

⊕ inf
T1≤s≤t−T2

(ρ1s + σ1 + ρ2(t − s) + σ2)

⊕ inf
0≤u≤T2

(ρ1(t − u) + σ1 + f2(u)).

14 Discrete Event Dyn Syst (2008) 18:3–49

The infimum over T1 ≤ s ≤ t − T2 of the second term is taken for an
affine function. Thus it is reached for s = T1 or s = t − T2, and then it
is equal to f1(T1) + f2(t − T1) (or f1(t − T2) + f2(T2)) which is larger
than the first term (or the third term) since it is the value when s = T1

(or s = t − T2) in the infimum over 0 ≤ s ≤ T1 (or t − T2 ≤ s ≤ t). We
can simplify the formula by removing the second term and we have:

f1 ∗ f2(t) = ρ2t + σ2 + inf
0≤s≤T1

(f1(s) − ρ2s) ⊕ ρ1t + σ1

+ inf
0≤u≤T2

(f2(u) − ρ1u).

Let m2 = inf0≤s≤T1(f1(s) − ρ2s) and m1 = inf0≤u≤T2(f2(u) − ρ1u). We
have m1, m2 < +∞ since f1(T1) = ρ1T1 + σ1 ∈ R and f2(T2) = ρ2T2 +
σ2 ∈ R. We have ∀t ≥ T1 + T2, f1 ∗ f2(t) = ρ2t + σ2 + m2 ⊕ ρ1t + m1

and are back to the case of the minimum of two affine functions.
6. ∀t ≥ T1,

f1 � f2(t) = sup
s≥0

(f1(t + s) − f2(s))

= sup
s≥0

(σ1 + ρ1(t + s) − f2(s)) = σ1 + ρ1t + sup
s≥0

(ρ1s − f2(s)).

As sups≥0(ρ1s − f2(s)) is a constant, f1 � f2 is ultimately affine from T1 with a
behavior which depends on the finiteness of sups≥0(ρ1s − f2(s)).

To check the preservation of the plain property under � (not guaranteed by
Proposition 2, we also use that f2 is ultimately affine. When ρ1 > ρ2, for any fixed
t ≥ 0, f1(t + s) − f2(s) → +∞ when s → +∞, and thus (f1 � f2)(t) = +∞. Suppose
now that ρ1 ≤ ρ2. When t + s ≥ T1 and s ≥ T2, the difference f1(t + s) − f2(s) =
ρ1(t + s) + σ1 − ρ2s − σ2 is non-increasing when s increases. Thus (f1 � f2)(t) =
sup0≤s≤max(T2,T1−t)(f1(t + s) − f2(s)) ∈ R since f1 and f2 are plain.

To deal with ultimately infinite functions, apply the same reasoning with straight
simplifications and check that the results correspond to the statements of the
proposition with ρ1 or ρ2 appropriately associated with +∞ or −∞. The statement
about plain functions is a consequence of Proposition 2, except for �. ��

Remark 2 The subadditive closure of an ultimately affine function is not always
ultimately affine, such an example is presented in (Le Boudec and Thiran 2001),
Chapter 3, for some βR,T + K functions defined on R+. Another example is depicted
in Fig. 4. Let f be the function defined on N by

f (t) =
{

t if t = 0 or 1,

t − 1 if t ≥ 2

and represented in Fig. 4. Then f ∗ is not ultimately affine: an easy computation gives

f ∗(t) =
{

t/2 if t is even,
(t + 1)/2 if t is odd.

(2)

One can notice that f ∗ is pseudo-periodic of period 2.

Discrete Event Dyn Syst (2008) 18:3–49 15

Fig. 4 f is ultimately affine
but f ∗ is not

f

f *

1 2 3 4 5 t
0

0

1

2

3

4

3.1.3 Stability of the ultimately pseudo-periodic functions

Before considering pseudo-periodicity, we define a local finiteness property for
functions in the fluid model.

Definition 3 A function f ∈ F is locally bounded if f is bounded over any bounded
subset of its support.

For instance, this property is not satisfied by f (t) = 1/(1 − t) on [0, 1[and =
+∞ on [1,+∞[. Piecewise affine functions are an example of locally bounded
functions.

Proposition 4 Let f1, f2 ∈ F two ultimately plain pseudo-periodic functions from
respectively T1 and T2, with respective periods d1 and d2 and respective increments
c1 and c2. Suppose that they are both locally bounded, that d1/d2 ∈ Q and that ∀t ≥ Ti,
fi(t) ∈ R, i ∈ {1, 2}. Then

1. min(f1, f2) is locally bounded and ultimately plain pseudo-periodic. If c1
d1

< c2
d2

,
then ultimately min(f1, f2) = f1 (period d1, increment c1). If c2

d2
< c1

d1
, then ulti-

mately min(f1, f2) = f2 (period d2, increment c2). Otherwise, the period is d =
lcm(d1, d2) and the increment is c1

d1
d.

2. max(f1, f2) is locally bounded and ultimately plain pseudo-periodic. If c1
d1

< c2
d2

,
then ultimately min(f1, f2) = f2 (period d2, increment c2). If c2

d2
< c1

d1
, then ulti-

mately min(f1, f2) = f1 (period d1, increment c1). Otherwise, the period is d =
lcm(d1, d2) and the increment is c1

d1
d.

3. f1 + f2 is locally bounded and ultimately plain pseudo-periodic from T =
max(T1, T2), with period d = lcm(d1, d2), and increment c = (c1

d1
+ c2

d2

)

d.
4. f1 − f2 is locally bounded and ultimately plain pseudo-periodic from T =

max(T1, T2), with period d = lcm(d1, d2), and increment c = (c1
d1

− c2
d2

)

d.
5. f1 ∗ f2 is locally bounded and ultimately plain pseudo-periodic with period

d = lcm(d1, d2) and increment min(c1
d1

, c2
d2

)d.
6. f1 � f2 is locally bounded and ultimately plain pseudo-periodic from T1 with

period d1 and increment c1.

16 Discrete Event Dyn Syst (2008) 18:3–49

To deal with functions which are ultimately infinite, consider that f1 = +∞ (resp. −∞)
from T1 is equivalent to c1 = +∞ (resp. −∞), idem for c2 and apply the cases above.
Moreover if f1 and f2 are plain, then all the outputs are also plain.

Proof Let f1 and f2 be two ultimately plain pseudo-periodic functions s.t. ∀t ≥ Ti,
fi(t + di) = fi(t) + ci, i ∈ {1, 2}. Let d = lcm(d1, d2), c′

1 = c1
d1

d and c′
2 = c2

d2
d. The func-

tions f1 and f2 are both ultimately pseudo-periodic of period d and with respective
increment c′

1 and c′
2.

1. (and 2.) First ∀t ≥ max(T1, T2), fi(t + d) = fi(t) + c′
i and

min(f1, f2)(t + d)=min(f1(t + d), f2(t + d))=min(f1(t) + c′
1, f2(t) + c′

2).

If c′
1 = c′

2, then ∀t ≥ max(T1, T2), min(f1, f2)(t + d) = min(f1, f2)(t) +
c′

1. It is clear that min(f1, f2) remains locally bounded and ultimately
plain like f1 and f2 (note that in this case, we did not use those
hypotheses to prove the ultimate pseudo-periodicity).
Otherwise, suppose without loss of generality that c′

1 < c′
2. Let M1 =

supT1≤t<T1+d1
(f1(t) − ρ1t) with ρ1 = c1

d1
= c′

1
d , then M1 < +∞ since f1 is

locally bounded and finite from T1. We have ∀t ≥ T1, f1(t) ≤ ρ1t + M1.
Let m2 = infT2≤t<T2+d2(f2(t) − ρ2t), then m2 > −∞ and ∀t ≥ T2, f2(t) ≥
ρ2t + m2. As soon as t ≥ max(T1, T2) and ρ1t + M1 ≤ ρ2t + m2, that is
to say t ≥ T = M1−m2

ρ2−ρ1
, we have min(f1(t), f2(t)) = f1(t). Thus min(f1, f2)

is ultimately plain and pseudo-periodic from max(T1, T2, T). It is also
clearly locally bounded.

3. (and 4.) ∀t ≥ max(T1, T2),

(f1 + f2)(t + d)= f1(t)+ c1

d1
d + f2(t) + c2

d2
d = (f1 + f2)(t) +

(

c1

d1
+ c2

d2

)

d.

Moreover being locally bounded and ultimately plain is clearly pre-
served for +.

5. First decompose each function into a transient part and a pseudo-
periodic part, namely f1 = f ′

1 ⊕ f ′′
1 where f ′

1 = f1 on [0, T1[and = +∞
elsewhere, and f ′′

1 = f1 on [T1, +∞[and = +∞ elsewhere. The function
f2 is decomposed in the same way into f2 = f ′

2 ⊕ f ′′
2 with respect to T2.

Then f1 ∗ f2 = f ′
1 ∗ f ′

2 ⊕ f ′
1 ∗ f ′′

2 ⊕ f ′′
1 ∗ f ′

2 ⊕ f ′′
1 ∗ f ′′

2 .
The first term f ′

1 ∗ f ′
2 is clearly equal to +∞ from T1 + T2. The second

term can be written for all t ≥ 0, f ′
1 ∗ f ′′

2 (t) = inf0≤s<T1(f1(s) + f2(t − s)).
When t ≥ T1 + T2, if 0 ≤ s < T1, then t − s ≥ T2, thus

f ′
1 ∗ f ′′

2 (t + d2) = inf
0≤s<T1

(f1(s) + f2(t + d2 − s))

= inf
0≤s<T1

(f1(s) + f2(t − s)) + c2 = f ′
1 ∗ f ′′

2 (t) + c2.

The function f ′
1 ∗ f ′′

2 is pseudo-periodic from T1 + T2 with period d2 and
increment c2. The symmetrical result holds for f ′′

1 ∗ f ′
2.

Discrete Event Dyn Syst (2008) 18:3–49 17

To study the last term, let t ≥ T1 + T2 + d (this bound is necessary for
the second equality below), then

f ′′
1 ∗ f ′′

2 (t + d) = inf
T1≤s≤t+d−T2

(f1(s) + f2(t + d − s))

= inf
T1≤s≤t−T2

(f1(s) + f2(t + d − s))

⊕ inf
T1+d≤s≤t+d−T2

(f1(s) + f2(t + d − s))

= inf
T1≤s≤t−T2

(f1(s) + f2(t + d − s))

⊕ inf
T2≤u≤t−T1

(f1(t + d − u) + f2(u))

= inf
T1≤s≤t−T2

(f1(s) + f2(t − s) + c′
2)

⊕ inf
T2≤u≤t−T1

(f1(t − u) + f2(u) + c′
1)

= min(f ′′
1 ∗ f ′′

2 (t) + c′
2, f ′′

1 ∗ f ′′
2 (t) + c′

1)

= f ′′
1 ∗ f ′′

2 (t) + min(c′
1, c′

2)

Thus f ′′
1 ∗ f ′′

2 is pseudo-periodic from T1 + T2 + d, with period d and
increment min(c′

1, c′
2).

Now we state that these four terms are locally bounded. Since f1 and
f2 are locally bounded, f ′

1, f ′′
1 , f ′

2, f ′′
2 are also locally bounded. Then

remark that the convolution f ∗ g of two locally bounded functions
f, g is always locally bounded. Let A ∈ R+, ∀t ∈ [0, A], f ∗ g(t) only
depends on the restriction of f and g on [0, A] for which ∃M f , Mg ∈
R+ such that f (s) ∈ R =⇒ | f (s)| ≤ M f and g(s) ∈ R =⇒ |g(s)| ≤ Mg.
Thus ∀t ∈ [0, A], f ∗ g(t) ∈ R =⇒ | f ∗ g(t)| ≤ M f + Mg. It applies to
our four terms which are consequently locally bounded.
Next it can be easily checked from their definitions as infima that
the four terms are ultimately plain. It ensures that their minimum is
ultimately plain and pseudo-periodic: f1 ∗ f2 is ultimately plain pseudo-
periodic with period d and increment min(c′

1, c′
2).

6. ∀t ≥ T1,

f1 � f2(t + d1)= sup
s≥0

(f1(t + d1 + s)− f2(s)) = sup
s≥0

(f1(t + s) + c1 − f2(s))

= c1 + sup
s≥0

(f1(t + s) − f2(s)) = c1 + f1 � f2(t).

So we get the ultimate pseudo-periodicity just by using the ultimate pseudo-
periodicity of f1, in particular no assumption on f2 is necessary. On the contrary,
remaining locally bounded and plain or ultimately plain requires some further
assumptions of the proposition.

Remark that if c′
1 > c′

2, then ∀t ∈ R+, f1 � f2(t) = +∞. Otherwise if c′
1 ≤ c′

2, then
∀t ∈ [0, T1 + d1[, sups≥0(f1(t + s) − f2(s)) is clearly reached when s ≤ max(T1, T2) +
d = T. It first implies that if f1 and f2 are locally bounded then f1 � f2 is bounded on
its support in [0, T1 + d1[. Thanks to pseudo-periodicity, it extends to any bounded
part of the support and f1 � f2 is locally bounded. In addition, since the supremum

18 Discrete Event Dyn Syst (2008) 18:3–49

is reached over [0, T] which does not depend on T and thanks to pseudo-periodicity,
f1 � f2 is ultimately plain (resp. plain) as soon as f1 is ultimately plain (resp. plain).

To deal with ultimately infinite functions, apply the same reasoning with straight-
forward simplifications and check that the results correspond to the statements of
the proposition with increments appropriately associated with +∞ or −∞. The
statement about plain functions is a consequence of Proposition 2, except for �.

Note that all the values of ranks considered in the proof still apply if we use ranks
with strict inequalities as in their initial definition, i.e. if we start with fi(t) ∈ R and
fi(t + di) = fi(t) + ci, ∀t > Ti instead of ∀t ≥ Ti. ��

Remark 3 The hypothesis of locally bounded and ultimate plain functions is nec-
essary to ensure pseudo-periodicity. For instance, let f (t) = 0 on all the inter-
vals [2n, 2n + 1[, n ∈ N, and = +∞ elsewhere, and g(t) = t on R+. Both functions
are locally bounded and pseudo-periodic, but f is not ultimately plain and finally
min(f, g) is not ultimately pseudo-periodic (see Bouillard and Thierry 2007a, for
other examples).

If we restrict all the previous results to functions in D, we can almost state our first
stability result. The next proposition achieves that for the last operation, namely the
subadditive closure. Note that its proof is specially designed for functions in D. In
Section 3.2, we will propose another proof for the fluid model yielding the result in D
as a corollary. The two proofs are essentially different, so we choose to keep them
both.

Proposition 5 Let f ∈ D be an ultimately pseudo-periodic function, then f ∗ is ulti-
mately pseudo-periodic.

Proof Let f ∈ D be an ultimately pseudo-periodic function such that ∀t ≥ T, f (t +
d) = f (t) + c, with c ∈ R. This includes the ultimately affine functions in D, which
have period 1. We dismiss the cases when f (0) < 0 or when f = +∞ over all N, for
which the result is clear. The subadditive closure f ∗ is given by Eq. 1:

f ∗(t) = inf
k∈N

min
t1+···+tk=t,t1,...,tk∈N∗

f (t1) + · · · + f (tk).

The idea of the proof is to use the (min,+) matrix theory. We first build a directed
weighted graph G = (N, A, W) in the following way:

• N = {1, · · · , T + d − 1} is the set of vertices;
• ∀i ∈ {1, . . . , T + d − 2} put an arc from node i to node i + 1 of weight 0 (i.e.

W(i, i + 1) = 0);
• ∀i ∈ N, put an arc from node i to node 1 of weight f (i) (i.e. W(i, 1) = f (i));
• put an arc from node T + d − 1 to node T of weight c (i.e. W(T + d − 1, T) = c).

The construction is illustrated by Fig. 5.
The graph G is strongly connected and if we only consider arcs with weight < +∞,

the new graph either remains G if ∃t ≥ T, f (t) < +∞, or has a unique strongly
connected component on nodes {1, . . . , T0} where T0 = min{t0 | ∀t > t0, f (t) = +∞}.
Let i ∈ N, by construction, there is exactly one path from node 1 to itself of length
i that does not visit node 1 except at the beginning and at the end of the path.
The weight of that path is f (i). Now, consider a path from node 1 to itself. That

Discrete Event Dyn Syst (2008) 18:3–49 19

Fig. 5 From the function f to
a directed graph

c

0
1 2 T

0 0 0 0
T+d–1

f (1) f (T) f (T + d–1)f (2)

path is a union of paths from 1 to itself. If the length of that path is t, there
exists a decomposition of t, t = t1 + · · · + tk such that the weight of the path is
f (t1) + · · · + f (tk). Conversely, for every t1, . . . , tk, there is a path from 1 to itself
of length t1 + · · · + tk of weight f (t1) + · · · + f (tk).

Let A be the (min,+) matrix associated to G (i.e. Ai, j = min(+∞, W(i, j))). The
matrix A is irreducible (or has a unique irreducible submatrix containing coefficient
1,1) and for every t ∈ N, f ∗(t) = At

1,1. Let d∗ be its cyclicity and λ be its unique
(min,+) eigenvalue. According to the Fundamental Theorem of the (min,+) matrices
(Baccelli et al. 1992) (Section 3.7, page 143-151), there exists a rank T∗ such that
∀t ≥ T∗, At+d∗ = At + λd∗. Then, f ∗(t + d∗) = f ∗(t) + λd∗ = f ∗(t) + c∗ with c∗ =
λd∗. Then f ∗ is ultimately pseudo-periodic of period d∗ and increment c∗.

More precisely, the eigenvalue λ = c∗/d∗ of A is the minimal average weight of a
circuit of G. By construction, this is equal to min(c/d, min1≤t≤T+d−1 f (t)/t) (note that
it is also inft∈N∗ f (t)/t). Consider the vertices and edges of the circuits achieving λ. It
yields a subgraph of G called the critical graph and denoted Gc. The cyclicity d∗ is
the lcm of the gcd of the lengths of the circuits of each strongly connected component
of Gc. Consider S = {t ∈ {1, . . . , T + d − 1} | f (t)

t = λ} the arguments reaching the
minimum (if there are some). Then

• If c
d > λ, the critical graph is the induced graph over vertices {1, . . . , max(S)} and

d∗ = gcd(S).
• If c

d = λ and S = ∅, the critical graph is a single circuit and d∗ = d.
• If c

d = λ and S ∩ {T, . . . , T + d − 1} �= ∅, the critical graph is G and d∗ = gcd
(S ∪ {d}).

• If c
d = λ and S ⊆ {1, . . . , T − 1}, the critical graph has two strongly con-

nected components and d∗ = lcm(d, gcd(S)). In this later case, one can give
a tighter period for f ∗ by proving that gcd(S) works. It is known that if
an ultimately pseudo-periodic function admits two periods d1 and d2 (pos-
sibly from different ranks), then it also admits gcd(d1, d2) as a period.
Thus it is sufficient to prove that for all s ∈ S, f ∗ admits s as a period.
Let s ∈ S, then by definition ∀t ≥ 0, f ∗(t + s) ≤ f ∗(t) + f (s) = f ∗(t) + λs. Let
α, β ∈ N s.t. αs = βd∗, we have ∀t ≥ 0, f ∗(t) ≥ f ∗(t + s) − λs ≥ f ∗(t + 2s) −
2λs ≥ · · · ≥ f ∗(t + αs) − λαs = f ∗(t + βd∗) − λβd∗. When t ≥ T∗, f ∗(t + βd∗) =
f ∗(t) + λβd∗ which means that all these inequalities are equalities. It implies that
∀t ≥ T∗, f ∗(t + s) = f ∗(t) + λs and thus s is a period of f ∗. ��

Computational considerations will be discussed in Section 4. Now we can state our
first stability theorem: it is a direct consequence of Proposition 2, Proposition 4 and
Proposition 5 for the discrete model.

20 Discrete Event Dyn Syst (2008) 18:3–49

Theorem 1 The class of plain ultimately pseudo-periodic functions of D is stable
under the network calculus operations, that is +, −, min, max, ∗, � and the subadditive
closure.

Remark 4 Weakening the property plain by ultimately plain does not ensure that
compositions will preserve the ultimate pseudo-periodicity. As a mix of previous
remarks, let f (t) = 0 if t = 2 and = +∞ elsewhere, and g(t) = 3 if t = 3 and = +∞
elsewhere, which are both ultimately plain. Then

min(f ∗, g∗)(t) =
⎧

⎨

⎩

0 if t = 6k, 6k + 2 or 6k + 4, k ∈ N

t if t = 6k + 3, k ∈ N

+∞ otherwise.

This function is not ultimately pseudo-periodic.

A careful look at previous references reveals that an important part of this
theorem, namely the stability under min, ∗ and the subadditive closure, was already
known for some non-decreasing functions, but mainly stated in terms of (γ, δ)

formal power series, and in a (max, +) framework instead of (min, +) which has
no consequence on the result. Those power series are for instance used to describe
precisely the dynamics of some Petri nets. The reader is referred to Baccelli et al’s
book (Baccelli et al. 1992): Theorem 5.39, page 255, involves the stability result for
non-decreasing functions from N into N. Some extensions are also given in Chapter
6, like Theorem 6.32, Remark 6.33 and Corollary 6.34, page 290-291, which imply
stability results for some non-decreasing fluid functions. For detailed proofs and
algorithmic design, see also Gaubert’s thesis (Gaubert 1992). Even if the underlying
mathematics are the same, it is not clear for us yet whether the stability of non-
decreasing functions from N into R (under min, ∗ and the subadditive closure) or
the stability without imposing non-decrease can be directly deduced from all these
theorems and proofs. We will mention in Section 3.2 the extensions to fluid functions
presented in (Baccelli et al. 1992).

3.2 Stability of some piecewise affine classes

Whereas in the discrete model, the combination of functions in D clearly outputs
(when defined) a function in D (meaning that D is closed under network calculus
operations), such a result needs a proof for piecewise affine functions of the fluid
model.

Proposition 6 The classes F [R+, R] and F [Q+, Q] are stable under the operations
+, −, min, max.

Proof Trivial. Just observe that two affine functions from Q+ into Q intersect at a
rational point. ��

The class F [Q+, R] is also stable under +, −. However it is false under min or max,
e.g. consider ∀t ∈ R+, f (t) = √

2t and g(t) = 1, both f and g belong to F [Q+, R] but
min(f, g)(t) = √

2t on [0, 1/
√

2] and = 1 on]1/
√

2, +∞[does not belong to F [Q+, R]
because 1/

√
2 �∈ Q+.

Discrete Event Dyn Syst (2008) 18:3–49 21

Definition 4 (Spots and segments)

• For a ∈ R+, a function f ∈ F is a spot on a if ∀t ∈ R+ \ {a}, f (t) = +∞ and
f (a) �= +∞.

• For a, b ∈ R+, a < b , a function f ∈ F is a segment on]a, b [if ∃σ, ρ ∈ R such
that f (t) = ρ(t − a) + σ if t ∈]a, b [and = +∞ otherwise. We call]a, b [the
support of f , σ and ρ are called the parameters of f , ρ is called the slope.

• With the same notation, if the support is]a, b] or [a, b [(resp. [a, b]), f is called
a semi-closed (resp. closed) segment.

• For T ∈ R+, c ∈ R and d ∈ R
∗+, a function f is an iterated spot from T with

period d and increment c if ∀i ∈ N, f (T + id) = f (T) + ic, and f (t) is +∞
elsewhere.

• For T ∈ R+, c ∈ R and d ∈ R
∗+, a function f ∈ F is an iterated segment from T,

with period d and increment c and slope ρ if ∃a ∈ R
∗+, ∃ f (T+), σ ∈ R such that

a ≤ d and ∀i ∈ N, on the interval]T + id, T + id + a[, f is affine with ∀t ∈]0, a[,
f (T + id + t) = f (T+) + ic + ρt, and on all other intervals f is +∞.

Iterated segments and spots are the ultimately pseudo-periodic versions of
segments and spots.

Any piecewise affine function can be decomposed into spots and segments.

Definition 5 Let f ∈ F [R+, R] with discontinuities (an)n∈N. Let f2n+1 be the segment
of support]an, an+1[, n ≥ 0 that is equal to f on that interval and f2n be the spot on
an with value f (an). Then, f = infn∈N fn. We call the sequence (fn)n∈N the elementary
decomposition of f .

That decomposition is very useful to show the stability of the piecewise affine
functions by the network calculus operations.

3.2.1 Stability for the convolution

Lemma 2 (Convolution of spots) Let f1 and f2 be two spots respectively on a and b.
Then f1 ∗ f2 is a spot on a + b and f1 ∗ f2(a + b) = f1(a) + f2(b).

Lemma 3 (Convolution of a spot and a segment) Let f1 be a segment on]a, b [and f2

be a spot on c. Then, f1∗ f2 is a segment on]a + c, b + c[and ∀t∈]a, b [, f1∗ f2(c + t) =
f1(t) + f2(c).

Proof By definition, f1 ∗ f2(t) = inf0≤s≤t f1(s) + f2(t − s). As f2 is a spot, f2(t − s) �=
∞ if and only if t − s = c, so that s = t − c. As a consequence, f1 ∗ f2(t) = f1(t − c) +
f2(c), which is finite if and only if t ∈]a + c, b + c[. ��

Lemma 4 (Convolution of segments Le Boudec and Thiran 2001) Let f1, f2 ∈ F be
two segments on respectively]a, b [and]c, d[with respective slopes ρ1 and ρ2 such
that ρ1 ≤ ρ2. Then f1 ∗ f2 is equal to +∞ outside]a + c, b + d[and, otherwise, ∀t ∈
]a + c, b + d[,

f1 ∗ f2(t) =
{

f1(a+) + f2(c+) + ρ1(t − a − c) if t ≤ b + c,

f1(a+) + f2(c+) + ρ1(b − a) + ρ2(t − b − c) if t > b + c.

22 Discrete Event Dyn Syst (2008) 18:3–49

f1 f2

d

f1 * f2

b + da + c

y
x

ba c b + c

x + y

Fig. 6 Convolution of two segments (case ρ1 ≤ ρ2)

Geometrically, it means that the segments representing f1 and f2 are concatenated by
increasing slopes (see Fig. 6).

Proof By definition, f1 ∗ f2(t) = inf0≤s≤t f1(s) + f2(t − s). Then f1 ∗ f2(t) is different
from +∞ if and only if there exists s such that f1(s) �= +∞ and f2(t − s) �= +∞,
which means s ∈]a, b [and t − s ∈]c, d[. The support of f1 ∗ f2 is thus]a + c, b + d[.

Let t ∈]a + c, b + d[. Then,

f1 ∗ f2(t) = inf
0≤s≤t

f1(s) + f2(t − s)

= inf
max(a,t−d)≤s≤min(b ,t−c)

[f1(a+) + ρ1(s − a) + f2(c+) + ρ2(t − s − c)]

As ρ1 ≤ ρ2, the infimum is reached for s = min(b , t − c) and

f1 ∗ f2(t) = f1(a+) + f2(c+) − ρ1a + ρ2(t − c) + (ρ1 − ρ2) min(b , t − c).

As a consequence,

f1 ∗ f2(t) =
{

f1(a+) + f2(c+) + ρ1(t − a − c) if t ≤ b + c
f1(a+) + f2(c+) + ρ1(b − a) + ρ2(t − b − c) otherwise.

��

Remark 5 It can be easily checked that almost identical lemma can be stated for
semi-closed, closed or mixed types of segments. It only affects both ends of the output
which remains the same inside its support.

Proposition 7 The classes F [R+, R] and F [Q+, Q] are stable under the convolution.

Proof A consequence of Lemma 4 is that the convolution of two segments of
F [R+, R] (resp. F [Q+, Q]) is piecewise affine in F [R+, R] (resp. F [Q+, Q]). Let
f, g be two functions in F [R+, R] and let (fn)n∈N and (gn)n∈N be their respective
elementary decompositions into segments and spots. Let A ∈ R+ and n0 = min{n ∈
N | fn and gn have a support disjoint from [0, A]}. Since for all t ∈ R+, f ∗ g(t) de-
pend only on the values of f and g on [0, t], the restriction of f ∗ g on [0, A] satisfies
f ∗ g = mini, j∈{0,...n0}(fi ∗ g j)|[0,A]. Thus f ∗ g is piecewise affine on [0, A]. It is true for

Discrete Event Dyn Syst (2008) 18:3–49 23

every A ∈ R+, which means that f ∗ g is piecewise affine. The stability of the classes
F [R+, R] and F [Q+, Q] is a consequence of their stability for the minimum. ��

3.2.2 Stability for the deconvolution

Let f be a segment or a spot and define f̄ as the function equal to f on its support and
to −∞ elsewhere. For a piecewise affine function with an elementary decomposition
into segments and spots f = infn∈N fn, one can associate the other decomposition
f = supn∈N f̄n.

Lemma 5 (Deconvolution of spots) Let f1 and f2 be two spots respectively on a
and b. If a ≥ b, then f̄1 � f2 is a spot on a − b and f̄1 � f2(a − b) = f1(a) − f2(b). If
a < b, then f̄1 � f2(t) = −∞, ∀t ∈ R+.

Lemma 6 (Deconvolution of a segment and a spot) Let f1 be a segment on]a, b [with
slope ρ and f2 be a spot on c. Then, f̄1 � f2 is a segment on]a − c, b − c[∩R+ where
f̄1 � f2(t) = ρ(t + c − a) + f1(a+) − f2(c).

Proof By definition, f̄1 � f2(t) = sups≥0 f̄1(t + s) − f2(s). As f2 is a spot on c, f̄1 �
f2(t) = f̄1(t + c) − f2(c). Then, f̄1 � f2(t) is finite if and only if t + c ∈]a, b [thus the
support of f̄1 � f2 is]a − c, b − c[∩R+. Let t ∈]a − c, b − c[∩R+, then f̄1 � f2(t) =
f1(t + c) − f2(c) = ρ(t + c − a) + f1(a+) − f2(c). ��

Lemma 7 (Deconvolution of a spot and a segment) Let f1 be a spot on a and f2 be a
segment on]b , c[with slope ρ. Then, f̄1 � f2 is a segment on]a − c, a − b [∩R+ where
f̄1 � f2(t) = f1(a) − f2(b+) + ρ(t + b − a).

Proof By definition, f̄1 � f2(t) = sups≥0 f̄1(t + s) − f2(s). As f1 is a spot on a, f̄1 �
f2(t) = f1(a) − f2(a − t). Then f̄1 � f2(t) is finite if and only if a − t ∈]b , c[and the
support is]a − c, a − b [∩R+. Let t ∈]a − c, a − b [∩R+. Then, f̄1 � f2(t) = f1(a) −
f2(a − t) = f1(a) − ρ(a − t − b) − f2(b+) = f1(a) − f2(b+) + ρ(t + b − a). ��

Lemma 8 (Deconvolution of segments) Let f1 and f2 be two segments respectively
defined on]a, b [and]c, d[with respective slopes ρ1 and ρ2. Then, f̄1 � f2 has support
]a − d, b − c[∩R+ and, if ρ1 ≥ ρ2,

f̄1 � f2(t) =
⎧

⎨

⎩

f1(t + d) − f2(d−) if a − d < t ≤ b − d
f1(b−) − f2(b − t) if b − d ≤ t < b − c
−∞ otherwise.

and if ρ1 ≤ ρ2,

f̄1 � f2(t) =
⎧

⎨

⎩

f1(a+) − f2(a − t) if a − d < t ≤ a − c
f1(t + c) − f2(c+) if a − c ≤ t < b − c
−∞ otherwise.

.

Graphically, the deconvolution of two segments is the concatenation of them in
decreasing slopes, starting from point (a − d, f1(a) − f2(d)) (see Fig. 7).

24 Discrete Event Dyn Syst (2008) 18:3–49

db ca

u
υ

x

y

f1 f2

a – d b – c

f1 f2

a – c
u – y

Fig. 7 Deconvolution of two segments (case ρ1 ≤ ρ2)

Proof We denote σ1 = f1(a+) and σ2 = f2(c+). We have f̄1 � f2(t) = sups≥0(f̄1(t +
s) − f2(s)). So, f̄1 � f2(t) �= −∞ if and only if ∃s ∈]c, d[such that t + s ∈]a, b [, i.e.
t ∈]a − d, b − c[∩R+. Let t ∈]a − d, b − c[∩R+, then,

f̄1 � f2(t) = sup
s∈R+

(f̄1(t + s) − f2(s))

= sup(ρ1(t + s − a) + σ1 − ρ2(s − c) − σ2 | s ∈] max(c, a − t),

min(d, b − t)])
= σ1 − σ2 + ρ1(t − a) + ρ2c + sup((ρ1 − ρ2)s | s ∈]

max(c, a − t), min(d, b − t)]).
If ρ1 ≥ ρ2, then

f̄1 � f2(t) = σ1 − σ2 + ρ1(t − a) + ρ2c + (ρ1 − ρ2) min(d, b − t).

If t ≤ b − d, f̄1� f2(t) = σ1 − σ2 + ρ1(t − a) + ρ2c + (ρ1 − ρ2)d = f1(t + d) − f2(d−).
If t ≥ b − d, f̄1 � f2(t) = σ1 − σ2 + ρ1(t − a) + ρ2c + (ρ1 − ρ2)(b − t) = f1(b−) − f2

(b − t).
If ρ1 ≤ ρ2, then

f̄1 � f2(t) = σ1 − σ2 + ρ1(t − a) + ρ2c + (ρ1 − ρ2) max(c, a − t).

If t≤a − c, f̄1� f2(t)=σ1 − σ2+ρ1(t − a) + ρ2c + (ρ1 − ρ2)(a − t)= f1(a+)− f2(a − t).
If t ≥ a − c, f̄1 � f2(t) = σ1 − σ2 + ρ1(t − a) + ρ2c + (ρ1 − ρ2)c = f1(t + c) − f2(c+).

��

Remark 6 Like Remark 5, it can be easily checked that almost identical lemma can
be stated for the deconvolution of semi-closed, closed or mixed types of segments. It
only affects both ends of the output which remains the same inside its support.

Proposition 8 The class of the ultimately pseudo-periodic functions in F [Q+, Q] is
stable under the deconvolution.

Proof Let f, g ∈ F [Q+, Q] be two ultimately pseudo-periodic functions such that
∀t ≥ T f (resp. Tg), f (t + d f) = f (t) + c f (resp. g(t + dg) = g(t) + cg). The reasoning

Discrete Event Dyn Syst (2008) 18:3–49 25

follows the study of the deconvolution in Proposition 4. It has already been proved
there that f � g is ultimately pseudo-periodic from T f , with period d f (even if f and
g are not plain or ultimately plain). It remains to show that f � g is piecewise affine
on [0, T f + d f [. First remark that if cg/dg < c f /d f , then ∀t ∈ R+, f � g(t) = +∞.
Otherwise if c f /d f ≤ cg/dg, then ∀t ∈ [0, T f + d f [, sups≥0(f (t + s) − g(s)) is reached
over 0 ≤ s ≤ max(T f , Tg) + lcm(d f , dg) = T. So, to compute f � g|[0,T f +d f [, f and
g can be replaced by two ultimately affine functions f̃ and g̃ having the same
values up to respectively T + T f + d f and T, from which they are respectively
equal to −∞ and +∞. These functions have finite decompositions into spots and
segments f̃ = sup0≤n≤n0

f̄n and g̃ = inf0≤m≤m0 gm. Over [0, T f + d f [, f � g = f̃ � g̃ =
supn,m f̄n � gm. By using the four elementary lemma combining spots and segments
(Lemma 5, 6, 7, 8), f̃ � g̃ is clearly piecewise affine. By pseudo-periodicity, f � g is
thus piecewise affine over R+. ��

Remark 7 The ultimate periodicity is necessary for the stability of the deconvolution.
This fact is detailed in (Bouillard and Thierry 2007b)

Corollary 1 The classes of ultimately affine functions in F [R+, R] and F [Q+, Q] are
stable under the deconvolution.

Proof This is a direct consequence of Propositions 8 and 3. ��

3.2.3 Stability for the subadditive closure

We first consider the subadditive closure of spots and iterated spots before focusing
on segments and iterated segments, and we end by stating the stability results.

In some cases, we will use the following version of the Frobenius lemma:

Lemma 9 (Ramirez-Alfonsin 2005; Sylvester 1884) Let a1, . . . , an ∈ Q+, there exists
T ∈ Q+ such that (Na1 + · · · + Nan) ∩ [T, +∞[= T + gcd(a1, . . . , an)N. The infimum
of such values T also satisfies this relation, it is denoted Frob(a1, . . . , an). When n = 2,
Frob(a1, a2) = lcm(a1, a2) − a1 − a2 + gcd(a1, a2).

Lemma 10 The subadditive closure of a spot f on 0 is a spot on 0 with f ∗(0) = 0 if
f (0) ≥ 0 and f ∗(0) = −∞ otherwise. The subadditive closure of a spot f on a �= 0 is
the function such that f ∗(ia) = i f (a), ∀i ∈ N and f ∗(t) = +∞ elsewhere.

Lemma 11 Let f ∈ F be an iterated spot from T with period d and increment c. Then
for all k ∈ N

∗, f (k) is an iterated spot from kT with period d and increment c.
The subadditive closure of f ∈ F [Q+, Q] is ultimately pseudo-periodic and can be

explicitly computed.

Proof The first part of the lemma follows from the definition of the convolution:
for k ∈ N

∗, ∀t ∈ R+, f (k)(t) = inf{ f (t1) + · · · + f (tk) | t1, · · · , tk ∈ R+, t1 + · · · + tk =
t}. We have f (t1) + · · · + f (tk) �= +∞ if and only if ∀ 1 ≤ j ≤ k, ∃i j ∈ N, t j = T +
i jd, which implies that t ∈ {kT + id, i ∈ N}. Then, f (t1) + · · · + f (tk) = kf (T) + (t −
kT)c/d, which does not depend on the decomposition.

26 Discrete Event Dyn Syst (2008) 18:3–49

We now show how to compute explicitly the subadditive closure. We dismiss the
case when T = 0 and f (T) < 0 treated in Lemma 1. Let us consider three cases:

• f (T)

T > c
d : we show that there exists β ∈ N

∗ such that for all k ≥ 0, f (k+β) > f (k+1).
Since T, d ∈ Q+, there exist α, β ∈ N such that T + αd = βT, i.e. α

β−1 = T
d . To

get the smallest β, choose β − 1 as the smallest denominator of the fraction T
d ,

which can be also written β − 1 = d
gcd(T,d)

. Then we have f (T + αd) = f (T) +
αc �= +∞ and f (β)(βT) = β f (T) = f (T) + αdf (T)/T �= +∞. As f (T)/T >

c/d, f (T + αd) < f (β)(βT) and more generally f (k+1)(T + αd) < f (k+β)(βT) for
all k ≥ 0. Consequently f ∗ = mink∈{0,...,β−1} f (k), which is ultimately pseudo-
periodic from (β − 1)T with period d and increment c (like the β functions of
this minimum).

• f (T)

T < c
d : as in the previous case, take α, β ∈ N such that T + αd = βT. The

smallest α satisfying this relation is T
gcd(T,d)

. For k ∈ N
∗ and i ∈ N, denote by fk,i

the spot valued kf (T) + ic at kT + id. Then f (k) = infi≥0 fk,i, and if we define
gi = infk≥1 fk,i for i ≥ 0, we have f ∗ = f (0) ⊕ infi≥0 gi. The functions gi are iter-
ated spots with period T and increment f (T) from rank T + id. Since f (T)/T <

c/d, we have f (T + αd) = f (T) + αc > f (T) + αdf (T)/T = f (β)(βT), in other
words f1,α > fβ,0. More generally, it can be checked that fk+1,α+i > fk+β,i for all
k, i ≥ 0. Thus gα+i > gi and f ∗ = f (0) ⊕ mini∈{0,...,α−1} gi. Like all the functions in
this infimum, f ∗ is ultimately pseudo-periodic with period T and increment f (T)

from T + (α − 1)d = βT − d.
• f (T)

T = c
d : we know that the support of f ∗ is {kT + id, i ∈ N, k ∈ N

∗} =
T + NT + Nd, and for any decomposition t = t1 + · · · + tk with ti ∈ T + Nd,
we have f (t1) + · · · + f (tk) = kf (T) + (t − kT)c/d = tc/d which is independent
from the decomposition. Thus f ∗(t) = t c

d on its support, and due to Frobenius
Lemma 9, f ∗ is ultimately pseudo-periodic with period gcd(T, d) and incre-
ment c

d (gcd(T, d)) from rank Frob(T, d). ��

Applying i times Lemma 4 on a segment gives the following lemma.

Lemma 12 Let i ∈ N
∗ and f ∈ F be the segment on]a, b [with parameters σ, ρ. Then

f (i) is the segment on]ia, ib [with parameters iσ, ρ.

The next lemma gives an explicit formula for the subadditive closure of a segment
(Fig. 8).

Lemma 13 Let f ∈ F be the segment on]a, b [with parameters σ, ρ.
If a = 0 and f (a+) < 0, then f ∗ = −∞ over R+.
If f (a+)/a ≤ f (b−)/b, then f ∗ is ultimately plain and pseudo-periodic with

period a and increment f (a+) = σ , from rank a(�a/(b − a)� + 1). More precisely,
f ∗(0) = 0 and on any interval]ia, (i + 1)a], i ∈ N, f ∗ = f (i) i.e.

∀t ∈]0, a], f ∗(ia + t) =

⎧

⎪
⎨

⎪
⎩

i f (a+) + ρt if i > �a/(b − a)�,
i f (a+) + ρt if i ≤ �a/(b − a)� and t < i(b − a),

+∞ if i ≤ �a/(b − a)� and t ≥ i(b − a).

Discrete Event Dyn Syst (2008) 18:3–49 27

Fig. 8 Subadditive closure of
the two types of segments

a b
2a 4a

a b
2a

3b
4a

2b
3aa

3aa

4bb

4b3bb 2b

f (a+)
a ≥ f (b–)

b

f (a+)
a ≤ f (b–)

b

If f (a+)/a > f (b−)/b, then f ∗ is ultimately plain and pseudo-periodic with period b
and increment f (b−) = σ + ρ(b − a), from rank b(�a/(b − a)� + 1). More precisely,
on any interval [(i − 1)b , ib [, i ∈ N

∗, f ∗ = f (i) i.e.

∀t ∈]0, b], f ∗(ib − t) =

⎧

⎪
⎨

⎪
⎩

i f (b−) − ρt if i > �a/(b − a)� + 1,

i f (b−) − ρt if i ≤ �a/(b − a)� + 1 and t < i(b − a),

+∞ if i ≤ �a/(b − a)� + 1 and t ≥ i(b − a).

Proof From Lemma 12, while 1 ≤ i ≤ �a/(b − a)�, the functions f (i) have disjoint
supports, which are also disjoint from the union of the supports of f (j), j > � a

b−a �.
Thus if i ≤ �a/(b − a)�, f ∗ = f (i) on]ia, (i + 1)a] and on [(i − 1)b , ib [.

Suppose that f (a+)/a ≤ f (b−)/b , i.e. σ/a ≤ ρ and i > �a/(b − a)�. As f (i+1)((i +
1)a) = (i + 1)σ ≤ iσ + ρa = f (i)((i + 1)a), we have ∀t ∈]ia, (i + 1)a], f ∗(t) = f (i)(t)
and thus f ∗(t) = f (i)(t) = iσ + ρ(t − ia) on]ia, (i + 1)a].

Suppose now that f (a+)/a > f (b−)/b , i.e. f (b−)/b > ρ and i > �a/(b − a)�.
As f (i)(ib−) = i f (b)− < (i + 1) f (b) − ρb = f (i+1)(ib), we have ∀t ∈ [(i − 1)b , ib [,
f ∗(t) = f (i)(t). ��

Lemma 14 Let f ∈ F be an iterated segment with parameters T, d, a, c, ρ i.e. whose
support is ∪i∈N]T + id, T + id + a[and such that ∀i ∈ N, ∀x ∈]0, a[, f (T + id + x) =
f (T+) + ic + ρx. Then f ∗ is ultimately finite (thus ultimately plain) and ultimately
pseudo-periodic.

Proof We dismiss the case when T = 0 and f (T+) < 0 already treated in Lemma 1.

28 Discrete Event Dyn Syst (2008) 18:3–49

We first study the terms f (k), k ∈ N
∗. The function f (k) is finite on the intervals

]kT + id, kT + id + ka[, i ∈ N. If ka ≤ d, all these intervals are disjoint, and for all x ∈
]0, ka[, we have f (k)(kT + id + x) = kf (T+) + ic + ρx. Indeed any decomposition
of kT + id + x into a sum of k values of the support of f has the form (T +
i1d + x1) + · · · + (T + ikd + xk) with i1 + · · · + ik = i and x1 + · · · + xk = x, because
ka ≤ d. Then we have f (T + i1d + x1) + · · · + f (T + ikd + xk) = kf (T+) + c(i1 +
· · · + ik) + ρ(x1 + · · · + xk) = kf (T+) + ic + ρx whatever the decomposition is.

If ka > d, then the intervals]kT + id, kT + id + ka[, i ∈ N, overlap. For any x > 0,
to get the value of f (kT + x), we have to minimize f (T + i1d + x1) + · · · + f (T +
ikd + xk) where T + i1d + x1, ..., T + ikd + xk sum to kT + x. In other terms, we
wish to minimize kf (T+) + (∑

1≤ j≤k i j
)

c + (∑

1≤ j≤k x j
)

ρ under the constraints that
(∑

1≤ j≤k i j
)

d + (∑

1≤ j≤k x j
) = x and i1, . . . , ik ∈ N, x1, . . . , xk ∈]0, a[, knowing that

d < ka. By putting I = ∑

1≤ j≤k i j and X = ∑

1≤ j≤k x j, it is equivalent to minimizing
Ic + Xρ where Id + X = x, I ∈ N and X ∈]0, ka[. We clearly have to consider two
cases depending on the comparison between ρ and c/d.

If c/d ≤ ρ, we should maximize Id rather than X in the decomposition of x. It
leads to I = � x

d� − 1 (due to the constraint X > 0) which also ensures that 0 < X ≤
d < ka. Then for all x > 0, f (k)(kT + x) = kf (T+) + Ic + ρ(x − Id) = kf (T+) +
c(� x

d� − 1) + ρ(x − d(� x
d� − 1)). In other terms, on any interval]kT + id, kT + (i +

1)d], i ∈ N, we have ∀x′ ∈]0, d], f (k)(kT + id + x′) = kf (T+) + ic + ρx′. Thus the
function f (k) is ultimately pseudo-periodic from kT, with period d and increment c.

If ρ < c/d, we should maximize X rather than Id, leading to I = � x−ka
d � + 1 if x ≥

ka (it satisfies 0 < X ≤ d < ka) and I = 0 if x < ka (due to I ∈ N), and all constraints
are fulfilled. To write it in a convenient way, on any interval [kT + (i − 1)d +
ka, kT + id + ka[, i ∈ N

∗, we have ∀x′ ∈]0, d], f (k)(kT + ka + id − x′) = kf (T +
a−) + ic − ρx′. The function f (k) is ultimately pseudo-periodic from k(T + a),
with period d and increment c. Note that for x ∈]0, ka[, f (k)(kT + x) = kf (T+) + ρx.

Figure 9 illustrates the shapes of these iterated convolutions f (k) of the iterated
segment f , depending on k and the comparison between c/d and ρ.

We now study the subadditive closure, considering several cases.
From k0 = min{k | ka > d} = � d

a � + 1, all the functions f (k), k ≥ k0, are the same
functions up to a translation.

• Suppose that c
d ≤ ρ. For k ≥ k0 and i ∈ N, let fk,i be the semi-closed segment of

slope ρ on the support]kT + id, kT + (i + 1)d] such that fk,i(kT + id+) = kf (T+) +
ic, then we have f (k) = infi≥0 fk,i. For i ∈ N, we define gi = infk≥k0 fk,i which is clearly
ultimately pseudo-periodic from k0T + id with period T and increment f (T+) (but
not necessary ultimately plain, it depends on whether T ≤ d). The subadditive
closure can be written f ∗ = inf0≤k<k0 f (k) ⊕ infk≥k0 f (k). The first term is ultimately
pseudo-periodic from (k0 − 1)T with period d and increment c. The second term
which is clearly ultimately plain from k0T (as f (k0) is). We now analyse the second
term.

1. Suppose that f (T+)

T ≤ c
d . Note that it implies T > 0. We first show that ∃i0 ≥ 1,

k1 > k0 such that infi≥i0 fk0,i ≥ infi≥0 fk1,i over R+. In other words, we wish to find
some i0 and k1 such that the start of fk0,i0 is above fk1,0. More formally:

k1T ≤ k0T + i0d < k1T + d and fk0,i0(k0T + i0d+) ≥ fk1,0(k0T + i0d+).

Discrete Event Dyn Syst (2008) 18:3–49 29

Fig. 9 Iterated convolution f (k) of the iterated segment f

With K = k1 − k0, it is equivalent to:

i0 − 1 <
KT
d

≤ i0 and k0 f (T+) + i0c ≥ ρ((k0T + i0d) − k1T) + k1 f (T).

That is:

i0 =
⌈

KT
d

⌉

, and i0

(c
d

− ρ
)

≥ KT
d

(

f (T+)

T
− ρ

)

.

It leads to the inequation:
⌈

KT
d

⌉
(

ρ − c
d

)

≤ KT
d

(

ρ − f (T+)

T

)

.

Such an integer K ∈ N
∗ exists since 0 ≤ ρ − c

d < ρ − f (T+)

T (note that it is better
to choose the smallest K satisfying the inequation in order to minimize i0

30 Discrete Event Dyn Syst (2008) 18:3–49

and k1 to have a shorter expression of f ∗ as we will see). Then due to the
respective positions of the segments fk,i, we have infi≥i0 fk0,i ≥ infi≥0 fk1,i over R+
and by translation, for all � ≥ 0, infi≥i0 fk0+�,i ≥ infi≥0 fk1+�,i = f (k1+�) over R+.
Thus, infk≥k0 f (k) = infi≥0 gi = inf0≤i<i0 gi, which is ultimately pseudo-periodic
from k0T + (i0 − 1)d with period T and increment f (T+) (we already noted
that it is also ultimately plain from this rank). Finally, since c

d >
f (T+)

t , the
function f ∗ = inf0≤k<k0 f (k) ⊕ inf0≤i<i0 gi is ultimately plain and pseudo-periodic
with period T and increment f (T+).

2. Suppose that f (T+)

T > c
d . We now show that there exists k1 > k0 such that f (k0) ≤

f (k1) over R+, that will lead by translation to f (k0+�) ≤ f (k1+�) for all � ≥ 0. We
wish to find some i0 and k1 such that the start of f (k1), i.e. the start of fk1,0, is
above fk0,i0 . More formally,

k0T + i0d ≤ k1T < k0T + (i0 + 1)d and fk0,i(k1T+) ≤ fk1,0(k1T+)

With K = k1 − k0, this is equivalent to

i0 ≤ KT
d

< i0 + 1 and k0 f (T+) + i0c + ρ(k1T − (k0T + i0d)) ≤ k1 f (T+),

that is

i0 =
⌊

KT
d

⌋

, and i0

(

ρ − c
d

)

≥ KT
d

(

ρ − f (T+)

T

)

,

which leads to the inequation
⌊

KT
d

⌋
(

ρ − c
d

)

≥ KT
d

(

ρ − f (T+)

T

)

.

Such an integer K ∈ N
∗ exists since 0 ≤ ρ − f (T+)

T < ρ − c
d . We can choose any

solution K to the inequation (choose the smallest one to minimize the associ-
ated i0 and k1 and thus the next expression of the subadditive closure). Then we
clearly have f (k1) ≥ f (k0) and by translation f (k1+�) ≥ f (k0+�) for all � ≥ 0. Thus
f ∗ = inf0≤k<k0 f (k) ⊕ infk0≤k<k1 f (k) which is ultimately plain and pseudo-periodic
from (k1 − 1)T with period d and increment c.

• Suppose that c
d > ρ. For k ≥ 1, let fk,0 be the segment of slope ρ on the support

]kT, k(T + a)[such that fk,0(k(T + a)−) = kf (T + a−) = kf (T+) + ρka, and for
i ≥ 1, let fk,i be the semi-closed segment of slope ρ on the support [kT + ka + (i −
1)d, kT + ka + id[such that fk,i(kT + ka + id−) = kf (T + a−) + ic. We know that
for all k ≥ k0 = min{k | ka > d}, f (k) = infi≥0 fk,i which is ultimately pseudo-periodic
with period d and increment c. We also define for all i ≥ 0, gi = infk≥k0 fk,i. All the
semi-closed segments fk,i, k, i ≥ 1, are identical up to a translation, and for all i ≥ 1, gi

is clearly ultimately pseudo-periodic with period (T + a) and increment f (T + a−).
For i = 0, the asymptotic behavior of g0 depends on the comparison between ρ

and f (T+a−)

T+a . If ρ >
f (T+a−)

T+a , then g0 is ultimately pseudo-periodic from k0T with
period T and increment f (T+), it is composed of semi-closed segments of slope ρ.
Otherwise if ρ ≤ f (T+a−)

T+a , then g0 is ultimately pseudo-periodic from k0(T + a) with
period T + a and increment f (T + a−), it is composed of semi-closed segments of
slope ρ.

The subadditive close can be written f ∗ = inf0≤k<k0 f (k) ⊕ infk≥k0 f (k). The first
term is ultimately pseudo-periodic from (k0 − 1)(T + a) with period d and incre-
ment c. We now study the second term.

Discrete Event Dyn Syst (2008) 18:3–49 31

1. Suppose that f (T+a−)

T+a > c
d . We show that ∃k1 > k0 such that the end of fk1,0 is

above some fk0,i. More formally, there exists some i0 ≥ 1 and k1 > k0 such that

k0(T + a) + (i0 − 1)d < k1(T + a) ≤ k0(T + a) + i0d and

f (k0)(k1(T + a)−) ≤ f (k1)(k1(T + a)−).

With K = k1 − k0, this is equivalent to

i0 − 1 <
K(T + a)

d
≤ i0 and

k0(f (T+) + ρa) + i0c ≤ k1(f (T+) + ρa) − ρ((k0 − k1)(T + a) + i0d),

that is

i0 =
⌈

K(T + a)

d

⌉

and i0c + Kρ(T + a) − ρi0d ≤ K f (T+) + Kρa,

which leads to the inequation.
⌈

K(T + a)

d

⌉
(c

d
− ρ

)

≤ K(T + a)

d

(

f (T + a−)

T + a
− ρ

)

.

This is satisfied for some integer K ∈ N
∗ since 0 < c

d − ρ <
f (T+a−)

T+a − ρ. Then for
k1 and i0 satisfying the constraints, due to the respective positions of the segments
fk,i, we have inf0≤i<i0 fk0,i ≤ fk1,0 over R+, and more generally, for all �, m ≥ 0,
we have infm≤i≤i0+m fk0+�,i ≤ fk1+�,m. It implies that for all � ≥ 0, f (k0+�) ≤ f (k1+�)

over R+ and thus infk0≤k f (k) = infk0≤k<k1 f (k) which is ultimately pseudo-periodic
from (k1 − 1)(T + a) with period d and increment c (like the functions f (k),
k0 ≤ k < k1). Finally, f ∗ is ultimately pseudo-periodic from (k1 − 1)(T + a) with
period d and increment c.

2. Suppose that f (T+a−)

T+a < c
d . We wish to find some k > k0 and i0 such that the end

of fk0,i0 is above fk1,0. More formally

k1(T + a) − d < k0(T + a) + i0d ≤ k1(T + a) and

f (k0)(k0(T + a) + i0d−) ≥ f (k1)(k0(T + a) + i0d−).

With K = k1 − k0, it is equivalent to:

i0 ≤ K(T + a)

d
< i0 + 1 and

k0 f (T + a−) + i0c ≥ k1 f (T + a−) − ρ((k1 − k0)(T + a) − i0d).

That is,

i0 =
⌊

K(T + a)

d

⌋

and i0d
(c

d
− ρ

)

≥ K(T + a)

(

f (T + a−)

T + a
− ρ

)

It leads to the inequation:
⌊

K(T + a)

d

⌋
(c

d
− ρ

)

≥ K(T + a)

d

(

f (T + a−)

T + a
− ρ

)

which is satisfied for some integer K ∈ N
∗ since f (T+a−)

T+a − ρ < c
d − ρ. Then

for k1 and i0 satisfying the constraints, due to the respective positions of the

32 Discrete Event Dyn Syst (2008) 18:3–49

segments fk,i, we have infi≥i0 fk0,i ≥ infi≥0 fk1,i = f (k1) over the support of f (k1).
More generally, for all � ≥ 0, we have infi≥i0 fk0+�,i ≥ infi≥0 fk1+�,i = f (k1+�) over
the support of f (k1+�). It leads to infk≥k0 f (k) = inf0≤i<i0 gi and we have two cases.

If ρ ≤ f (T+a−)

T+a , then inf0≤i<i0 gi is ultimately pseudo-periodic with period T + a and
increment f (T + a−) (like all gi, 0 ≤ i < i0). In this case, f ∗ is ultimately pseudo-
periodic with period T + a and increment f (T + a−) (since f (T+a−)

T+a < c
d).

If f (T+a−)

T+a < ρ, then inf0≤i<i0 gi is ultimately equal to g0 which is ultimately plain

and pseudo-periodic with period T and increment f (T+) (since f (T+)

T <
f (T+a−)

T+a < c
d).
��

Proposition 9 The classes F [R+, R] and F [Q+, Q] are stable under the subadditive
closure.

Moreover, let f ∈ F [Q+, Q] (resp. F [Q+, R]) be an ultimately pseudo-periodic
function, then f ∗ is ultimately pseudo-periodic in F [Q+, Q] (resp. F [R+, R]).

Proof Let f ∈ F [R+, R] and let (fn)n∈N be its decomposition into segments and
spots. Let A ∈ R+ and n0 be the smallest integer n such that fn has a support disjoint
from [0, A]. Since for all t ∈ R+, f ∗(t) only depends on the values of f on [0, t],
we have f ∗

[0,A] = (min0≤i<n0 fi|[0,A])∗ = (f ∗
0 ∗ · · · ∗ f ∗

n0
)[0,A] by the morphism property

of the star from min to ∗. Applying Lemma 10, Lemma 13 and Proposition 7 for
the stability of the convolution, we get that f ∗ is piecewise affine on [0, A], and
consequently on R+. Note that everything remains in F [Q+, Q] if f belongs to this
class.

Let f ∈ F [Q+, Q] be an ultimately plain pseudo-periodic function, we decompose
f into a finite number of elementary functions fi, 1 ≤ i ≤ n, which are spots,
segments, iterated spots or iterated segments and such that f = mini fi. Then the
morphism property of the star from min to ∗ gives f ∗ = f ∗

1 ∗ · · · ∗ f ∗
n . Lemma 10,

Lemma 11, Lemma 13 and Lemma 14 ensure that each f ∗
i is ultimately pseudo-

periodic. Then we must consider two cases. In the first case, at least one fi is a
segment or an iterated segment which means that f ∗

i is ultimately pseudo-periodic
and ultimately finite (thus ultimately plain). Together with Proposition 4 for ∗ and
the last remark in its proof, composing f ∗

i with the other functions f ∗
j yields an

ultimately pseudo-periodic function which is also ultimately finite (thus ultimately
plain). In the second case, all the fi’s are spots or iterated spots. One can not
directly apply Proposition 4. However since f ∈ F [Q+, Q], its discontinuities have
a smallest common denominator d. Let g ∈ D such that g(t) = f (t

d), then we clearly
have f ∗(t) = [g∗]R(dt). Due to Proposition 5 for the discrete model, g∗ is ultimately
pseudo-periodic, thus f ∗ is also ultimately pseudo-periodic.

If f ∈ F [Q+, R] is ultimately plain pseudo-periodic, the same reasoning still
applies to prove the ultimate pseudo-periodicity, and f ∗ ∈ F [R+, R] since this class
is stable, but there exists some f ∈ F [Q+, R] such that f ∗ �∈ F [Q+, R] (see Bouillard
and Thierry 2007b). ��

Putting together the results of the section gives the second stability theorem:

Theorem 2 The class of plain ultimately pseudo-periodic functions of F [Q+, Q] is
stable under the network calculus operations +, −, min, max, ∗, � and the subadditive
closure.

Discrete Event Dyn Syst (2008) 18:3–49 33

Like Theorem 1, weakening the statement to ultimately plain pseudo-periodic
functions in F [Q+, Q] does not work (see Remark 4).

In fact, thanks to the Interpolation Proposition 1, Theorem 2 provides a new proof
of Theorem 1 for D.

Here are some other corollaries of Theorem 2:

Corollary 2 The non-decreasing ultimately pseudo-periodic functions of F [Q+, Q]
are stable under the network calculus operations +, min, max, ∗, � and the subadditive
closure, except −.

Proof It is known that the network calculus operations, except −, preserve the non-
decrease of the functions (e.g. see Le Boudec and Thiran 2001). ��

As mentioned before, some stability results were already known for some classes
of fluid functions. Recorded in (Baccelli et al. 1992), they are mainly stated through
a representation of functions by formal power series in two variables γ and δ,
and for (max,+) versions of network calculus operations which directly imply the
same for their (min, +) counterparts up to a few small adjustments (e.g. right-
continuous becomes left-continuous, convex becomes concave). Theorem 6.32 which
is extended by Remark 6.33, pages 290–291, can be translated into “non-decreasing
left-continuous ultimately pseudo-periodic staircase functions of F [N, R] are stable
under the operations min, ∗ and the subadditive closure”. It yields the same result for
such staircase functions in F [Q+, R], up to reducing the discontinuities to N by multi-
plying them by a common denominator (such denominators always exist in ultimately
pseudo-periodic functions in F [Q+, R]). This result is generalized in Corollary 6.34,
page 291, which yields the stability of a more general class of functions. Let us call
a function f a concave staircase if it is piecewise affine and for any segment of f
of support]a, b [, the continuation of this segment over [0, b [is above f on [0, b [
(as a consequence those functions are non-decreasing). Non-decreasing staircase
functions are clearly concave staircases. Corollary 6.34 in (Baccelli et al. 1992) can be
translated into “left-continuous ultimately pseudo-periodic concave staircase functions
of F [Q+, R] are stable under the operations min, ∗ and the subadditive closure”. The
original (max,+) version is stated for functions in F [N, R] (but ultimate pseudo-
periodicity enables to switch from N to Q+ as above), with a finite set of slopes (which
is even more precise).

Concerning usual modeling assumptions, in (Le Boudec and Thiran 2001), it is
shown that when dealing with arrival curves of left- or right-continuous cumulative
flows, one can assume w.l.o.g. that they are left-continuous (Lemma 1.2.1, page 9).

Piecewise affine functions in F [R+, R] Note that we have also proved that stability
results apply for the ultimately affine functions of F [R+, R] (for all operations
except the subadditive closure) but they are lost for the ultimately pseudo-periodic
functions: the combination of such pseudo-periodic functions is usually not pseudo-
periodic. For instance it is well-know that the sum of two periodic functions with
respective minimum periods d1 and d2 is aperiodic if d1/d2 is irrational (Corduneanu
and Bohr 1961), this directly implies the same for pseudo-periodic functions.

34 Discrete Event Dyn Syst (2008) 18:3–49

4 Algorithmic aspects

As a consequence of Theorems 1 and 2, we will mainly design algorithms im-
plementing the network calculus operations for plain ultimately pseudo-periodic
functions in F [Q+, Q] and in D. Thanks to the Interpolation Proposition 1, we can
clearly deduce the output functions in D by performing the operations in F [Q+, Q]
or F [Q+, R].

4.1 Storage of ultimately pseudo-periodic functions

Let f ∈ F [Q+, Q] be an ultimately pseudo-periodic function from T, with period d
and increment c, such that ∀t ≥ T, f (t + d) = f (t) + c. We choose to store the affine
pieces of the function (in particular their slopes) on the interval [0, T + d[. One can
store f as ([t1, . . . , tk], (T, d, c)), where T is the rank from which f is pseudo-periodic,
d is a period of f and c the corresponding increment, [t1, . . . , tk] is the list of its affine
pieces (spot+segment). More precisely, ∀1 ≤ i ≤ k, ti = (xi, f (xi), yi, ρi) such that f
is affine on]xi, xi+1[(resp.]xk, T + d[when i = k), yi = f (xi+) and ρi is the slope on
this interval. Whenever f is equal to +∞ (resp. −∞) on]xi, xi+1[, we arbitrarily set
yi = +∞ (resp. −∞) and ρi = 0.

We require that x1 = 0, that there exists i0 such that xi0 = T, and that xk < T + d.
We can use a simple linked list for [t1, . . . , tk], where tk points back to ti0 (Fig. 10).
Moreover, an integer counter η f (initialized to 0) is associated with f , which tells as
we move forward through the data structure how many times the link between tk and
ti0 has been used. Finally, we add an extra pointer pos which points to one tuple ti so
that we can access it in constant time (it marks the tuple which is currently scanned).

Note that this choice of data structure has imposed the assumption ∀t ≥ T, f (t +
d) = f (t) + c rather that ∀t > T. Of course, one can easily find another simple data
structure which fits better the definition with the strict inequality.

We have deliberately chosen a simple data structure sufficient to run our algo-
rithms implementing network calculus operations. It is clear that this data structure
can be adjusted to specific programming languages or can be enforced if there is a
need to perform efficiently some other operations, e.g. given the function f , quickly
compute f (x) for any x ∈ R+.

To save space, one optimization could consist in aggregating spots and segments
into (semi-) closed segments whenever feasible. The algorithms we present can
be adjusted to deal with these mixed types of segments without changing their
complexity, as mentioned in Remarks 5 and 6 for the convolution and deconvolution

Fig. 10 A simple data structure to store ultimately pseudo-periodic functions

Discrete Event Dyn Syst (2008) 18:3–49 35

and with a small amount of work for the other operations. This optimization has been
considered for the current C++ implementation of our algorithms (COINC Project,
INRIA 2006).

In all the section, we use our data structure with spots and open segments
to describe our algorithms and analyze their complexities. We need a routine
Extend(f, T ′, d′), which is only defined for T ′ ≥ T and if d divides d′ and returns
an extended description of f where all tuples over [0, T ′[and then over [T ′, T ′ + d′[
are given in the linked list and where the loop pointer joins the last tuple to the tuple
starting at T ′. That function runs in linear time in the size of spots and segments
of the extension. That function may also add the new spots/segments “on the fly”
in constant time, for instance while merging sorted lists of discontinuities for the
addition or the minimum of functions.

Our algorithms are designed for ultimately pseudo-periodic functions but di-
rectly apply to ultimately affine functions by choosing for them an arbitrary period
as observed in Remark 1. For instance a T-SPEC (M, p, r, b) arrival curve α

which satisfies α(0) = 0 and ∀t ∈ R
∗+, α(t) = min(M + pt, rt + b) can be stored as

([(0, 0, M, p), (b−M
p−r ,

b p−Mr
p−r ,

b p−Mr
p−r , r)], (b−M

p−r , ε, rε)) if the chosen period is ε > 0. To
get good performances, rather than redesigning algorithms for the ultimately affine
functions, one can adjust the choice of the period ε to the periods of the other input
functions (e.g. so that lcm’s are immediate). Moreover for such functions the routine
Extend() only has to extend the last segment, which does not change the size of the
input function and runs in constant time (adding useless spots and segments must be
avoided here).

Concerning the main parameters and the storage space of an ultimately pseudo-
periodic function f (resp. fi) in F [Q+, Q], we will denote by Tf (resp. Ti), df

(resp. di), cf (resp. ci) a rank of pseudo-periodicity, a period and its associated
increment. We will also denote by n f (resp. ni) the number of tuples in the transient
part of the function, i.e. over [0, T[, and by p f (resp. pi) the number of tuples in the
pseudo-periodic part of the function, i.e. over [T, T + d[, and we will use the notation
Nf = nf + pf (resp. Ni = ni + pi) for the size of all tuples representing f (resp. fi).
Let � be a network calculus operation. Then, given an algorithm implementing it,
notations like N f�g or d f�g will refer to the size or the parameter of the output for
this algorithm.

Note that, as shown in Section 2.1, checking whether the output of any network
calculus operation is well-defined can be easily done from inputs in linear time.

4.2 Addition of ultimately pseudo-periodic functions

Let f1 and f2 be two ultimately pseudo-periodic functions in F [Q+, Q]. From
Proposition 4, we know that the addition of those two functions is ultimately pseudo-
periodic from max(T1, T2) with a period d = lcm(d1, d2) and an associated increment
c = c1

d1
d + c2

d2
d. As a consequence, it is sufficient to compute the addition on the

interval [0, max T1, T2 + d[. The discontinuities of f1 + f2 are included within the
union of the discontinuities of f1 and f2. Thus one way to compute f1 + f2 consists
in merging the sorted lists of discontinuities of f1 and f2, and compute the additions
at each discontinuities and between consecutive pairs of discontinuities. It can be

36 Discrete Event Dyn Syst (2008) 18:3–49

done through a single pass over f1 and f2 with the following complexity (Ne
i stands

for the number of tuples when extending the function):

Proposition 10 Let f1, f2 ∈ F [Q+, Q] both ultimately pseudo-periodic. If T1 = T2 =
T and d1 = d2 = d, then f1 + f2 can be computed in time O(N f1+ f2) where N f1+ f2 =
N1 + N2.

Consequently, in the general case, f1 + f2 can be computed in time O(N f1+ f2)

where N f1+ f2 = Ne
1 + Ne

2 with Ne
1 = n1 + p1

(T+d)−T1
d1

, Ne
2 = n2 + p2

(T+d)−T2
d2

, T =
max(T1, T2) and d = lcm(d1, d2).

Subtractions of functions work exactly in the same way.

Addition of several ultimately pseudo-periodic functions There are several solu-
tions to compute the sum of k functions f1, . . . , fk. Whether the algorithm does a
single pass over the data structures or not, the computation necessarily merge the
sets of discontinuities of the functions fi, 1 ≤ i ≤ k. Several solutions work.

Algorithm 1: Addition of two functions (sketch).

Data: f 1; f 2 ∈ both ultimately pseudo-periodic.

Result: f 1 + f 2 with parameters T , d, c.

begin
T ← max T1;T2; d ← lcm(d1;d2); c ← (c1

d1
+ c2

d2
)d;

Extend (f1 ;T ;d);

Extend (f2 ;T ;d);

Merge the sorted lists of discontinuities of f1 and f2 on [0;T + d[;

Compute f1 + f2 at each discontinuity and between each pair of consecutive

discontinuities in the merged list;

end

One is to modify Algorithm 1 so that it takes k functions in argument, and at each
new discontinuity, it computes the sum of the values of fi and the sum of the next
segments. Finding the next discontinuity can be made in O(1) with the use of a binary
heap which is initially set up in O(k) and updated in O(log2(k)) at each extraction or
insertion of a discontinuity (Cormen et al. 2001). Updating the sum of all functions at
a new discontinuity and between the next consecutive discontinuities requires O(1)

amortized complexity (each discontinuity of each input function induces the change
of only one term in the sum). Up to extending the functions, suppose that ∀1 ≤ i ≤ k,
Ti = T and di = d, then the overall complexity is O(log2(k)

∑k
i=1 Ni).

Another solution is to add functions two by two (using Algorithm 1) by organizing
the whole calculation as a balanced binary tree with the k inputs at the leaves and
finally the output at the root (Divide & Conquer scheme). It gives a O(log2(k)N∑

fi)

algorithm where N∑

fi ≤ ∑k
i=1 Ni, since each input discontinuity leads to at most

�log2(k)� constant time operations (comparisons or sums) along the branch from
its leaf to the root. Another way to organize the pairwise sums of functions is to

Discrete Event Dyn Syst (2008) 18:3–49 37

use the binary tree constructed with Huffman algorithm (where weights are the
number of discontinuities, i.e. tuples in the data structure), it is proved that the
overall complexity is better than the balanced binary tree.

4.3 Minimum of ultimately pseudo-periodic functions

Let f1 and f2 be two ultimately pseudo-periodic functions in F [Q+, Q]. Proposition 4
gives a sufficient condition so that their minimum is also ultimately pseudo-periodic:
it works if they are both ultimately plain. If c1

d1
= c2

d2
, then the minimum has a

period d = lcm(d1, d2) and an associated increment c = c1
d1

d. Otherwise if c1
d1

< c2
d2

,
the minimum has a period d = d1 and an associated increment c = c1. There are at
least two ways to compute the minimum:

1. One can precompute a rank T from which the minimum is pseudo-periodic, and
then extend the functions over [0, T + d[and merge the two lists of disconti-
nuities to compute the minimum at each discontinuity and between each pair
of consecutive discontinuities (see Algorithm 2 when both inputs are ultimately
plain).

2. Otherwise one can compute the minimum in a single pass , and find on the fly a
rank from which the output is pseudo-periodic.

38 Discrete Event Dyn Syst (2008) 18:3–49

Proposition 11 Let f1, f2 ∈ F [Q+, Q] both ultimately plain pseudo-periodic. Then,
with the notation of Algorithm 2, min(f1, f2) can be computed in time O(Ne

1 + Ne
2)

where Ne
1 = n1 + p1

(T+d)−T1
d1

, Ne
2 = n2 + p2

(T+d)−T2
d2

and Nmin(f1, f2) ≤ 2(Ne
1 + Ne

2).

Proof Computing M1 (resp. m2) can be done in O(p1) (resp. O(p2)). Extending the
data structure for f1 and f2 up to T + d requires O(Ne

1 + Ne
2) steps, and merging the

two corresponding lists of discontinuities can be done in O(Ne
1 + Ne

2). Then between
two discontinuities of the merged list, at most one new discontinuity may appear (at
the intersect of two segments), which justifies the bound Nmin(f1, f2) ≤ 2(Ne

1 + Ne
2). ��

The maximum of functions works exactly in the same way.

Minimum of several ultimately pseudo-periodic functions Computing the minimum
of several functions has actually been extensively studied in computational geometry
where the problem is often referred as the computation of the lower envelope of
functions. The next theorem sums up the main results which can be found in the
literature. In the statement, a total function in F is a function whose support is R+
and a partial function in F is a function whose support is an interval of R+. The
parameter λs(n) is the maximum length of an (n, s) Davenport–Schinzel sequence, it
occurs in several problems from geometry, but its definition and its study belong
to the theory of finite words (Agarwal and Sharir 1995a,b). The function α(n) is
the inverse Ackermann function which grows extremely slowly, e.g. α(n) ≤ 5 when
n ≤ 265536 Cormen et al. (2001).

Theorem 3 (Agarwal and Sharir 1995b; Attalah 1985; Hershberger 1989; Nielsen
and Yvinec 1998) The minimum (lower envelope) of a set of n continuous total
functions, each pair of whose graphs intersect in at most s points, can be constructed,
in an appropriate model of computation, in O(λs(n) log n) time and the size of the
output is O(λs(n)). If the functions are partial, then their minimum can be computed
in O(λs+1(n) log n) time and the size of the output is O(λs+2(n)). In the particular case
when the functions are segments, the minimum can be computed in O(n log N) time,
where N is the size of the output which satisfies N ≤ λ3(n) =
(nα(n)).

The appropriate model assumes that each intersection between two functions can
be computed in O(1) amortized time. It is actually the case when the functions
are segments. The complexity for n total functions can be achieved thanks to
a straight forward Divide & Conquer algorithm, which can be directly extended
into a O(λs+2 log n) algorithm for partial functions (Agarwal and Sharir 1995b;
Boissonat and Yvinec 1998). The complexity for partial functions was improved in
(Hershberger 1989) by reorganizing the divide and conquer computation, yielding
a O(λs+1(n) log n) algorithm and thus a O(n log n) algorithm for segments since
λ2(n) = 2n − 1. The output sensitive O(n log N) algorithm in (Nielsen and Yvinec
1998) uses those previous works but also introduces a preprocessing step called
Marriage-before-Conquest. Some of these algorithm are implemented in libraries
like CGAL (Computational Geometry Algorithms Library [interfaced with Scilab
through CGLAB], http://www.cgal.org). Concerning the upper bound on the output
size, note that it can be deduced from (Agarwal and Sharir 1995b) that for all n,

http://www.cgal.org

Discrete Event Dyn Syst (2008) 18:3–49 39

λ3(n) ≤ 68(α(n) + 1)n, which has been refined into λ3(n) ≤ 3nα(n) for sufficiently
large n in (Klazar 1999).

As we will see in the next subsections, those results are useful for the computation
of the convolution and the deconvolution.

4.4 Convolution of ultimately pseudo-periodic functions

Let f1 and f2 be two ultimately pseudo-periodic functions in F [Q+, Q]. The next
algorithm for the convolution of f1 and f2 follows the proof of stability in Proposi-
tion 4:

1. The function f1 is decomposed into f1 = f ′
1 ⊕ f ′′

1 where f ′
1 = f1 on [0, T1[and

= +∞ elsewhere, is the transient part, and f ′′
1 = f1 on [T1,+∞[and = +∞

elsewhere, is the pseudo-periodic part. The same decomposition is applied to
f2 = f ′

2 ⊕ f ′′
2 .

2. We have f1 ∗ f2 = (f ′
1 ∗ f ′

2) ⊕ (f ′
1 ∗ f ′′

2) ⊕ (f ′′
1 ∗ f ′

2) ⊕ (f ′′
1 ∗ f ′′

2), and some infor-
mation about the pseudo-periodicity of each term.

3. The function f ′
1 ∗ f ′

2 has a support included in [0, T1 + T2[, and is equal to +∞
outside. To compute this term, let (f ′

1,i)i∈I (resp. (f ′
2, j) j∈J) be the set of segments

and spots of f ′
1 (resp f ′

2), i.e. f ′
1 = mini∈I f ′

1,i (resp. f ′
2 = min j∈J f ′

2, j). Then f ′
1 ∗

f ′
2 = mini∈I, j∈J f ′

1,i ∗ f ′
2, j where each f ′

1,i ∗ f ′
2, j is either a spot, a segment or two

consecutive segments (see Lemma 2, 3 and 4). This minimum over i ∈ I and
j ∈ J is the minimum of at most 2(|I| + |J|) segments and can be computed
thanks to the algorithms from computational geometry presented in the previous
subsection.

4. The term f ′
1 ∗ f ′′

2 is ultimately pseudo-periodic from T1 + T2 with period d2

and increment c2, thus it is sufficient to compute it on [0, T1 + T2 + d2[(note
that its support is within [T2,+∞[). This computation requires the values of f ′

1
over [0, T1[and the values of f ′′

2 over [T2, T1 + T2 + d2[. Following the method
for f ′

1 ∗ f ′
2, decomposing into spots and segments the two functions on those

intervals enables to compute the convolution on [0, T1 + T2 + d2[.
5. The same method applies to f ′

2 ∗ f ′′
1 which is ultimately pseudo-periodic

from T1 + T2 with period d1 and increment c1.
6. The term f ′′

1 ∗ f ′′
2 is ultimately pseudo-periodic from T1 + T2 + d with period

d = lcm(d1, d2) and increment d min(c1
d1

, c2
d2

), thus it is sufficient to compute
it on [0, T1 + T2 + 2d[(note that its support is within [T1 + T2,+∞[). This
computation requires the values of f ′′

1 over [T1, T1 + 2d[and the values of f ′′
2

over [T2, T2 + 2d[. Decomposing into spots and segments the two functions on
those intervals enables to compute the convolution on [T1 + T2, T1 + T2 + 2d[
and thus [0, T1 + T2 + 2d[.

7. The minimum of the four terms can be computed with a simple algorithm for the
minimum like the ones presented in the previous subsection.

As explained in Proposition 4, it is sufficient that at least one of the two functions is
ultimately plain to ensure that this scheme works.

Example 2 To illustrate Algorithm 3, we develop here an example of the compu-
tation of the convolution of two functions. Let f1 be represented by ([(0, 0, 3, 1),
(2, 5, 5, 0), (4, 5, 5, 1)], (2, 4, 2)) and f2 be represented by ([(0, 0, 0, 2), (2, 4, 4, 0),

40 Discrete Event Dyn Syst (2008) 18:3–49

(5, 4, 4, 3)], (2, 4, 3)). With the notations of Algorithm 3, the period of f1 ∗ f2 is
d = lcm(4, 4) = 4 and the increment is c = 4 min(2/4, 3/4) = 2. Functions f1 and f2

are depicted in Fig. 11.
The thinner part is the transient part f ′

j and the bolder part is the periodic part,
f ′′

j , j ∈ {1, 2}. The first step of the algorithm is to compute the convolution of the
transient parts. This is done by computing the convolutions of the segments/spots of
the transient parts two by two, as depicted in Fig. 12a. The dashed lines are these two

Fig. 11 Two functions f1 and
f2 to be convoluted f1

f2

T1 + d1T1 T2 T2 + d2

Discrete Event Dyn Syst (2008) 18:3–49 41

a b

c d

Fig. 12 Steps of the convolution algorithm

by two convolutions and the plain line is their minimum, which is the convolutionof
the transient parts. Note that for readability, the functions are slightly shifted. The
second and third steps, shown in Fig. 12b and c, are the convolutions of a transient
part by a periodic part. Every segment/spot of the transient part of a function is
convoluted with every segment/spot of the periodic part, and we know that the
result is pseudo-periodic from T1 + T2 with period d. So we only keep the results
in the interval [0, T1 + T2 + d[. The fourth step is to compute the convolution of the
periodic parts. The result is periodic from T1 + T2 + d, so only the result restricted
to [T1 + T2, T1 + T2 + 2d[is computed. It is depicted in Fig. 12d.

Finally, the minimum of those four functions is computed. One needs to extend
the functions. The result is depicted in Fig. 13.

Proposition 12 Let f1, f2 ∈ F [Q+, Q] both ultimately pseudo-periodic such that
f1 ∗ f2 is ultimately pseudo-periodic, e.g. at least one is ultimately plain. Then using
its notations, Algorithm 3 computes f1 ∗ f2 in time O(Nε

1 Nε
2 log max(Nε

1, Nε
2) +

Ne
1 Ne

2α(max(Ne
1, Ne

2))) where Ne
1 = n1 + p1� (T+d)−T1

d1
�, Ne

2 = n2 + p2� (T+d)−T2
d2

�,

Nε
1 = n1 + p1 max(� T2+d1

d1
�, 2d

d1
) and Nε

2 = n2 + p2 max(� T1+d2
d2

�, 2d
d2

). The size of the
output satisfies N f1∗ f2 = O(Ne

1 Ne
2α(max(Ne

1, Ne
2))).

42 Discrete Event Dyn Syst (2008) 18:3–49

Fig. 13 The convolution is the
minimum of the convolutions
computed in Fig. 12

Proof The sets (f ′
1,i)i∈I′ , (f ′′

1,i)i∈I′′ , (f ′′′
1,i)i∈I′′′ of spots and segments have respective

cardinals = 2n1, ≤ 2(p1 + p1� T2
d1

�), = 2p1
2d
d1

, and can be generated in linear time with
respect to their cardinals. The same holds for (f ′

2, j) j∈J′ , (f ′′
2, j) j∈J′′ , (f ′′′

2, j) j∈J′′′ . The next
steps of Algorithm 3 can be analyzed through the quantities presented in Table 1.

Each elementary convolution in (f ′
1,i ∗ f ′

2, j)i∈I′, j∈J′ , (f ′
1,i ∗ f ′′

2, j)i∈I′, j∈J′′ , (f ′′
1,i ∗

f ′
2, j)i∈I′′, j∈J′ , (f ′′

1,i ∗ f ′′
2, j)i∈I′′′, j∈J′′′ can be computed in O(1) time thanks to Lemma 2,

3 and 4. The minimum (lower envelope) of each of these four families can be
computed with the algorithms mentioned in Theorem 3, thus in time O(M log M)

where M is the number of spots and segments generated by the respective elementary
convolutions (knowing that an elementary convolution leads to at most two consec-
utive segments). During the last step of Algorithm 3, the minimum of these four
minima can be computed by the simple one-pass algorithm. The pass extends the four
functions over R+ until a rank T of pseudo-periodicity is found, i.e. they are extended
over the interval [0, T + d[. One needs to know the sizes of the four functions over
this interval to give an upper bound on the complexity. One way to achieve that is to
decompose once more the functions into spots and segments over [0, T + d[this time
and see each function as a minimum of the corresponding elementary convolutions,
i.e. a minimum of spots and segments. It gives a bound on the size of the output
thanks to the Davenport–Schinzel number λ3 cited in Theorem 3. Note that if one
can precompute quickly a small rank T of pseudo-periodicity, it can directly uses
this scheme of decomposition over [0, T + d[, it enables to avoid the computation
of the four intermediate convolutions, and then using the output sensitive algorithm
becomes really relevant. In such a scheme, the performance relies on the success and
speed when precomputing the small T.

Back to Algorithm 3, with the notation of Table 1, computing this last
minimum requires O(Ne

1′ Ne
2′α(Ne

1′ Ne
2′) + Ne

1′ Ne
2′′α(Ne

1′ Ne
2′′) + Ne

1′′ Ne
2′α(Ne

1′′ Ne
2′) +

Ne
1′′ Ne

2′′α(Ne
1′′ Ne

2′′)) time and this is also an upper bound on the size of f1 ∗ f2. To
get the shorter form in the statement of the proposition using Ne

1 = Ne
1′ + Ne

1′′ and
Ne

2 = Ne
2′ + Ne

2′′ , use the fact that the function α is non-decreasing and subadditive.
In the same way, the first steps of computation of the four minima

have a time complexity O(N1′,2′ log(N1′,2′) + N1′,2′′ log(N1′,2′′) + N1′′,2′ log(N1′′,2′) +

Discrete Event Dyn Syst (2008) 18:3–49 43

T
ab

le
1

A
na

ly
si

s
of

th
e

di
ff

er
en

ts
te

ps
of

A
lg

or
it

hm
3

f′ 1
∗

f′ 2
f′ 1

∗
f′′ 2

f′′ 1
∗

f′ 2
f′′ 1

∗
f′′ 2

In
te

rv
al

of
co

m
pu

ta
ti

on
[0,

T
1

+
T

2
[

[T
2
,

T
1
+

T
2
+

d 2
[

[T
1
,

T
1
+

T
2
+

d 1
[

[T
1
+

T
2
,

T
1
+

T
2
+

2d
[

(t
ra

ns
it

or
y

an
d

ps
eu

do
-

pe
ri

od
ic

pa
rt

s)
In

te
rv

al
to

co
ns

id
er

fo
r

f 1
[0,

T
1
[

[0,
T

1
[

[T
1
,

T
1
+

T
2
+

d 1
[

[T
1
,

T
1

+
2d

[
T

up
le

s
to

co
ns

id
er

in
f 1

n 1
n 1

p 1
�T

2
+d

1
d 1

�
p 1

2d d 1

In
te

rv
al

to
co

ns
id

er
fo

r
f 2

[0,
T

2
[

[T
2
,

T
1
+

T
2
+

d 2
[

[0,
T

2
[

[T
2
,

T
2

+
2d

[
T

up
le

s
to

co
ns

id
er

in
f 2

n 2
p 2

�T
1
+d

2
d 2

�
n 2

p 2
2d d 2

N
um

be
r

of
el

em
en

ta
ry

N
1′

,2
′
=

n 1
n 2

N
1′

,2
′′

=
n 1

p 2
�T

1
+d

2
d 2

�
N

1′′
,2

′
=

n 2
p 1

�T
2
+d

1
d 1

�
N

1′′
,2

′′
=

p 1
2d d 1

p 2
2d d 2

co
nv

ol
ut

io
ns

C
om

pl
ex

it
y

to
co

m
pu

te
th

ei
r

N
1′

,2
′ l

og
(N

1′
,2

′)
N

1′
,2

′′
lo

g(
N

1′
,2

′′)
N

1′′
,2

′ l
og

(N
1′′

,2
′)

N
1′′

,2
′′

lo
g(

N
1′′

,2
′′)

m
in

im
um

T
up

le
s

in
f 1

ac
ti

ng
in

th
e

N
e 1′

=
n 1

N
e 1′

=
n 1

N
e 1′′

=
p 1

�(T
+d

)−
T

1
d 1

�
N

e 1′′
=

p 1
�(T

+d
)−

T
1

d 1
�

de
fin

it
io

n
ov

er
[0,

T
+

d[
T

up
le

s
in

f 2
ac

ti
ng

in
th

e
N

e 2′
=

n 2
N

e 2′′
=

p 2
�(T

+d
)−

T
2

d 2
�

N
e 2′

=
n 2

N
e 2′′

=
p 2

�(T
+d

)−
T

2
d 2

�
de

fin
it

io
n

ov
er

[0,
T

+
d[

C
om

pl
ex

it
y

of
th

e
ex

te
ns

io
n

N
e 1′

N
e 2′
α
(N

e 1′
N

e 2′
)

N
e 1′

N
e 2′′

α
(N

e 1′
N

e 2′′
)

N
e 1′′

N
e 2′
α
(N

e 1′′
N

e 2′
)

N
e 1′′

N
e 2′′

α
(N

e 1′′
N

e 2′′
)

to
T

+
d

du
ri

ng
th

e
co

m
pu

-
ta

ti
on

of
th

e
fin

al
m

in
im

um
=

(s

iz
e

of
th

e
ex

te
ns

io
n)

44 Discrete Event Dyn Syst (2008) 18:3–49

N1′′,2′′ log(N1′′,2′′)). Since log is non-decreasing and subadditive, this complexity is
upper bounded by O(Nε

1 Nε
2 log max(Nε

1, Nε
2)) where Nε

1 = n1 + p1 max(� T2+d1
d1

�, 2d
d1

)

and Nε
2 = n2 + p2 max(� T1+d2

d2
�, 2d

d2
). ��

Beyond this general algorithm, there exists some particular cases in which more
efficients specialized algorithms are known. They concern convex functions and star
shaped functions (which include the concave functions). A function f ∈ F is star-
shaped is t �→ f (t)/t is non-increasing over R

∗+ Chang (2000).

Proposition 13 (Le Boudec and Thiran 2001, Theorem 3.1.6) Let f, g ∈ F [R+, R].
• If f and g are convex, then f ∗ g is convex and obtained by putting end-to-end

the different affine pieces of f and g sorted by increasing slopes, starting from
f (0) + g(0).

• If f and g are star-shaped, and f (0) = g(0) = 0, then f ∗ g is star-shaped and
f ∗ g = min(f, g).

This proposition is stated in (Le Boudec and Thiran 2001) for non-decreasing and
non-negative functions. However a careful look at the proof shows that it applies to
general functions in F .

Corollary 3 Let f, g ∈ F [Q+, Q] be ultimately pseudo-periodic functions. If f, g are
convex or f, g are star-shaped with f (0) = g(0) = 0, then f ∗ g can be computed in
linear time.

These results suggest another optimization of the encoding to speed-up the
convolution algorithm by decomposing the functions into convex pieces Bouillard
(2005).

4.5 Deconvolution of ultimately pseudo-periodic functions

To compute the deconvolution of two ultimately pseudo-periodic functions f1, f2

in F [Q+, Q], we use the same scheme as for the convolution : we decompose f1

and f2 into spots and segments over appropriate intervals, then compute all the
corresponding elementary deconvolutions and finally take their maximum with an
upper envelope algorithm. From Proposition 8, f1 � f2 is ultimately pseudo-periodic
from T1 with period d1. Thus it is sufficient to compute f1 � f2 over [0, T1 + d1[.
Moreover the proof shows that ∀t ≥ 0, sups≥0(f (t + s) − g(s)) is reached over 0 ≤
s ≤ max(T1, T2) + lcm(d1, d2) = T. To compute f1 � f2 over [0, T1 + d1[, we finally
need the values of f2 over [0, T[and the values of f1 over [0, T + T1 + d1[.

Proposition 14 Let f1, f2 ∈ F [Q+, Q] both ultimately pseudo-periodic. Then, with the
notation of Algorithm 4, f1 � f2 can be computed in time O(Ne

1 Ne
2 log max(Ne

1, Ne
2))

where Ne
1 = n1 + p1� T+d1

d1
� and Ne

2 = n2 + p2� T−T2
d2

�. The output size satisfies
N f1� f2 = O(Ne

1 Ne
2α(max(Ne

1, Ne
2))).

Proof The numbers Ne
1, Ne

2 correspond to the numbers of tuples of f1 and f2

over respectively [0, T + T1 + d1[and [0, T[. The computation of an elementary

Discrete Event Dyn Syst (2008) 18:3–49 45

deconvolution between a spot or segment and a spot or segment can be done in O(1)

time, thanks to Lemma 5, 7, 6 and 8. Each elementary deconvolution yields at most
to consecutive segments. Their maximum can be computed with a upper envelope
algorithm such as the ones for lower envelopes cited in Theorem 3. They have the
same complexities and the size of the output admits the same kind of bound. ��

4.6 Subadditive closure of an ultimately pseudo-periodic function

Let f ∈ F [Q+, Q] be an ultimately pseudo-periodic function, Algorithm 5 computes
its subadditive closure by following the proof of Proposition 9.

Algorithm 5: Subadditive closure (sketch).

Data: f ultimately pseudo-periodic.

Result: f ∗ .

begin
Let (f i)1≤ i≤ k be the finite set of spots, iterated spots, segments and iterated segments

such that f = min1≤ i≤ k f i ;

Compute f ∗
i for all 1 ≤ i ≤ k using the specific algorithms for spots, iterated spots,

segments and iterated segments;

Compute f ∗ = f ∗
1 ∗ . . . ∗ f ∗

k with a convolution algorithm.

end

Note that, due to the commutativity and associativity of ∗, several sequences
of pairwise convolutions achieve the computation of f ∗

1 ∗ · · · ∗ f ∗
k . In the proof of

Proposition 9, in case f had at least one segment, the sequence of convolutions was

46 Discrete Event Dyn Syst (2008) 18:3–49

carefully chosen so that Proposition 4 for ∗ ensured the ultimate pseudo-periodicity
of each output without using any other result like Proposition 5 for the discrete
model. Such a restriction (aimed at refining the proof) is not necessary for the
computations. Any sequence of convolutions will give intermediate outputs which
are ultimately pseudo-periodic: any convolution of some f ∗

j , j ∈ J ⊆ {1, . . . , k}, is
the subadditive closure of an ultimately pseudo-periodic function, namely min j∈J f j,
which is ultimately pseudo-periodic due to Proposition 9. Algorithm 3 can be used to
compute the k − 1 necessary convolutions.

Specific algorithms to compute the subadditive closure of spots, iterated spots,
segments and iterated segments can be directly derived from the proofs of stability
in Section 3.2.3, i.e. Lemma 10, 11, 13 and 14. They are described below. The four
algorithms assume that the input function f satisfies f (0) ≥ 0, otherwise f ∗ = −∞
over R+.

The complexity analysis of the whole Algorithm 5 involving a non constant
number of convolutions remains open.

Remark 8 All the algorithms that have been presented also apply to input functions
in F [Q+, R], and then the output may land in F [R+, R]. Note that even if we only
use elementary operations on R, allowing values in R for the input functions may
require to address some numerical issues due to the use of floats and thus further
theoretical guarantees for a concrete implementation.

5 Conclusion

The main stability results obtained in this article are summed up in Fig. 14. The
arrows between boxes indicate where the output function lands when applying the
operations which label each arrow. If an arrow ends at a box different from the one
where it started, it means that there exists some input functions whose output does
not belong any longer to the initial class. The paper contains most of the examples
illustrating this picture, the complementary ones are presented in (Bouillard and
Thierry 2007b).

We have also shown that we can make effective the stability results by describing
algorithms which implement the network calculus operations for our stable plain
ultimately pseudo-periodic classes.

Beyond the correction of the algorithms, we have tried to analyze their theoretical
complexities the best we could. Most of our complexity bounds take into account
both the size of the inputs and the size of the output. It is natural since the whole
output must be returned, but it raises two questions which require further work.
What are the precise links and bounds between the size of the inputs and the size
of the output, for each of the network calculus operations? This may enable to refine
the complexity bounds for our algorithms. In particular, one can notice that we do
not quantify the complexity of our algorithms for the subadditive closure, except
that the size of the output may be exponential with the size of the inputs and that
there exists an underlying NP-complete problem (which occurs for instance if one
wants to compute the smallest rank of ultimate pseudo-periodicity, see Bouillard
and Thierry (2007a), which implies in both ways that our algorithms are exponential.
Then we can wonder what are the ways to avoid outputs of size exponential with the

Discrete Event Dyn Syst (2008) 18:3–49 47

Fig. 14 Stability/unstability of some classes of functions

size of their inputs? This is mainly an encoding question. For instance one could
think of compressing the functions by taking into account the repeated patterns
in the transitory part of the ultimately pseudo-periodic functions, as well as doing
lazy computations, i.e. doing the full computation of a sequence of operations
only when it is really necessary and otherwise maintain a formal expression of the
output as an undeveloped combination of operations, or finally by introducing new
decompositions or transformations of the functions.

Acknowledgements We are very grateful to the referees for their comments and suggestions which
have improved the paper. The authors also wish to thank Bruno Gaujal who inspired this work, and
the members of the COINC Project for fruitful discussions. This work has been funded by the INRIA
Action de Recherche Coopérative COINC.

References

Agarwal PK, Sharir M (1995a) Davenport–Schinzel sequences and their geometric applications.
Cambridge Univ. Press

Agarwal PK, Sharir M (1995b) Davenport–Schinzel sequences and their geometric applications,
Technical report DUKE-TR-1995-21. Department of Computer Science, Duke University

Attalah MJ (1985) Some dynamic computational geometry problems. Comput Math Appl 11:
1171–1181

48 Discrete Event Dyn Syst (2008) 18:3–49

Baccelli F, Cohen G, Olsder GJ, Quadrat J-P (1992) Synchronization and linearity. Wiley, Download
from http://www.maxplus.org

Boissonat JD, Yvinec M (1998) Algorithmic geometry. Cambridge Univ. Press
Bouillard A (2005) Optimisation et analyse probabiliste de systèmes à événements discrets. PhD

thesis, École Normale Supérieure de Lyon (in french)
Bouillard A, Thierry E (2007a) An algorithmic toolbox for network calculus, Technical report 6094.

IRISA
Bouillard A, Thierry, E (2007b) Some examples and counterexamples for (min,+) filtering opera-

tions, Technical report 6095. IRISA
Chang CS (1999) Deterministic traffic specification via projections under the min-plus algebra. In:

Proceedings of INFOCOM’99, pp 43–50
Chang CS (2000) Performance guarantees in communication networks. TNCS, Springer
COINC Project, INRIA (2006) COINC—computational issues in network calculus. ARC INRIA

Project. http://perso.bretagne.ens-cachan.fr/~bouillar/coinc
Corduneanu C, Bohr H (1961) Almost periodic functions. Wiley
Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press
Cottenceau B, Gruet B, Hardouin L, Lhommeau M (2007) Modèles et systèmes dynamiques, LISA,

University of Angers, France. http://www.istia.univ-angers.fr/~hardouin/outils.html
CyNC (2007) A tool for performance analysis of complex real time systems. http://www.control.

auc.dk/∼henrik/CyNC
DISCO (2006) The DISCO network calculator. http://disco.informatik.uni-kl.de/content/Downloads,

last modified: 11-02-2006
Fidler M, Recker S (2006) Conjugate network calculus: a dual approach applying the legendre

transform. Elsevier Comput Netw J 50(8):1026–1039
Gaubert S (2007) MaxPlus project, INRIA, Rocquencourt, France. http://amadeus.inria.fr/

gaubert/gaubert.html
Gaubert S (1992) Théorie Linéaire des Systèmes dans les Dioïdes. PhD thesis, École des mines de

Paris. (in french)
Hershberger J (1989) Finding the upper envelope of n line segments in O(n log n) time. Inf Process

Lett 33:169–174
Klazar M (1999) On the maximum lengths of Davenport–Schinzel sequences. In: Contemporary

trends in discrete mathematics, AMS, pp 169–178
Le Boudec J-Y, Thiran P (2001) Network calculus: a theory of deterministic queuing systems for the

internet, LNCS 2050. Springer-Verlag
Nielsen F, Yvinec M (1998) An output-sensitive convex hull algorithm for planar objects. Int J

Comput Geom Appl 8(1):39–66
Oppenheim AV, Willsky AS, Nawab SH (1997) Signals and systems. Prentice-Hall
Pandit K (2006) Quality of service performance analysis based on network calculus. PhD thesis,

Technische Universität Darmstadt
Pandit K, Kirchner C, Schmitt J, Steinmetz, R (2004a) Optimization of the min-plus convo-

lution computation under network calculus constraints, Technical report TR-KOM-2004-04.
Technische Universität Darmstadt

Pandit K, Schmitt J, Kirchner C, Steinmetz R (2004b) Optimal allocation of service curves by ex-
ploiting properties of the min-plus convolution, Technical report TR-KOM-2004-08. Technische
Universität Darmstadt

Pandit K, Schmitt J, Kircher C, Steinmetz R (2006) A transform for network calculus and its applica-
tion to multimedia networking. In: SPIE conference on multimedia computing and networking
(MMCN’06)

Ramirez-Alfonsin JL (2005) The diophantine frobenius problem. Oxford Univ. Press
Rockfellar RT (1996) Convex analysis. Princeton Univ. Press
Schmitt JB, Zdarsky FA (2006) The disco network calculator: a toolbox for worst case analysis. In

Proceedings of valuetools’06, ACM Press, p 8
Schmitt JB, Zdarsky FA, Martinovic I (2006) Performance bounds in feed-forward networks under

blind multiplexing, Technical Report 349/06. University of Kaiserslautern, Germany
Schioler H, Nielsen JD, Larsen KG, Jessen JJ (2005) CyNC - a method for real time analysis of

systems with cyclic data flows. In: Proceedings of 13th RTS conference on embedded systems ’05
Sylvester JJ (1884) “question 7382”. Mathematical questions from the educational times, 41:21
Wandeler E, Thiele L (2006) Real-time calculus (RTC) toolbox. http://www.mpa.ethz.ch/Rtctoolbox
Wandeler E (2006) Modular performance analysis and interface-based design for embedded real-

time systems. PhD thesis, ETH Zurich, ETH Diss. No. 16819

http://www.maxplus.org
http://perso.bretagne.ens-cachan.fr/~bouillar/coinc
http://www.istia.univ-angers.fr/~hardouin/outils.html
http://www.control.auc.dk/~henrik/CyNC
http://www.control.auc.dk/~henrik/CyNC
http://disco.informatik.uni-kl.de/content/Downloads
http://amadeus.inria.fr/gaubert/gaubert.html
http://amadeus.inria.fr/gaubert/gaubert.html
http://www.mpa.ethz.ch/Rtctoolbox

Discrete Event Dyn Syst (2008) 18:3–49 49

Anne Bouillard is a former student of École Normale Supérieure in Paris. She obtained her Master
degree in Computer Science from the University of Paris 7 in 2002. She received her PhD degree
in Computer Science from École Normale Supérieure in Lyon in 2005 and is assistant professor in
École Normale Supérieure of Cachan in Rennes since 2006. Her research interests include discrete
event systems, their performance evaluation and optimization.

Éric Thierry is a former student of École Normale Supérieure of Lyon. He obtained his Master
degree in Computer Science from the ENS Lyon in 1995 and received his PhD degree in Computer
Science from University of Montpellier (LIRMM). Since 2003, he is assistant professor in École
Normale Supérieure of Lyon. His research interests include performances in discrete event systems,
algorithms of graphs and cellular automata.

	An Algorithmic Toolbox for Network Calculus
	Abstract
	Introduction
	Definitions and notation
	The main operations
	Classes of functions
	Asymptotic behaviors
	Piecewise affine functions

	Links between discrete and fluid calculations

	Stability under network calculus operations
	Stability of asymptotic behaviors
	Stability of plain and ultimately plain functions
	Stability of the ultimately affine functions
	Stability of the ultimately pseudo-periodic functions

	Stability of some piecewise affine classes
	Stability for the convolution
	Stability for the deconvolution
	Stability for the subadditive closure

	Algorithmic aspects
	Storage of ultimately pseudo-periodic functions
	Addition of ultimately pseudo-periodic functions
	Minimum of ultimately pseudo-periodic functions
	Convolution of ultimately pseudo-periodic functions
	Deconvolution of ultimately pseudo-periodic functions
	Subadditive closure of an ultimately pseudo-periodic function

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

