
ar
X

iv
:1

00
1.

44
20

v1
 [

cs
.D

S]
 2

5
Ja

n
20

10

The Complexity of Flood Filling Games

David Arthur, Raphaël Clifford, Markus Jalsenius,
Ashley Montanaro, and Benjamin Sach

Department of Computer Science, University of Bristol, UK
dave@localstorm.co.uk,{clifford,markus,montanar,ben}@cs.bris.ac.uk

Abstract. We study the complexity of the popular one player combinatorial
game known as Flood-It. In this game the player is given an n×n board of tiles
where each tile is allocated one of c colours. The goal is to make the colours of all
tiles equal via the shortest possible sequence of flooding operations. In the stan-
dard version, a flooding operation consists of the player choosing a colour k, which
then changes the colour of all the tiles in the monochromatic region connected
to the top left tile to k. After this operation has been performed, neighbouring
regions which are already of the chosen colour k will then also become connected,
thereby extending the monochromatic region of the board. We show that finding
an optimal solution for Flood-It is NP-hard for c > 3 and that this even holds
when the player can perform flooding operations from any position on the board.
Next we show how a (c−1) approximation and a randomised 2c/3 approximation
algorithm can be derived, and that no polynomial time constant factor, indepen-
dent of c, approximation algorithm exists unless P=NP. We then investigate
how many moves are required for the ‘most difficult’ boards and show that the
number grows as fast as Θ(

√
c n). Finally, we consider boards where the colours

of the tiles are chosen at random and show that for c > 3, the number of moves
required to flood the whole board is Ω(n) with high probability.

1 Introduction

In the popular one player combinatorial game known as Flood-It, each tile of an
n×n board is allocated one of c colours, where c is a parameter of the game.
Two left/right/up/down adjacent tiles are said to be connected if they have the
same colour and a (connected) region of the board is defined to be any maximal
connected component. The standard version of the game starts with the player
‘flooding’ the region that contains the top left tile. The flooding operation simply
involves changing the colour of all the tiles in the region to be some new colour.
However, this also has the effect of connecting the newly flooded region to all
neighbouring regions of this colour. The overall aim is to flood the entire board,
that is connect all regions, in as few flooding operations as possible. Figure 1
gives an example of the first few moves of a game. The border shows the outline
of the region which has so far been flooded.

Fig. 1: A sequence of five moves on a 6×6 Flood-It board with 3 colours.

http://arxiv.org/abs/1001.4420v1

We show that not only are natural greedy approaches bad, but in fact finding
an optimal solution for Flood-It is NP-hard for c > 3 and that this also holds
for a variant of the game we call Free-Flood-It where the player can perform
flooding operations at any position on the board. Next we show how a (c − 1)
approximation and a randomised 2c/3 approximation algorithm can be derived.
However, no polynomial time constant factor, independent of c, approximation
algorithm exists unless P=NP. We then consider how many moves are required
for the most difficult boards and show that the number grows as fast as Θ(

√
c n).

Finally we investigate boards where the colours of the tiles are chosen at random
and show that for c > 3, the number of moves required to flood the whole board
is Ω(n) with high probability.

Publicly available versions, including our own implementation, can be found
linked from http://floodit.cs.bris.ac.uk. Our implementation provides two
novelties relevant to the reader. First, we have included playable versions of both
the NP-completeness embeddings described in the paper. Second, the reader can
watch the various algorithms discussed play Flood-It.

History and related work: Perhaps the most famous recent hardness result in-
volving a popular game is the NP-completeness of Tetris [2]. Flood-It seems to
be a a somewhat newer game than Tetris, first making its appearance online
in early 2006 courtesy of a company called Lab Pixies. Since then numerous
versions have become available for almost every conceivable platform. We have
very recently become aware of a sketch proof by Elad Verbin posted on a blog
of the NP-hardness of Flood-It with 6 colours [10]. Although our work was
completed independently, it is interesting to note that there is some similarity
to the techniques used in our NP-hardness proof for c > 3 colours. The most
closely related game whose computational complexity has been studied in detail
is known as Clickomania [1]. A rectangular board is initialised in the same way as
in Flood-It. The move permitted is for the player to remove a chosen connected
monochromatic component of at least two tiles after which any blocks above it
will fall down as far as they can. Finding an optimal solution to Clickomania
is shown to be NP-hard for two or more columns and five or more colours, or
five or more columns and three or more colours. Flood-It can also be thought
of as a model for a number of different (possibly not entirely) real world ap-
plications. For example, our results supplement that of recent work on zombie
infestation [8] if one regards the flooding operation as one where the minds of
neighbouring non-zombies are infected by those who have already been turned
into zombies. A separate but no less significant line of research considers the
complexity of tools commonly provided with Microsoft Windows. Previous work
has shown that aspects of Excel [3] and even Minesweeper [5] are NP-complete.
Our work extends this line of research by showing that flood filling in Microsoft’s
Paint application is also NP-hard.

1.1 Notation and definitions

Let Bn,c be the set of all n×n boards with at most c colours. We write m(B)
for the minimum number of moves required to flood a board B ∈ Bn,c. We will

2

http://floodit.cs.bris.ac.uk

(a) (b)

Fig. 2: (a) An alternating 4-diamond
and (b) a cropped 6-diamond.

Fig. 3: A 10×10 board where a greedy
approach is bad.

refer to rows and columns in a board in the usual manner. We further denote
the colour of the tile in row i and column j as B[i, j]; colours are represented by
integers between 1 and c. Throughout we assume that 2 6 c 6 n2.

We define a diamond to be a diamond-shaped subset of the board (see Fig-
ure 2a). These structures are used throughout the paper. The centre of the dia-
mond is a single tile and the radius is the number of tiles from its centre to its
leftmost tile. We write r-diamond to denote a diamond of radius r. A single tile
is therefore a 1-diamond. For i ∈ {1, . . . , r}, the ith layer of an r-diamond is the
set of tiles at board distance i−1 from its centre. We will also consider diamonds
which are cropped by intersection with the board edges as in Figure 2b.

2 A greedy approach is bad

An obvious strategy for playing the Flood-It game is the greedy approach. There
are two natural greedy algorithms: (1) we pick the colour that results in the
largest gain (number of acquired tiles), or (2) we choose the colour dominating the
perimeter of the currently flooded region. It turns out that both these approaches
can be surprisingly bad.

To see this, let B be the 10×10 board on three colours illustrated in Fig-
ure 3. The number of moves required to flood B is three. However, either greedy
approach given would first pick the colours appearing on the horizontal lines
before finally choosing to flood the left-hand vertical column. In both cases, this
requires 10 moves to fill the board. It should be clear how this example can easily
be extended to arbitrarily large n×n boards.

3 The complexity of Flood-It

Let c-Flood-It denote the problem which takes as input an n×n board B of c
colours and outputs the minimum number of movesm(B) in a Flood-It game that
are required to flood B. Similarly, let c-Free-Flood-It denote the generalised
version of c-Flood-It in which we are free to flood fill from an arbitrary tile
in each move. Although we have seen that a straightforward greedy algorithm
fails, it is not too far-fetched to think that a dynamic programming approach
would solve these problems efficiently, but the longer one ponders over it, the
more inconceivable it seems. To aid frustrated Flood-It enthusiasts, we prove in
this section that both c-Flood-It and c-Free-Flood-It are indeed NP-hard,
even when the number of colours is as small as three.

3

To show NP-hardness, we reduce from the shortest common supersequence
problem, denoted SCS, which is defined as follows. The input is a set S of k
strings over an alphabet Σ. A common supersequence s of the strings in S is a
string such that every string in S is a subsequence of s. The output is the length
of a shortest common supersequence of the strings in S. The decision version
of SCS takes an additional integer ℓ and outputs yes if the shortest common
supersequence has length at most ℓ, otherwise it outputs no.

Maier [7] showed in 1978 that the decision version of SCS is NP-complete
if the alphabet size |Σ| > 5. A couple of years later, Räihä and Ukkonen [9] ex-
tended this result to hold for |Σ| > 2. For a long time, various groups of people
tried to approximate SCS but no polynomial-time algorithm with guaranteed
approximation bound was to be found. It was not until 1995 that Jiang and
Li [4] settled this open problem by proving that no polynomial-time algorithm
can achieve a constant approximation ratio for SCS, unless P = NP. The follow-
ing lemma proves the NP-hardness of both c-Flood-It and c-Free-Flood-It
when the number of colours is at least four. The inapproximability of both prob-
lems also follows immediately from the approximation preserving nature of the
reduction. We will need a more specialised reduction for the case c = 3, which is
given in Lemma 2.

Lemma 1 For c > 4, c-Flood-It and c-Free-Flood-It are NP-hard (and
the decision versions are NP-complete). Further, for an unbounded number of
colours c, there is no polynomial-time constant factor approximation algorithm,
unless P = NP.

Proof. The proof is split into two parts; first we prove the lemma for c-Flood-It
in which we flood fill from the top left tile in each move, and in the second part
we generalise the proof to c-Free-Flood-It in which we can flood fill from any
tile in each move.

We reduce from an instance of SCS that contains k strings s1, . . . , sk each of
length at most w over the alphabet Σ. Suppose that Σ = {a1, . . . , ar} contains
r > 2 letters and let Σ′ = {b1, . . . , br} be an alphabet with r new letters. For
i ∈ {1, . . . , k}, let s′i be the string obtained from si by inserting the character bj
after each aj and inserting the character b1 at the very front. For example, from
the string a3a1a4a3 we get b1a3b3a1b1a4b4a3b3.

Let Σ∪Σ′ represent the set of 2r colours that we will use to construct a board
B. First, for i ∈ {1, . . . , k}, we define the |s′i|-diamond Di such that the jth layer
will contain only one colour which will be the jth character from the right-hand
end of s′i. Thus, the colour of the outermost layer of Di is the first character
of s′i (which is b1 for all strings) and the centre of Di is the last character of
s′i. The reason why we intersperse the strings with letters from the auxiliary
alphabet Σ′ is to ensure that no two adjacent layers of a diamond have the same
colour. This property is crucial in our proof. Let B be a sufficiently large n×n
board constructed by first colouring the whole board with the colour b1 and then
placing the k diamonds Di on B such that no two diamonds overlap. Since each
of the k diamonds has a radius of at most 2w+1, we can be assured that n never
has to be greater than k(4w + 1).

4

Suppose that s is a shortest common supersequence of s1, . . . , sk and suppose
its length is ℓ. We will now argue that the minimum number of moves to flood
B is exactly 2ℓ, first showing that 2ℓ moves are sufficient. Let s′ be the 2ℓ-long
string obtained from s by inserting the character bj after each aj . We make 2ℓ
moves by choosing the colours in the same order as they appear in s′. Note that
we flood fill from the top left tile in each move. From the construction of the
diamondsDi it follows that all diamonds, and hence the whole board, are flooded
after the last character of s′ has been processed.

It remains to be shown that at least 2ℓ moves are necessary to flood B. Let s′′

be a string over the alphabet Σ ∪Σ′ that specifies a shortest sequence of moves
that would flood the whole board B. From the construction of the diamonds Di

it follows that the string obtained from s′′ by removing every character in Σ′

is a common supersequence of s1, . . . , sk and therefore has length at least ℓ. By
symmetry (replace every aj with bj in the strings s1, . . . , sk), the string obtained
from s′′ by removing every character in Σ has length at least ℓ as well. Thus,
the length of s′′ is at least 2ℓ.

Since the decision version of SCS is NP-complete even for a binary alphabet
Σ, it follows that c-Flood-It is NP-hard for c > 4, and the decision version
is NP-complete. The inapproximability result in the statement of the lemma
follows immediately from the reduction.

Now we show how to extend these results to c-Free-Flood-It. The reduc-
tion from SCS is similar to the previously presented reduction. However, instead
of constructing only one board B, we construct 2kw + 1 copies of B and put
them together to one large n′×n′ board B′. If necessary in order to make B′ a
square, we add sufficiently many n×n boards that are filled only with the colour
b1. Note that (2kw + 1)n and hence (2kw + 1)k(4w + 1) is a generous upper
bound on n′.

From the construction of B′ it follows that exactly 2ℓ moves are required to
flood B′ if we flood fill from the top left tile in each move; all copies of B will be
flooded simultaneously. The question is whether we can do better by flood filling
from tiles other than the top left one (or any tile in its connected component).
That is, can we do better by picking a tile inside one of the diamonds? We
will argue that the answer is no. First note that 2ℓ 6 2kw. Suppose that we
do flood fill from a tile inside some diamond D for some move. This move will
clearly not affect any of the other diamonds on B′. Suppose that this move would
miraculously flood the whole of D in one go so that we can disregard it in the
subsequent moves. However, there were originally 2kw + 1 copies of D, which
is one more than the absolute maximum number of moves required to flood B′,
hence we can use a recursive argument to conclude that flood filling from a tile
inside a diamond will do us no good and would only result in more moves than
if we choose to flood fill from the top left tile in each move. ⊓⊔

The reduction in the previous proof is approximation preserving, which al-
lowed us to prove that there is no efficient constant factor approximation al-
gorithm. We reduced from an instance of SCS by doubling the alphabet size,
resulting in instances of c-Flood-It and c-Free-Flood-It with c > 4 colours.
To establish NP-hardness for c = 3 colours, we need to consider a different

5

(a)

(b)

= Colour 1 = Colour 2 = Colour 3 (c)

. . .

Fig. 4: An example of (a) a diamond, (b) a rectangle and (c) a board constructed
in the proof of Lemma 2.

reduction. We do this in the lemma below by reducing from the decision ver-
sion of SCS over a binary alphabet to the decision versions of 3-Flood-It and
3-Free-Flood-It. Note that this reduction is not approximation preserving.

Lemma 2 3-Flood-It and 3-Free-Flood-It are NP-hard (and the decision
versions are NP-complete).

Proof. We reduce from an instance of the decision version of SCS that contains
k strings s1, . . . , sk of length at most w over the binary alphabet {1, 2} and an
integer ℓ (the yes/no-question is if there is a shortest common supersequence of
length at most ℓ).

For i ∈ {1, . . . , k}, let s′i be the string obtained from si by inserting the new
character 3 at the front of si and after each character of si. Let the set {1, 2, 3}
represent the colours that we will use to construct a board B. First, for each of
the k strings s′i we define the diamond Di exactly as in the proof of Lemma 1
(see Figure 4a). We define R to be the following rectangular area of the board
of width 4ℓ+ 5 and height 2ℓ+ 3. Let x be the middle tile at the bottom of R.
Around x we have layers of concentric half rectangles (see Figure 4b). We refer to
these layers as arches, with the first arch being x itself. As demonstrated in the
figure, the first arch has the colour 1 and the second arch has the colour 2. All
the remaining odd arches have the colour 3, and all the remaining even arches
are coloured 2 everywhere except for the tile above x which has the colour 1. As
described in detail below, the purpose of these arches is to control which minimal
sequences of moves would flood B.

Let B be a sufficiently large n×n board constructed as follows. First colour
the whole board with the colour 3. Then, at the bottom of B starting from the
left, place 2ℓ+3 copies of R one after another without any overlaps. Finally place
the k diamonds Di on B such that no two diamonds overlap and no diamond
overlaps any copy of R. Figure 4c illustrates a board B. Since a diamond has a
radius of at most 2w+1 and ℓ 6 kw, k(4w+1)+(2kw+3)(4kw+5) is an upper
bound on n.

The reason why we place copies of R on the board B is to make sure that at
least 2ℓ+2 moves are required to flood B, even in the absence of diamonds. To see
this, suppose first that we flood fill from the top left square in each move. From
the definition of the arches of R, disregarding the diamonds on B, a minimal

6

sequence of moves will consist of ℓ 1s or 2s interspersed with a total of ℓ− 1 3s,
followed by the three moves 3, 2 and 1, respectively. Note that only one copy of
R on B would be enough to achieve this. However, having several copies of R on
B does not affect the minimum number of moves as all copies will get flooded
simultaneously. The idea with the 2ℓ+3 copies of R is to make sure that at least
2ℓ+ 2 moves are required to flood B even when we are allowed to choose which
tile to flood fill from in each move. To see this, suppose that we choose to flood
fill from a tile inside one of the copies of R. Since there are 2ℓ+3 copies, similar
reasoning to the end of the proof of Lemma 1 tells us that we will do worse than
2ℓ+ 2 moves.

We will now argue that the number of moves required to flood B is 2ℓ+ 2 if
and only if there is a common supersequence of s1, . . . , sk of length at most ℓ.
We choose to flood fill from the top left tile in each move.

Suppose first that there is a common supersequence s of length ℓ′ 6 ℓ. Let s′

be the string s followed by ℓ− ℓ′ 1s. Let s′′ be the (2ℓ+ 2)-long string obtained
from s′ by inserting a 3 after each character of s′ and adding the two additional
characters 2 and 1 to the end. We make 2ℓ + 2 moves by choosing the colours
in the same order as they appear in s′′. Note that all diamonds are flooded after
2ℓ′ moves, and by the last move we have also flooded every copy of R, and hence
the whole board B.

Suppose second that B can be flooded in 2ℓ + 2 moves. The centre of each
diamond has the colour 3 and therefore the first 2ℓ moves flood the diamonds.
The subsequence of these first 2ℓ moves induced by the the colours 1 and 2 is an
ℓ-long common supersequence of s1, . . . , sk. ⊓⊔

We can now summarise Lemmas 1 and 2 in the following theorem.

Theorem 3. For c > 3, c-Flood-It and c-Free-Flood-It are NP-hard (and
the decision versions are NP-complete). Further, for an unbounded number of
colours c, there is no polynomial-time constant factor approximation algorithm,
unless P = NP.

4 Approximating the number of moves

As we have seen, c-Flood-It and c-Free-Flood-It are not efficiently approx-
imable to within a constant factor for an unbounded number of colours c. How-
ever, a (c − 1)-approximation for c-Flood-It, c > 3, can easily be obtained as
follows. Suppose that B is a board on the colours 1, . . . , c. Clearly, if we repeat-
edly cycle through the sequence of colours 1, . . . , c then B will be flooded after
at most c ×m(B) moves. We can do a little better by first cycling through the
ordered sequence of colours 1, . . . , c and then repeatedly alternating between a
cycle of the sequence (c − 1), . . . , 1 and a cycle of 2, . . . , c until there are only
two distinct colours left on the board, after which we alternate between the two
remaining colours. Note that there are always exactly two distinct colours left
before the final move. The board B is guaranteed to be flooded after at most
c + (c − 1)(m(B) − 2) + 1 6 (c − 1)m(B) moves, which gives us a (c − 1)-
approximation algorithm.

7

A randomised approach with an expected number of moves of approximately
2c/3 × m(B) is obtained as follows. Suppose that s is a minimal sequence of
colours that floods B (flood filling from the top left square in each move). We
shuffle the c colours and process them one by one. If B is not flooded then
we shuffle again and repeat. Thus, if m(B) = 1 then the algorithm takes c
moves. If m(B) = 2 then it takes c + 1

2c = 3c/2 expected number of moves;
with probability a half, both moves in s appear (in correct order) during the
first c moves, otherwise we need c additional moves for the last move in s. We
generalise this as follows. Let T (m) be (an upper bound on) the expected number
of moves it takes to produce a fixed sequence of m moves. We have T (m) =
c+ 1

2T (m− 1) + 1
2T (m− 2). Solving the recurrence with the values of T (1) and

T (2) above gives us a solution in which T (m) is asymptotically (2c/3)m for a
fixed c.

5 General bounds on the number of moves

Recall that we denote the minimum number of moves which flood some board
B as m(B). In this section we investigate bounds on the maximum m(B) over
all boards in Bn,c which we denote max{m(B) |B ∈ Bn,c}. Intuitively, this can
be seen as the minimum number of moves to flood the ‘worst’ board in Bn,c.

For motivation, consider an n×n checker board of two colours as shown in
Figure 5. First observe that as the board has only two colours, the player has no
choice in their next move. Consider a diagonal of tiles in the direction top-right
to bottom-left where the 0th diagonal is the top-left corner. Further observe that
move k floods exactly the kth diagonal, so the total number of moves is 2(n−1).
Thus we have shown that max{m(B) |B ∈ Bn,c} > 2(n− 1).

Fig. 5: Progression of a 6×6 checker board.

We now give an overview of a simple algorithm which floods any board in
Bn,c in at most c(n − 1) moves. The algorithm performs n stages. The purpose
of the ith stage is to flood the ith row. Stage i repeatedly picks the colour of the
leftmost tile in row i which is not in the flooded region, until row i is flooded.

First observe that Stage 1 performs at most n − 1 moves to flood row i (we
can flood at least one tile of row 1 per move). When the algorithm begins Stage
i > 2, observe that row i − 1 is entirely flooded as well as any tiles in row i
which match the colour of row i − 1. Therefore when a new colour is selected,
all tiles in row i of this colour become flooded. Hence at most c − 1 moves are
performed by Stage i. Summing over all rows, this gives the desired bound that
max{m(B) |B ∈ Bn,c} 6 c(n− 1). Observe that from the previous example with

8

S0

S1

S2

S3

y(0)

y(1)

y(2)

⌈q/2⌉

q + 1

q

⌊q/2⌋

Fig. 6: The board decomposition used in
the proof of Theorem 4.

Fig. 7: 4-diamonds packed in a
20×20 board.

the checker board on c = 2 colours, the bound c(n−1) is tight. Thus, the checker
board is the ‘worst’ board in Bn,2.

As motivation, we have given weak bounds on max{m(B) |B ∈ Bn,c}. We
now tighten these bounds for large c by providing a better algorithm for flood-
ing an arbitrary board. We will also give a description of ‘bad’ boards which
require many moves to be flooded. It will turn out that max{m(B) |B ∈ Bn,c}
is asymptotically Θ(

√
c n) for increasing n and c.

Theorem 4. There exists a polynomial time algorithm for Flood-It which can
flood any n×n board with c colours in at most 2n + (

√
2c)n + c moves.

Proof. For a given integer ℓ (to be determined later), we partition the board
horizontally into ℓ+1 contiguous sections, denoted S0, . . . , Sℓ from top to bottom,
as follows. Let q = ⌊n/ℓ⌋ and r = n mod ℓ. Section S0 consists of the first ⌈q/2⌉
rows, S1, . . . , Sr contain (q + 1) rows each (if r > 0), and Sr+1, . . . , Sℓ−1 contain
q rows each (if r < ℓ − 1). Section Sℓ contains ⌊q/2⌋ rows. See Figure 6 for an
illustration. We let y(i) denote the final row of Si.

The algorithm performs the following three stages. Stage 1: Flood the first
column. Stage 2: Flood row y(x) for all 0 6 x < ℓ. Stage 3: Cycle through the c
colours until the board is flooded.

The correctness of our algorithm is immediate as Stage 3 ensures that the
board is flooded by cycling colours. Stage 1 can be implemented to perform at
most n − 1 moves as argued for the simple algorithm above. Similarly, Stage 2
can be completed in ℓ(n− 1) moves. We now analyse Stage 3.

First consider S0. At the start of Stage 3, row y(0) is entirely in the top-left
region, so a single cycle of the c colours suffices to expand the region to include
row y(0)−1. Each subsequent cycle of c colours expands the region to include an
additional row. Therefore, after c(⌈q/2⌉ − 1) 6 cq/2 moves of Stage 3, all rows
above y(0) are included in the top left region. Similarly, the section Sℓ will be
included in the top-left region as it contains ⌊q/2⌋ 6 q/2 rows.

Now consider section Si for some 0 < i < ℓ. Observe that there are at most
q rows in Si which are not already completely in the top-left section (after stage
2). Further observe that any cycle of c colours expands the region to include

9

two more of these rows. One row is gained from the region bordering the top of
the section (which is in the top-left region from stage 2). The second is gained
from the region bordering the top of the section (which is also in the top-left
region from stage 2). Therefore after at most c⌈q/2⌉ moves of Stage 3 the board
is flooded.

Over all three stages this gives a total of at most n+ ℓn+ c⌈q/2⌉ moves. We
pick ℓ = ⌈

√

c/2⌉ to minimise this number of moves. By recalling that q = ⌊n/ℓ⌋
and simplifying we have that this total is less than 2n +

√
2c n + c moves as

required. ⊓⊔

Theorem 5. For 2 6 c 6 n2, there exists an n×n board with (up to) c colours
which requires at least

√
c− 1n/2− c/2 moves to flood.

Proof. Suppose first that c is even. For a given integer r > 1, let D(x,y) be an
r-diamond where odd layers are coloured x and even layers are coloured y. Any
board containing D(x,y) requires at least r moves of colours x and y. Further,
observe that as long as the centre of D(x,y) is in the board, even if it is cropped
by at most two edges of the board, at least r moves of colours x and y are still
required (see Figure 2b). We refer to such an r-diamond as good. The central
idea is to populate the board with good r-diamonds, D(1,2),D(3,4), . . . ,D(c−1,c).
As each r-diamond uses two colours (or one of the two colours if r = 1) which
do not occur in any other diamond, the board must take at least rc/2 moves to
flood.

It is not difficult to show that at least (n2 − r2)/(2r2) good r-diamonds can
be embedded in an n×n board. An example of such a packing for a 20×20
board is given in Figure 7 (which shows only the edges of diamonds and not
their colouring). This scheme generalises well to an n×n board but the details
are omitted in the interest of brevity.

We now take r = ⌊n/√c⌋ < n/2 and note that r > 1. As r < n/2, the
r-diamonds are cropped by at most two board edges as required. Therefore we
have at least (n2−r2)/(2r2) > c/2−1/2 good r-diamonds in our board. However,
as the number of good r-diamonds is an integer, this is at least c/2 as required.
Therefore, the number of moves required to flood this board is at least rc/2 >
n
√
c/2− c/2 .
Finally, in the case that c is odd we proceed as above using c−1 of the colours

to give the stated result. ⊓⊔

The next corollary is immediate from Theorem 4 and Theorem 5.

Corollary 6 (
√
c− 1n− c)/2 6 max{m(B) |B ∈ Bn,c} 6 2n+

√
2c n+ c .

6 Random boards

In this section, we try to understand the complexity of a random Flood-It board
– that is, a board where each tile is coloured uniformly at random. Intuitively,
such boards should usually require a large number of moves to flood. We will see
that this intuition is indeed correct, for boards of three or more colours: in fact,
almost all such boards need Ω(n) moves, as formalised in the following theorem.

10

Theorem 7. Let B ∈ Bn,c be a board where the colour of each tile is chosen
uniformly at random from {1, . . . , c}. Then, for c > 4, Pr[m(B) 6 2(3/10 −
1/c)(n − 1)] < e−Ω(n). For c = 3, Pr[m(B) 6 (n− 1)/22] < e−Ω(n).

In order to prove this theorem, we will use two lemmas concerning paths in
Flood-It boards. Let P be a simple path in a Flood-It board, i.e. a simple path on
the underlying square lattice1, where tiles are vertices on the path. Note that a
path of length k includes k+1 tiles. We say that a simple path P is non-touching
if every tile in P is adjacent to at most two tiles that are also in P . Define the
cost of P , cost(P), to be the number of monochromatic connected components
of the path, minus one (so a monochromatic path has cost 0). The proofs of the
following two lemmas are in Appendix A.

Lemma 8 For any B ∈ Bn,c, there is a non-touching path from (1, 1) to (n, n)
with cost at most m(B).

Lemma 9 For any integer ℓ > 3, there are at most 4 · 7(ℓ−1)/2 < 2 · (
√
7)ℓ

non-touching paths of length ℓ from any given tile.

The last result we will need is the following standard Chernoff bound.

Fact 10 Let Xi, 1 6 i 6 m, be independent 0/1-valued random variables with
Pr[Xi = 1] = p. Then Pr[1m

∑m
i=1Xi > p + ǫ] 6 e−D(p+ǫ||p)m 6 e−2ǫ2m, where

D(x||y) is the Kullback-Leibler divergence D(x||y) = x ln(x/y) + (1− x) ln((1 −
x)/(1− y)).

We are finally ready to prove Theorem 7.

Proof (of Theorem 7). For any k > 0, and for any board B such that m(B) 6 k,
by Lemma 8 there exists a non-touching path from (1, 1) to (n, n) with cost at
most k. So consider an arbitrary non-touching path P in B of length ℓ between
these two tiles, and let Pi denote the ith tile on the path, for 1 6 i 6 ℓ + 1.
Note that ℓ > 2(n − 1). Then cost(P) = |{i : Pi+1 6= Pi}|, or equivalently
cost(P) = ℓ − |{i : Pi+1 = Pi}|. Define the 0/1-valued random variable Xi by
Xi = 1 ⇔ Pi+1 = Pi. Then, as the colours of tiles are uniformly distributed,
Pr[Xi = 1] = 1/c for all i, and

Pr[cost(P) 6 k] = Pr

[

ℓ
∑

i=1

Xi > ℓ− k

]

6 e−D(1−k/ℓ || 1/c)ℓ,

where we use Fact 10. Thus, using the union bound over all paths of length at
least 2(n − 1) from (1, 1) to (n, n), we get that the probability that there exists
any path of cost at most k is upper bounded by

2

∞
∑

ℓ=2(n−1)

(
√
7)ℓe−D(1−k/ℓ || 1/c)ℓ = 2

∞
∑

ℓ=2(n−1)

e((1/2) ln 7−D(1−k/ℓ || 1/c))ℓ, (1)

1 Simple paths on square lattices have been intensively studied, and are known as self-avoiding
walks [6]. There are known upper bounds, which are slightly stronger than Lemma 9, on the
number of self-avoiding walks of a given length; however, we avoid these here to keep our
presentation elementary.

11

where we use the estimate for the number of paths which was derived in Lemma 9.
In the final part of the proof, we consider the cases c > 4 and c = 3 separately.

First suppose that c > 4. We take k = 2(3/10− 1/c)(n− 1) 6 (3/10− 1/c)ℓ,
as in the statement of the theorem, and use D(1− k/ℓ || 1/c) > 2(1− k/ℓ− 1/c)2

(from Fact 10) to obtain the bound

2
∞
∑

ℓ=2(n−1)

e((1/2) ln 7−2(1−k/ℓ−1/c)2)ℓ
6 2

∞
∑

ℓ=2(n−1)

e((1/2) ln 7−49/50)ℓ.

As 49/50 > (1/2) ln 7 ≈ 0.973, this sum is exponentially small in n.
Lastly, suppose that c = 3. In this case, our choice of k above is negative.

Instead we take k = (n − 1)/22, which implies 1 − k/ℓ > 43/44. In order to
obtain a sufficiently tight bound on D(1−k/ℓ || 1/c), we use the explicit formula
in Fact 10 to show that D(43/44 || 1/3) > 0.974 > (1/2) ln 7, which implies that
there is a bound in Equation (1) which is exponentially small in n. This completes
the proof. ⊓⊔

7 Conclusion and open problems

We have shown that, for 3 or more colours, Flood-It is NP-hard, and that a
random n×n board requires Ω(n) moves. Our two main open problems relate to
the seemingly trivial case of 2 colours. First, is 2-Free-Flood-It alsoNP-hard?
Second, how many moves does a random Flood-It board with 2 colours require?

8 Acknowledgements

AM was funded by an EPSRC Postdoctoral Research Fellowship. MJ was sup-
ported by the EPSRC. We would like to thank Leon Atkins, Aram Harrow, Tom
Hinton and Alex Popa for many helpful and encouraging discussions.

References

1. T.C. Biedl, E.D. Demaine, M.L. Demaine, R. Fleischer, L. Jacobsen, and J.I. Munro. The
complexity of Clickomania. In Richard J. Nowakowski, editor, More games of no chance,
volume 42 of MSRI Publications, pages 389–404. Cambridge University Press, 2002.

2. E.D. Demaine, S. Hohenberger, and D. Liben-Nowell. Tetris is hard, even to approximate.
Computing and Combinatorics, pages 351–363, 2003.

3. K. Iwama, E. Miyano, and H. Ono. Drawing Borders Efficiently. Theory of Computing

Systems, 44(2):230–244, 2009.
4. T. Jiang and M. Li. On the approximation of shortest common supersequences and longest

common subsequences. SIAM Journal of Computing, 24(5):1122–1139, 1995.
5. R. Kaye. Minesweeper is NP-complete. The Mathematical Intelligencer, 22(2):9–15, 2000.
6. N. Madras and G. Slade. The Self-Avoiding Walk. Birkhauser, 1996.
7. D. Maier. The complexity of some problems on subsequences and supersequences. Journal

of the ACM, 25(2):322–336, 1978.
8. P. Munz, I. Hudea, J. Imad, and R.J. Smith. When zombies attack!: Mathematical mod-

elling of an outbreak of zombie infection. In J.M. Tchuenche and C. Chiyaka, editors,
Infectious Disease Modelling Research Progress, pages 133–150. Nova Science, 2009.

9. K.-J. Räihä and E. Ukkonen. The shortest common supersequence problem over binary
alphabet is NP-complete. Theoretical Computer Science, 16:187–198, 1981.

10. Is this game NP-hard?, May 2009. [online] http://valis.cs.uiuc.edu/blog/?p=2005.

12

http://valis.cs.uiuc.edu/blog/?p=2005

A Appendix

We prove two lemmas from Section 6 of the paper in this appendix.

Proof (of Lemma 8). For m(B) = 0 there is nothing to prove, so consider a
strategy for completing B which uses m(B) > 0 moves. Label every tile t ∈ B
with an integer m(t) between 0 and m(B) that indicates the number of the move
which changed the colour of t to be the colour of tile (1, 1). Then, for each i > 1,
the set of tiles labelled with i is contiguous, and has at least one neighbour
labelled with i− 1. As the label of (n, n) is at most m(B), and the label of (1, 1)
is 0, there is a simple path from (1, 1) to (n, n) with cost at most m(B). This
path can be taken to be non-touching, because any pair of adjacent tiles (t1, t2)
that are on the path but not connected by it correspond to a loop in the path
that can be removed without increasing the path’s cost. ⊓⊔

Proof (of Lemma 9). Let T (ℓ) denote the maximum number of non-touching
paths of length ℓ from any tile. T (ℓ) can be straightforwardly upper bounded by
4 · 3ℓ−1 for ℓ > 1, as with each step of the path, aside from the first, there are at
most 3 choices of direction. We get a tighter bound by analysing a few steps on
a non-touching path P . Consider the ith vertex on P , for some i > 2. As P is
simple, there are at most 3 choices for the (i+1)th vertex of the path. For vertex
i + 2, if the previous two steps were in the same direction, there are at most 3
more choices. On the other hand, if the previous two were in different directions,
there are only at most 2 choices (otherwise, the path would go back on itself, and
would not be non-touching). In total, there are only at most 7 possible options
for vertices i+ 1, i+ 2. Therefore, for any ℓ > 3, we have T (ℓ) 6 4 · 7(ℓ−1)/2. ⊓⊔

13

