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Preface After Teaching this Course

Although things were a bit bumpy the first few times I taught this course,
I learned a lot from the experience, and hopefully I have now managed
to smooth out many of the rough parts. The good news is that the
course has been viewed mostly as a success, even by the tough measure
of student reviews. I would particularly like to thank the student who
wrote on his or her review that I deserve a raise—and I would like to
encourage my department chair to post this review on his wall and refer
to it frequently.
If you can think of ways that this book could be further improved

(correction of errors or whatnot) please let me know. The next genera-
tion of students will certainly appreciate it and that will improve your
Karma. !

Oxford, United Kingdom
April 2013
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Preface

When I was an undergraduate I thought solid state physics (a sub-genre
of condensed matter physics) was perhaps the worst subject that any
undergraduate could be forced to learn—boring and tedious, “squalid
state” as it was commonly called.1 How much would I really learn about1This gibe against solid state physics

can be traced back to the Nobel Lau-
reate Murray Gell-Mann, discoverer of
the quark, who famously believed that
there was nothing interesting in any
endeavor but particle physics. Inter-
estingly he now studies complexity—a
field that mostly arose from condensed
matter.

the universe by studying the properties of crystals? I managed to avoid
taking this course altogether. My opinion at the time was not a reflection
of the subject matter, but rather was a reflection of how solid state
physics was taught.
Given my opinion as an undergraduate, it is a bit ironic that I have

become a condensed matter physicist. But once I was introduced to the
subject properly, I found that condensed matter was my favorite subject
in all of physics—full of variety, excitement, and deep ideas. Sadly, a
first introduction to the topic can barely scratch the surface of what
constitutes the broad field of condensed matter.
Last year, when I was told that a new course was being prepared to

teach condensed matter physics to third year Oxford undergraduates, I
jumped at the opportunity to teach it. I felt that it must be possible
to teach a condensed matter physics course that is just as interesting
and exciting as any other course that an undergraduate will ever take.
It must be possible to convey the excitement of real condensed matter
physics to the undergraduate audience. I hope I will succeed in this task.
You can judge for yourself.
The topics I was asked to cover are not atypical for a solid state

physics course. Some of these topics are covered well in standard solid
state physics references that one might find online, or in other books.
The reason I am writing this book (and not just telling students to go
read a standard reference) is because condensed matter/solid state is
an enormous subject—worth many years of lectures—and one needs a
guide to decide what subset of topics are most important (at least in the
eyes of an Oxford examination committee). The material contained here
gives depth in some topics, and glosses over other topics, so as to reflect
the particular topics that are deemed important at Oxford as well as to
reflect the subjects mandated by the UK Institute of Physics.
I cannot emphasize enough that there are many many extremely good

books on solid state and condensed matter physics already in exis-
tence. There are also many good resources online (including the rather
infamous “Britney Spears’ guide to semiconductor physics”—which is
tongue-in-cheek about Britney Spears, but is actually a very good refer-
ence about semiconductors). Throughout this book, I will try to point
you to other good references appropriately.
So now we begin our journey through condensed matter. Let us go

then, you and I...

Oxford, United Kingdom
January 2011
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About this Book

This book is meant to be a first introduction to solid state and con-
densed matter physics for advanced undergraduate students. There are
several main prerequisites for this course. First, the students should
be familiar with basic quantum mechanics (we will sometimes use bra
and ket notation). Secondly, the students should know something about
thermodynamics and statistical mechanics. Basic mechanics and basic
electromagnetism are also assumed. A very strong student might be ca-
pable of handling the material without all of the prerequisites, but the
student would have to be willing to do some extra work on the side.
At the end of each chapter I give useful references to other books. A

full list of all the books cited, along with proper reference and commen-
tary, is provided in Appendix B.
Most chapters also have exercises included at the end. The exercises

are marked with ∗ if they are harder (with multiple ∗s if they are much
harder). Exercises marked with ‡ are considered to be fundamental to
the core syllabus (at least at Oxford).
A sample exam is provided (with solutions) in Appendix A. The

current Oxford syllabus covers this entire book with the exception of
Chapter 18 on device physics and Chapter 23 on the Hubbard model
(interactions and magnetism).
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About Condensed Matter
Physics 1
This chapter is my personal take on why this topic is interesting. You
might want to read it to figure out why you should think this book is
interesting if that isn’t otherwise obvious.

1.1 What Is Condensed Matter Physics

Quoting Wikipedia:

Condensed matter physics is the field of physics that deals
with the macroscopic and microscopic physical properties
of matter. In particular, it is concerned with the “con-
densed” phases that appear whenever the number of con-
stituents in a system is extremely large and the interactions
between the constituents are strong. The most familiar ex-
amples of condensed phases are solids and liquids, which
arise from the electromagnetic forces between atoms.

The use of the term “condensed matter”, being more general than just
the study of solids, was coined and promoted by Nobel laureate Philip
W. Anderson.
Condensed matter physics is by far the largest single subfield of physics.

The annual meeting of condensed matter physicists in the United States
attracts over 6000 physicists each year! Topics included in this field
range from the very practical to the absurdly abstract, from down-to-
earth engineering to mathematical topics that border on string theory.
The commonality is that all of these topics relate to the fundamental
properties of matter.

1.2 Why Do We Study Condensed Matter
Physics?

There are several very good answers to this question

(1) Because it is the world around us
Almost all of the physical world that we see is in fact condensed
matter. We might ask questions such as

• why are metals shiny and why do they feel cold?
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• why is glass transparent?

• why is water a fluid, and why does fluid feel wet?

• why is rubber soft and stretchy?

These questions are all in the domain of condensed matter physics.
In fact almost every question you might ask about the world around
you, short of asking about the sun or stars, is probably related to
condensed matter physics in some way.

(2) Because it is useful
Over the last century our command of condensed matter physics
has enabled us humans to do remarkable things. We have used
our knowledge of physics to engineer new materials and exploit
their properties to change our world and our society completely.
Perhaps the most remarkable example is how our understanding of
solids enabled new inventions exploiting semiconductor technology,
which enabled the electronics industry, which enabled computers,
iPhones, and everything else we now take for granted.

(3) Because it is deep
The questions that arise in condensed matter physics are as deep
as those you might find anywhere. In fact, many of the ideas that
are now used in other fields of physics can trace their origins to
condensed matter physics.
A few examples for fun:

• The famous Higgs boson, which was recently observed at
CERN, is no different from a phenomenon that occurs in su-
perconductors (the domain of condensed matter physicists).
The Higgs mechanism, which gives mass to elementary par-
ticles is frequently called the “Anderson–Higgs” mechanism,
after the condensed matter physicist Phil Anderson1 who de-1The same guy who coined the term

“condensed matter”. scribed much of the same physics before Peter Higgs, the
high-energy theorist.

• The ideas of the renormalization group (Nobel Prize to Ken-
neth Wilson in 1982) was developed simultaneously in both
high-energy and condensed matter physics.

• The ideas of topological quantum field theories, while in-
vented by string theorists as theories of quantum gravity, have
been discovered in the laboratory by condensed matter physi-
cists!

• In the last few years there has been a mass exodus of string
theorists applying black-hole physics (in N -dimensions!) to
phase transitions in real materials. The very same structures
exist in the lab that are (maybe!) somewhere out in the
cosmos!

That this type of physics is deep is not just my opinion. The Nobel
committee agrees with me. During this course we will discuss the
work of no fewer than fifty Nobel laureates! (See the index of
scientists at the end of this book.)
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(4) Because reductionism doesn’t work
begin{rant} People frequently have the feeling that if you con-
tinually ask “what is it made of” you learn more about something.
This approach to knowledge is known as reductionism. For ex-
ample, asking what water is made of, someone may tell you it is
made from molecules, then molecules are made of atoms, atoms of
electrons and protons, protons of quarks, and quarks are made of
who-knows-what. But none of this information tells you anything
about why water is wet, about why protons and neutrons bind to
form nuclei, why the atoms bind to form water, and so forth. Un-
derstanding physics inevitably involves understanding how many
objects all interact with each other. And this is where things get
difficult very quickly. We understand the Schroedinger equation
extremely well for one particle, but the Schroedinger equations for
four or more particles, while in principle solvable, in practice are
never solved because they are too difficult—even for the world’s
biggest computers. Physics involves figuring out what to do then.
How are we to understand how quarks form a nucleus, or how
electrons and protons form an atom if we cannot solve the many
particle Schroedinger equation?
Even more interesting is the possibility that we understand very
well the microscopic theory of a system, but then we discover that
macroscopic properties emerge from the system that we did not
expect. My personal favorite example is when one puts together
many electrons (each with charge −e) one can sometimes find
new particles emerging, each having one third the charge of an
electron!2 Reductionism would never uncover this—it misses the 2Yes, this really happens. The Nobel

Prize in 1998 was awarded to Dan Tsui,
Horst Stormer, and Bob Laughlin, for
discovery of this phenomenon known as
the fractional quantum Hall effect.

point completely. end{rant}
(5) Because it is a laboratory

Condensed matter physics is perhaps the best laboratory we have
for studying quantum physics and statistical physics. Those of
us who are fascinated by what quantum mechanics and statistical
mechanics can do often end up studying condensed matter physics
which is deeply grounded in both of these topics. Condensed mat-
ter is an infinitely varied playground for physicists to test strange
quantum and statistical effects.
I view this entire book as an extension of what you have already
learned in quantum and statistical physics. If you enjoyed those
courses, you will likely enjoy this as well. If you did not do well in
those courses, you might want to go back and study them again,
because many of the same ideas will arise here.

1.3 Why Solid State Physics?

Being that condensed matter physics is so huge, we cannot possibly
study all of it in one book. Instead we will focus on just one particular
subfield, known as “solid state physics”. As the name suggests, this is the
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study of matter in its solid state (as compared to being in a liquid state,
a gas state, a superfluid state, or some other state of matter). There
are several reasons why we choose to focus on the solid state. First of
all, solid state physics is by far the biggest single subfield of condensed
matter physics.3 Secondly, solid state physics is the most successful and3Perhaps this is not surprising consid-

ering how many solid objects there are
in the world.

most technologically useful subfield of condensed matter physics. Not
only do we know far more about solids than we know about other types
of matter, but also solids are far more useful than other types of matter.
Almost all materials that have found their way to industrial application
are in their solid state. Paramount among these materials are the solids
known as semiconductors which are the basis of the entire electronics
industry. Indeed, frequently the electronics industry is even called the
“solid state” industry.4 More importantly, however, the physics of solids4This stems from the term “solid state

electronics” which describes any elec-
tronic device where electrons travel
within a solid. This is in compari-
son to the old vacuum tube-based elec-
tronic systems where the electrons ac-
tually traveled in vacuo. The old-style
tubes have been replaced in almost ev-
ery application—with very few excep-
tions. One interesting exception is that
many audiophiles and musicians prefer
sound amplification using tubes rather
than solid state electronics. What they
prefer is that the tubes amplify sound
with a characteristic distortion that the
musicians somehow find appealing. For
a pure amplification without distortion,
solid state devices are far better.

provides a paradigm for learning other topics in physics. The things we
learn in our study of solids will form a foundation for study of other
topics both inside the field of condensed matter, and outside of it.



Part I

Physics of Solids without
Considering Microscopic
Structure: The Early
Days of Solid State
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Specific Heat of Solids:
Boltzmann, Einstein, and
Debye 2

Our story of condensed matter physics starts around the turn of the
last century. It was well known (and you should remember from your
prior study of statistical physics) that the heat capacity1 of a monatomic
(ideal) gas is Cv = 3kB/2 per atom, with kB being Boltzmann’s con-
stant. The statistical theory of gases described why this is so.
As far back as 1819, however, it had also been known that for many

solids the heat capacity is given by2

2Here I do not distinguish between Cp

(at constant pressure) and Cv (at con-
stant volume) because they are very
close to the same. Recall that Cp −
Cv = V Tα2/βT , where βT is the
isothermal compressibility and α is the
coefficient of thermal expansion. For a
solid, α is relatively small.

C = 3kB per atom

or C = 3R

which is known as the law of Dulong–Petit,3 where R is the ideal gas

3Both Pierre Dulong and Alexis Petit
were French chemists. Neither is re-
membered for much else besides this
law.

constant. While this law is not always correct, it frequently is close to
true. For example, see Table 2.1 of heat capacities at room tempera-
ture and pressure. With the exception of diamond, the law C/R = 3
seems to hold extremely well at room temperature, although at lower
temperatures all materials start to deviate from this law, and typically
C drops rapidly below some temperature (and for diamond when the
temperature is raised, the heat capacity increases towards 3R as well,
see Fig. 2.2).

Table 2.1 Heat capacities of some solids
at room temperature and pressure.

Material C/R

Aluminum (Al) 2.91
Antimony (Sb) 3.03
Copper (Cu) 2.94
Gold (Au) 3.05
Silver (Ag) 2.99
Diamond (C) 0.735

In 1896 Boltzmann constructed a model that accounted for this law
fairly well. In his model, each atom in the solid is bound to neighboring
atoms. Focusing on a single particular atom, we imagine that atom as

1We will almost always be concerned with the heat capacity C per atom of a material. Multiplying by Avogadro’s number
gives the molar heat capacity or heat capacity per mole. The specific heat (denoted often as c rather than C) is the heat
capacity per unit mass. However, the phrase “specific heat” is also used loosely to describe the molar heat capacity, since they
are both intensive quantities (as compared to the total heat capacity which is extensive—i.e., proportional to the amount of
mass in the system). We will try to be precise with our language, but one should be aware that frequently things are written
in non-precise ways and you are left to figure out what is meant. For example, really we should say Cv per atom = 3kB/2
rather than Cv = 3kB/2 per atom, and similarly we should say C per mole = 3R. To be more precise I really would have liked
to title this chapter “Heat Capacity per Atom of Solids” rather than “Specific Heat of Solids”. However, for over a century
people have talked about the “Einstein Theory of Specific Heat” and “Debye Theory of Specific Heat”, and it would have been
almost scandalous to not use this wording.
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being in a harmonic well formed by the interaction with its neighbors.
In such a classical statistical mechanical model, the heat capacity of the
vibration of the atom is 3kB per atom, in agreement with Dulong–Petit.
(You should be able to show this with your knowledge of statistical
mechanics and/or the equipartition theorem; see Exercise 2.1).
Several years later in 1907, Einstein started wondering about why this

law does not hold at low temperatures (for diamond, “low” temperature
appears to be room temperature!). What he realized is that quantum
mechanics is important!
Einstein’s assumption was similar to that of Boltzmann. He assumed

that every atom is in a harmonic well created by the interaction with its
neighbors. Further, he assumed that every atom is in an identical har-
monic well and has an oscillation frequency ω (known as the “Einstein”
frequency).
The quantum-mechanical problem of a simple harmonic oscillator is

one whose solution we know. We will now use that knowledge to deter-
mine the heat capacity of a single one-dimensional harmonic oscillator.
This entire calculation should look familiar from your statistical physics
course.

2.1 Einstein’s Calculation

In one dimension, the eigenstates of a single harmonic oscillator are

En = !ω(n+ 1/2) (2.1)

with ω the frequency of the harmonic oscillator (the “Einstein frequency”).
The partition function is then44We will very frequently use the stan-

dard notation β = 1/(kBT ).
Z1D =

∑

n!0

e−β!ω(n+1/2)

=
e−β!ω/2

1− e−β!ω
=

1

2 sinh(β!ω/2) .

The expectation of energy is then (compare to Eq. 2.1)

〈E〉 = −
1

Z1D

∂Z1D

∂β
=

!ω

2
coth

(
β!ω

2

)
= !ω

(
nB(β!ω) +

1

2

)
(2.2)

where nB is the Bose5 occupation factor5Satyendra Bose worked out the idea of
Bose statistics in 1924, but could not
get it published until Einstein lent his
support to the idea.

nB(x) =
1

ex − 1 .

This result is easy to interpret. The mode ω is an excitation that is
excited on average up to the nth

B level, or equivalently there is a “boson”
orbital which is “occupied” by nB bosons.
Differentiating the expression for energy we obtain the heat capacity

for a single oscillator,

C =
∂〈E〉
∂T

= kB(β!ω)
2 eβ!ω

(eβ!ω − 1)2 .
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Note that the high-temperature limit of this expression gives C = kB
(check this if it is not obvious!).
Generalizing to the three-dimensional case,

Enx,ny,nz = !ω[(nx + 1/2) + (ny + 1/2) + (nz + 1/2)]

and
Z3D =

∑

nx,ny,nz!0

e−βEnx,ny,nz = [Z1D]3

resulting in 〈E3D〉 = 3〈E1D〉, so correspondingly we obtain

C = 3kB(β!ω)
2 eβ!ω

(eβ!ω − 1)2 .

Plotted, this looks like Fig. 2.1.
0 1 20

0.25

0.5

0.75

1

C
3kB

kBT/!ω

Fig. 2.1 Einstein heat capacity per
atom in three dimensions.

Note that in the high-temperature limit kBT $ !ω we recover the
law of Dulong–Petit: 3kB heat capacity per atom. However, at low tem-
perature (T % !ω/kB) the degrees of freedom “freeze out”, the system
gets stuck in only the ground-state eigenstate, and the heat capacity
vanishes rapidly.
Einstein’s theory reasonably accurately explained the behavior of the

heat capacity as a function of temperature with only a single fitting
parameter, the Einstein frequency ω (sometimes this frequency is quoted
in terms of the Einstein temperature !ω = kBTEinstein). In Fig. 2.2 we
show Einstein’s original comparison to the heat capacity of diamond. C

kBT/!ω

Fig. 2.2 Plot of molar heat capacity
of diamond from Einstein’s original pa-
per. The fit is to the Einstein the-
ory. The y axis is C in units of cal/(K-
mol). In these units, 3R ≈ 5.96. The
fitting parameter TEinstein = !ω/kB
is roughly 1320K. Figure from A. Ein-
stein, Ann. Phys., 22, 180, (1907),
Copyright Wiley-VCH Verlag GmbH &
Co. KGaA. Reproduced with permis-
sion.

For most materials, the Einstein frequency ω is low compared to room
temperature, so the Dulong–Petit law holds fairly well (being relatively
high temperature compared to the Einstein frequency). However, for
diamond, ω is high compared to room temperature, so the heat capacity
is lower than 3R at room temperature. The reason diamond has such a
high Einstein frequency is that the bonding between atoms in diamond
is very strong and the atomic mass of the carbon atoms that comprise
diamond is relatively low, hence a high ω =

√
κ/m oscillation frequency,

with κ a spring constant and m the mass. These strong bonds also result
in diamond being an exceptionally hard material.
Einstein’s result was remarkable, not only in that it explained the

temperature dependence of the heat capacity, but more importantly it
told us something fundamental about quantum mechanics. Keep in mind
that Einstein obtained this result 19 years before the Schroedinger equa-
tion was discovered!6

6Einstein was a pretty smart guy.

2.2 Debye’s Calculation

Einstein’s theory of specific heat was extremely successful, but still there
were clear deviations from the predicted equation. Even in the plot in
his first paper (Fig. 2.2) one can see that at low temperature the ex-
perimental data lie above the theoretical curve.7 This result turns out

7Although perhaps not obvious, this
deviation turns out to be real, and not
just experimental error.

to be rather important! In fact, it was known that at low temperatures
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most materials have a heat capacity that is proportional to T 3. See
for example, Fig. 2.3. (Metals also have a very small additional term
proportional to T which we will discuss later in Section 4.2. Magnetic

0.02

0.04

12.8 K

59 K

10
5

2 x 10
50

C
p
(J
/m

ol
-K

)

T 3 (K3)

Fig. 2.3 Heat capacity of diamond is
proportional to T 3 at low temperature.
Note that the temperatures shown in
this plot are far far below the Ein-
stein temperature and therefore corre-
spond to the very bottom left corner
of Fig. 2.2. Data from Desnoyehs and
Morrison, Phil. Mag., 3, 42 (1958).

materials may have other additional terms as well.8 Non-magnetic in-

8We will discuss magnetism in part VII.

sulators have only the T 3 behavior). At any rate, Einstein’s formula at
low temperature is exponentially small in T , not agreeing at all with the
actual experiments.
In 1912 Peter Debye9 discovered how to better treat the quantum

9Peter Debye later won a Nobel Prize
in chemistry for something completely
different.

mechanics of oscillations of atoms, and managed to explain the T 3 de-
pendance of the specific heat. Debye realized that oscillation of atoms is
the same thing as sound, and sound is a wave, so it should be quantized
the same way as Planck10 had quantized light waves in 1900. Besides

10Max Planck did not like his own cal-
culation of the quantization of light. He
later referred to it as “an act of des-
peration”. It seems that he viewed it
mostly as a way to fudge the calcula-
tion to get an answer in agreement with
experiment rather than being the revo-
lutionary beginning of the new field of
quantum physics.

the fact that the speed of light is much faster than that of sound, there
is only one minor difference between light and sound: for light, there
are two polarizations for each wavevector k, whereas for sound there
are three modes for each k (a longitudinal mode, where the atomic mo-
tion is in the same direction as k and two transverse modes where the
motion is perpendicular to k; light has only the transverse modes11).

11Sound in fluids is longitudinal only.

For simplicity of presentation here we will assume that the transverse
and longitudinal modes have the same velocity, although in truth the
longitudinal velocity is usually somewhat greater than the transverse
velocity.12

12It is not too hard to keep track of the
fact that the transverse and longitudi-
nal velocities are different. Note also
that we assume the sound velocity to
be the same in every direction, which
need not be true in real materials. It is
not too hard to include such anisotropy
in Debye’s theory as well. See Exercise
2.6.

We now repeat essentially what was Planck’s calculation for light.
This calculation should also look familiar from your statistical physics
course. First, however, we need some preliminary information about
waves:

2.2.1 Periodic (Born–von Karman) Boundary
Conditions

Many times in this course we will consider waves with periodic or “Born–
von Karman” boundary conditions. It is easiest to describe this first in
one dimension. Here, instead of having a one-dimensional sample of
length L with actual ends, we imagine that the two ends are connected
together making the sample into a circle. The periodic boundary con-
dition means that, any wave in this sample eikr is required to have the
same value for a position r as it has for r+L (we have gone all the way
around the circle). This then restricts the possible values of k to be

k =
2πn

L
for n an integer. If we are ever required to sum over all possible values of
k, for large enough L we can replace the sum with an integral obtaining

∑

k

→
L

2π

∫ ∞

−∞
dk.

A way to understand this mapping is to note that the spacing between
allowed points in k space is 2π/L, so the integral

∫
dk can be replaced

by a sum over k points times the spacing between the points.13
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In three dimensions, the story is extremely similar. For a sample of
size L3, we identify opposite ends of the sample (wrapping the sample 13In your previous courses you may

have used particle-in-a-box boundary
conditions where instead of plane waves
ei2πnr/L you used particle in a box
wavefunctions of the form sin(nπr/L).
This gives you instead

∑

k

→
L

π

∫ ∞

0
dk

which will inevitably result in the same
physical answers as for the periodic
boundary condition case. All calcula-
tions can be done either way, but peri-
odic Born–von Karman boundary con-
ditions are almost always simpler.

up into a hypertorus!) so that if you go a distance L in the x, y or z
direction, you get back to where you started.14 As a result, our k values

14Such boundary conditions are very
popular in video games, such as the
classic time-wasting game of my youth,
Asteroids (you can find it online). It
may also be possible that our universe
has such boundary conditions—a no-
tion known as the doughnut universe.
Data collected by Cosmic Microwave
Background Explorer (led by Nobel
Laureates John Mather and George
Smoot) and its successor the Wilkin-
son Microwave Anisotropy Probe ap-
pear consistent with this structure.

can only take values

k =
2π

L
(n1, n2, n3)

for integer values of ni, so here each k point now occupies a volume of
(2π/L)3. Because of this discretization of values of k, whenever we have
a sum over all possible k values we obtain

∑

k

→
L3

(2π)3

∫
dk

with the integral over all three dimensions of k-space (this is what we
mean by the bold dk). One might think that wrapping the sample up
into a hypertorus is very unnatural compared to considering a system
with real boundary conditions. However, these boundary conditions
tend to simplify calculations quite a bit, and most physical quantities
you might measure could be measured far from the boundaries of the
sample anyway and would then be independent of what you do with the
boundary conditions.

2.2.2 Debye’s Calculation Following Planck

Debye decided that the oscillation modes of a solid were waves with
frequencies ω(k) = v|k| with v the sound velocity—and for each k there
should be three possible oscillation modes, one for each direction of
motion. Thus he wrote an expression entirely analogous to Einstein’s
expression (compare to Eq. 2.2)

〈E〉 = 3
∑

k

!ω(k)

(
nB(β!ω(k)) +

1

2

)

= 3
L3

(2π)3

∫
dk !ω(k)

(
nB(β!ω(k)) +

1

2

)

.

Each excitation mode is a boson of frequency ω(k) and is occupied on
average nB(β!ω(k)) times.
By spherical symmetry, we may convert the three-dimensional integral

to a one-dimensional integral
∫

dk→ 4π

∫ ∞

0
k2dk

(recall that 4πk2 is the area of the surface of a sphere15 of radius k) and 15Or to be pedantic,
∫
dk →

∫ 2π
0 dφ

∫ π
0 dθ sin θ

∫∞
0 k2dk and per-

forming the angular integrals gives
4π.

we also use k = ω/v to obtain

〈E〉 = 3
4πL3

(2π)3

∫ ∞

0
ω2dω(1/v3)(!ω)

(
nB(β!ω) +

1

2

)

.

(2.3)
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It is convenient to replace nL3 = N where n is the density of atoms. We
then obtain

〈E〉 =
∫ ∞

0
dω g(ω)(!ω)

(
nB(β!ω) +

1

2

)
(2.4)

where the density of states is given by16

16Although it now appears that the
number of atoms N and the atomic
density n are relevant parameters of the
problem, in fact, these two factors can-
cel and only the original L3 matters for
our results in this section! The reason
we have introduced such canceling fac-
tors here is because writing our results
this way prepares us for the next sec-
tion (Sec. 2.2.3) where N becomes an
important physical parameter different
from L3!

g(ω) = L3

[
12πω2

(2π)3v3

]
= N

[
12πω2

(2π)3nv3

]
= N

9ω2

ω3
d

(2.5)

where
ω3
d = 6π2nv3. (2.6)

This frequency will be known as the Debye frequency, and in the next
section we will see why we chose to define it this way with the factor of
9 removed.
The meaning of the density of states17 here is that the total number17We will encounter the concept of den-

sity of states many times, so it is a good
idea to become comfortable with it!

of oscillation modes with frequencies between ω and ω + dω is given by
g(ω)dω. Thus the interpretation of Eq. 2.4 is simply that we should
count how many modes there are per frequency (given by g), then mul-
tiply by the expected energy per mode (compare to Eq. 2.2), and finally
we integrate over all frequencies. This result, Eq. 2.3, for the quantum
energy of the sound waves is strikingly similar to Planck’s result for the
quantum energy of light waves, only we have replaced 2/c3 by 3/v3 (re-
placing the two light modes by three sound modes). The other change
from Planck’s classic result is the +1/2 that we obtain as the zero-point
energy of each oscillator.18 At any rate, this zero-point energy gives us

18Planck should have gotten this en-
ergy as well, but he didn’t know about
zero-point energy—in fact, since it was
long before quantum mechanics was
fully understood, Debye didn’t actually
have this term either. a contribution which is temperature independent.19 Since we are con-

19The contribution of the zero-point
energy is temperature independent and
also infinite. Handling infinities like
this is something that gives mathemati-
cians nightmares, but physicists do it
happily when they know that the infin-
ity is not really physical. We will see
in Section 2.2.3 how this infinity gets
properly cut off by the Debye frequency.

cerned with C = ∂〈E〉/∂T this term will not contribute and we will
separate it out. We thus obtain

〈E〉 =
9N!

ω3
d

∫ ∞

0
dω

ω3

eβ!ω − 1
+ T independent constant.

By defining a variable x = β!ω this becomes

〈E〉 =
9N!

ω3
d(β!)

4

∫ ∞

0
dx

x3

ex − 1
+ T independent constant.

The nasty integral just gives some number20—in fact the number is
π4/15. Thus we obtain

〈E〉 = 9N
(kBT )4

(!ωd)3
π4

15
+ T independent constant.

20If you wanted to evaluate the nasty integral, the strategy is to reduce it to the famous Riemann zeta function. We start by
writing ∫ ∞

0
dx

x3

ex − 1
=

∫ ∞

0
dx

x3e−x

1− e−x
=

∫ ∞

0
dxx3e−x

∞∑

n=0

e−nx =
∞∑

n=1

∫ ∞

0
dx x3e−nx

The integral can be evaluated and the expression can then be written as 3!
∑∞

n=1 n
−4. The resultant sum is a special case of

the famous Riemann zeta function defined as ζ(p) =
∑∞

n=1 n
−p, where here we are concerned with the value of ζ(4). Since

the zeta function is one of the most important functions in all of mathematics (see margin note 24 of this chapter), one can
just look up its value on a table to find that ζ(4) = π4/90, thus giving us the stated result that the nasty integral is π4/15.
However, in the unlikely event that you were stranded on a desert island and did not have access to a table, you could even
evaluate this sum explicitly, which we do in the appendix to this chapter.
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Notice the similarity to Planck’s derivation of the T 4 energy of photons.
As a result, the heat capacity is

C =
∂〈E〉
∂T

= NkB
(kBT )3

(!ωd)3
12π4

5
∼ T 3

.

This correctly obtains the desired T 3 specific heat. Furthermore, the
prefactor of T 3 can be calculated in terms of known quantities such as
the sound velocity. Note that the Debye frequency in this equation is
sometimes replaced by a temperature.

kBTDebye = !ωd

known as the Debye temperature (see Table 2.2), so that this equation
reads

C =
∂〈E〉
∂T

= NkB
(T )3

(TDebye)3
12π4

5 .

Table 2.2 Some Debye temperatures.

Material TDebye (K)

Diamond (C) 1850
Beryllium (Be) 1000
Silicon (Si) 625
Copper (Cu) 315
Silver (Ag) 215
Lead (Pb) 88

Note that hard materials like diamond
have high Debye temperatures, whereas
soft materials like lead have low De-
bye temperatures. These data are
measured at standard temperature and
pressure (meaning the speed of sound
and density are measured at this tem-
perature and pressure). Since real ma-
terials change depending on the en-
vironment (expand with temperature,
etc.) the Debye temperature is actually
a very weak function of ambient condi-
tions.

2.2.3 Debye’s “Interpolation”

Unfortunately, now Debye has a problem. In the expression just derived,
the heat capacity is proportional to T 3 up to arbitrarily high tempera-
ture. We know however, that the heat capacity should level off to 3kBN
at high T . Debye understood that the problem with his approximation
is that it allowed an infinite number of sound wave modes—up to arbi-
trarily large k. This would imply more sound wave modes than there
are atoms in the entire system. Debye guessed (correctly) that really
there should be only as many modes as there are degrees of freedom in
the system. We will see in Chapters 9–13 that this is an important gen-
eral principle. To fix this problem, Debye decided to not consider sound
waves above some maximum frequency ωcutoff , with this frequency cho-
sen such that there are exactly 3N sound wave modes in the system
(three dimensions of motion times N particles). We thus define ωcutoff

via

3N =

∫ ωcutoff

0
dω g(ω). (2.7)

We correspondingly rewrite Eq. 2.4 for the energy (dropping the zero-
point contribution) as21 21Here, since the integral is now cut off,

had we kept the zero-point energy, its
contribution would now be finite (and
temperature independent still).〈E〉 =

∫ ωcutoff

0
dω g(ω) !ω nB(β!ω). (2.8)

Note that at very low temperature, this cutoff does not matter at all,
since for large β the Bose factor nB will very rapidly go to zero at
frequencies well below the cutoff frequency anyway.
Let us now check that this cutoff gives us the correct high-temperature

limit. For high temperature

nB(β!ω) =
1

eβ!ω − 1
→

kBT

!ω .
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Thus in the high-temperature limit, invoking Eqs. 2.7 and 2.8 we obtain

〈E〉 = kBT

∫ ωcutoff

0
dωg(ω) = 3kBTN

yielding the Dulong–Petit high-temperature heat capacity C = ∂〈E〉/∂T
= 3kBN = 3kB per atom. For completeness, let us now evaluate our
cutoff frequency,

3N =

∫ ωcutoff

0
dωg(ω) = 9N

∫ ωcutoff

0
dω

ω2

ω3
d

= 3N
ω3
cutoff

ω3
d .

We thus see that the correct cutoff frequency is exactly the Debye fre-
quency ωd. Note that k = ωd/v = (6π2n)1/3 (from Eq. 2.6) is on the
order of the inverse interatomic spacing of the solid.
More generally (in the neither high- nor low-temperature limit) one

has to evaluate the integral (Eq. 2.8), which cannot be done analytically.
Nonetheless it can be done numerically and then can be compared to
actual experimental data as shown in Fig. 2.4. It should be emphasized
that the Debye theory makes predictions without any free parameters,
as compared to the Einstein theory which had the unknown Einstein
frequency ω as a free fitting parameter.
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Fig. 2.4 Heat capacity of silver com-
pared to the Debye and Einstein mod-
els. The high-temperature asymptote
is given by C = 3R = 24.945 J/(mol-
K). Over the entire experimental range,
the fit to the Debye theory is excellent.
At low T it correctly recovers the T 3

dependence, and at high T it converges
to the law of Dulong–Petit. The Ein-
stein theory clearly is incorrect at very
low temperatures. The Debye tempera-
ture is roughly 215 K, whereas the Ein-
stein temperature roughly 151 K. Data
is taken from C. Kittel, Solid State
Physics, 2ed Wiley (1956).

2.2.4 Some Shortcomings of the Debye Theory

While Debye’s theory is remarkably successful, it does have a few short-
comings.

• The introduction of the cutoff seems very ad hoc. This seems like
a successful cheat rather than real physics.

• We have assumed sound waves follow the law ω = vk even for very
very large values of k (on the order of the inverse lattice spacing),
whereas the entire idea of sound is a long-wavelength idea, which
doesn’t seem to make sense for high enough frequency and short
enough wavelength. At any rate, it is known that at high enough
frequency the law ω = vk no longer holds.

• Experimentally, the Debye theory is very accurate, but it is not
exact at intermediate temperatures.

• Metals also have a term in the heat capacity that is proportional to
T , so the overall heat capacity is C = γT +αT 3 and at low enough
T the linear term will dominate.22 You can’t see this contribution

22In magnetic materials there may be
still other contributions to the heat ca-
pacity reflecting the energy stored in
magnetic degrees of freedom. See Part
VII, and in particular Exercise 20.3, be-
low.

on the plot Fig. 2.4, but at very low T it becomes evident, as shown
in Fig. 2.5.

Of these shortcomings, the first three can be handled more properly
by treating the details of the crystal structure of materials accurately
(which we will do starting in Chapter 9). The final issue requires us to
carefully study the behavior of electrons in metals to discover the origin
of this linear T term (see Section 4.2).
Nonetheless, despite these problems, Debye’s theory was a substantial

improvement over Einstein’s.23
23Debye was pretty smart too... even
though he was a chemist.
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Chapter Summary

• (Much of the) heat capacity (specific heat) of materials is due to
atomic vibrations.

• Boltzmann and Einstein models consider these vibrations as N
simple harmonic oscillators.

• Boltzmann classical analysis obtains law of Dulong–Petit C =
3NkB = 3R.

• Einstein quantum analysis shows that at temperatures below the
oscillator frequency, degrees of freedom freeze out, and heat capac-
ity drops exponentially. Einstein frequency is a fitting parameter.

• Debye Model treats oscillations as sound waves with no fitting
parameters.

– ω = v|k|, similar to light (but three polarizations not two)

– quantization similar to Planck quantization of light

– maximum frequency cutoff (!ωDebye = kBTDebye) necessary
to obtain a total of only 3N degrees of freedom

– obtains Dulong–Petit at high T and C ∼ T 3 at low T .

• Metals have an additional (albeit small) linear T term in the heat
capacity.

c/
T

(m
J
/m

ol
-K

2
)

T 2 (K2)
0 2 4 12 14 16

1

2

3

Fig. 2.5 Heat capacity divided by
temperature of silver at very low tem-
perature plotted against temperature
squared. At low enough temperature
one can see that the heat capacity is
actually of the form C = γT + αT 3.
If the dependence were purely T 3, the
curve would have a zero intercept. The
cubic term is from the Debye theory
of specific heat. The linear term is
special to metals and will be discussed
in Section 4.2. Figure from Corak
et al., Phys. Rev. 98 1699 (1955),
http://prola.aps.org/abstract/PR/v98/
i6/p1699 1, copyright American Phys-
ical Society. Used by permission.
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2.3 Appendix to this Chapter: ζ(4)

The Riemann zeta function is defined as2424One of the most important un-
proven conjectures in all of mathemat-
ics is known as the Riemann hypothe-
sis and is concerned with determining
for which values of p does ζ(p) = 0.
The hypothesis was written down in
1869 by Bernard Riemann (the same
guy who invented Riemannian geome-
try, crucial to general relativity) and
has defied proof ever since. The Clay
Mathematics Institute has offered one
million dollars for a successful proof.

ζ(p) =
∞∑

n=1

n−p.

This function occurs frequently in physics, not only in the Debye theory
of solids, but also in the Sommerfeld theory of electrons in metals (see
Chapter 4), as well as in the study of Bose condensation.
In this appendix we are concerned with the value of ζ(4). To evaluate

this we write a Fourier series for the function x2 on the interval [−π,π].
The series is given by

x2 =
a0
2

+
∑

n>0

an cos(nx) (2.9)

with coefficients given by

an =
1

π

∫ π

−π
dxx2 cos(nx).

These can be calculated straightforwardly to give

an =

{
2π2/3 n = 0
4(−1)n/n2 n > 0.

We now calculate an integral in two different ways. First we can directly
evaluate ∫ π

−π
dx(x2)2 =

2π5

5 .

On the other hand, using the Fourier decomposition of x2 (Eq. 2.9) we
can write the same integral as

∫ π

−π
dx(x2)2 =

∫ π

−π
dx

(
a0
2

+
∑

n>0

an cos(nx)

)(
a0
2

+
∑

m>0

am cos(mx)

)

=

∫ π

−π
dx

(a0
2

)2
+

∫ π

−π
dx

∑

n>0

(an cos(nx))
2

where we have used the orthogonality of Fourier modes to eliminate cross
terms in the product. We can do these integrals to obtain

∫ π

−π
dx(x2)2 = π

(
a20
2

+
∑

n>0

a2n

)

=
2π5

9
+ 16πζ(4).

Setting this expression to 2π5/5 gives us the result ζ(4) = π4/90.
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Exercises

(2.1) Einstein Solid

(a) Classical Einstein (or “Boltzmann”) Solid:

Consider a three-dimensional simple harmonic os-
cillator with mass m and spring constant k (i.e., the
mass is attracted to the origin with the same spring
constant in all three directions). The Hamiltonian
is given in the usual way by

H =
p2

2m
+

k
2
x2
.

! Calculate the classical partition function

Z =

∫
dp

(2π!)3

∫
dx e−βH(p,x)

.

Note: in this exercise p and x are three-dimensional
vectors.

! Using the partition function, calculate the heat
capacity 3kB .

! Conclude that if you can consider a solid to con-
sist of N atoms all in harmonic wells, then the heat
capacity should be 3NkB = 3R, in agreement with
the law of Dulong and Petit.

(b) Quantum Einstein Solid:

Now consider the same Hamiltonian quantum-
mechanically.

! Calculate the quantum partition function

Z =
∑

j

e−βEj

where the sum over j is a sum over all eigenstates.

! Explain the relationship with Bose statistics.

! Find an expression for the heat capacity.

! Show that the high-temperature limit agrees
with the law of Dulong and Petit.

! Sketch the heat capacity as a function of tem-
perature.

(See also Exercise 2.7 for more on the same topic)

(2.2) Debye Theory I

(a)‡ State the assumptions of the Debye model of
heat capacity of a solid.

! Derive the Debye heat capacity as a function
of temperature (you will have to leave the final re-
sult in terms of an integral that cannot be done
analytically).

! From the final result, obtain the high- and low-
temperature limits of the heat capacity analyti-
cally.

You may find the following integral to be useful

∫ ∞

0

dx
x3

ex − 1
=

∞∑

n=1

∫ ∞

0

x3e−nx = 6
∞∑

n=1

1
n4

=
π4

15 .

By integrating by parts this can also be written as
∫ ∞

0

dx
x4ex

(ex − 1)2
=

4π4

15 .

(b) The following table gives the heat capacity C
for potassium iodide as a function of temperature.

T (K) C(J K−1mol−1)

0.1 8.5× 10−7

1.0 8.6× 10−4

5 .12
8 .59
10 1.1
15 2.8
20 6.3

! Discuss, with reference to the Debye theory, and
make an estimate of the Debye temperature.

(2.3) Debye Theory II

Use the Debye approximation to determine the heat
capacity of a two-dimensional solid as a function of
temperature.

! State your assumptions.

You will need to leave your answer in terms of an
integral that one cannot do analytically.

! At high T , show the heat capacity goes to a
constant and find that constant.

! At low T , show that Cv = KTn Find n. Find
K in terms of a definite integral.

If you are brave you can try to evaluate the inte-
gral, but you will need to leave your result in terms
of the Riemann zeta function.

(2.4) Debye Theory III

Physicists should be good at making educated
guesses. Guess the element with the highest Debye
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temperature. The lowest? You might not guess the
ones with the absolutely highest or lowest temper-
atures, but you should be able to get close.

(2.5) Debye Theory IV

From Fig. 2.3 estimate the Debye temperature of
diamond. Why does it not quite match the result
listed in Table 2.2?

(2.6) Debye Theory V*

In the text we derived the low-temperature Debye
heat capacity assuming that the longitudinal and
transverse sound velocities are the same and also
that the sound velocity is independent of the direc-
tion the sound wave is propagating.

(a) Suppose the transverse velocity is vt and the
longitudinal velocity is vl. How does this change
the Debye result? State any assumptions you make.

(b) Instead suppose the velocity is anisotropic. For
example, suppose in the x̂, ŷ and ẑ direction, the
sound velocity is vx, vy and vz respectively. How
might this change the Debye result?

(2.7) Diatomic Einstein Solid*

Having studied Exercise 2.1, consider now a solid
made up of diatomic molecules. We can (very
crudely) model this as two particles in three di-
mensions, connected to each other with a spring,
both in the bottom of a harmonic well.

H =
p1

2

2m1
+

p2
2

2m2
+

k
2
x1

2 +
k
2
x2

2 +
K
2
(x1 − x2)

2

where k is the spring constant holding both par-
ticles in the bottom of the well, and K is the

spring constant holding the two particles together.
Assume that the two particles are distinguishable
atoms.

(If you find this exercise difficult, for simplicity you
may assume that m1 = m2.)

(a) Analogous to Exercise 2.1, calculate the classi-
cal partition function and show that the heat ca-
pacity is again 3kB per particle (i.e., 6kB total).

(b) Analogous to Exercise 2.1, calculate the quan-
tum partition function and find an expression for
the heat capacity. Sketch the heat capacity as a
function of temperature if K # k.

(c)** How does the result change if the atoms are
indistinguishable?

(2.8) Einstein versus Debye*

In both the Einstein model and the Debye model
the high-temperature heat capacity is of the form

C = NkB(1− κ/T 2 + . . .).

! For the Einstein model calculate κ in terms of
the Einstein temperature.

! For the Debye model calculate κ in terms of the
Debye temperature.

From your results give an approximate ratio
TEinstein/TDebye. Compare your result to the val-
ues for silver given in Fig. 2.4. (The ratio you cal-
culate should be close to the ratio stated in the
caption of the figure. It is not exactly the same
though. Why might it not be?)



Electrons in Metals: Drude
Theory 3
Even in ancient times it was understood that certain substances (now
known as metals) were somehow different from other materials in the
world.1 The defining characteristic of a metal is that it conducts elec- 1Human mastery of metals such as cop-

per (around 8000 BC), bronze (around
3300 BC), and iron (around 1200
BC), completely changed agriculture,
weaponry, and pretty much every other
aspect of life.

tricity. At some level the reason for this conduction boils down to the
fact that electrons are mobile in these materials. In later chapters we
will be concerned with the question of why electrons are mobile in some
materials but not in others, being that all materials have electrons in
them! For now, we take as given that there are mobile electrons and we
would like to understand their properties.
J.J. Thomson’s 1896 discovery of the electron (“corpuscles of charge”

that could be pulled out of metal) raised the question of how these charge
carriers might move within the metal. In 1900 Paul Drude2 realized that

2Pronounced roughly “Drood-a”.

he could apply Boltzmann’s kinetic theory of gases to understanding
electron motion within metals. This theory was remarkably successful,
providing a first understanding of metallic conduction.3

3Sadly, neither Boltzmann nor Drude
lived to see how much influence this
theory really had—in unrelated tragic
events, both of them committed suicide
in 1906. Boltzmann’s famous student,
Ehrenfest, also committed suicide some
years later. Why so many highly suc-
cessful statistical physicists took their
own lives is a bit of a mystery.

Having studied the kinetic theory of gases in previous courses, Drude
theory should be very easy to understand. We will make three assump-
tions about the motion of electrons

(1) Electrons have a scattering4 time τ . The probability of scattering
4In the kinetic theory of gas, one can
estimate the scattering time based on
the velocity, density, and scattering
cross-section of the molecules of the
gas. In Drude theory, estimates of τ
are far more difficult for several rea-
sons. First, the electrons interact via
long range Coulomb interaction, so it
is hard to define a cross-section. Sec-
ondly, there are many things in a solid
that an electron can hit besides other
electrons. As such, we will simply treat
τ as a phenomenological parameter.

within a time interval dt is dt/τ .

(2) Once a scattering event occurs, we assume the electron returns to
momentum p = 0.

(3) In between scattering events, the electrons, which are charge −e
particles, respond to the externally applied electric field E and
magnetic field B.

The first two of these assumptions are exactly those made in the kinetic
theory of gases.5 The third assumption is just a logical generalization
to account for the fact that, unlike gas molecules, electrons are charged
and must therefore respond to electromagnetic fields.

5Ideally we would do a better job with our representation of the scattering of particles. Every collision should consider two
particles having initial momenta pinitial

1 and pinitial
2 and then scattering to final momenta pfinal

1 and pfinal
2 so as to conserve

both energy and momentum. Unfortunately, keeping track of things so carefully makes the problem extremely difficult to solve.
Assumption 1 is not so crazy as an approximation being that there really is a typical time between scattering events in a
gas. Assumption 2 is a bit more questionable, but on average the final momentum after a scattering event is indeed zero (if
you average momentum as a vector). However, obviously it is not correct that every particle has zero kinetic energy after a
scattering event. This is a defect of the approach.
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We consider an electron with momentum p at time t and ask what
momentum it will have at time t+dt. There are two terms in the answer.
There is a probability dt/τ that it will scatter to momentum zero. If it
does not scatter to momentum zero (with probability 1−dt/τ) it simply
accelerates as dictated by its usual equations of motion dp/dt = F.
Putting the two terms together we have

〈p(t+ dt)〉 =
(
1−

dt

τ

)
(p(t) + Fdt) + 0 dt/τ

or keeping terms only to linear order in dt then rearranging,66Here we really mean the thermal av-
erage 〈p〉 when we write p. Since our
scattering is probabilistic, we should
view all quantities (such as the momen-
tum) as being an expectation over these
random events. A more detailed the-
ory would keep track of the entire dis-
tribution of momenta rather than just
the average momentum. Keeping track
of distributions in this way leads one
to the Boltzmann Transport Equation,
which we will not discuss.

dp

dt
= F−

p

τ
(3.1)

where here the force F on the electron is just the Lorentz force

F = −e(E+ v ×B).

One can think of the scattering term −p/τ as just a drag force on the
electron. Note that in the absence of any externally applied field the
solution to this differential equation is just an exponentially decaying
momentum

p(t) = pinitial e
−t/τ

which is what we should expect for particles that lose momentum by
scattering.

3.1 Electrons in Fields

3.1.1 Electrons in an Electric Field

Let us start by considering the case where the electric field is non-zero
but the magnetic field is zero. Our equation of motion is then

dp

dt
= −eE−

p

τ .

In steady state, dp/dt = 0 so we have

mv = p = −eτE

with m the mass of the electron and v its velocity.
Now, if there is a density n of electrons in the metal each with charge

−e, and they are all moving at velocity v, then the electrical current is
given by

j = −env =
e2τn

m
E

or in other words, the conductivity of the metal, defined via j = σE is
given by77A related quantity is the mobility,

defined by v = µE, which is given
in Drude theory by µ = eτ/m. We
will discuss mobility further in Section
17.1.1.

σ =
e2τn

m .
(3.2)

By measuring the conductivity of the metal (assuming we know both
the charge and mass of the electron) we can determine the product of
the electron density and scattering time of the electron.
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3.1.2 Electrons in Electric and Magnetic Fields

Let us continue on to see what other predictions come from Drude theory.
Consider the transport equation (Eq. 3.1) for a system in both an electric
and a magnetic field. We now have

dp

dt
= −e(E+ v ×B)− p/τ.

Again setting this to zero in steady state, and using p = mv and j =
−nev, we obtain an equation for the steady state current

0 = −eE+
j×B

n
+

m

neτ
j

or

E =

(
1

ne
j×B+

m

ne2τ
j

)

.

We now define the 3 by 3 resistivity matrix ρ
˜
which relates the current

vector to the electric field vector

E = ρ
˜
j

such that the components of this matrix are given by

ρxx = ρyy = ρzz =
m

ne2τ

and if we imagine B oriented in the ẑ direction, then

ρxy = −ρyx =
B

ne

and all other components of ρ
˜
are zero. This off-diagonal term in the

resistivity is known as the Hall resistivity, named after Edwin Hall who
discovered in 1879 that when a magnetic field is applied perpendicular to
a current flow, a voltage can be measured perpendicular to both current
and magnetic field (see Fig. 3.1). If you are adventurous you might
consider a further generalization of Drude theory to finite frequency
conductivity, where it gives some interesting (and frequently accurate)
predictions (see Exercise 3.1.e).

Fig. 3.1 Edwin Hall’s 1879 experiment.
The voltage measured perpendicular to
both the magnetic field and the current
is known as the Hall voltage which is
proportional to B and inversely propor-
tional to the electron density (at least
in Drude theory).

The Hall coefficient RH is defined as

RH =
ρyx
|B|

which in the Drude theory is given by

RH =
−1
ne .

This then allows us to measure the density of electrons in a metal.
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Aside: One can also consider turning this experiment on its head. If you

know the density of electrons in your sample you can use a Hall measurement to

determine the magnetic field. This is known as a Hall sensor. Since it is hard to
measure small voltages, Hall sensors typically use materials, such as semiconduc-

tors, where the density of electrons is low so RH and hence the resulting voltage

is large.

Let us then calculate n = −1/(eRH) for various metals and divide
it by the density of atoms natomic (see Table 3.1). This should give us
the number of free electrons per atom. Later on we will see that it is
frequently not so hard to estimate the number of electrons in a system.
A short description is that electrons bound in the core shells of the atoms
are never free to travel throughout the crystal, whereas the electrons in
the outer shell may be free (we will discuss in Chapter 16 when these
electrons are free and when they are not). The number of electrons in
the outermost shell is known as the valence of the atom.

Table 3.1 Comparison of the valence of
various atoms to the valence predicted
from the measured Hall coefficient.

Material 1

−eRH natomic

Valence

Li .8 1
Na 1.2 1
K 1.1 1
Cu 1.5 1
Be -0.2∗ 2
Mg -0.4 2
Ca 1.5 2

Here natomic is the density of atoms
in the metal and RH is the measured
Hall coefficient. In Drude theory, the
middle column should give the number
of electrons per atom, i.e., the valence.
For monovalent atoms, the agreement
is fairly good. But for divalent atoms,
the sign can even come out wrong! The
∗ next to Be indicates that its Hall co-
efficient is anisotropic. Depending on
which angle you run the current you can
get either sign of the Hall coefficient!

We see from Table 3.1 that for many metals this Drude theory analysis
seems to make sense—the “valence” of lithium, sodium, and potassium
(Li, Na, and K) are all one, which agrees roughly with the measured
number of electrons per atom. The effective valence of copper (Cu) is
also one, so it is not surprising either. However, something has clearly
gone seriously wrong for Be and Mg. In this case, the sign of the Hall
coefficient has come out incorrect. From this result, one might conclude
that the charge carrier for beryllium and magnesium (Be and Mg) have
the opposite charge from that of the electron! We will see in Section
17.1.1 that this is indeed true and is a result of the so-called band struc-
ture of these materials. However, for many metals, simple Drude theory
gives quite reasonable results. We will see in Chapter 17 that Drude
theory is particularly good for describing semiconductors.
If we believe the Hall effect measurement of the density of electrons

in metals, using Eq. 3.2 we can then extract a scattering time from the
expression for the conductivity. The Drude scattering time comes out
to be in the range of τ ≈ 10−14 seconds for most metals near room
temperature.

3.2 Thermal Transport

Drude was brave enough to attempt to further calculate the thermal
conductivity κ due to mobile electrons8 using Boltzmann’s kinetic the-

8In any experiment there will also be
some amount of thermal conductivity
from structural vibrations of the mate-
rial as well—so-called phonon thermal
conductivity (we will meet phonons in
Chapter 9). However, for most metals,
the thermal conductivity is mainly due
to electron motion and not from vibra-
tions.

ory. Without rehashing the derivation, this result should look familiar
to you from your previous encounters with the kinetic theory of gas:9

9The thermal conductivity κ is defined
by jq = κ∇T where jq is the heat cur-
rent density. The rough intuition for
Eq. 3.3 is that a density n of electrons
each carries an amount of heat cvT at
a velocity 〈v〉 for a distance λ before
scattering.

κ =
1

3
ncv〈v〉λ (3.3)

where cv is the heat capacity per particle, 〈v〉 is the average thermal
velocity and λ = 〈v〉τ is the scattering length. For a conventional
(monatomic) gas the heat capacity per particle is

cv =
3

2
kB
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and

〈v〉 =
√

8kBT

πm .
(3.4)

Assuming this all holds true for electrons, we obtain

κ =
4

π

nτk2BT

m .

While this quantity still has the unknown parameter τ in it, it is the same
quantity that occurs in the electrical conductivity (Eq. 3.2). Thus we
may look at the ratio of thermal conductivity to electrical conductivity,
known as the Lorenz number10,11

10This is named after Ludvig Lorenz,
not Hendrik Lorentz who is famous for
the Lorentz force and Lorentz contrac-
tion. However, just to confuse matters,
the two of them worked on similar top-
ics and there is even a Lorentz–Lorenz
equation

11The dimensions here might look a
bit funny, but κ, the thermal con-
ductivity, is measured in Watt/K
and σ is measured in 1/Ohm. To
see that WattOhm/K2 is the same
as (kB/e)2 note that kB is J/K
and e is Coulomb (C). So we need
to show that (J/C)2 is WattOhm
(J/C)2 = (J/sec)(J/C)(1/(C/sec) =
WattVolt/Amp = WattOhm.

L =
κ

Tσ
=

4

π

(
kB
e

)2

≈ 0.94× 10−8 WattOhm/K2
.

A slightly different prediction is obtained by realizing that we have used
〈v〉2 in our calculation, whereas perhaps we might have instead used 〈v2〉
which would have then given us12 12In kinetic theory cvT = 1

2m〈v
2〉.

L =
κ

Tσ
=

3

2

(
kB
e

)2

≈ 1.11× 10−8 WattOhm/K2
.

This result was viewed as a huge success, being that it was known for
almost half a century that almost all metals have roughly the same
value of this ratio—a fact known as the Wiedemann–Franz law. In
fact the value predicted for this ratio is fairly close to that measured
experimentally (see Table 3.2). The result appears to be off by about a
factor of 2, but still that is very good, considering that before Drude no
one had any idea why this ratio should be a constant at all!

Table 3.2 Lorenz numbers κ/(Tσ)
for various metals in units of
10−8 WattOhm/K2

Material L

Lithium (Li) 2.22
Sodium (Na) 2.12
Copper (Cu) 2.20
Iron (Fe) 2.61
Bismuth (Bi) 3.53
Magnesium (Mg) 2.14

The prediction of Drude theory is that
the Lorentz number should be on the
order of 1× 10−8 WattOhm/K2.

In retrospect we now realize that this calculation is completely incor-
rect (despite its successful result). The reason we know there is a prob-
lem is because we do not actually measure a specific heat of cv = 3

2kB
per electron in metals (for certain systems where the density of electrons
is very low, we do in fact measure this much specific heat, but not in
metals). In fact, in most metals we measure only a vibrational (Debye)
specific heat, plus a very small term linear in T at low temperatures (see
Fig. 2.5). So why does this calculation give such a good result? It turns
out (and we will see in Chapter 4) that we have made two mistakes that
roughly cancel each other. We have used a specific heat that is way too
large, but we have also used a velocity that is way too small. We will see
later that both of these mistakes are due to Fermi statistics of the elec-
tron (which we have so far ignored) and the Pauli exclusion principle.

We can see the problem much more clearly in some other quantities.
The so-called Peltier effect is the fact that running electrical current
through a material also transports heat. The Peltier coefficient Π is
defined by

jq = Π j

where jq is the heat current density, and j is the electrical current density.
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Aside: The Peltier effect is used for thermoelectric refrigeration devices. Run-

ning electricity through a thermoelectric material forces heat to be transported

through that material. You can thus transport heat away from one object and
towards another. A good thermoelectric device has a high Peltier coefficient, but

must also have a low resistivity, because running a current through a material with

resistivity R will result in power I2R being dissipated, thus heating it up.

In kinetic theory the thermal current is

jq =
1

3
(cvT )nv (3.5)

where cvT is the heat carried by one particle (with cv = 3kB/2 the heat
capacity per particle) and n is the density of particles (and 1/3 is a
geometric factor that is approximate anyway). Similarly, the electrical
current is

j = −env.

Thus the Peltier coefficient is

Π =
−cvT
3e

=
−kBT
2e

(3.6)

so the ratio (known as thermopower, or Seebeck coefficient) S = Π/T is
given by

S =
Π

T
=
−kB
2e

= −4.3× 10−4V/K (3.7)

in Drude theory. For most metals the actual value of this ratio is roughly
100 times smaller! (See Table 3.3.) This is a reflection of the fact that
we have used cv = 3kB/2, whereas the actual specific heat per particle
is much much lower (which we will understand in the next chapter when
we consider Fermi statistics more carefully). Further (analogous to the
Hall coefficient), for certain metals the sign of the Seebeck coefficient is
predicted incorrectly as well.

Table 3.3 Seebeck coefficients of var-
ious metals at room temperature, in
units of 10−6 V/K

Material S

Sodium (Na) -5
Potassium (K) -12.5
Copper (Cu) 1.8
Beryllium (Be) 1.5
Aluminum (Al) -1.8

Note that the magnitude of the Seebeck
coefficient is roughly one hundredth of
the value predicted by Drude theory
in Eqn. 3.7. For Cu and Be, the sign
comes out wrong as well!

Chapter Summary

• Drude theory is based on the kinetic theory of gases.

• Assumes some scattering time τ , resulting in a conductivity σ =
ne2τ/m.

• Hall coefficient measures density of electrons.

• Successes of Drude theory:

– Wiedemann–Franz ratio κ/(σT ) comes out close to right for
most materials

– many other transport properties predicted correctly (for ex-
ample, conductivity at finite frequency)

– Hall coefficient measurement of the density seems reasonable
for many metals.



Exercises 25

• Failures of Drude theory:

– Hall coefficient frequently is measured to have the wrong sign,
indicating a charge carrier with charge opposite to that of the
electron

– there is no 3kB/2 heat capacity per particle measured for
electrons in metals. This then makes the Peltier and Seebeck
coefficients come out wrong by a factor of 100.

The latter of the two shortcomings will be addressed in the next chapter,
whereas the former of the two will be addressed in Chapter 17, where
we discuss band theory.
Despite the shortcomings of Drude theory, it nonetheless was the only

theory of metallic conductivity for a quarter of a century (until the
Sommerfeld theory improved it), and it remains quite useful today—
particularly for semiconductors and other systems with low densities of
electrons (see Chapter 17).

References

Many books cover Drude theory at some level:

• Ashcroft and Mermin, chapter 1
• Burns, chapter 9 part A
• Singleton, sections 1.1–1.4
• Hook and Hall, section 3.3, sort-of

Hook and Hall aim mainly at free electron (Sommerfeld) theory (our
next chapter), but they end up doing Drude theory anyway (they don’t
use the word “Drude”).

Exercises

(3.1) Drude Theory of Transport in Metals

(a)‡ Assume a scattering time τ and use Drude the-
ory to derive an expression for the conductivity of
a metal.

(b) Define the resistivity matrix ρ
˜
as E = ρ

˜
j. Use

Drude theory to derive an expression for the ma-
trix ρ

˜
for a metal in a magnetic field. (You may

assume B parallel to the ẑ axis. The under-tilde
means that the quantity ρ

˜
is a matrix.) Invert this

matrix to obtain an expression for the conductivity
matrix σ

˜
.

(c) Define the Hall coefficient.

! Estimate the magnitude of the Hall voltage for
a specimen of sodium in the form of a rod of rect-
angular cross-section 5mm by 5mm carrying a cur-
rent of 1A down its long axis in a magnetic field
of 1T perpendicular to the long axis. The den-
sity of sodium atoms is roughly 1 gram/cm3, and
sodium has atomic mass of roughly 23. You may
assume that there is one free electron per sodium
atom (sodium has valence 1).

! What practical difficulties would there be in
measuring the Hall voltage and resistivity of such
a specimen. How might these difficulties be ad-
dressed).
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(d) What properties of metals does Drude theory
not explain well?

(e)* Consider now an applied AC field E ∼ eiωt

which induces an AC current j ∼ eiωt. Modify the
above calculation (in the presence of a magnetic
field) to obtain an expression for the complex AC
conductivity matrix σ

˜
(ω). For simplicity in this

case you may assume that the metal is very clean,
meaning that τ → ∞, and you may assume that
E ⊥ B. You might again find it convenient to as-
sume B parallel to the ẑ axis. (This exercise might
look hard, but if you think about it for a bit, it
isn’t really much harder than what you did above!)

! At what frequency is there a divergence in the
conductivity? What does this divergence mean?
(When τ is finite, the divergence is cut off.)

! Explain how could one use this divergence
(known as the cyclotron resonance) to measure the
mass of the electron. (In fact, in real metals, the
measured mass of the electron is generally not equal
to the well-known value me = 9.1095 × 10−31 kg.
This is a result of band structure in metals, which
we will explain in Part VI.)

(3.2) Scattering Times

The following table gives electrical resistivities ρ,
densities n, and atomic weights w for the metals
silver and lithium:

ρ (Ωm) n (g/cm3) w

Ag 1.59× 108 10.5 107.8
Li 9.28× 108 0.53 6.94

! Given that both Ag and Li are monovalent (i.e.,
have one free electron per atom), calculate the

Drude scattering times for electrons in these two
metals.

In the kinetic theory of gas, one can estimate the
scattering time using the equation

τ =
1

n〈v〉σ

where n is the gas density, 〈v〉 is the average veloc-
ity (see Eq. 3.4), and σ is the cross-section of the gas
molecule—which is roughly πd2 with d the molecule
diameter. For a nitrogen molecule at room temper-
ature, we can use d = .37nm.

! Calculate the scattering time for nitrogen gas
at room temperature and compare your result to
the Drude scattering times for electrons in Ag and
Li metals.

(3.3) Ionic Conduction and Two Carrier Types

In certain materials, particularly at higher temper-
ature, positive ions can move throughout the sam-
ple in response to applied electric fields, resulting
in what is known as ionic conduction. Since this
conduction is typically poor, it is mainly observ-
able in materials where there are no free electrons
that would transport current. However, occasion-
ally it can occur that a material has both elec-
trical conduction and ionic conduction of roughly
the same magnitude—such materials are known as
mixed ion–electron conductors.

Suppose free electrons have density ne and scatter-
ing time τe (and have the usual electron mass me

and charge −e). Suppose that the free ions have
density ni, scattering time τi, mass mi and charge
+e. Using Drude theory,

(a) Calculate the electrical resistivity.

(b) Calculate the thermal conductivity.

(c)* Calculate the Hall resistivity.



More Electrons in Metals:
Sommerfeld (Free
Electron) Theory 4
In 1925 Pauli discovered the exclusion principle, that no two electrons
may be in the exact same state. In 1926, Fermi and Dirac separately
derived what we now call Fermi–Dirac statistics.1 Upon learning about

1Fermi–Dirac statistics were actually
derived first by Pascual Jordan in
1925. Unfortunately, the referee of the
manuscript, Max Born, misplaced it
and it never got published. Many peo-
ple believe that were it not for the fact
that Jordan later joined the Nazi party,
he might have won the Nobel Prize
along with Born and Walther Bothe.

these developments, Sommerfeld2 realized that Drude’s theory of metals

2Sommerfeld never won a Nobel Prize,
although he was nominated for it 81
times—more than any other physicist.
He was also a research advisor for more
Nobel laureates than anyone else in his-
tory, including Heisenberg, Pauli, De-
bye, Bethe, Pauling, and Rabi.

could easily be generalized to incorporate Fermi statistics, which is what
we shall presently do.

4.1 Basic Fermi–Dirac Statistics

Given a system of free3 electrons with chemical potential4 µ the proba-

3Here “free” means that they do not in-
teract with each other, with the back-
ground crystal lattice, with impurities,
or with anything else for that matter.

bility of an eigenstate of energy E being occupied5 is given by the Fermi
factor (See Fig. 4.1)

nF (β(E − µ)) =
1

eβ(E−µ) + 1 .
(4.1)

At low temperature the Fermi function becomes a step function (states
below the chemical potential are filled, those above the chemical po-
tential are empty), whereas at higher temperatures the step function
becomes more smeared out.

0.5 1.0 1.5
 E / EF

0

0.2

0.4

0.6

0.8

1

 nF

kBT

µ≈EF

Fig. 4.1 The Fermi distribution for
kBT ( EF . The dashed line marks the
chemical potential µ, which is approxi-
mately EF . At T = 0 the distribution
is a step, but for finite T it gets smeared
over a range of energies of width a few
times kBT .

We will consider the electrons to be in a box of size V = L3 and,
as with our discussion in Section 2.2.1, it is easiest to imagine that

4In case you did not properly learn about chemical potential in your statistical physics
course, it can be defined via Eq. 4.1, by saying that µ is whatever constant needs to
be inserted into this equation to make it true. It can also be defined as an appropriate
thermodynamical derivative such as µ = ∂U/∂N |V,S with U the total energy and N
the number of particles or µ = ∂G/∂N |T,P , with G the Gibbs potential. However,
such a definition can be tricky if one worries about the discreteness of the particle
number—since N must be an integer, the derivative may not be well defined. As a
result the definition in terms of Eq. 4.1 is frequently best (i.e., we are treating µ as
a Lagrange multiplier).

5When we say that there are a particular set of N orbitals occupied by electrons, we
really mean that the overall wavefunction of the system is an antisymmetric function
which can be expressed as a Slater determinant of N single electron wavefunctions.
We will never need to actually write out such Slater determinant wavefunctions except
in Section 23.3, which is somewhat more advanced material.
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the box has periodic boundary conditions.6 The plane wavefunctions6As mentioned in Section 2.2.1, any
properties of the bulk of the solid
should be independent of the type of
boundary conditions we choose. If you
have doubts, you can try repeating all
the calculations using hard wall bound-
ary conditions, and you will find all the
same results (It is more messy, but not
too much harder!).

are of the form eik·r where due to the boundary conditions k must
take value (2π/L)(n1, n2, n3) with ni integers. These plane waves have
corresponding energies

ε(k) =
!2|k|2

2m
(4.2)

with m the electron mass. Thus the total number of electrons in the
system is given by

N = 2
∑

k

nF (β(ε(k) − µ)) = 2
V

(2π)3

∫
dk nF (β(ε(k) − µ)) (4.3)

where the prefactor of 2 accounts for the two possible spin states for
each possible wavevector k. In fact, in a metal, N will usually be given
to us, and this equation will define the chemical potential as a function
of temperature.
We now define a useful concept:

Definition 4.1 The Fermi energy, EF is the chemical potential at
temperature T = 0.

This is also sometimes called the Fermi level. The states that are filled at
T = 0 are sometimes called the Fermi sea. Frequently one also defines
a Fermi temperature TF = EF /kB, and also the Fermi wavevector kF
defined via

EF =
!2k2F
2m

(4.4)

and correspondingly a Fermi momentum pF = !kF and a Fermi velocity77Yes, Fermi got his name attached to
many things. To help spread the credit
around I’ve called this section “Basic
Fermi–Dirac Statistics” instead of just
“Basic Fermi Statistics”.

vF = !kF /m. (4.5)

Aside: Frequently people think of the Fermi energy as the energy of the most
energetic occupied electron state in system. While this is correct in the case where

you are filling a continuum of states, it can also lead you to errors in cases where
the energy eigenstates are discrete (see the related footnote 4 of this chapter),

or more specifically when there is a gap between the most energetic occupied

electron state in the system, and the least energetic unoccupied electron state.
More correctly the Fermi energy, i.e., the chemical potential at T = 0, will be half-

way between the most energetic occupied electron state, and the least energetic

unoccupied electron state (see Exercise 4.6).

Let us now calculate the Fermi energy in a (three-dimensional) metal
with N electrons in it. At T = 0 the Fermi function (Eq. 4.1) becomes
a step function (which we write as Θ. I.e., Θ(x) = 1 for x ! 0 and
Θ(x) = 0 for x < 0), so that Eq. 4.3 becomes

N = 2
V

(2π)3

∫
dk Θ(EF − ε(k)) = 2

V

(2π)3

∫ |k|<kF

dk.
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The final integral here is just an integral over a ball of radius kF . Thus
the integral gives us the volume of this ball (4π/3 times the cube of the
radius) yielding

N = 2
V

(2π)3

(
4

3
πk3F

)

.

(4.6)

In other words, at T = 0 the electrons simply fill a ball in k-space of
radius kF . The surface of this ball, a sphere (the “Fermi sphere”) of
radius kF is known as the Fermi surface—a term more generally defined
as the surface dividing filled from unfilled states at zero temperature.
Using the fact that the density is defined as n = N/V we can rearrange

Eq. 4.6 to give
kF = (3π2n)1/3

and correspondingly

EF =
!2(3π2n)2/3

2m .
(4.7)

Since we know roughly how many free electrons there are in a metal
(say, one per atom for monovalent metals such as sodium or copper), we
can estimate the Fermi energy, which, say for copper, turns out to be on
the order of 7 eV, corresponding to a Fermi temperature of about 80,000
K(!). This amazingly high energy scale is a result of Fermi statistics and
the very high density of electrons in metals. It is crucial to remember
that for all metals, TF $ T for any temperature anywhere near room
temperature. In fact metals melt (and even vaporize!) at temperatures
far far below their Fermi temperatures.
Similarly, one can calculate the Fermi velocity, which, for a typical

metal such as copper, may be as large as 1% the speed of light! Again,
this enormous velocity stems from the Pauli exclusion principle—all the
lower momentum states are simply filled, so if the density of electrons is
very high, the velocities will be very high as well.
With a Fermi energy that is so large, and therefore a Fermi sea that

is very deep, any (not insanely large) temperature can only make exci-
tations of electrons that are already very close to the Fermi surface (i.e.,
they can jump from just below the Fermi surface to just above with only
a small energy increase). The electrons deep within the Fermi sea, near
k = 0, cannot be moved by any reasonably low-energy perturbation
simply because there are no available unfilled states for them to move
into unless they absorb a very large amount of energy.

4.2 Electronic Heat Capacity

We now turn to examine the heat capacity of electrons in a metal. Anal-
ogous to Eq. 4.3, the total energy of our system of electrons is given now
by

Etotal =
2V

(2π)3

∫
dk ε(k)nF (β(ε(k) − µ))

=
2V

(2π)3

∫ ∞

0
4πk2dk ε(k)nF (β(ε(k) − µ))
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where the chemical potential is defined as above by

N =
2V

(2π)3

∫
dknF (β(ε(k)−µ)) =

2V

(2π)3

∫ ∞

0
4πk2dk nF (β(ε(k)−µ)).

(In both equations we have changed to spherical coordinates to obtain
a one-dimensional integral and a factor of 4πk2 out front.)
It is convenient to replace k in this equation by the energy ε by using

Eq. 4.2 or equivalently

k =

√
2εm

!2

so that

dk =

√
m

2ε!2
dε.

We can then rewrite these expressions as

Etotal = V

∫ ∞

0
dε ε g(ε) nF (β(ε − µ)) (4.8)

N = V

∫ ∞

0
dε g(ε) nF (β(ε − µ)) (4.9)

where

g(ε)dε =
2

(2π)3
4πk2dk =

2

(2π)3
4π

(
2εm

!2

)√
m

2ε!2
dε

=
(2m)3/2

2π2!3
ε1/2dε (4.10)

is the density of states per unit volume. The definition8 of this quantity8Compare the physical meaning of this
definition to that of the density of
states for sound waves given in Eq. 2.5.

is such that g(ε)dε is the total number of eigenstates (including both
spin states) with energies between ε and ε+ dε.
From Eq. 4.7 we can simply derive (2m)3/2/!3 = 3π2n/E3/2

F , thus we
can simplify the density of states expression to

g(ε) =
3n

2EF

(
ε

EF

)1/2

(4.11)

which is a fair bit simpler. Note that the density of states has dimensions
of a density (an inverse volume) divided by an energy. It is clear that
this is the dimensions it must have, given Eq. 4.9 for example.
Note that the expression Eq. 4.9 should be thought of as defining the

chemical potential given the number of electrons in the system and the
temperature. Once the chemical potential is fixed, then Eq. 4.8 gives
us the total kinetic energy of the system. Differentiating that quantity
would give us the heat capacity. Unfortunately there is no way to do
this analytically in all generality. However, we can use to our advantage
that T % TF for any reasonable temperature, so that the Fermi factors
nF are close to a step function. Such an expansion was first used by
Sommerfeld, but it is algebraically rather complicated9 (see Ashcroft

9Such a calculation requires, among
other things, the evaluation of some
very nasty integrals which turn out to
be related to the Riemann zeta function
(see Section 2.3). and Mermin Chapter 2 to see how it is done in detail). However, it is
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not hard to make an estimate of what such a calculation must give—
which we shall now do.
When T = 0 the Fermi function is a step function and the chemical

potential is (by definition) the Fermi energy. For small T , the step
function is smeared out as we see in Fig. 4.1. Note, however, that in
this smearing, the number of states that are removed from below the
chemical potential is almost exactly the same as the number of states
that are added above the chemical potential.10 Thus, for small T , one 10Since the Fermi function has a precise

symmetry around µ given by nF (β(E−
µ)) = 1 − nF (β(µ − E)), this equiva-
lence of states removed from below the
chemical potential and states inserted
above would be an exact statement if
the density of states in Eq. 4.9 were in-
dependent of energy.

does not have to move the chemical potential much from the Fermi
energy in order to keep the number of particles fixed in Eq. 4.9. We
conclude that µ ≈ EF for any low temperature. (In more detail we find
that µ(T ) = EF +O(T/TF )2, see Ashcroft and Mermin Chapter 2.)
Thus we can focus on Eq. 4.8 with the assumption that µ = EF . At

T = 0 let us call the kinetic energy11 of the system E(T = 0). At finite
11In fact E(T = 0) = (3/5)NEF ,
which is not too hard to show. See Ex-
ercise 4.1.

temperature, instead of a step function in Eq. 4.8 the step is smeared
out as in Fig. 4.1. We see in the figure that only electrons within an
energy range of roughly kBT of the Fermi surface can be excited—in
general they are excited above the Fermi surface by an energy of about
kBT . Thus we can approximately write

E(T ) = E(T = 0) + (γ̃/2)[V g(EF )(kBT )](kBT ) + . . . .

Here V g(EF ) is the density of states near the Fermi surface (recall g is
the density of states per unit volume), so the number of particles close
enough to the Fermi surface to be excited is V g(EF )(kBT ), and the
final factor of (kBT ) is roughly the amount of energy that each one gets
excited by. Here γ̃ is some constant which we cannot get right by such
an approximate argument (but it can be derived more carefully, and it
turns out that γ̃ = π2/3, see Ashcroft and Mermin).
We can then derive the heat capacity

C = ∂E/∂T = γ̃kBg(EF )kBTV

which then using Eq. 4.11 we can rewrite as

C = γ̃

(
3NkB

2

)(
T

TF

)

.

(4.12)

The first term in brackets is just the classical result for the heat capacity
of a gas, but the final factor T/TF is tiny (0.01 or smaller!). This is
the above promised linear T term in the heat capacity of electrons (see
Fig. 2.5), which is far smaller than one would get for a classical gas.

Table 4.1 Low-temperature heat ca-
pacity coefficient for some metals. All
of these metals have heat capacities of
the form C = γT + αT 3 at low tem-
perature. This table gives the mea-
sured experimental (exp) value and
the Sommerfeld theoretical (th) pre-
dictions for the coefficient γ in units
of 10−4 J/(mol-K).

Material γexp γth

Lithium (Li) 18 7.4
Sodium (Na) 15 11
Potassium (K) 20 17
Copper (Cu) 7 5.0
Silver (Ag) 7 6.4
Beryllium (Be) 2 2.5
Bismuth (Bi) 1 5.0
Manganese (Mn) 170 5.2

The theoretical value is obtained by set-
ting the electron density equal to the
atomic density times the valence (num-
ber of free electrons per atom), then
calculating the Fermi temperature from
the density and using Eq. 4.12. Note
that Mn has multiple possible valence
states. In the theoretical calculation we
assume valence of one which gives the
largest possible predicted value of γth.

This Sommerfeld prediction for the electronic (linear T ) contribution
to the heat capacity of a metal is typically not too far from being correct
(see Table 4.1). A few metals, however, have specific heats that deviate
from this prediction by a factor of 10 or more. Note that there are
other measurements that indicate that these errors are associated with
the electron mass being somehow changed in the metal. We will discover
the reason for these deviations later when we study band theory (mainly
in Chapter 17).
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Realizing now that the heat capacity of the electron gas is reduced
from that of the classical gas by a factor of T/TF " 0.01, we can return
to re-examine some of the above Drude calculations of thermal trans-
port. We had found (see Eqs. 3.5–3.7) that Drude theory predicts a
thermopower S = Π/T = −cv/(3e) that is too large by a factor of 100.
Now it is clear that the reason for this error was that we used in this
calculation (see Eq. 3.6) the heat capacity per electron for a classical
gas, which is too large by roughly TF /T ≈ 100. If we repeat the calcu-
lation using the proper heat capacity, we will now get a prediction for
thermopower which is reasonably close in magnitude to what is actu-
ally measured in experiment for many metals (see Table 3.3). Note that
we still have not answered the question of why the sign of the Seebeck
coefficient (and the Hall coefficient) sometimes comes out wrong!12

12In fact a fully quantitative theory of
the Seebeck coefficient turns out to be
quite difficult, and we will not attempt
such a thing in this book.

We also used the heat capacity per particle in the Drude calculation
of the thermal conductivity κ = 1

3ncv〈v〉λ. In this case, the cv that
Drude used was too large by a factor of TF/T , but on the other hand
the value of 〈v〉2 that he used was too small by roughly the same factor
(classically, one uses mv2/2 ∼ kBT whereas for the Sommerfeld model,
one should use the Fermi velocity mv2F /2 ∼ kBTF ). Thus Drude’s pre-
diction for thermal conductivity came out roughly correct (and thus the
Wiedemann–Franz law correctly holds).

4.3 Magnetic Spin Susceptibility
(Pauli Paramagnetism)13

13Part VII of this book is entirely de-
voted to the subject of magnetism, so
it might seem to be a bit out of place
to discuss magnetism now. However
since the calculation is an important re-
sult that hinges only on free electrons
and Fermi statistics, it seems appropri-
ate that it is discussed here. Most stu-
dents will already be familiar with the
necessary definitions of quantities such
as magnetization and susceptibility so
these should not cause confusion. How-
ever, for those who disagree with this
strategy or are completely confused by
this section it is OK to skip over it and
return after reading a bit of Part VII.

Another property we can examine about the free electron gas is its re-
sponse to an externally applied magnetic field. There are several ways
that the electrons can respond to the magnetic field. First, the electrons’
motion can be curved due to the Lorentz force. We have discussed this
previously, and we will return to discuss how it results in an (orbital)
magnetic moment in Section 19.5.14 Secondly, the electron spins can flip

14For a free electron gas, the con-
tribution to the magnetic susceptibil-
ity from the orbital motion of the
electron is known as Landau diamag-
netism and takes the value χLandau =
−(1/3)χPauli (this effect is named af-
ter the famous Russian Nobel laureate
Lev Landau18). We will discuss dia-
magnetism more in Chapter 19 . Unfor-
tunately, calculating this diamagnetism
is relatively tricky (see Blundell’s book
on magnetism, Section 7.6 for exam-
ple).

over due to the applied magnetic field, which also changes the magnetic
moment of the electron gas—this is the effect we will focus on here.
Roughly, the Hamiltonian (neglecting the Lorentz force of the mag-

netic field, see Section 19.3 for more detail) becomes15

15The sign of the last term, the so-
called Zeeman coupling, may be a bit
confusing. Recall that because the
electron charge is negative, the elec-
tron dipole moment is actually oppo-
site the direction of the electron spin
(the current is rotating opposite the di-
rection that the electron is spinning).
Thus spins are lower energy when they
are antialigned with the magnetic field!
This is an annoyance caused by Ben-
jamin Franklin, who declared that the
charge left on a glass rod when rubbed
with silk is positive.

H =
p2

2m
+ gµBB · σ

where g = 2 is the g-factor of the electron,16 B is the magnetic field,17

and σ is the spin of the electron which takes eigenvalues ±1/2. Here I
have defined (and will use elsewhere) the useful Bohr magneton

µB = e!/2me ≈ .67kB(Kelvin/Telsa).

Thus in the magnetic field the energy of an electron with spin up or
down (with up meaning it points the same way as the applied field, and
B = |B|) are given by
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ε(k, ↑) =
!2|k|2

2m
+ µBB

ε(k, ↓) =
!2|k|2

2m
− µBB.

16 It is a yet another constant source of
grief that the letter “g” is used both for
density of states and for g-factor of the
electron. To avoid confusion we imme-
diately set the g-factor to 2 and hence-
forth in this chapter g is reserved for
density of states. Similar grief is that
we now have to write H for Hamilto-
nian because H = B/µ0 is frequently
used for the magnetic field with µ0 the
permeability of free space.
17One should be careful to use the
magnetic field seen by the actual
electrons—this may be different from
the magnetic field applied to the sample
if the sample itself develops a magneti-
zation.

The spin magnetization of the system (moment per unit volume) in
the direction of the applied magnetic field will then be

M = −
1

V

dE

dB
= −([# up spins]− [# down spins])µB/V. (4.13)

So when the magnetic field is applied, it is lower energy for the spins to be
pointing down, so more of them will point down. Thus a magnetization
develops in the same direction as the applied magnetic field. This is
known as Pauli paramagnetism. Here paramagnetism means that the
magnetization is in the direction of the applied magnetic field. Pauli
paramagnetism refers in particular to the spin magnetization of the free
electron gas (we discuss paramagnetism in more detail in Chapter 19).

Fig. 4.2 Filling of electronic states up
to the Fermi energy. Left: Before the
magnetic field is applied the density of
states for spin-up and spin-down are
the same g↑(E) = g↓(E) = g(E)/2.
Note that these functions are propor-
tional to E1/2 (see Eq. 4.11) hence the
shape of the curve, and the shaded re-
gion indicates the states that are filled.
Right: When the magnetic field is ap-
plied, the states with up and down spin
are shifted in energy by +µBB and
−µBB respectively as shown. Hence
up spins pushed above the Fermi en-
ergy can lower their energies by flip-
ping over to become down spins. The
number of spins that flip (the area of
the approximately rectangular sliver) is
roughly g↑(EF )µBB.

18Landau kept a ranking of how smart
various physicists were—ranked on a
logarithmic scale. Einstein was on top
with a ranking of 0.5. Bose, Wigner,
and Newton all received a ranking of
1. Schroedinger, Heisenberg, Bohr, and
Dirac were ranked 2, and Landau mod-
estly ranked himself a 2.5 but after win-
ning the Nobel Prize raised himself to
2. He said that anyone ranked below 4
was not worth talking to.

Let us now calculate the Pauli paramagnetism of the free electron gas
at T = 0. With zero magnetic field applied, both the spin-up and spin-
down states are filled up to the Fermi energy (i.e, they fill a Fermi sphere
with radius the Fermi wavevector). Near the Fermi level the density of
states per unit volume for spin-up electrons is g(EF )/2 and similarly the
density of states per unit volume for spin-down electrons is g(EF )/2.
When B is applied, the spin-ups will be more costly by an energy µBB.
Thus, assuming that the chemical potential does not change, we will
have (g(EF )/2)µBB fewer spin-up electrons per unit volume. Similarly,
the spin-downs will be less costly by the same amount, so we will have
(g(EF )/2)µBB more spin-downs per unit volume. Note that the total
number of electrons in the system did not change, so our assumption
that the chemical potential did not change is correct (recall that chemical
potential is always adjusted so it gives the right total number of electrons
in the system). This process is depicted in Fig. 4.2.
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Using Eq. 4.13, given that we have moved g(EF )µBB/2 up spins to
down spins, the magnetization (magnetic moment per unit volume) is
given by

M = g(EF )µ
2
BB

and hence the magnetic susceptibility χ = limH→0 ∂M/∂H is given (at
T = 0) by19

19See also the very closely related
derivation given in Section 23.1.2.

χPauli =
dM

dH
= µ0

dM

dB
= µ0 µ

2
B g(EF ) (4.14)

with µ0 the permeability of free space. In fact, as shown in Table 4.2,
this result is not far from correct for simple metals such as Li, Na, or
K. Although for some other metals we see that, once again, we get the
overall sign wrong! We will return to discuss magnetic properties in Part
VII.

Table 4.2 Experimentally measured
magnetic susceptbilities χexp of vari-
ous metals compared to Pauli’s the-
oretical prediction χPauli. In both
cases the susceptibility is dimension-
less and is listed here in units of 10−6

(e.g., Li has χexp = 3.4× 10−6)

Material χexp χPauli

Lithium (Li) 3.4 10
Sodium (Na) 6.2 8.3
Potassium (K) 5.7 6.7
Copper (Cu) -9.6 12
Beryllium (Be) -23 17
Aluminum (Al) 21 16

The theoretical calculation uses
Eqs. 4.14, 4.11, and 4.7 and assumes
the bare mass of the electron for m.

4.4 Why Drude Theory Works So Well

In retrospect we can understand a bit more about why Drude theory was
so successful. We now realize that because of Fermi statistics, treating
electrons as a classical gas is incorrect—resulting in a huge overestima-
tion of the heat capacity per particle, and in a huge underestimation of
the typical velocity of particles. As described at the end of Section 4.2,
these two errors can sometimes cancel giving reasonable results nonethe-
less.
However, we can also ask why it is that Drude was successful in cal-

culation of transport properties such as the conductivity and the Hall
coefficient. In these calculations neither the velocity of the particle nor
the specific heat enter. But still, the idea that a single particle will ac-
celerate freely for some amount of time, then will scatter back to zero
momentum seems like it must be wrong, since the state at zero momen-
tum is always fully occupied. The transport equation (Eq. 3.1) that we
solve

dp

dt
= F−

p

τ
(4.15)

in the Drude theory describes the motion of each particle. However,
we can just as well use the same equation to describe the motion of
the center of mass of the entire Fermi sea! On the top of Fig. 4.3 we
have a picture of a Fermi sphere of radius kF . The typical electron
has a very large velocity on the order of the Fermi velocity vF , but the
average of all of the (vector) velocities is zero. When an electric field is
applied in the bottom of Fig. 4.3 every electron in the system accelerates
together in the x̂ direction, and the center of the Fermi sea shifts. (The
electric field in the figure is in the −x̂ direction, so that the force is in
the +x̂ direction since the charge on the electron is −e). The shifted
Fermi sea has some non-zero average velocity, known as the drift velocity
vdrift. Since the kinetic energy of the shifted Fermi sea is higher than
the energy of the Fermi sea with zero average velocity, the electrons will
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try to scatter back (with scattering rate 1/τ) to lower kinetic energy
and shift the Fermi sea back to its original configuration with zero drift
velocity. We can then view the Drude transport equation (Eq. 4.15) as
describing the motion of the average velocity (momentum) of the entire
Fermi sea.
One can think about how this scattering actually occurs in the Som-

merfeld model. Here, most electrons have nowhere to scatter to, since
all of the available k states with lower energy (lower |k|) are already
filled. However, the few electrons near the Fermi surface in the thin
crescent between the shifted and unshifted Fermi sea scatter into the
thin unfilled crescent on the other side of the unfilled Fermi sea to lower
their energies (see Fig. 4.3). Although these scattering processes happen
only to a very few of the electrons, the scattering events are extremely
violent in that the change in momentum is exceedingly large (scattering
all the way across the Fermi sea20).

20Actually, it may be that many small
scattering events walking around the
edge of these crescents make up this one
effective scattering event

Fig. 4.3 Drift velocity and fermi ve-
locity. The drift wavevector is the dis-
placement of the entire Fermi sphere
(which is generally very very small)
whereas the Fermi wavevector is the ra-
dius of the Fermi sphere, which can be
very large. Drude theory makes sense
if you think of it as a transport equa-
tion for the center of mass of the entire
Fermi sphere—i.e., it describes the drift
velocity. Scattering of electrons only
occurs between the thin crescents that
are the difference between the shifted
and unshifted Fermi spheres.

4.5 Shortcomings of the Free Electron
Model

Although the Sommerfeld (free electron) model explains quite a bit
about metals, it remains incomplete. Here are some items that are not
well explained within Sommerfeld theory:

• Having discovered now that the typical velocity of electrons vF is
extremely large, and being able to measure the scattering time τ ,
we obtain a scattering length λ = vF τ that may be 100 Ångstroms
at room temperature, and might even reach 1mm at low temper-
ature. One might wonder, if there are atoms, and hence charged
atomic nuclei, every few Ångstroms in a metal, why do the elec-
trons not scatter from these atoms? (We will discuss this in Chap-
ter 15—the resolution is a result of Bloch’s theorem.)

• Many of our results depend on the number of electrons in a metal.
In order to calculate this number we have always used the chemical
valence of the atom (for example, we assume one free electron per
Li atom). However, in fact, except for hydrogen, there are actually
many electrons per atom. Why do core electrons not “count” for
calculating the Fermi energy or velocity? What about insulators
where there are no electrons free?

• We have still not resolved the question of why the Hall effect some-
times comes out with the incorrect sign, as if the charge carrier
were positive rather than negative as we expect for electrons of
charge −e.

• In optical spectra of metals there are frequently many features
(higher absorption at some frequencies, lower absorption at other
frequencies). These features give metals their characteristic colors
(for example, they make gold yellowish). The Sommerfeld model
does not explain these features at all.
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• The measured specific heat of electrons is much more correct than
in Drude theory, but for some metals is still off by factors as large
as 10. Measurements of the mass of the electron in a metal also
sometimes give answers that differ from the actual mass of the
electron by similar factors.

• Magnetism: Some metals, such as iron, are magnetic even without
any applied external magnetic field. We will discuss magnetism in
Part VII.

• Electron interaction: We have treated the electrons as if they are
non-interacting fermions. In fact, the typical energy of interac-
tion for electrons, e2/(4πε0r) with r the typical distance between
electrons, is huge, roughly the same scale as the Fermi energy.
Yet we have ignored the Coulomb interaction between electrons
completely. Understanding why this works is an extremely hard
problem that was only understood starting in the late 1950s—
again due to the brilliance of Lev Landau (see margin note 18 in
this chapter about Landau). The theory that explains this is fre-
quently known as “Landau Fermi Liquid Theory”, but we will not
study it in this book. We will, however, study electron–electron
interactions a bit more seriously in Chapter 23.

With the exception of the final two points (magnetism and electron
interaction) all of these issues will be resolved once we study electronic
band structure in Chapters 11, 15, and particularly 17. In short, we are
not taking seriously the periodic structure of atoms in materials.

Chapter Summary

• Sommerfeld theory treats properly the fact that electrons are
fermions.

• High density of electrons results in extremely high Fermi energy
and Fermi velocity. Thermal and electric excitations are small
redistributions of electrons around the Fermi surface.

• Compared to Drude theory, Sommerfeld theory obtains electron
velocity ∼ 100 times larger, but heat capacity per electron ∼ 100
times smaller. This leaves the Wiedemann–Franz ratio roughly un-
changed from Drude, but fixes problems in predications of thermal
properties. Drude transport equations make sense if one considers
velocities to be drift velocities, not individual electron velocities.

• Specific heat and (Pauli) paramagnetic susceptibility can be calcu-
lated explicitly (know these derivations!) in good agreement with
experiment (at least for some simple metals).

• Despite successes, there are still some serious shortcomings of Som-
merfeld theory.
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References

For free electron (Sommerfeld) theory, good references are:

• Ashcroft and Mermin, chapters 2–3
• Singleton, sections 1.5–1.6
• Rosenberg, sections 7.1–7.9
• Ibach and Luth, sections 6–6.5
• Kittel, chapter 6
• Burns, chapter 9B (excluding 9.14 and 9.16)
• Hook and Hall, chapter 3 (blends Drude and Sommerfeld)

Exercises

(4.1) Fermi Surface in the Free Electron (Som-
merfeld) Theory of Metals

(a)‡ Explain what is meant by the Fermi energy,
Fermi temperature and the Fermi surface of a
metal.

(b)‡ Obtain an expression for the Fermi wavevector
and the Fermi energy for a gas of electrons (in 3D).

! Show that the density of states at the Fermi
surface, dN/dEF can be written as 3N/2EF .

(c) Estimate the value of EF for sodium [The den-
sity of sodium atoms is roughly 1 gram/cm3, and
sodium has atomic mass of roughly 23. You may
assume that there is one free electron per sodium
atom (sodium has valence one)]

(d) Now consider a two-dimensional Fermi gas. Ob-
tain an expression for the density of states at the
Fermi surface.

(4.2) Velocities in the Free Electron Theory

(a) Assuming that the free electron theory is ap-
plicable: show that the speed vF of an electron at
the Fermi surface of a metal is vF = !

m (3π2n)1/3

where n is the density of electrons.

(b) Show that the mean drift speed vd of an elec-
tron in an applied electric field E is vd = |σE/(ne)|,
where σ is the electrical conductivity, and show
that σ is given in terms of the mean free path λ
of the electrons by σ = ne2λ/(mvF ).

(c) Assuming that the free electron theory is appli-
cable to copper:

(i) calculate the values of both vd and vF for
copper at 300K in an electric field of 1 V m−1

and comment on their relative magnitudes.
(ii) estimate λ for copper at 300K and com-
ment upon its value compared to the mean
spacing between the copper atoms.

You will need the following information: copper
is monovalent, meaning there is one free electron
per atom. The density of atoms in copper is
n = 8.45 × 1028 m−3. The conductivity of copper
is σ = 5.9× 107Ω−1m−1 at 300K.

(4.3) Physical Properties of the Free Electron Gas

In both (a) and (b) you may always assume that
the temperature is much less than the Fermi tem-
perature.

(a)‡ Give a simple but approximate derivation of
the Fermi gas prediction for heat capacity of the
conduction electron in metals.

(b)‡ Give a simple (not approximate) derivation of
the Fermi gas prediction for magnetic susceptibility
of the conduction electron in metals. Here suscep-
tibility is χ = dM/dH = µ0dM/dB at small H
and is meant to consider the magnetization of the
electron spins only.

(c) How are the results of (a) and (b) different from
that of a classical gas of electrons?

! What other properties of metals may be differ-
ent from the classical prediction?

(d) The experimental specific heat of potassium
metal at low temperatures has the form:
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C = γ T + αT 3

where γ = 2.08mJmol−1 K−2 and α =
2.6mJmol−1 K−4.

! Explain the origin of each of the two terms in
this expression.

! Make an estimate of the Fermi energy for potas-
sium metal.

(4.4) Another Review of Free Electron Theory

! What is the free electron model of a metal.

! Define Fermi energy and Fermi temperature.

! Why do metals held at room temperature feel
cold to the touch even though their Fermi temper-
atures are much higher than room temperature?

(a) A d-dimensional sample with volume Ld con-
tains N electrons and can be described as a free
electron model. Show that the Fermi energy is
given by

EF =
!
2

2mL2
(Nad)

2/d

Find the numerical values of ad for d = 1, 2, and 3.

(b) Show also that the density of states at the Fermi
energy is given by

g(EF ) =
Nd

2LdEF

! Assuming the free electron model is applicable,
estimate the Fermi energy and Fermi temperature
of a one-dimensional organic conductor which has
unit cell of length 0.8 nm, where each unit cell con-
tributes one mobile electron.

(c) Consider relativistic electrons where E = c|p|.
Calculate the Fermi energy as a function of the den-
sity for electrons in d = 1, 2, 3 and calculate the
density of states at the Fermi energy in each case.

(4.5) Chemical Potential of 2D Electrons

Show that for free electron gas in two dimensions,
the chemical potential µ is independent of the tem-
perature so long as T * µ. Hint: first examine the
density of states in two dimensions.

(4.6) Chemical Potential at T = 0

Consider a system of N non-interacting electrons.
At T = 0 the N lowest-energy eigenstates will be
filled and all the higher energy eigenstates will be
empty. Show that at T = 0 the energy of the chemi-
cal potential is precisely half way between the high-
est energy filled eigenstate and the lowest-energy
unfilled eigenstate.

(4.7) More Thermodynamics of Free Electrons

(a) Show that the kinetic energy of a free electron
gas in three dimensions is E = 3

5EFN .

(b) Calculate the pressure P = −∂E/∂V , and then
the bulk modulus B = −V ∂P/∂V .

(c) Given that the density of atoms in sodium is
2.53 × 1022cm−3 and that of potassium is 1.33 ×
1022cm−3, and given that both of these metals are
monovalent (i.e., have one free electron per atom),
calculate the bulk modulus associated with the
electrons in these materials. Compare your results
to the measured values of 6.3 GPa and 3.1 GPa
respectively.

(4.8) Heat Capacity of a Free Electron Gas*

In Exercise 4.3.a we approximated the heat capac-
ity of a free electron gas

(a*) Calculate an exact expression for the heat ca-
pacity of a 2d metal at low temperature.

(b**) Calculate an exact expression for the heat
capacity of a 3d metal at low temperature.

The following integral may be useful for these cal-
culations:

∫ ∞

−∞

dx
x2ex

(ex + 1)2
=

π2

3
= ζ(2)/2

Note that for the 3d case you have to worry about
the fact that the chemical potential will shift as a
function of temperature. Why does this not hap-
pen (at least for low T ) in the 2d case?
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The Periodic Table 5
In Chapter 2 we found that the Debye model gave a reasonably good
description of the heat capacity of solids. However, we also found a
number of shortcomings of the theory. These shortcomings basically
stemmed from not taking seriously the fact that solids are actually made
up of individual atoms assembled in a periodic structure.
Similarly, in Chapter 4 we found that the Sommerfeld model described

quite a bit about metals, but had a number of shortcomings as well—
many of these were also due to not realizing that the solids are made up
of individual atoms assembled in periodic structures.
As such, a large amount of this book will be devoted to understanding

the effects of these individual atoms and their periodic arrangement on
the electrons and on the vibrations of the solid. In other words, it is time
to think microscopically about the structure of materials. To do this we
start with a review of some basic atomic physics and basic chemistry.
This part of the book should provide everything you will need to

know about basic chemistry crammed into a nutshell.1 If you have had 1. . . and anything that can be put into
a nutshell, probably should be.a good chemistry course, much of this material may sound familiar. But

hopefully, looking at the same chemistry from the point of view of a
physicist will be somewhat enlightening nonetheless.

5.1 Chemistry, Atoms, and the
Schroedinger Equation

When we think about the physics of a single atom, or if we ask about
why two atoms stick together, we are in some sense trying to describe
the solution to a many-particle Schroedinger2 equation describing the
many electrons and many nuclei in a solid. We can at least write down
the equation

HΨ = EΨ

where Ψ is the wavefunction describing the positions and spin states of
all the electrons and nuclei in the system. The terms in the Hamiltonian

2Erwin Schroedinger was a Fellow at Magdalen College Oxford from 1933 to 1938, but he was made to feel not very welcome
there because he had a rather “unusual” personal life—he lived with both his wife, Anny, and with his mistress, Hilde, who,
although married to another man, bore Schroedinger’s child, Ruth. After Oxford, Schroedinger was coaxed to live in Ireland
with the understanding that this unusual arrangement would be fully tolerated. Surprisingly, all of the parties involved seemed
fairly content until 1946 after Schroedinger fathered two more children with two different Irish women, whereupon Hilde decided
to take Ruth back to Austria to live with her lawful husband. Anny, entirely unperturbed by this development and having her
own lovers as well, remained Erwin’s close companion until his death.
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include a kinetic term (with inputs of the electron and nuclear masses) as
well as a Coulomb interaction term between all the electrons and nuclei.3

3To have a fully functioning “Theory
of Everything” as far as all of chem-
istry, biology, and most of everything
that matters to us (besides the sun and
atomic energy) is concerned, one needs
only Coulomb interaction plus the ki-
netic term in the Hamiltonian, plus a
bit of spin–orbit (relativistic effects).

While this type of description of chemistry is certainly true, it is also
mostly useless.4 No one ever even tries to solve the Schroedinger equation

4If you want to annoy your chemist
friends (or enemies) try repeatedly
telling them that they are actually
studying the Schroedinger equation.

for more than a few particles at a time. Trying to solve it for dozens
of electrons in a large atom, much less 1023 electrons in a real solid, is
completely absurd. One must try to extract useful information about the
behavior of atoms from simplified models in order to obtain a qualitative
understanding. (This is a great example of what I was ranting about in
Chapter 1—reductionism does not work: saying that the Schroedinger
equation is the whole solution is indeed misguided.) More sophisticated
techniques try to turn these qualitative understandings into quantitative
predictions.55As emphasized in Chapter 1 even the

world’s largest computers cannot solve
the Schroedinger equation for a system
of more than a few electrons. Nobel
Prizes (in chemistry) were awarded to
Walter Kohn and John Pople for de-
veloping computational methods that
can obtain highly accurate approxima-
tions. These approaches have formed
much of the basis of modern quantum
chemistry. Despite the enormous suc-
cuss of these computer approaches, our
simple models are still crucial for devel-
oping understanding. To quote the No-
bel laureate Eugene Wigner “It is nice
to know that the computer understands
the problem, but I would like to under-
stand it too”.

What we will try to do here (and in the next chapter) is to try to
understand a whole lot of chemistry from the point of view of a physicist.
We will construct some simple toy models to understand atoms and
why they stick together; but at the end of the day, we cannot trust our
simplified models too much and we really should learn more chemistry
if we want to answer real chemistry questions, like whether yttrium will
form a carbonate salt.

5.2 Structure of the Periodic Table

We start with some of the fundamentals of electrons in an isolated atom.
Recall from basic quantum mechanics that an electron in an atomic
orbital can be labeled by four quantum numbers, |n, l, lz,σz〉, where

n = 1, 2, . . .

l = 0, 1, . . . , n− 1

lz = −l, . . . , l
σz = −1/2 or + 1/2.

Here n is the principal quantum number, l is the angular momentum,
lz is its z-component and σz is the z-component of spin.6 Recall that

6You probably discussed these quan-
tum numbers in reference to the eigen-
states of a hydrogen atom. The orbitals
of any atom can be labeled similarly.

the angular momentum shells with l = 0, 1, 2, 3 are sometimes known as
s,p,d,f, . . . respectively in atomic language.7 These shells can accommo-

7A mnemonic for this order is “Some
Poor Dumb Fool”. Another one (if you
want to go to higher orbitals) is “Smart
Physicist Don’t Find Giraffes Hiding”.

date 2, 6, 10, 14, . . . electrons respectively including both spin states.
When we consider multiple electrons in one atom, we need to de-

cide which orbitals are filled and which ones are empty. The first rule
is known as the Aufbau principle8 and the second is sometimes called

8Aufbau means “construction” or
“building up” in German.

Madelung’s rule.

9It is important to realize that a given
orbital is different in different atoms.
For example, the 2s orbital in a nitro-
gen atom is different from the 2s orbital
in an iron atom. The reason for this is
that the charge of the nucleus is differ-
ent and also that one must account for
the interaction of an electron in an or-
bital with all of the other electrons in
that atom.

Aufbau Principle (paraphrased): Shells should be filled starting
with the lowest available energy state. An entire shell is filled before
another shell is started.9

Madelung’s Rule: The energy ordering is from lowest value of
n + l to the largest; and when two shells have the same value of
n+ l, fill the one with the smaller n first.10

10Depending on your country of ori-
gin, Madelung’s rule might instead be
known as Klechkovsky’s rule.
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This ordering rule means that shells should be filled in the order11

Fig. 5.1 Ordering of filling orbitals in
atoms (Madelung’s rule).

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, . . . .

A simple mnemonic for this order can be constructed by drawing the
diagram shown in Fig. 5.1. So for example, let us consider an isolated
nitrogen atom which has atomic number 7 (i.e., 7 electrons). Nitrogen
(N) has a filled 1s shell (containing two electrons, one spin-up, one spin-
down), has a filled 2s shell (containing two electrons, one spin-up, one
spin-down), and has three remaining electrons in the 2p shell. In atomic
notation we would write this as 1s22s22p3.

To take a more complicated example, consider the atom praseodymium
(Pr) which is a rare earth element with atomic number 59. Following
Madelung’s rule, we obtain an atomic12 configuration

12This tediously long atomic configura-
tion can be abbreviated as [Xe]6s24f3

where [Xe] represents the atomic con-
figuration of xenon, which, being a no-
ble gas, is made of entirely filled shells.

1s22s22p63s23p64s23d104p65s24d105p66s24f3.

Note that the “exponents” properly add up to 59.
There are a few atoms that violate this ordering (Madelung’s) rule.

One example is copper which typically fills the 3d shell by “borrowing”
an electron from the (putatively lower energy) 4s shell. Also, when an
atom is part of a molecule or is in a solid, the ordering may change a
little. However, the general trend given by this rule is rather robust.
This shell filling sequence is, in fact, the rule which defines the overall

structure of the periodic table with each “block” of the periodic table
representing the filling of some particular shell (see the periodic table
given in Fig. 5.2). For example, the first line of the periodic table has
the elements H and He, which have atomic fillings 1sx with x = 1, 2
respectively (and the 1s shell holds at most 2 electrons). The left of the
second line of the table contains Li and Be which have atomic fillings
1s22s

x
with x = 1, 2 respectively. The right of the second line of the

table shows B, N, C, O, F, Ne which have atomic fillings 1s22s22p
x
with

x = 1 . . . 6 and recall that the 2p shell can hold at most 6 electrons. One
can continue and reconstruct the entire periodic table this way!

5.3 Periodic Trends

The periodic table, proposed in 1869 by Dmitri Mendeleev,13 is struc-

13One of the scandals of Nobel history
is that Mendeleev was deprived of the
prize several times by the strong oppo-
sition of the Swedish chemist Svantes
Arrhenius, who held a great deal of
influence over the Nobel committee.
Mendeleev had critiqued one of Arrhe-
nius’ theories, and Arrhenius was the
type to hold a grudge.tured so that elements with similar chemical properties lie in the same

11You may find it surprising that shells are filled in this order, being that for a simple hydrogen atom orbital energies increase
with n and are independent of l (neglecting fine structure). However, in any atom other than hydrogen, we must also consider
interaction of each electron with all of the other electrons. Treating this effect in detail is quite complex, so it is probably best
to consider this ordering (Madelung’s) rule to be simply empirical. Nonetheless, various approximation methods have been able
to give some insight. Typical approximation schemes replace the Coulomb potential of the nucleus with some screened potential
which represents the charge both of the nucleus and of all the other electrons (See for example, R. Ladder, Phys. Rev. 99, 510,
1955). Note in particular that once we changes the potential from the Coulomb 1/r form, we immediately break the energy
degeneracy between different l states for a given n. While it is fairly easy to argue that the lower l values should fill first
given the same n (see for example L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, 1974), there is no simple
argument that derives the complete ordering. (See also the book by Pauling for more detail.)
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Fig. 5.2 The periodic table of the elements. Note that the structure of the periodic table reflects Madelung’s rule which dictates
the order in which shells are filled. The organization of the table is such that each column has similar chemical properties.
Each element is listed with its atomic number and its atomic weight.

column. For example, the chemistry of carbon, silicon, and germanium
are quite similar to each other and these three elements are all in column
IV. The reason for the chemical similarities between certain elements
stems from the details of the fillings of atomic orbital shells, and hence
is a corollary of Madelung’s rule. We will see that to a large extent
chemistry is determined by the electrons in the outermost shell of an
atom. So for example, the fact that the chemistries of C, Si, and Ge are
similar is due to the fact that (via Madelung’s rule) each has only two
electrons in a partially filled p-shell.14

14Carbon has has two electrons in a 2p
shell; silicon (Si) has two electrons in a
3p shell; and germanium (Ge) has two
electrons in a 4p shell.

The periodic table describes many of the chemical trends of the atoms.
For example, going from left to right of the periodic table, the atomic
radius always tends to decrease. Going from left to right, the energy
required to remove an electron from an atom, the so-called ionization
energy, also increases. Similarly, the energy gained by adding an electron
to an atom, the so-called electron affinity, also increases from left to right
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(we will study ionization energy and electron affinity in more detail in
Section 6.1, see Fig. 6.1). In some sense it appears that electrons are
more tightly bound to the nucleus of atoms on the right of the periodic
table than they are on the left of the table. To understand why this is
true we must remember that electrons in atoms interact not only with
the nucleus, but also with the other electrons.

5.3.1 Effective Nuclear Charge

Fig. 5.3 For a sodium atom, since there
is only one electron in the outermost
shell (3s shell in this case), the effective
nuclear charge seen by that one electron
is +1.

Fig. 5.4 For a fluorine atom, since
there are many electrons in the outer-
most shell (2s and p in this case), the
effective nuclear charge is quite large.
Depending on how we treat the screen-
ing of electrons in the same shell we
can get effective nuclear charges rang-
ing from about +4 to +7.

To a large extent the interaction of electrons with each other can be
understood in terms of how one electron will shield the other from the
nucleus, yielding a reduced “effective nuclear charge”. As an example,
let us consider the case of a sodium (Na) atom, with 11 electrons, which
has filled 1s, 2s, 2p shells, and then a single electron in the 3s shell.
While the actual nucleus has charge +11, to the one electron in the 3s
shell, the nucleus appears as if it has a charge of only +1 (= +11 from
the nucleus −10 electron charges in inner shells). As shown in Fig. 5.3,
the electrons in the inner orbitals are at a radius much less than that of
the 3s electron, so to that one 3s electron the other electrons look like
part of the nucleus. As a result, the sodium atom is very much like an
electron in a 3s shell bound to a nucleus of small effective charge +1.
Hence this is rather weak binding of the last electron, the atomic radius
is large, this last electron is easily ionized, and there is not much binding
energy if one were to add yet another electron to the atom.
On the other hand, let us consider the case of fluorine, which has 9

electrons. In this case, there are two electrons in the inner 1s shell and
seven electrons in the outermost n = 2 (2s and 2p) shells. The 2s and
2p shells are at about the same radius as each other, so for simplicity
we draw them as just a single shell. As shown in Fig. 5.4 the two
electrons in the inner shell appear as if they are part of the nucleus.
Very crudely we might then think that each electron in the outer shell
now sees an effective nuclear charge of +7 (= +9 from the nucleus −2
from the electrons in the inner shells), so we would expect a very strong
binding of the electrons to the nucleus. Indeed, the binding energy of
the outer electrons is very large for fluorine. However, it is a bit of an
overestimate to say that the effective nuclear charge is +7. The seven
electrons in the outermost shell also shield each other from the nucleus
to reduce the effective nuclear charge somewhat. The general rule is
that an electron at a smaller radius from the nucleus screens the nuclear
charge for electrons which are at a larger radius.15 So if two electrons

15Recall Newton’s shell theorem
(Gauss’s law): if there is a spheri-
cally symmetric charge distribution,
from any point outside of the charge
distribution, you can consider all of
the charge to be at the center of the
sphere.

are at roughly the same radius (e.g., two electrons both in an n = 2
shell) then each screens each other by about half a charge (50% of the
charge density is “inside” and 50% is outside). One might then more
accurately estimate that the effective nuclear charge for fluorine is +4
(= +9 from the nucleus −2 for the two electrons in the inner shell, then
each electron in the outer most shell sees 6 other electrons which are half
inside its radius giving another −3). The truth lies somewhere between
the two estimates of +4 and +7. (Of course the whole idea of effective
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nuclear charge is just an approximation anyway. Really we want to solve
the Schroedinger equation for all the electrons at the same time!)
The general trend that we can deduce from this picture is that the

binding energy of the outermost electrons increases as we go from left
to right in the rows of the periodic table—i.e., as we put more electrons
in the outermost shells the effective charge of the nucleus increases,
since electrons at the same radius screen each other from the nucleus
ineffectively. The stronger binding due to the larger effective nuclear
charge accounts for many of the key features of the periodic table: The
radius of atoms drops going left to right in the periodic table, the energy
required to ionize an atom increases going left to right, and the energy
gained by adding an electron (the electron affinity) also increases going
left to right (not including the noble gases, which are filled shells). This
general periodic trend is sometimes summarized by chemists by saying
that atomic shells “‘want” to be filled, or by saying that a filled shell
is particularly stable. In fact, what they mean by this is simply that
with increasing number of electrons in the outer shells, those electrons
become bound increasingly tightly.

Chapter Summary

• Filling of atomic shells gives the structure of the periodic table
(Aufbau principle and Madelung’s rule).

• Elements in the same column of the periodic table (with a few
exceptions) have the same number of electrons in the outermost
shells, and hence have similar chemical properties.

• The idea of screening and effective nuclear charge explains a num-
ber of the periodic trends going across the rows of the periodic
table.

References

Any chemistry textbook should be a useful reference. Some (not intro-
ductory references) that I like are:
• Pauling, chapters 1–3
• Murrel et al., chapters 1–5

Exercises

(5.1) Madelung’s Rule

! Use Madelung’s rule to deduce the atomic shell
filling configuration of the element tungsten (sym-
bol W) which has atomic number 74.

! Element 118 has recently been discovered, and

is expected to be a noble gas, i.e., is in group VIII.
(No real chemistry tests have been performed on
the element yet, as the nucleus decays very quickly.)
Assuming that Madelung’s rule continues to hold,
what should the atomic number be for the next
noble gas after this one?
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(5.2) Effective Nuclear Charge and Ionization En-
ergy

(a) Let us approximate an electron in the nth shell
(i.e., principal quantum number n) of an atom as
being like an electron in the nth shell of a hydrogen
atom with an effective nuclear charge Z. Use your
knowledge of the hydrogen atom to calculate the
ionization energy of this electron (i.e., the energy
required to pull the electron away from the atom)
as a function of Z and n.

(b) Consider the two approximations discussed in
the text for estimating the effective nuclear charge:

• (Approximation a)

Z = Znuc −Ninside

• (Approximation b)

Z = Znuc −Ninside − (Nsame − 1)/2

where Znuc is the actual nuclear charge (or atomic
number),Ninside is the number of electrons in shells
inside of n (i.e., electrons with principal quantum
numbers n′ < n), and Nsame is the total number of
electrons in the nth principal shell (including the
electron we are trying to remove from the atom,
hence the −1).
! Explain the reasoning behind these two approx-
imations.

! Use these approximations to calculate the ion-
ization energies for the atoms with atomic number

1 through 21. Make a plot of your results and com-
pare them to the actual ionization energies (you
will have to look these up on a table).

Your results should be qualitatively quite good. If
you try this for higher atomic numbers, the simple
approximations begin to break down. Why is this?

(5.3) Exceptions to Madelung’s Rule

Although Madelung’s rule for the filling of elec-
tronic shells holds extremely well, there are a num-
ber of exceptions to the rule. Here are a few of
them:

Cu = [Ar] 4s13d10

Pd = [Kr] 5s04d10

Ag = [Kr] 5s14d10

Au = [Xe] 6s14f145d10

! What should the electron configurations be if
these elements followed Madelung’s rule and the
Aufbau principle?

! Explain how the statement “3d is inside of 4s”
might help justify this exception in copper.

(5.4) Mendeleev’s Nobel Prize

Imagine writing a letter to the Nobel committee
nominating Mendeleev, the creator of the periodic
table, for a Nobel Prize. Explain why the periodic
table is so important. Remember that the peri-
odic table (1869) was devised many years before the
structure of the hydrogen atom was understood. (If
you do not already have some background in chem-
istry, you may want to read the next chapter before
attempting this exercise.)
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What Holds Solids
Together: Chemical
Bonding 6
Having discussed some features of the periodic table, it is now worth
asking ourselves why atoms stick together to form solids.
From a chemist’s point of view one frequently thinks about different

types of chemical bonds depending on the types of atoms involved, and
in particular, depending on the atom’s position on the periodic table
(and on the atom’s electronegativity—which is its tendency to attract
electrons). In this chapter we will discuss ionic bonds, covalent bonds,
van der Waals (fluctuating dipole, or molecular) bonds, metallic bonds,
and hydrogen bonds.1 Of course, they are all different aspects of the 1Insert obligatory pun about 007.

Schroedinger equation, and any given material may exhibit aspects of
several of these types of bonding. Nonetheless, qualitatively it is quite
useful to discuss these different types of bonds to give us intuition about
how chemical bonding can occur. A brief description of the many types
of bonding is given in the summary Table 6.1 at the end of this chapter.
Note that the table should be considered just as rules-of-thumb, as many
materials have properties intermediate between the categories listed.

6.1 Ionic Bonds

The general idea of an ionic bond is that for certain compounds (for
example, binary compounds, such as NaCl, made of one element in group
I and one element in group VII), it is energetically favorable for an
electron to be physically transferred from one atom to the other, leaving
two oppositely charged ions which then attract each other. One writes
a chemical “reaction” of the form

Na + Cl → Na+ +Cl− → NaCl.

To find out if such a reaction happens, one must look at the energetics
associated with the transfer of the electron.
In order to examine energetics more carefully, it is not too hard to

imagine solving the Schroedinger equation for a single atom and deter-
mining the energy of the neutral atom, of the positive ion, and of the
negative ion. Alternatively, if solving the Schroedinger equation proves
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too hard, there are many ways that the energy levels of atoms (or ions)
can be measured with some sort of spectroscopy. We define:

Ionization Energy = Energy required to remove one electron

from a neutral atom to create a positive ion,

Electron Affinity = Energy gain for creating a negative ion

from a neutral atom by adding an electron.

To be precise, in both cases we are comparing the energy of having
an electron either at position infinity, or on the atom. Further, if we
are removing or adding only a single electron, then these are called
first ionization energies and first electron affinities respectively (one can
similarly define energies for removing or adding two electrons which
would be called second). Finally we note that chemists typically work
with systems at fixed (room) temperature and (atmospheric) pressure, in
which case they are likely to be more concerned with Gibbs free energies,
rather than pure energies. We will always assume that one is using the
appropriate free energy for the experiment in question (and we will be
sloppy and always call an energy E).
The periodic trend, which we justified in some detail in Section 5.3, is

that the ionization energy is smallest on the left (groups I and II) of the
periodic table and largest on the right (groups VII and VIII). To a lesser
extent the ionization energy also tends to decrease towards the bottom of
the periodic table (see Fig. 6.1). Similarly, electron affinity is also largest
on the right and top of the periodic table, not including the group VIII
noble gases which roughly do not attract electrons measurably at all (see
Fig. 6.1).

First Ionization Energies

Helium
!

Caesium

"

First Electron Affinities

Chlorine

!

Fig. 6.1 Pictorial periodic tables of
first ionization energies (top) and first
electron affinities (bottom). The word
“first” here means that we are measur-
ing the energy to lose or gain a first
electron starting with a neutral atom.
The linear size of each box represents
the magnitude of the energies (scales
on the two plots differ). For reference
the largest ionization energy is helium,
at roughly 24.58 eV per atom, the low-
est is caesium at 3.89 eV. The largest
electron affinity is chlorine which gains
3.62 eV when binding to an additional
electron. The few elements marked
with lighter shaded crosses (including
Ca and Sr) have negative electron affini-
ties.

The total energy change from transferring an electron from atom A
to atom B is

∆EA+B→A++B− = (Ionization Energy)A − (Electron Affinity)B.

Note carefully the sign. The ionization energy is a positive energy that
must be put in, the electron affinity is an energy that comes out.
However this ∆E is the energy to transfer an electron between two

atoms very far apart. In addition, there is also2

2The term “Cohesive Energy” can be
ambiguous since sometimes people use
it to mean the energy to put ions to-
gether into a compound, and other
times they mean it to be the energy
to put neutral atoms together! Here
we mean the former. Furthermore, one
should be cautioned that cohesive en-
ergy per atom of putting together two
atoms to make a diatomic molecule
(say, an NaCl molecule) would be very
different from the cohesive energy per
atom of putting many atoms together
to make a bulk solid (say, a bulk NaCl
solid).

Cohesive Energy = Energy gain from A+ +B− → AB.

This cohesive energy is mostly a classical effect of the Coulomb inter-
action between the ions as one lets the ions come close together.3 The
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total energy gain for forming a molecule from the two individual atoms
is thus given by

∆EA+B→AB = (Ionization Energy)A − (Electron Affinity)B

−(Cohesive Energy of AB).

One obtains an ionic bond if the total ∆E for this process is less than
zero.

3 One can write a simple classical equa-
tion for a total cohesive energy for a
solid

Ecohesive = −
∑

i<j

QiQj

4πε0|ri − rj |

where Qi is the charge on the ith ion,
and ri is its position. This sum is some-
times known as the Madelung Energy.
It might look like one could make the
cohesive energy infinitely large by let-
ting two ions come to the same posi-
tion! However, when atoms approach
each other within roughly an atomic
radius the approximation of the atom
as a point charge breaks down. One
thus needs a more quantum-mechanical
treatment to determine, ab initio, how
close two oppositely charged ions will
come to each other.

In order to determine whether an electron is likely to be transferred
between one atom and another, it is convenient to use the so-called
electronegativity, which roughly describes how much an atom “wants”
electrons, or how much an atom attracts electrons to itself. While there
are various definitions of electronegativity that are used, a simple and
useful definition is known as the Mulliken Electronegativity4,5

5Both Robert Mulliken and Linus Paul-
ing won Nobel Prizes in chemistry
for their work understanding chemi-
cal bonding including the concept of
electronegativity. Pauling won a sec-
ond Nobel Prize, in peace, for his
work towards banning nuclear weapons
testing. (Only four people have ever
won two Nobels: Marie Curie, Linus
Pauling, John Bardeen, and Fredrick
Sanger. We should all know these
names!) Pauling was criticized later in
his life for promoting high doses of vi-
tamin C to prevent cancer and other
ailments, sometimes apparently despite
scientific evidence to the contrary.

(Mulliken) Electronegativity =
Electron Affinity + Ionization Energy

2 .

According to the periodic trends we discussed in Section 5.3, the elec-
tronegativity is extremely large for elements in the upper right of the
periodic table (not including the noble gases).
In bonding, the electron is always transferred from the atom of lower

electronegativity to higher electronegativity. The greater the difference
in electronegativities between two atoms the more completely the elec-
tron is transferred from one atom to the other. If the difference in elec-
tronegativities is small, then the electron is only partially transferred
from one atom to the other. We will see in the next section that one
can also have covalent bonding even between two identical atoms where
there is no difference in electronegativities, and therefore no net trans-
fer of electrons. Before leaving the topic of ionic bonds, it is worth
discussing some of the typical physics of ionic solids. First of all, the
materials are typically hard and have high melting temperatures, as the
Coulomb interaction between oppositely charged ions is strong. How-
ever, since water is extremely polar, it can dissolve an ionic solid. This
happens (see Fig 6.2) by arranging the water molecules such that the
negative side of the molecule is close to the positive ions and the positive
side of the molecule is close to the negative ions. Further, in an ionic
solid the charges are bound strongly to the ions so these materials are
electrically insulating (we will discuss in much more depth in Chapter
16 what makes a material an insulator).

Cl− Na+

−−
+

+

−−+

+

−− +
+

−−
+

+

−−
+

+
−− +
+

Fig. 6.2 Salt, NaCl, dissolved in wa-
ter. Ionic compounds typically dis-
solve easily in water since the polar
water molecules can screen the highly
charged, but otherwise stable, ions.

4This electronegativity can be thought of as approximately the negative of the chem-
ical potential via

1

2
(Eaffinity +Eion) =

1

2
([EN −EN+1] + [EN−1 −EN ]) =

EN−1 − EN+1

2

≈ −
∂E

∂N
≈ −µ.

See however footnote 4 from Section 4.1 on defining chemical potential for systems
with discrete energy levels and discrete number of electrons.
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6.2 Covalent Bond

A covalent bond is a bond where electrons are shared roughly equally
between two atoms. There are several pictures that can be used to
describe the covalent bond.

6.2.1 Particle in a Box Picture

Let us model a hydrogen atom as a box of size L for an electron (for
simplicity, let us think about a one-dimensional system). The energy of
a single electron in a box is (this should look familiar!)

E =
!2π2

2mL2 .

Now suppose two such atoms come close together. An electron that is
shared between the two atoms can now be delocalized over the positions
of both atoms, thus it is in a box of size 2L and has lower energy

E =
!2π2

2m(2L)2 .

This reduction in energy that occurs by delocalizing the electron is the
driving force for forming the chemical bond. The new ground-state
orbital is known as a bonding orbital.

Fig. 6.3 Particle in a box picture of co-
valent bonding. Two separated hydro-
gen atoms are like two different boxes
each with one electron in the lowest
eigenstate. When the two boxes are
pushed together, one obtains a larger
box—thereby lowering the energy of
the lowest eigenstate—which is known
as the bonding orbital. The two elec-
trons can take opposite spin states and
can thereby both fit in the bonding or-
bital. The first excited state is known
as the antibonding orbital

If each atom starts with a single electron (i.e., it is a hydrogen atom)
then when the two atoms come together to form a lower energy (bonding)
orbital, then both electrons can go into this same ground-state orbital
since they can take opposite spin states. This bonding process is depicted
in the molecular orbital diagram shown in the top of Fig. 6.4. Of course
the reduction in energy of the two electrons must compete against the
Coulomb repulsion between the two nuclei, and the Coulomb repulsion
of the two electrons with each other, which is a much more complicated
calculation.
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Fig. 6.4 Molecular orbital picture of
bonding. In this type of picture, on
the far left and far right are the or-
bital energies of the individual atoms
well separated from each other (energy
is the vertical axis). In the middle
of the diagram are the orbital ener-
gies when the atoms come together to
form a molecule. Top: Two hydrogen
atoms (one having a spin-up electron
and one having spin-down) come to-
gether to form a H2 molecule. In the
particle-in-a-box picture, the lowest-
energy eigenstate is reduced in energy
when the atoms come together and
both electrons go into this bonding or-
bital. Middle: In the case of helium,
since there are two electrons per atom,
the bonding orbitals are filled, and the
antibonding orbitals must be filled as
well. The total energy is not reduced by
the two helium atoms coming together
(thus helium does not form He2). Bot-
tom: In the case of LiF, the energies
of the lithium and the fluorine orbitals
are different. As a result, the bond-
ing orbital is mostly composed of the
orbital on the F atom—meaning that
the bonding electrons are mostly trans-
ferred from Li to F—forming a more
ionic bond. See Exercise 6.3.

Now suppose we had started with two helium atoms, where each atom
has two electrons, then when the two atoms come together there is not
enough room in the single ground-state wavefunction. In this case, two
of the four electrons must occupy the first excited orbital—which in this
case turns out to be exactly the same electronic energy as the original
ground-state orbital of the original atoms. Since no energy is gained by
these electrons when the two atoms come together these excited orbitals
are known as antibonding orbitals. (In fact it requires energy to push
the two atoms together if one includes Coulomb repulsions between the
nuclei.) This is depicted in the molecular orbital diagram in the middle
of Fig. 6.4.

6.2.2 Molecular Orbital or Tight Binding Theory

In this section we make slightly more quantitative some of the idea of the
previous section. Let us write a Hamiltonian for two hydrogen atoms.
Since the nuclei are heavy compared to the electrons, we will fix the
nuclear positions and solve the Schroedinger equation for the electrons
as a function of the distance between the nuclei. This fixing of the
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position of nuclei is known as a “Born–Oppenheimer” approximation.6,76Max Born (also the same guy from
Born–von Karman boundary condi-
tions) was one of the founders of quan-
tum physics (see also margin note 1
from Chapter 4) winning a Nobel Prize
in 1954. His daughter, and biogra-
pher, Irene, married into the Newton-
John family, and had a daughter named
Olivia, who became a pop icon and
film star in the 1970s. Her most fa-
mous role was in the movie of Grease
playing Sandra-Dee opposite John Tra-
volta. When I was a kid, she was every
teenage guy’s dream-girl (her, or Far-
rah Fawcett).

7J. Robert Oppenheimer later became
the head scientific manager of the
American atomic bomb project during
the second world war. After this gi-
ant scientific and military triumph, he
pushed for control of nuclear weapons
leading to his being accused of being
a communist sympathizer during the
“Red” scares of the 1950s and he ended
up having his security clearance re-
voked.

We hope to calculate the eigenenergies of the system as a function of
the distance between the positively charged nuclei.
For simplicity, let us consider a single electron and two identical pos-

itive nuclei. We write the Hamiltonian as

H = K + V1 + V2

with

K =
p2

2m

being the kinetic energy of the electron and

Vi =
e2

4πε0|r−Ri|

is the Coulomb interaction energy between the electron at position r and
the nucleus at position Ri.
Generally this type of Schroedinger equation is hard to solve exactly

(in fact it can be solved exactly in this case, but it is not particularly
enlightening to do so). Instead, we will attempt a variational solution.
Let us write a trial wavefunction as

|ψ〉 = φ1|1〉+ φ2|2〉 (6.1)

where φi are complex coefficients, and the kets |1〉 and |2〉 are known
as “atomic” orbitals or “tight binding” orbitals.8 The form of Eq. 6.1 is8The term “tight binding” is from the

idea that an atomic orbital is tightly
bound to its nucleus.

frequently known as a “linear combination of atomic orbitals” or LCAO.9

9The LCAO approach can be improved
systematically by using more orbitals
and more variational coefficients—
which then can be optimized with the
help of a computer. This general idea
formed the basis of the quantum chem-
istry work of John Pople. See margin
note 5 of the prior chapter.

The orbitals which we use here can be taken as the ground-state solution
of the Schroedinger equation when there is only one nucleus present:

(K + V1)|1〉 = ε0|1〉
(K + V2)|2〉 = ε0|2〉 (6.2)

where ε0 is the ground-state energy of the single atom.10 I.e., |1〉 is a10Here ε0 is not a dielectric constant
or the permittivity of free space, but
rather the energy of an electron in an
orbital (at some point we just run out of
new symbols to use for new quantities!).

ground-state orbital for an electron bound to nucleus 1 and |2〉 is a
ground-state orbital for an electron bound to nucleus 2.
We will now make a rough approximation that |1〉 and |2〉 are orthog-

onal so we can choose a normalization such that

〈i|j〉 = δij . (6.3)

When the two nuclei get very close together, this orthogonality is clearly
no longer even close to correct. In Exercise 6.5 we repeat this calcula-
tion more correctly where we do not assume orthonormality.11 But for-

11Alternatively we could have or-
thonormality at the price of using or-
bitals which are not solutions to the
Schroedinger equation for a single nu-
cleus.

tunately most of what we learn does not depend too much on whether
the orbitals are orthogonal or not, so for simplicity we will assume or-
thonormal orbitals.
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An effective Schroedinger equation can be written down for our vari-
ational wavefunction which (unsuprisingly) takes the form of an eigen-
value problem12

12To derive this eigenvalue equation we
start with an expression for the energy

E =
〈ψ|H|ψ〉
〈ψ|ψ〉

then with ψ written in the variational
form of Eq. 6.1, we minimize the energy
by setting ∂E/∂φi = ∂E/∂φ∗

i = 0. See
Exercise 6.2.

∑

j

Hijφj = Eφi (6.4)

where
Hij = 〈i|H |j〉

is a two-by-two matrix in this case (the equation generalizes in the ob-
vious way to the case where there are more than two orbitals).
Recalling our definition of |1〉 as being the ground-state energy of

K + V1, we can write13

13In atomic physics courses, the quan-
tities Vcross and t are often called a di-
rect and exchange terms and are some-
times denoted J and K. We avoid this
terminology because the same words
are almost always used to describe 2-
electron interactions in condensed mat-
ter.

H11 = 〈1|H |1〉 = 〈1|K + V1|1〉+ 〈1|V2|1〉 = ε0 + Vcross (6.5)

H22 = 〈2|H |2〉 = 〈2|K + V2|2〉+ 〈2|V1|2〉 = ε0 + Vcross (6.6)

H12 = 〈1|H |2〉 = 〈1|K + V2|2〉+ 〈1|V1|2〉 = 0 − t (6.7)

H21 = 〈2|H |1〉 = 〈2|K + V2|1〉+ 〈2|V1|1〉 = 0 − t∗ . (6.8)

In the first two lines

Vcross = 〈1|V2|1〉 = 〈2|V1|2〉

is the Coulomb potential felt by orbital |1〉 due to nucleus 2, or equiva-
lently the Coulomb potential felt by orbital |2〉 due to nucleus 1. In the
second two lines (Eqs. 6.7 and 6.8) we have also defined the so-called
hopping term14,15 14The minus sign is a convention for

the definition of t. For many cases of
interest, this definition makes t posi-
tive, although it can actually have ei-
ther sign depending on the structure of
the orbitals in question and the details
of the potential.

15The second equality here can be ob-
tained by rewriting

H12 = 〈1|K + V1|2〉+ 〈1|V2|2〉

and allowing K + V1 to act to the left.

t = −〈1|V2|2〉 = −〈1|V1|2〉.

The reason for the name “hopping” will become clear in a moment. Note
that in the second two lines (Eqs. 6.7 and 6.8) the first term vanishes
because of orthogonality of |1〉 and |2〉 (invoking also Eqs. 6.2).
At this point our Schroedinger equation is reduced to a two-by-two

matrix equation of the form
(

ε0 + Vcross −t
−t∗ ε0 + Vcross

)(
φ1

φ2

)
= E

(
φ1

φ2

)

.

(6.9)

The interpretation of this equation is roughly that orbitals |1〉 and |2〉
both have energies ε0 which is shifted by Vcross due to the presence of
the other nucleus. In addition the electron can “hop” from one orbital to
the other by the off-diagonal t term. To understand this interpretation
more fully, we realize that in the time-dependent Schroedinger equation,
if the matrix were diagonal a wavefunction that started completely in
orbital |1〉 would stay on that orbital for all time. However, with the off-
diagonal term, the time-dependent wavefunction can oscillate between
the two orbitals.
Diagonalizing this two-by-two matrix we obtain eigenenergies

E± = ε0 + Vcross ± |t|
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where the lower energy orbital is the bonding orbital whereas the higher
energy orbital is the antibonding. The corresponding wavefunctions are
then1616The bonding wavefunction corre-

sponds to φ1 = 1/
√
2 and φ2 = ±1/

√
2

whereas the antibonding wavefunction
corresponds to φ1 = 1/

√
2 and φ2 =

∓1/
√
2. See Eq. 6.1.

|ψbonding〉 =
1√
2
( |1〉± |2〉 ) (6.10)

|ψantibonding〉 =
1√
2
( |1〉 ∓ |2〉 ). (6.11)

I.e., these are the symmetric and antisymmetric superpositions of or-
bitals. The signs ± and ∓ depend on the sign of t, where the lower
energy one is always called the bonding orbital and the higher energy
one is called antibonding. To be precise t > 0 makes (|1〉 + |2〉)/

√
2

the lower energy bonding orbital. Roughly one can think of these two
wavefunctions as being the lowest two “particle-in-a-box” orbitals— the
lowest-energy wavefunction does not change sign as a function of posi-
tion, whereas the first excited state changes sign once, i.e., it has a single
node (for the case of t > 0 the analogy is precise).
It is worth briefly considering what happens if the two nuclei being

bonded together are not identical. In this case the energy ε0 for an
electron to sit on orbital 1 would be different from that of orbital 2 (see
bottom of Fig. 6.4). The matrix equation, Eq. 6.9, would no longer
have equal entries along the diagonal, and the magnitude of φ1 and φ2

would no longer be equal in the ground state as they are in Eq. 6.10.
Instead, the lower-energy orbital would be more greatly filled in the
ground state. As the energies of the two orbitals become increasingly
different, the electron is more completely transferred entirely onto the
lower-energy orbital, essentially becoming an ionic bond.

Aside: In Section 23.3, we will consider a more general tight binding model
with more than one electron in the system and with Coulomb interactions between

electrons as well. That calculation is more complicated, but shows very similar

results. That calculation is also much more advanced, but might be fun to read
for the adventurous.

Note again that Vcross is the energy that the electron on orbital 1 feels
from nucleus 2. However, we have not included the fact that the two
nuclei also interact, and to a first approximation, this Coulomb repulsion
between the two nuclei will cancel17 the attractive energy between the17If you think of a positively charged

nucleus and a negatively charged elec-
tron surrounding the nucleus, from far
outside of that electron’s orbital radius
the atom looks neutral. Thus a second
nucleus will neither be attracted nor re-
pelled from the atom so long as it re-
mains outside of the electron cloud of
the atom.

nucleus and the electron on the opposite orbital. Thus, including this
energy we will obtain

Ẽ± ≈ ε0 ± |t|.

As the nuclei get closer together, the hopping term |t| increases, giving
an energy level diagram as shown in Fig. 6.5. This picture is obviously
unrealistic, as it suggests that two atoms should bind together at zero
distance between the nuclei. The problem here is that our assumptions
and approximations begin to break down as the nuclei get closer to-
gether (for example, our orbitals are no longer orthogonal, Vcross does
not exactly cancel the Coulomb energy between nuclei, etc.).
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A more realistic energy level diagram for the bonding and antibonding
states is given in Fig. 6.6. Note that the energy diverges as the nuclei
get pushed together (this is from the Coulomb repulsion between nuclei).
As such there is a minimum energy of the system when the nuclei are at
some non-zero distance apart from each other, which then becomes the
ground-state distance of the nuclei in the resulting molecule. R12

E

bonding

antibonding

Fig. 6.5 Model tight binding energy
levels as a function of distance between
the nuclei of the atoms.

R12

E

bonding

antibonding

Fig. 6.6 More realistic energy levels as
a function of distance between the nu-
clei of the atoms.

Aside: In Fig. 6.6 there is a minimum of the bonding energy when the nuclei
are some particular distance apart. This optimal distance will be the distance

of the bond between two atoms. However, at finite temperature, the distance

will fluctuate around this minimum (think of a particle in a potential well at
finite temperature). Since the potential well is steeper on one side than on the

other, at finite temperature, the “particle” in this well will be able to fluctuate to
larger distances a bit more than it is able to fluctuate to smaller distances. As a

result, the average bond distance will increase at finite temperature. This thermal

expansion will be explored further in Chapter 8.

Covalently bonded materials tend to be strong and tend to be electri-
cal semiconductors18 or insulators (roughly since electrons are tied up in

18We have not defined the word “semi-
conductor” yet, but we will return to it
later in depth (for example, in Chapter
17).

the local bonds—we will give a more detailed description of what makes
a material an insulator in Chapter 16). The directionality of the orbitals
makes these materials retain their shape well (non-ductile) so they are
brittle. They do not dissolve in polar solvents such as water in the same
way that ionic materials do.

6.3 Van der Waals, Fluctuating Dipole
Forces, or Molecular Bonding

When two atoms (or two molecules) are very far apart from each other,
there remains an attraction between them due to what is known as
van der Waals19 forces, sometimes known as fluctuating dipole forces, 19J. D. van der Waals was awarded the

Nobel Prize in physics in 1910 for his
work on the structure of liquids and
gases. You may remember the van der
Waals equation of state from your ther-
modynamics courses. There is a crater
named after him on the far side of the
moon.

or molecular bonding. In short, both atoms have a dipole moment,
which may be zero on average, but can fluctuate “momentarily” due
to quantum mechanics.20 If the first atom obtains a momentary dipole

20This is a slightly imprecise, but
useful, interpretation of quantum-
mechanical uncertainty as being tem-
poral fluctuation.

moment, the second atom can polarize—also obtaining a dipole moment
to lower its energy. As a result, the two atoms (momentarily dipoles)
will attract each other.
This type of bonding between atoms is very typical of inert atoms

(such as noble gases: He, Ne, Kr, Ar, Xe) whose electrons do not par-
ticipate in covalent bonds or ionic bonds. It is also typical of bonding
between inert21 molecules such as nitrogen molecules N2 where there is

21Whereas the noble gases are inert be-
cause they have filled atomic orbital
shells, the nitrogen molecule is inert es-
sentially because it has a filled shell of
molecular orbitals—all of the bonding
orbitals are filled, and there is a large
energy gap to any antibonding orbitals.

no possibility for the electrons in this molecule to form covalent or ionic
bonds between molecules. This bonding is weak compared to covalent or
ionic bonds, but it is also long ranged in comparison since the electrons
do not need to hop between atoms.
To be more quantitative, let us consider an electron orbiting a nucleus

(say, a proton). If the electron is at a fixed position, there is a dipole
moment p = er, where r is the vector from the electron to the proton.
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With the electron “orbiting” (i.e, in an unperturbed eigenstate), the
average dipole moment is zero. However, if an electric field is applied
to the atom, the atom will develop a polarization (i.e., it will be more
likely for the electron to be found on one side of the nucleus than on the
other). We write

p = χE

where χ is known as the polarizability (also known as electric suscepti-
bility). This polarizability can be calculated for, say, a hydrogen atom
explicitly.22 At any rate, it is some positive quantity.22This is a good exercise in quan-

tum mechanics. See for example, E.
Merzbacher, Quantum Mechanics, Wi-
ley 1961. See also Exercise 6.6.

Fig. 6.7 An atom with a polarization
p1 induces a polarization p2 in a second
atom.

Now, let us suppose we have two such atoms, separated by a distance
r in the x̂ direction (see Fig. 6.7). Suppose one atom momentarily has
a dipole moment p1 and for definiteness, suppose this dipole moment is
in the ẑ direction. Then the second atom will feel an electric field

E =
p1

4πε0r3

in the negative ẑ direction. The second atom then, due to its polariz-
ability, develops a dipole moment p2 = χE which in turn is attracted to
the first atom. The potential energy between these two dipoles is23

23Had we chosen the polarization to
not be perpendicular to the separation
between atoms we would have an addi-
tional factor of (1+3 cos2 θ) with θ the
angle between p1 and r.

U =
−|p1||p2|
4πε0r3

=
−p1χE
(4πε0)r3

=
−|p1|2χ
(4πε0r3)2 .

(6.12)

Therefore there is a force −dU/dr which is attractive and proportional
to 1/r7.
You can check that independent of the direction of the original dipole

moment, the force is always attractive and proportional to 1/r7. Al-
though there will be a (non-negative) prefactor which depends on the
angle between the dipole moment p1 and r the direction between the
two atoms.
Note that this argument appears to depend on the fact that the dipole

moment p1 of the first atom is non-zero, whereas on average the atom’s
dipole moment is actually zero. However in Eq. 6.12 in fact what enters
is |p1|2 which has a non-zero expectation value (this is precisely the
calculation that 〈x〉 for an electron in a hydrogen atom is zero, but 〈x2〉
is non-zero).
While these fluctuating dipolar forces are generally weak, they are the

only forces that occur when electrons cannot be shared or transferred
between atoms—either in the case where the electrons are not chemically
active or when the atoms are far apart. Although individually weak,
when considering the van der Waals forces of many atoms put together,
the total forces can be quite strong. A well-known example of a van
der Waals force is the force that allows lizards such as geckos to climb
up even very smooth walls (such as glass windows). They have hair on
their feet that makes very close contact with the atoms of the wall, and
they then stick to the wall mostly due to van der Waals forces!
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6.4 Metallic Bonding

It is sometimes hard to distinguish metallic bonding from covalent bond-
ing. Roughly, however, one defines a metallic bond to be the bonding
that occurs in a metal. These bonds are similar to covalent bonds in the
sense that electrons are shared between atoms, but in this case the elec-
trons become delocalized throughout the crystal (we will discuss how
this occurs in Section 11.2). We should think of the delocalized free
electrons as providing the glue that holds together the positive ions that
they have left behind.
Since the electrons are completely delocalized, the bonds in metals

tend not to be directional. Metals are thus often ductile and malleable.
Since the electrons are free, metals are good conductors of electricity as
well as of heat.

6.5 Hydrogen Bonds

The hydrogen atom is extremely special due to its very small size. As a
result, the bonds formed with hydrogen atoms are qualitatively different
from other bonds. When the hydrogen atom forms a covalent or ionic
bond with a larger atom, being small, the hydrogen nucleus (a proton)
simply sits on the surface of its partner. This then makes the molecule
(hydrogen and its partner) into a dipole. These dipoles can then attract
charges, or other dipoles, as usual.
What is special about hydrogen is that when it forms a bond, and its

electron is attracted away from the proton onto (or partially onto) its
partner, the unbonded side of the proton left behind is a naked positive
charge—unscreened by any electrons in core orbitals. As a result, this
positive charge is particularly effective in being attracted to other clouds
of electrons. Fig. 6.8 Hydrogen bonds in H2O.

A hydrogen on one water molecule
is attracted to an oxygen on another
molecule forming a weak hydrogen
bond. These bonds are strong enough
to form ice below the 273.15 K.

A very good example of the hydrogen bond is water, H2O. Each oxygen
atom is bound to two hydrogens (however because of the atomic orbital
structure, these atoms are not collinear). The hydrogens, with their
positive charge remain attracted to oxygens of other water molecules.
In ice, these attractions are strong enough to form a weak but stable
bond between water molecules, thus forming a crystal. Sometimes one
can think of the hydrogen atom as forming “half” a bond with two
oxygen atoms, thus holding the two oxygen atoms together.
Hydrogen bonding is also extremely important in biological molecules

where, for example, hydrogen bonds hold together strands of DNA.
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Chapter Summary (Table)

Type of Bonding Description Typical of which compounds Typical Properties

Ionic

Electron is transferred
from one atom to an-
other, and the resulting
ions attract each other.

Binary compounds made
of constituents with very
different electronegativ-
ity: e.g., group I–VII
compounds such as NaCl.

• Hard, very brittle
• High melting tempera-
ture
• Electrical insulator
• Water soluble

Covalent

Electron is shared be-
tween two atoms forming
a bond. Energy lowered
by delocalization of wave-
function.

Compounds made of
constituents with similar
electronegativities (e.g.,
III–V compounds such as
GaAs), or solids made of
one element only such as
diamond (C).

• Very hard (brittle)
• High melting tempera-
ture
• Electrical insulators or
semiconductors

Metallic

Electrons are delocalized
throughout the solid
forming a glue between
positive ions.

Metals. Left and middle
of periodic table.

• Ductile, malleable
(due to non-directional
nature of bond). Can
be hardened by adding
certain impurities.
• Lower melting temper-
ature
• Good electrical and
thermal conductors

Molecular
(van der Waals,
fluctuating
dipole)

No transfer of electrons.
Dipole moments on
constituents align to
cause attraction. Bond-
ing strength increases
with size of molecule or
polarity of constituent.

Noble gas solids, solids
made of non-polar (or
slightly polar) molecules
binding to each other
(wax).

• Soft, weak
• Low melting tempera-
ture
• Electrical insulators

Hydrogen

Involves hydrogen ion
bound to one atom but
still attracted to another.
Special case because H is
so small.

Important in organic
and biological materials.
Holds together ice.

• Weak bond (stronger
than vdW though)
• Important for maintain-
ing shape of DNA and
proteins

Table 6.1 Types of bonds. This table should be thought of as providing rough rules. Many mate-
rials show characteristics intermediate between two (or more!) classes. Chemists often subdivide
each of these classes even further.
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References on Chemical Bonding

• Rosenberg, sections 1.11–1.19
• Ibach and Luth, chapter 1
• Hook and Hall, section 1.6
• Kittel, chapter 3 up to elastic strain
• Dove, chapter 5
• Ashcroft and Mermin, chapters 19–20
• Burns, sections 6.2–6.6 and also chapters 7 and 8
• Pauling, chapters 1–3
•Murrel et al., chapters 1–6 (This has some detail on LCAO method.)

Most of these references are far more than you probably want to know.
The first four on the list are good starting points.

Exercises

(6.1) Chemical Bonding

(a) Qualitatively describe five different types of
chemical bonds and why they occur.

! Describe which combinations of what types of
atoms are expected to form which types of bonds
(make reference to location on the periodic table).

! Describe some of the qualitative properties of
materials that have these types of bonds.

(Yes, you can just copy the table out of the chapter
summary, but the point of this exercise is to learn
the information in the table!)

(b) Describe qualitatively the phenomenon of van
der Waals forces. Explain why the force is attrac-
tive and proportional to 1/R7 where R is the dis-
tance between two atoms.

(6.2) Covalent Bonding in Detail*

(a) Linear Combination of Atomic Orbitals:

In Section 6.2.2 we considered two atoms each with
a single atomic orbital. We called the orbital |1〉
around nucleus 1 and |2〉 around nucleus 2. More
generally we may consider any set of wavefunctions
|n〉 for n = 1, . . . , N . For simplicity, let us assume
this basis is orthonormal 〈n|m〉 = δn,m (More gen-
erally, one cannot assume that the basis set of or-
bitals is orthonormal. In Exercise 6.5 we properly
consider a non-orthonormal basis.)

Let us write a trial wavefunction for our ground
state as

|Ψ〉 =
∑

n

φn|n〉.

This is known as a linear combination of atomic
orbitals, LCAO, or tight binding (it is used heavily
in numerical simulation of molecules).

We would like to find the lowest-energy wavefunc-
tion we can construct in this form, i.e., the best ap-
proximation to the actual ground-state wavefunc-
tion. (The more states we use in our basis, gen-
erally, the more accurate our results will be.) We
claim that the ground state is given by the solution
of the effective Schroedinger equation

Hφ = E φ (6.13)

where φ is the vector of N coefficients φn, and H
is the N by N matrix

Hn,m = 〈n|H |m〉

with H the Hamiltonian of the full system we are
considering. To prove this, let us construct the en-
ergy

E =
〈ψ|H |ψ〉
〈ψ|ψ〉

! Show that minimizing this energy with respect
to each φn gives the same eigenvalue equation,
Eq. 6.13. (Caution: φn is generally complex! If
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you are not comfortable with complex differentia-
tion, write everything in terms of real and imagi-
nary parts of each φn.) Similarly, the second eigen-
value of the effective Schroedinger equation will be
an approximation to the first excited state of the
system.

(b) Two-orbital covalent bond

Let us return to the case where there are only two
orbitals in our basis. This pertains to a case where
we have two identical nuclei and a single electron
which will be shared between them to form a cova-
lent bond. We write the full Hamiltonian as

H =
p2

2m
+ V (r−R1) + V (r−R2) = K + V1 + V2

where V is the Coulomb interaction between the
electron and the nucleus, R1 is the position of the
first nucleus and R2 is the position of the second
nucleus. Let ε be the energy of the atomic orbital
around one nucleus in the absence of the other. In
other words

(K + V1)|1〉 = ε|1〉
(K + V2)|2〉 = ε|2〉

Define also the cross-energy element

Vcross = 〈1|V2|1〉 = 〈2|V1|2〉

and the hopping matrix element

t = −〈1|V2|2〉 = −〈1|V1|2〉

These are not typos!

! Why can we write Vcross and t equivalently us-
ing either one of the expressions given on the right-
hand side?

! Show that the eigenvalues of our Schroedinger
equation Eq. 6.13 are given by

E = ε + Vcross ± |t|

! Argue (perhaps using Gauss’s law) that Vcross

should roughly cancel the repulsion between nuclei,
so that, in the lower eigenstate the total energy is
indeed lower when the atoms are closer together.

! This approximation must fail when the atoms
get sufficiently close. Why?

(6.3) LCAO and the Ionic–Covalent Crossover

For Exercise 6.2.b consider now the case where the
atomic orbitals |1〉 and |2〉 have unequal energies
ε0,1 and ε0,2. As the difference in these two energies

increases show that the bonding orbital becomes
more localized on the lower-energy atom. For sim-
plicity you may use the orthogonality assumption
〈1|2〉 = 0. Explain how this calculation can be used
to describe a crossover between covalent and ionic
bonding.

(6.4) Ionic Bond Energy Budget

The ionization energy of a sodium atom is about
5.14 eV. The electron affinity of a chlorine atom is
about 3.62 eV. When a single sodium atom bonds
with a single chlorine atom, the bond length is
roughly 0.236 nm. Assuming that the cohesive en-
ergy is purely Coulomb energy, calculate the total
energy released when a sodium atom and a chlo-
rine atom come together to form a NaCl molecule.
Compare your result to the experimental value of
4.26 eV. Qualitatively account for the sign of your
error.

(6.5) LCAO Done Right*

(a)* In Exercise 6.2 we introduced the method of
linear combination of atomic orbitals. In that ex-
ercise we assumed that our basis of orbitals is or-
thonormal. In this exercise we will relax this as-
sumption.

Consider now many orbitals on each atom (and po-
tentially many atoms). Let us write

|ψ〉 =
N∑

i=1

φi|i〉

for an arbitrary number N of orbitals. Let us write
the N by N overlap matrix S whose elements are

Si,j = 〈i|j〉

In this case do not assume that S is diagonal.

Using a similar method as in Exercise 6.2, derive
the new “Schroedinger equation”

Hφ = ESφ (6.14)

with the same notation for H and φ as in Exercise
6.2. This equation is known as a “generalized eigen-
value problem” because of the S on the right-hand
side.

(b)** Let us now return to the situation with only
two atoms and only one orbital on each atom but
such that 〈1|2〉 = S1,2 += 0. Without loss of gen-
erality we may assume 〈i|i〉 = 1 and S1,2 is real.
If the atomic orbitals are s-orbitals then we may
assume also that t is real and positive (why?).

Use Eq. 6.14 to derive the eigenenergies of the sys-
tem.
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(6.6) Van der Waals Bonding in Detail*

(a) Here we will do a much more precise calculation
of the van der Waals force between two hydrogen
atoms. First, let the positions of the two nuclei be
separated by a vector R, and let the vector from
nucleus 1 to electron 1 be r1 and let the vector
from nucleus 2 to electron 2 be r2 as shown in the
following figure.

!
"

+
+

-
-

r1 r2#
R

Let us now write the Hamiltonian for both atoms
(assuming fixed positions of nuclei, i.e., using Born–
Oppenheimer approximation) as

H = H0 +H1

H0 =
p1

2

2m
+

p2
2

2m
− e2

4πε0|r1|
− e2

4πε0|r2|

H1 =
e2

4πε0|R|
+

e2

4πε0|R− r1 + r2|

− e2

4πε0|R− r1|
− e2

4πε0|R+ r2|

Here H0 is the Hamiltonian for two non-interacting
hydrogen atoms, and H1 is the interaction between
the atoms.

Without loss of generality, let us assume that R is
in the x̂ direction. Show that for large R and small
ri, the interaction Hamiltonian can be written as

H1 =
e2

4πε0|R|3
(z1z2 + y1y2 − 2x1x2) +O(1/R4)

where xi, yi, zi are the components of ri. Show that
this is just the interaction between two dipoles.

(b) Perturbation Theory:

The eigenvalues of H0 can be given as the eigen-
values of the two atoms separately. Recall that
the eigenstates of hydrogen are written in the
usual notation as |n, l,m〉 and have energies En =
−Ry/n2 with Ry = me4/(32π2ε20!

2) = e2/(8πε0a0)
the Rydberg (here l ! 0, |m| # l and n !

l + 1). Thus the eigenstates of H0 are written
as |n1, ll,m1;n2, l2,m2〉 with energies En1,n2 =
−Ry(1/n2

1 + 1/n2
2). The ground state of H0 is

|1, 0, 0; 1, 0, 0〉.
! Perturbing H0 with the interaction H1, show
that to first order in H1 there is no change in the
ground-state energy. Thus conclude that the lead-
ing correction to the ground-state energy is propor-
tional to 1/R6 (and hence the force is proportional
to 1/R7).

! Recalling second-order perturbation theory
show that we have a correction to the total energy
given by

δE =
∑

n1, n2

l1, l2
m1,m2

| < 1, 0, 0; 1, 0, 0| H1 |n1, ll,m1;n2, l2,m2〉|2

E0,0 −En1,n2

! Show that the force must be attractive.

(c)*Bounding the binding energy:

First, show that the numerator in this expression
is zero if either n1 = 1 or n2 = 1. Thus the small-
est En1,n2 that appears in the denominator is E2,2.
If we replace En1,n2 in the denominator with E2,2

then the |δE| we calculate will be greater than than
the |δE| in the exact calculation. On the other
hand, if we replace En1,n2 by 0, then the |δE| will
always be less than the δE of the exact calculation.

! Make these replacements, and perform the re-
maining sum by identifying a complete set. Derive
the bound

6e2a5
0

4πε0R6
# |δE| # 8e2a5

0

4πε0R6

You will need the matrix element for a hydrogen
atom

〈1, 0, 0|x2|1, 0, 0〉 = a2
0

where a0 = 4πε0!
2/(me2) is the Bohr radius. (This

last identity is easy to derive if you remember that
the ground-state wavefunction of a hydrogen atom
is proportional to e−r/2a0 .)
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Types of Matter 7
Once we understand how it is that atoms bond together, we can examine
what types of matter can be formed. This chapter will give a very brief
and obviously crude, but obligatory, overview of some of these types of
matter.
Atoms can obviously bond together the form regular crystals. A crys-

tal is made of small units reproduced many times and built into a regular
array. The macroscopic morphology of a crystal can reflect its under-
lying structure (See Fig. 7.1). We will spend much of the remainder of
this book studying crystals.

Fig. 7.1: Left: Small units repro-
duced periodically to form a crystal.
This particular figure depicts NaCl (ta-
ble salt), with the larger spheres being
Cl− ions and the smaller spheres be-
ing Na+ ions. Right: The macroscopic
morphology of a crystal often will re-
flect the underlying microscopic struc-
ture. These are large crystals of salt
(also known as halite). Photograph by
Piotr W#lodarczyk, used by kind per-
mission.

It is also possible that atoms will bind together to form molecules,
and the molecules will stick together via weak van der Waals bonds to
form so-called molecular crystals (see Fig. 7.2).

Fig. 7.2 A molecular crystal. Left: 60
atoms of carbon bind together to form a
large molecule known as a buckyball.1

Right: the buckyballs stick together
by weak van der Waals bonds to form
a molecular crystal.

1The name “buckyball” is a nickname for Buckminsterfullerene, named after Richard Buckminster Fuller, the famed developer
of the geodesic dome, which buckyballs are supposed to resemble; although the shape is actually precisely that of a soccer
ball. This name was chosen by the discoverers of the buckyball, Harold Kroto, James Heath, and Richard Smalley, who were
awarded a Nobel Prize in chemistry for their discovery despite their choice of nomenclature (probably the name “soccerballene”
would have been better).
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Fig. 7.3 Cartoon of a liquid. In liquids,
molecules are not in an ordered configu-
ration and are free to move around (i.e,
the liquid can flow). However, the liq-
uid molecules do attract each other and
at any moment in time you can typi-
cally define neighbors.

Another form of matter is liquid. Here, atoms are attracted to each
other, but not so strongly that they form permanent bonds (or the tem-
perature is high enough to make the bonds unstable). Liquids (and
gases)2 are disordered configurations of molecules where the molecules
are free to move around into new configurations (see Fig. 7.3).

Fig. 7.4. Molecular structure of an
amorphous solid: Silica (SiO2) can ei-
ther be a crystal (such as quartz) or
it can be amorphous (such as win-
dow glass). In this depiction of amor-
phous silica, the Si atoms are the lighter
shaded atoms, each having four bonds
and the O atoms are the dark atoms,
each having two bonds. Here the atoms
are disordered, but are bonded together
and cannot flow.

Somewhere midway between the idea of a crystal and the idea of a
liquid is the possibility of amorphous3 solids (including glasses). In this

3The word “amorphous” is from Greek,
meaning “without form”.

case the atoms are bonded into position in a disordered configuration.
Unlike a liquid, the atoms cannot flow freely (see Fig. 7.4)
Many more possibilities exist. For example, one may have so-called

liquid crystals, where the system orders in some ways but remains dis-
ordered in other ways. For example, in Fig. 7.5.b the system is crys-

2As we should have learned in our stat-mech and thermo courses, there is no “fundamental” difference between a liquid and
a gas. Generally liquids are high density and not very compressible, whereas gases are low density and very compressible.
A single substance (say, water) may have a phase transition between its gas and liquid phase (boiling), but one can also go
continuously from the gas to liquid phase without boiling by going to high pressure before raising the temperature and going
around the critical point (going “supercritical”).
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talline (ordered) in one direction, but remains disordered within each
plane. One can also consider cases where the molecules are always ori-
ented the same way but are at completely random positions (known as
a “nematic”, see Fig. 7.5.c). There are a huge variety of possible liquid
crystal phases of matter. In every case it is the interactions between the
molecules (“bonding” of some type, whether it be weak or strong) that
dictates the configurations.

Fig. 7.5 Cartoon of liquid crystals.
Liquid crystals have some of the prop-
erties of a solid and some of the prop-
erties of a liquid. (a) The far left is a
crystal of molecules—all the molecules
are positionally ordered and all are ori-
ented in the same direction. (b) In
the middle left picture the molecules re-
tain their orientation, and retain some
of their positional order—they group
into discrete layers—thus being “crys-
talline” in the vertical direction. But
within each layer, they are disordered
and even can flow within the layer (this
is known as a smectic-C phase). (c) In
this figure, the positional order is lost,
the positions of the molecules are ran-
dom, but the molecules all retain their
orientations (this is known as a nematic
phase). (d) On the far right, the sys-
tem is a true liquid, there is no posi-
tional order or orientational order.

One can also have so-called quasi-crystals which are ordered but non-
periodic arrangements. In a quasi-crystal, such as the one shown in
Fig. 7.6, component units are assembled together with a set of regu-
lar rules which appears to make a periodic structure, but in fact the
pattern is non-repeating.4 Although quasicrystals made of atoms are
extremely rare in nature,5 many man-made quasicrystalline materials 5The first naturally occuring quasicrys-

tal was found in 2009. It is believed to
be part of a meteorite.

are now known.

Fig. 7.6 This quasicrystal, known as
Penrose tiling, can be assembled by fol-
lowing a simple set of rules. While the
pattern looks regular it is actually non-
periodic as it never repeats.

4The fact that chemical compounds can have regular but non-repeating structures was extremely controversial at first. After
discovering this phenomenon in 1982, Dan Shechtman’s claims were initially rejected by the scientific community. The great
Linus Pauling was particularly critical of the idea (see margin note 5 in Chapter 6) Eventually, Shechtman was proven right
and was awarded the Nobel Prize in chemistry in 2011.
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One should also be aware of polymers,6 which are long chains of atoms.
Examples include DNA, collagen (see Fig. 7.7), polypropylene, etc.

Fig. 7.7 Cartoon of a polymer. A poly-
mer is a long chain of atoms. Shown
here is the biological polymer collagen.

And there are many more types of condensed matter systems that we
simply do not have time to discuss.7 One can even engineer artificial7Particularly interesting are forms such

as superfluids, where quantum mechan-
ics dominates the physics. But alas, we
must save discussion of this for another
book.

types of order which do not occur naturally. Each one of these types of
matter has its own interesting properties and if we had more time we
would discuss them all in depth! Given that there are so many types
of matter, it may seem odd that we are going to spend essentially the
entire remainder of this book focused on simple crystalline solids. There
are very good reasons for this however. First of all, the study of solids
is one of the most successful branches of physics—both in terms of how
completely we understand them and also in terms of what we have been
able to do practically with this understanding. (For example, the entire
modern semiconductor industry is a testament to how successful our
understanding of solids is!) More importantly, however, the physics that
we learn by studying solids forms an excellent starting point for trying
to understand the many more complex forms of matter that exist.

References

• Dove, chapter 2 gives discussion of many types of matter.
• Chaikin and Lubensky gives a much broader discussion of types of

matter.

6Here is a really cool experiment to do in your kitchen. Cornstarch is a polymer—a long chain of atoms. Take a box of
cornstarch and make a mixture of roughly half cornstarch and half water (you may have to play with the proportions). The
concoction should still be able to flow. If you put your hand into it, it will feel like a liquid and be gooey. But if you take a
tub of this and hit it with a hammer very quickly, it will feel as hard as a brick, and it will even crack (then it turns back to
goo). In fact, you can make a deep tub of this stuff and although it feels completely like a fluid, you can run across the top
of it. (If you are too lazy to do this, try Googling “Ellen cornstarch” to see a YouTube video of the experiment. You might
also Google “cornstarch, speaker” to see what happens when you put this mess on top of an acoustic speaker.) This mixture,
sometimes known as “Oobleck” in a nod to Dr. Seuss, is an example of a “non-Newtonian” fluid—its effective viscosity depends
on how fast the force is applied to the material. The reason that polymers have this property is that the long polymer strands
get tangled with each other. If a force is applied slowly the strands can unentangle and flow past each other. But if the force
is applied quickly they cannot unentangle fast enough and the material acts just like a solid.



Part III

Toy Models of Solids in
One Dimension
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One-Dimensional Model of
Compressibility, Sound,
and Thermal Expansion 8
In the first few chapters (Chapters 2–4) we found that our simple models
of solids, and electrons in solids, were insufficient in several ways. In
order to improve our understanding, we decided that we needed to take
the periodic microstructure of crystals more seriously. In this part of
the book we finally begin this more careful microscopic consideration.
To get a qualitative understanding of the effects of the periodic lattice,
it is frequently sufficient to think in terms of simple one-dimensional
systems. This is our strategy for the next few chapters. Once we have
introduced a number of important principles in one dimension, we will
address the complications associated with higher dimensionality.
In Chapter 6 we discussed bonding between atoms. We found, par-

ticularly in the discussion of covalent bonding, that the lowest-energy
configuration would have the atoms some optimal distance apart (see
Fig. 6.6, for example). Given this shape of the energy as a function
of distance between atoms we will be able to come to some interesting
conclusions.
For simplicity, let us imagine a one-dimensional system of atoms (atoms

in a single line). The potential V (x) between two neighboring atoms is
drawn in Fig. 8.1.

Fig. 8.1 Potential between neighboring
atoms (thin black). The thick light gray
curve is a quadratic approximation to
the minimum (it may look crooked but
in fact the thick gray curve is symmet-
ric and the thin black curve is asymmet-
ric). The equilibrium position is xeq .
At finite temperature T , the system
can oscillate between xmax and xmin

which are not symmetric around the
minimum. Thus as T increases the av-
erage position moves out to larger dis-
tance and the system expands.
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The classical equilibrium position is the position at the bottom of the
well (marked xeq in the figure). The distance between atoms at low
temperature should then be xeq . (Quantum mechanics can change this
value and increase it a little bit. See Exercise 8.4.)
Let us now Taylor expand the potential around its minimum.

V (x) ≈ V (xeq) +
κ

2
(x− xeq)

2 −
κ3

3!
(x − xeq)

3 + . . . .

Note that there is no linear term (if there were a linear term, then
the position xeq would not be the minimum). If there are only small
deviations from the position xeq the higher terms are much much smaller
than the leading quadratic term and we can throw these terms out. This
is a rather crucial general principle that any smooth potential, close
enough to its minimum, is quadratic.

Compressibility (or Elasticity)

We thus have a simple Hooke’s law quadratic potential around the min-
imum. If we apply a force to compress the system (i.e., apply a pressure
to our model one-dimensional solid) we find

−κ(δxeq) = F

where the sign is so that a positive (compressive) pressure reduces the
distance between atoms. This is obviously just a description of the
compressibility (or elasticity) of a solid. The usual description of com-
pressibility is

β = −
1

V

∂V

∂P
(one should ideally specify if this is measured at fixed T or at fixed
S. Here, we are working at T = S = 0 for simplicity). In the one-
dimensional case, we write the compressibility as11Here β is not the inverse temperature!

Unfortunately the same symbol is con-
ventionally used for both quantities.

β = −
1

L

∂L

∂F
=

1

κxeq
=

1

κ a
(8.1)

with L the length of the system and xeq the spacing between atoms.
Here we make the conventional definition that the equilibrium distance
between identical atoms in a system (the so-called lattice constant) is
written as a.

Sound

You may recall from your study of fluids that in an isotropic compressible
fluid, one predicts sound waves with velocity

v =

√
B

ρ
=

√
1

ρβ
(8.2)

where ρ is the mass density of the fluid, B is the bulk modulus, which is
B = 1/β with β the (adiabatic) compressibility. While in a real solid the



73

compressibility is anisotropic and the speed of sound depends in detail
on the direction of propagation, in our model one-dimensional solid this
is not a problem.
We calculate that the density is m/a with m the mass of each particle

and a the equilibrium spacing between particles. Thus using our previous
result (Eq. 8.1 in Eq. 8.2), we predict a sound wave with velocity

v =

√
κa2

m .
(8.3)

Shortly (in Section 9.2) we will rederive this expression from the micro-
scopic equations of motion for the atoms in the one-dimensional solid.

Thermal Expansion

So far we have been working at zero temperature, but it is worth thinking
at least a little bit about thermal expansion. This has been mentioned
previously in the Aside at the end of section 6.2.2 and will be fleshed
out more completely in Exercises 8.2–8.4 (in fact even in the exercises
the treatment of thermal expansion will be very crude, but that should
still be enough to give us the general idea of the phenomenon2). 2Explaining thermal expansion more

correctly is, unfortunately, rather
messy! See for example, Ashcroft and
Mermin.

Let us consider again Fig. 8.1 but now at finite temperature. We can
imagine the potential as a function of distance between atoms as being
like a ball rolling around in a potential. At zero energy, the ball sits
at the minimum of the distribution. But if we give the ball some finite
temperature (i.e., some energy) it will oscillate around the minimum.
At fixed energy kBT the ball rolls back and forth between the points
xmin and xmax where V (xmin) = V (xmax) = kBT . But away from the
minimum the potential is asymmetric, so |xmax − xeq | > |xmin − xeq | so
on average the particle has a position 〈x〉 > xeq . This is in essence the
reason for thermal expansion! We will obtain positive thermal expansion
for any system where κ3 > 0 (i.e., at small x the potential is steeper)
which almost always is true for real solids.

Chapter Summary

• Forces between atoms determine ground-state structure.

• These same forces, perturbing around the ground state, determine
elasticity, sound velocity, and thermal expansion.

• Thermal expansion comes from the non-quadratic part of the in-
teratomic potential.

References

Sound and Compressibility:

• Goodstein, section 3.2b
• Hook and Hall, section 2.2
• Ibach and Luth, beginning of section 4.5 (more advanced treatment)
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Thermal Expansion. Most reference that discuss thermal expansion go
into a large amount of depth. The following are fairly concise:

• Kittel, chapter 5, section on thermal expansion
• Hook and Hall, section 2.7.1

Exercises

(8.1) Potentials Between Atoms

As a model of thermal expansion, we study the dis-
tance between two nearest-neighbor atoms in an
anharmonic potential that looks roughly like this

$

#$
kBT

V (x)

xx0

where x is the distance between the two neighbor-
ing atoms. This potential can be expanded around
its minimum as

V (x) =
κ
2
(x− x0)

2 − κ3

3!
(x− x0)

3 + . . . (8.4)

where the minimum is at position x0 and κ3 > 0.
For small energies, we can truncate the series at the
cubic term. (Note that we are defining the energy
at the bottom of the well to be zero here.)

A very accurate approximate form for interatomic
potentials (particularly for inert atoms such as he-
lium or argon) is given by the so-called Lennard-
Jones potential

V (x) = 4ε

[(σ
x

)12
−

(σ
x

)6
]
+ ε (8.5)

where ε and σ are constants that depend on the
particular atoms we are considering.

! What is the meaning of the exponent 6 in the
second term of this expression (i.e., why is the ex-
ponent necessarily chosen to be 6).

! By expanding Eq. 8.5 around its minimum, and
comparing to Eq. 8.4, calculate the values of the co-
efficients x0, κ, and κ3 for the Lennard-Jones po-
tential in terms of the constants ε and σ. We will
need these results in Exercise 8.3.

(8.2) Classical Model of Thermal Expansion

(i) In classical statistical mechanics, we write the
expectation of x as

〈x〉β =

∫
dxx e−βV (x)

∫
dx e−βV (x)

Although one cannot generally do such integrals
for arbitrary potential V (x) as in Eq. 8.4, one can
expand the exponentials as

e−βV (x) = e−
βκ
2

(x−x0)
2
[
1 +

βκ3

6
(x− x0)

3 + . . .

]

and let limits of integration go to ±∞.

! Why is this expansion of the exponent and the
extension of the limits of integration allowed?

! Use this expansion to derive 〈x〉β to lowest or-
der in κ3, and hence show that the coefficient of
thermal expansion is

α =
1
L
dL
dT

≈ 1
x0

d〈x〉β
dT

=
1
x0

kB κ3

2κ2

with kB Boltzmann’s constant.

! In what temperature range is the above expan-
sion valid?

! While this model of thermal expansion in a solid
is valid if there are only two atoms, why is it in-
valid for the case of a many-atom chain? (Although
actually it is not so bad as an approximation!)

(8.3) Properties of Solid Argon

For argon, the Lennard-Jones constants ε and σ
from Eq. 8.5 are given by ε = 10meV and σ =
.34nm. You will need to use some of the results
from Exercise 8.1.

(a) Sound

Given that the atomic weight of argon is 39.9, es-
timate the sound wave velocity in solid argon. The
actual value of the longitudinal velocity is about
1600 m/sec.
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(b) Thermal Expansion

Using the results of Exercise 8.2, estimate the ther-
mal expansion coefficient α of argon. Note: You
can do this part even if you couldn’t completely fig-
ure out Exercise 8.2!

The actual thermal expansion coefficient of argon is
approximately α = 2×10−3/K at about 80K. How-
ever, at lower temperature α drops quickly. In the
next exercise will use a more sophisticated quantum
model to understand why this is so.

(8.4) Quantum Model of Thermal Expansion

(a) In quantum mechanics we write a Hamiltonian

H = H0 + δV

where

H0 =
p2

2m
+

κ
2
(x− x0)

2 (8.6)

is the Hamiltonian for the free Harmonic oscillator,
and δV is the perturbation (see Eq. 8.4)

δV = −κ3

6
(x− x0)

3 + . . .

where we will throw out quartic and higher terms.

! What value of m should be used in Eq. 8.6?

Using perturbation theory it can be shown that, to
lowest order in κ3 the following equation holds

〈n|x|n〉 = x0 + Enκ3/(2κ
2) (8.7)

where |n〉 is the eigenstate of the Harmonic oscilla-
tor whose energy is

En = !ω(n+
1
2
) +O(κ3) n ! 0

with ω =
√

κ/m. In (c) we will prove Eq. 8.7. For
now, take it as given.

! Note that even when the oscillator is in its
ground state, the expectation of x deviates from
x0. Physically why is this?

(b)* Use Eq. 8.7 to calculate the quantum expec-
tation of x at any temperature. We write

〈x〉β =

∑
n〈n|x|n〉e

−βEn

∑
n e−βEn

! Derive the coefficient of thermal expansion.

! Examine the high temperature limit and show
that it matches that of Exercise 8.2.

! In what range of temperatures is our perturba-
tion expansion valid?

! In light of the current quantum calculation,
when is the classical calculation from Exercise 8.2
valid?

! Why does the thermal expansion coefficient
drop at low temperature?

(c)** Prove Eq. 8.7 by using lowest-order pertur-
bation theory.

Hint: It is easiest to perform this calculation by us-
ing raising and lowering (ladder) operators. Recall
that one can define operators a and a† such that
[a, a†] = 1 and

a†|n〉0 =
√
n+ 1|n+ 1〉0

a|n〉0 =
√
n|n− 1〉0 .

Note that these are kets and operators for the un-
perturbed Hamiltonian H0. In terms of these op-
erators, we have the operator x− x0 given by

x− x0 =

√
!

2mω
(a+ a†).
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Vibrations of a
One-Dimensional
Monatomic Chain 9
In Chapter 2 we considered the Boltzmann, Einstein, and Debye mod-
els of vibrations in solids. In this chapter we will consider a more de-
tailed model of vibration in a solid, first classically, and then quantum-
mechanically. We will be able to better understand what these early
attempts to understand vibrations achieved and we will be able to bet-
ter understand their shortcomings.
Let us consider a chain of identical atoms of mass m where the equi-

librium spacing between atoms is a (we will sometimes call this quantity
the lattice constant). Let us define the position of the nth atom to be
xn and the equilibrium position of the nth atom to be xeq

n = na.
Once we allow motion of the atoms, we will have xn deviating from

its equilibrium position, so we define the small variable

δxn = xn − xeq
n .

Note that in our simple model we are allowing motion of the masses only
in one dimension (i.e., we are allowing longitudinal motion of the chain,
not transverse motion).
As discussed in the previous chapter, if the system is at low enough

temperature we can consider the potential holding the atoms together
to be quadratic. Thus, our model of a solid is a chain of masses held to-
gether with springs each having equilibrium length a as show in Fig. 9.1.
Because of the quadratic potentials, and thus the relation to simple har-
monic motion, this model is frequently known as a harmonic chain.

a

m m
κ κ

Fig. 9.1 The one-dimensional
monatomic harmonic chain. Each ball
has mass m and each spring has spring
constant κ. The lattice constant, or
spacing between successive masses at
rest, is a.

With this quadratic interatomic potential, we can write the total po-
tential energy of the chain to be

Vtot =
∑

i

V (xi+1 − xi) =
∑

i

κ

2
(xi+1 − xi − a)2

=
∑

i

κ

2
(δxi+1 − δxi)

2
.

The force on the nth mass on the chain is then given by

Fn = −
∂Vtot

∂xn
= κ(δxn+1 − δxn) + κ(δxn−1 − δxn).
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Fig. 9.2 Dispersion relation for
vibrations of the one-dimensional
monatomic harmonic chain. The
dispersion is periodic in k → k + 2π/a.

 ω

0  k=+π/a k=−π/a

 ω = 2√ m
κ 

Thus we have Newton’s equation of motion

m( ¨δxn) = Fn = κ(δxn+1 + δxn−1 − 2δxn). (9.1)

To remind the reader, for any coupled system, a normal mode is de-
fined to be a collective oscillation where all particles move at the same
frequency. We now attempt a solution to Newton’s equations by using
an ansatz1 that describes the normal modes as waves1In case you have not seen this word be-

fore, “ansatz” means “educated guess
to be later verified”. The word is from
German meaning “approach” or “at-
tempt”.

δxn = Aeiωt−ikxeq
n = Aeiωt−ikna

where A is an amplitude of oscillation, and k and ω are the wavevector
and frequency of the proposed wave.
Now the reader might be confused about how it is that we are con-

sidering complex values of δxn. Here we are using complex numbers for
convenience but actually we implicitly mean to take the real part (this is
analogous to what one does in circuit theory with oscillating currents!).
Since we are taking the real part, it is sufficient to consider only ω ! 0,
however, we must be careful that k can then have either sign, and these
are inequivalent once we have specified that ω is positive.
Plugging our ansatz into Eq. 9.1 we obtain

−mω2Aeiωt−ikna = κAeiωt
[
e−ika(n+1) + e−ika(n−1) − 2e−ikan

]

or
mω2 = 2κ[1− cos(ka)] = 4κ sin2(ka/2). (9.2)

We thus obtain the result

ω = 2

√
κ

m

∣∣∣∣ sin
(
ka

2

) ∣∣∣∣
.

(9.3)

In general a relationship between a frequency (or energy) and a wavevec-
tor (or momentum) is known as a dispersion relation. This particular
dispersion relation is shown in Fig. 9.2
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9.1 First Exposure to the Reciprocal
Lattice

Note that in Fig. 9.2 we have only plotted the dispersion for −π/a #
k # π/a. The reason for this is obvious from Eq. 9.3—the dispersion
relation is actually periodic in k → k + 2π/a. In fact this is a very
important general principle:

Principle 9.1: A system which is periodic in real space
with a periodicity a will be periodic in reciprocal space
with periodicity 2π/a.

In this principle we have used the word reciprocal space which means
k-space. In other words this principle tells us that if a system looks the
same when x→ x+ a then in k-space the dispersion will look the same
when k → k+2π/a. We will return to this principle many times in later
chapters.
The periodic unit (the “unit cell”) in k-space is conventionally known

as the Brillouin zone.2,3 This is our first exposure to the concept of a 2Leon Brillouin was one of Sommer-
feld’s students. He is famous for many
things, including for being the “B” in
the “WKB” approximation. If you
haven’t learned about WKB, you really
should!
3The pronunciation of “Brillouin” is
something that gives English speak-
ers a great deal of difficulty. If you
speak French you will probably cringe
at the way this name is butchered.
(I did badly in French in school, so
I’m probably one of the worst offend-
ers.) According to online dictionaries
it is properly pronounced somewhere
between the following words: brēwan,
breel-wahn, bree(y)lwa(n), and bree-l-
(uh)-wahn. At any rate, the “l” and the
“n” should both be very weak. I’ve also
been told that it can be thought of as
Brie, the cheese, and Rouen the town in
France (which I’ve never known how to
pronounce, so that doesn’t help much).

Brillouin zone, but it will play a very central role in later chapters. The
“first Brillouin zone” is a unit cell in k-space centered around the point
k = 0. Thus in Fig. 9.2 we have shown only the first Brillouin zone,
with the understanding that the dispersion is periodic for higher k. The
points k = ±π/a are known as the Brillouin-zone boundary and are
defined in this case as being points which are symmetric around k = 0
and are separated by 2π/a.
It is worth pausing for a second and asking why we expect that the

dispersion curve should be periodic in k → k + 2π/a. Recall that we
defined our vibration mode to be of the form

δxn = Aeiωt−ikna
. (9.4)

If we take k → k + 2π/a we obtain

δxn = Aeiωt−i(k+2π/a)na = Aeiωt−iknae−i2πn = Aeiωt−ikna

where here we have used
e−i2πn = 1

for any integer n. What we have found here is that shifting k → k+2π/a
gives us back exactly the same oscillation mode the we had before we
shifted k. The two are physically exactly equivalent!
In fact, it is similarly clear that shifting k to any k+2πp/a with p an

integer will give us back exactly the same wave also since

e−i2πnp = 1

as well. We can thus define a set of points in k-space (reciprocal space)
which are all physically equivalent to the point k = 0. This set of points
is known as the reciprocal lattice. The original periodic set of points
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xn = na is known as the direct lattice or real-space lattice to distinguish
it from the reciprocal lattice, when necessary.
The concept of the reciprocal lattice will be extremely important later

on. We can see the analogy between the direct lattice and the reciprocal
lattice as follows:

xn = . . . −2a, −a, 0, a, 2a, . . .

Gn = . . . −2
(
2π
a

)
, − 2π

a , 0, 2π
a , 2

(
2π
a

)
, . . .

Note that the defining property of the reciprocal lattice in terms of the
points in the real lattice can be given as

eiGmxn = 1. (9.5)

A point Gm is a member of the reciprocal lattice if and only if Eq. 9.5
is true for all xn in the real lattice.

Aliasing:

The fact that a wavevector k describes the same same wave as the
wavevector k + Gm can cause a great deal of confusion. For example,
we usually think of wavelength as being 2π/k. But if k is equivalent to
k+Gm, how do we know if we should choose 2π/k or 2π/(k+Gm)? The
resolution of this puzzle (and many related conundrums4) is to realize

4Another closely related question is
how we should interpret phase velocity
vphase = ω/k if k is the same as k+Gm.

that k and k+Gm are only equivalent so long as one only measures the
wave at lattice points xn = na and not at arbitrary points x along the
axis. Indeed, in our wave ansatz, Eq. 9.4, the wave is only defined at
these lattice positions (i.e., a displacement is defined for each mass). In
Fig. 9.3 it is shown how the waves corresponding to k and k+2π/a take
the same values at lattice points xn = na, but disagree between lattice
points. As a result, it is somewhat meaningless to ask if the wavelength
is 2π/k or 2π/(k + 2π/a), as both describe the same vibrational wave
ansatz that we have used! This phenomenon, that two waves with dif-
ferent wavelengths will look the same if they are sampled only at lattice
points, is often known as aliasing of waves.5

0 1a 2a 3a 4a 5a 6a

Fig. 9.3 Aliasing of waves. The dashed
curve has wavevector k whereas the
solid curve has wavevector k + 2π/a.
These two waves have the same value
(solid dots) at the location of the lattice
points xn = na, but disagree between
lattice points. If the physical wave is
only defined at these lattice points the
two waves are fully equivalent.

9.2 Properties of the Dispersion of the
One-Dimensional Chain

5 This terminology came from radio en-
gineers, who found that one wavelength
could “disguise” as another.

We now return to more carefully examine the properties of the dispersion
we calculated (Eq. 9.3).

Sound Waves:

Recall that a sound wave6 is a vibration that has a long wavelength

6For reference it is good to remem-
ber that humans can hear sound wave-
lengths roughly between 1cm and 10m.
This is very long wavelength compared
to interatomic spacings.

(compared to the interatomic spacing). In this long-wavelength regime,
we find the dispersion we just calculated to be linear with wavevector
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ω = vsoundk as expected for sound with

vsound = a

√
κ

m

(to see this, just expand the sin in Eq. 9.3). Note that this sound velocity
matches the velocity predicted from Eq. 8.3!
However, we note that at larger k, the dispersion is no longer linear.

This is in disagreement with what Debye assumed in his calculation in
Section 2.2. So clearly this is a shortcoming of the Debye theory. In
reality the dispersion of normal modes of vibration is linear only at long
wavelength.
At shorter wavelength (larger k) one typically defines two different

velocities. The group velocity, the speed at which a wavepacket moves,
is given by

vgroup = dω/dk,

and the phase velocity, the speed at which the individual maxima and
minima move, is given by7 7The difference between group velocity

and phase velocity is something that of-
ten causes confusion. If this is not al-
ready clear to you, I recommend look-
ing on the web. There are many nice
sites that give illustrations of the two.

vphase = ω/k.

These two match in the case of a linear dispersion, but otherwise are
different. Note that the group velocity becomes zero at the Brillouin
zone boundaries k = ±π/a (i.e., the dispersion is flat). As we will see
many times later on, this is a general principle!

Counting Normal Modes:

Let us now ask how many normal modes there are in our system. Naively
it would appear that we can put any k such that −π/a # k < π/a into
Eq. 9.3 and obtain a normal mode with wavevector k and frequency
ω(k). However, this is not precisely correct.
Let us assume our system has exactly N masses in a row, and for sim-

plicity let us assume that our system has periodic boundary conditions,
i.e., particle x0 has particle x1 to its right and particle xN−1 to its left.
Another way to say this is to let, xn+N = xn, i.e., this one-dimensional
system forms a big circle. In this case we must be careful that the wave
ansatz Eq. 9.4 makes sense as we go all the way around the circle. We
must therefore have

eiωt−ikna = eiωt−ik(N+n)a
.

Or equivalently we must have

eikNa = 1.

This requirement restricts the possible values of k to be of the form

k =
2πp

Na
=

2πp

L
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where p is an integer and L is the total length of the system. Thus k
becomes quantized rather than a continuous variable (this is exactly the
same argument as we saw previously in Section 2.2.1!). This means that
the k-axis in Fig. 9.3 is actually a discrete set of many many individ-
ual points; the spacing between two of these consecutive points being
2π/(Na) = 2π/L.
Let us now count how many normal modes we have. As mentioned

in Section 9.1 in our discussion of the Brillouin zone, adding 2π/a to k
brings one back to exactly the same physical wave. Thus we only ever
need consider k values within the first Brillouin zone (i.e., −π/a # k <
π/a, and since π/a is the same as −π/a we choose to count one but not
the other). Thus the total number of normal modes is

Total Number of Modes =
Range of k

Spacing between neighboring k

=
2π/a

2π/(Na)
= N. (9.6)

There is precisely one normal mode per mass in the system—that is, one
normal mode per degree of freedom in the whole system. This is what
Debye insightfully predicted in order to cut off his divergent integrals in
Section 2.2.3!

9.3 Quantum Modes: Phonons

We now make a rather important leap from classical to quantum physics.

Quantum Correspondence: If a classical harmonic sys-
tem (i.e., any quadratic Hamiltonian) has a normal oscil-
lation mode at frequency ω the corresponding quantum
system will have eigenstates with energy

En = !ω(n+
1

2
). (9.7)

Presumably you know this well in the case of a single harmonic oscillator.
The only thing different here is that our harmonic oscillator can be a
collective normal mode not just the motion of a single particle. This
quantum correspondence principle will be the subject of Exercises 9.1
and 9.7.
Thus at a given wavevector k, there are many possible eigenstates,

the ground state being the n = 0 eigenstate which has only the zero-
point energy !ω(k)/2. The lowest-energy excitation is of energy !ω(k)
greater than the ground state corresponding to the excited n = 1 eigen-
state. Generally all excitations at this wavevector occur in energy units
of !ω(k), and the higher values of energy correspond classically to oscil-
lations of increasing amplitude.
Each excitation of this “normal mode” by a step up the harmonic

oscillator excitation ladder (increasing the quantum number n) is known
as a “phonon”.



9.3 Quantum Modes: Phonons 83

Definition 9.1 A phonon is a discrete quantum of vibration.8 8I do not like the definition of a phonon
as “a quantum of vibrational energy”
which many books use. The vibration
does indeed carry energy, but it carries
other quantum numbers (such as crys-
tal momentum) as well, so why specify
energy only?

This is entirely analogous to defining a single quantum of light as a
photon. As is the case with the photon, we may think of the phonon
as actually being a particle, or we can think of the phonon as being a
quantized wave.
If we think about the phonon as being a particle (as with the photon)

then we see that we can put many phonons in the same state (ie., the
quantum number n in Eq. 9.7 can be increased to any value), thus we
conclude that phonons, like photons, are bosons. As with photons, at
finite temperature there will be a non-zero number of phonons “occupy-
ing” a given mode (i.e., n will be on average non-zero) as described by
the Bose occupation factor

nB(β!ω) =
1

eβ!ω − 1

with β = 1/(kBT ) and ω the oscillation frequency of the mode. Thus,
the energy expectation of the phonons at wavevector k is given by

Ek = !ω(k)

(
nB(β!ω(k)) +

1

2

)

.

We can use this type of expression to calculate the heat capacity of our
one-dimensional model9 9The observant reader will note that

we are calculating CV = dU/dT the
heat capacity at constant volume. Why
constant volume? As we saw when we
studied thermal expansion, the crystal
does not expand unless we include third
(or higher) order terms in the inter-
atomic potential, which are not in this
model!

Utotal =
∑

k

!ω(k)

(
nB(β!ω(k)) +

1

2

)

where the sum over k here is over all possible normal modes, i.e, k =
2πp/(Na) such that −π/a # k < π/a. Thus we really mean

∑

k

→
p=(N/2)−1∑

p = −N/2
k=(2πp)/(Na)

Since for a large system, the k points are very close together, we can
convert the discrete sum into an integral (something we should be very
familiar with by now from Section 2.2.1) to obtain

∑

k

→
Na

2π

∫ π/a

−π/a
dk .

Note that we can use this continuum integral to count the total number
of modes in the system

Na

2π

∫ π/a

−π/a
dk = N

as predicted by Debye.
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Using this integral form of the sum, we have the total energy given by

Utotal =
Na

2π

∫ π/a

−π/a
dk !ω(k)

(
nB(β!ω(k)) +

1

2

)

from which we could calculate the heat capacity as dU/dT .
These two previous expressions look exactly like what Debye would

have obtained from his calculation (for a one-dimensional version of his
model)! The only difference lies in our expression for ω(k). Debye only
knew about sound where ω = vk is linear in the wavevector. We, on
the other hand, have just calculated that for our microscopic mass and
spring model ω is not linear in k (see Eq. 9.3). Other than this change in
the dispersion relation, our calculation of heat capacity (which is exact
for this model!) is identical to the approach of Debye.
In fact, Einstein’s calculation of specific heat can also be phrased

in exactly the same language—for Einstein’s model the frequency ω is
constant for all k (it is fixed at the Einstein frequency). We thus see
Einstein’s model, Debye’s model, and our microscopic harmonic model
in a very unified light. The only difference between the three is what we
use for a dispersion relation.
One final comment is that it is frequently useful to replace integrals

over k with integrals of a density of states over frequency (we did this
when we studied the Debye model in Section 2.2.2). We obtain generally

Na

2π

∫ π/a

−π/a
dk =

∫
dω g(ω)

where the density of states is given by1010The factor of 2 out front comes from
the fact that each ω occurs for the two
possible values of ±k. g(ω) = 2

Na

2π
|dk/dω|.

Recall again that the definition of density of states is that the number
of modes with frequency between ω and ω + dω is given by g(ω)dω.
Note that in the (one-dimensional) Debye model this density of states

is constant from ω = 0 to ω = ωDebye = vπ/a. In our model, as we have
just calculated, the density of states is not a constant, but becomes zero
at frequency above the maximum frequency 2

√
κ/m (in Exercise 9.2 we

calculate this density of states explicitly). Finally in the Einstein model,
this density of states is a delta function at the Einstein frequency.

9.4 Crystal Momentum

As mentioned in Section 9.1, the wavevector of a phonon is defined
only modulo11 the reciprocal lattice. In other words, k is the same as

11The word “modulo” or “mod” means
“up to additive terms of”. One can
think of it also as “divide and take the
remainder”. For example, 15 modulo
7 = 1 since, up to additive terms of
7, the numbers 15 and 1 are the same.
Equivalently we can say that dividing
15 by 7, you get a remainder of 1.

k + Gm where Gm = 2πm/a is a point in the reciprocal lattice. Now
we are supposed to think of these phonons as particles—and we like to
think of these particles as having energy !ω and momentum !k. But we
cannot define a phonon’s momentum this way because physically it is



9.4 Crystal Momentum 85

the same phonon whether we describe it as !k or !(k +Gm). We thus
instead define a concept known as the crystal momentum which is the
momentum modulo the reciprocal lattice—or equivalently we agree that
we must always describe k within the first Brillouin zone.
In fact, this idea of crystal momentum is extremely powerful. Since we

are thinking about phonons as being particles, it is actually possible for
two (or more) phonons to bump into each other and scatter from each
other—the same way particles do.12 In such a collision, energy is con-

12In the harmonic model we have con-
sidered phonons that do not scatter
from each other. We know this be-
cause the phonons are eigenstates of
the system, so their occupation does
not change with time. However, if
we add anharmonic (cubic and higher)
terms to the interatomic potential, this
corresponds to perturbing the phonon
Hamiltonian and can be interpreted as
allowing phonons to scatter from each
other.

served and crystal momentum is conserved! For example, three phonons
each with crystal momentum !(2/3)π/a can scatter off of each other to
produce three phonons each with crystal momentum −!(2/3)π/a. This
is allowed since the initial and final states have the same energy and

3× (2/3)π/a = 3× (−2/3)π/a mod (2π/a)

During these collisions although momentum !k is not conserved, crys-
tal momentum is.13 In fact, the situation is similar when, for example,

13This thing we have defined, !k, has
dimensions of momentum, but is not
conserved. However, as we will discuss
in Chapter 14, if a particle, like a pho-
ton, enters a crystal with a given mo-
mentum and undergoes a process that
conserves crystal momentum but not
momentum, when the photon exits the
crystal we will find that total momen-
tum of the system is indeed conserved,
with the momentum of the entire crys-
tal accounting for any momentum that
is missing from the photon. See margin
note 6 in Section 14.1.1.

phonons scatter from electrons in a periodic lattice—crystal momentum
becomes the conserved quantity rather than momentum. This is an ex-
tremely important principle which we will encounter again and again.
In fact, it is a main cornerstone of solid state physics.

Aside: There is a very fundamental reason for the conservation of crystal

momentum. Conserved quantities are results of symmetries—this is a deep and

general statement known as Noether’s theorem.14 For example, conservation of

14Emmy Noether has been described
by Einstein, among others, as the most
important woman in the history of
mathematics. Being Jewish, she fled
Germany in 1933 to take a job at Bryn
Mawr College (she was also offered a
job at Somerville College, Oxford, but
she preferred the States). Sadly, she
died suddenly only two years later at
the relatively young age of 53.

momentum is a result of the translational invariance of space. If space is not

the same from point to point, say there is a potential V (x) which varies from

place to place, then momentum is not conserved. The conservation of crystal
momentum correspondingly results from space being invariant under translations

of a, giving us momentum that is conserved modulo 2π/a. Since the symmetry
is not a continuous one, this is not a strict application of Noether’s theorem, but

it is very closely related.

Chapter Summary

A number of very crucial new ideas have been introduced in this section.
Many of these will return again and again in later chapters.

• Normal modes are collective oscillations where all particles move
at the same frequency.

• If a system is periodic in space with periodicity ∆x = a, then in
reciprocal space (k-space) the system is periodic with periodicity
∆k = 2π/a.

• Values of k which differ by multiples of 2π/a (by an element of the
reciprocal lattice) are physically equivalent. The set of points in
k-space which are equivalent to k = 0 are known as the reciprocal
lattice.
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• Any value of k is equivalent to some k in the first Brillouin zone,
−π/a ! k < π/a (in 1d).

• The sound velocity is the slope of the dispersion in the small k
limit (group velocity = phase velocity in this limit).

• A classical normal mode of frequency ω gets translated into
quantum-mechanical eigenstates En = !ω(n + 1

2 ). If a mode is
in the nth eigenstate, we say that it is occupied by n phonons.

• Phonons can be thought of as particles, like photons, that obey
Bose statistics.
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Exercises

(9.1) Classical Normal Modes to Quantum Eigen-
states

In Section 9.3 we stated without proof that a
classical normal mode becomes a quantum eigen-
state. Here we prove this fact for a simple diatomic
molecule in a potential well (see Exercise 2.7 for a
more difficult case, and see also Exercise 9.7 where
this principle is proven in more generally).

Consider two particles, each of mass m in one di-
mension, connected by a spring (K), at the bottom
of a potential well (with spring constant k). We
write the potential energy as

U =
k
2
(x2

1 + x2
2) +

K
2
(x1 − x2)

2

! Write the classical equations of motion.

! Transform into relative xrel = (x1 − x2) and
center of mass xcm = (x1 + x2)/2 coordinates.

(a) Show that in these transformed coordinates, the
system decouples, thus showing that the two nor-
mal modes have frequencies

ωcm =
√

k/m

ωrel =
√

(k + 2K)/m.

Note that since there are two initial degrees of free-
dom, there are two normal modes.

Now consider the quantum-mechanical version of
the same problem. The Hamiltonian is

H =
p21
2m

+
p22
2m

+ U(x1, x2)

! Again transform into relative and center of
mass coordinates.

Define the corresponding momenta prel = (p1 −
p2)/2 and pcm = (p1 + p2).

(b) Show that [pα, xγ ] = −i!δα,γ where α and γ
take the values cm or rel.
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(c) In terms of these new coordinates show that
the Hamiltonian decouples into two independent
harmonic oscillators with the same eigenfrequen-
cies ωcm and ωrel. Conclude that the spectrum of
this system is

Enrel,ncm = !ωrel(nrel +
1
2
) + !ωcm(ncm +

1
2
)

where ncm and nrel are non-negative integers.

(d) At temperature T what is the expectation of
the energy of this system?

(9.2) Normal Modes of a One-Dimensional
Monatomic Chain

(a)‡ Explain what is meant by “normal mode” and
by “phonon”.

! Explain briefly why phonons obey Bose statis-
tics.

(b)‡ Derive the dispersion relation for the longi-
tudinal oscillations of a one-dimensional mass-and-
spring crystal with N identical atoms of mass m,
lattice spacing a, and spring constant κ (motion of
the masses is restricted to be in one dimension).

(c)‡ Show that the mode with wavevector k has the
same pattern of mass displacements as the mode
with wavevector k + 2π/a. Hence show that the
dispersion relation is periodic in reciprocal space
(k-space).

! How many different normal modes are there.

(d)‡ Derive the phase and group velocities and
sketch them as a function of k.

! What is the sound velocity?

! Show that the sound velocity is also given by
vs = 1/

√
βρ where ρ is the chain density and β is

the compressibility.

(e) Find the expression for g(ω), the density of
states of modes per angular frequency.

! Sketch g(ω).

(f) Write an expression for the heat capacity of this
one-dimensional chain. You will inevitably have an
integral that you cannot do analytically.

(g)* However, you can expand exponentials for
high temperature to obtain a high-temperature ap-
proximation. It should be obvious that the high-
temperature limit should give heat capacity C/N =
kB (the law of Dulong–Petit in one dimension). By
expanding to next non-trivial order, show that

C/N = kB(1− A/T 2 + . . .)

where

A =
!
2κ

6mk2
B .

(9.3) More Vibrations

Consider a one-dimensional spring and mass model
of a crystal. Generalize this model to include
springs not only between neighbors but also be-
tween second nearest neighbors. Let the spring
constant between neighbors be called κ1 and the
spring constant between second neighbors be called
κ2. Let the mass of each atom be m.

(a) Calculate the dispersion curve ω(k) for this
model.

(b) Determine the sound wave velocity. Show
the group velocity vanishes at the Brillouin zone
boundary.

(9.4) Decaying Waves

In the dispersion curve of the harmonic chain
(Eq. 9.3), there is a maximum possible frequency
of oscillation ωmax. If a vibration with frequency
ω > ωmax is forced upon the chain (say by a driv-
ing force) the “wave” will not propagate along the
chain, but rather will decay as one moves away from
the point where the oscillation is imposed (this is
sometimes known as an “evanescent” wave). With
ω > ωmax solve Eq. 9.3 for a complex k to de-
termine the decay length of this evanescent wave.
What happens to this length as ω → ωmax ?

(9.5) Reflection at an Interface*

Consider a harmonic chain of equally spaced identi-
cal masses of mass m where left of the n = 0 mass
the spring constant is κL but right of the n = 0
mass, the spring constant is κR, as shown in this
figure.

n = 0a

m m m m m m m
κL κL κL κR κR κR

I
R

T

A wave with amplitude I is incident on this inter-
face from the left, where it can be either transmit-
ted with amplitude T or reflected with amplitude
R. Using the following ansatz form

δxn =

{
Teiωt−ikLna n " 0

Ieiωt−ikRna +Reiωt+ikRna n < 0

derive T/I and R/I given ω, κL, κR and m.



88 Exercises

(9.6) Impurity Phonon Mode*

Consider a harmonic chain where all spring con-
stants have the same value κ and masses have value
m, except for the mass at position n = 0 which in-
stead has value M < m as shown in this figure:

n = 0a

m m m M m m m
κ κ κ κ κ κ

Along with traveling wave solutions, there can be
a standing wave normal mode localized near the
impurity. Use an ansatz of the form

δxn = Aeiωt−q|n|a

with q real to solve for the frequency of this impu-
rity mode. Consider your result in the context of
Exercise 9.4.

(9.7) General Proof That Normal Modes Become
Quantum Eigenstates∗

This proof generalizes the argument given in Exer-
cise 9.1. Consider a set of N particles a = 1, . . . N
with masses ma interacting via a potential

U =
1
2

∑

a,b

xa Va,b xb

where xa is the deviation of the position of particle
a from its equilibrium position and V can be taken
(without loss of generality) to be a symmetric ma-
trix. (Here we consider a situation in 1d, however,
we will see that to go to 3d we just need to keep
track of three times as many coordinates.)

(i) Defining ya =
√
ma xa, show that the classical

equations of motion may be written as

ÿa = −
∑

b

Sa,b yb

where
Sa,b =

1√
ma

Va,b
1√
mb

Thus show that the solutions are

y(m)
a = e−iωmts(m)

a

where ωm is the mth eigenvalue of the matrix S
with corresponding eigenvector s(m)

a . These are the
N normal modes of the system.

(ii) Recall the orthogonality relations for eigenvec-
tors of hermitian matrices

∑

a

[s(m)
a ]∗[s(n)

a ] = δm,n (9.8)

∑

m

[s(m)
a ]∗[s(m)

b ] = δa,b. (9.9)

Since S is symmetric as well as hermitian, the
eigenvectors can be taken to be real. Construct
the transformed coordinates

Y (m) =
∑

a

s(m)
a xa

√
ma (9.10)

P (m) =
∑

a

s(m)
a pa/

√
ma (9.11)

show that these coordinates have canonical com-
mutations

[P (m), Y (n)] = −i!δn,m (9.12)

and show that in terms of these new coordinates
the Hamiltonian is rewritten as

H =
∑

m

[
1
2
[P (m)]2 +

1
2
ω2
m[Y (m)]2

]

.

(9.13)

Conclude that the quantum eigenfrequencies of the
system are also ωm. (Can you derive this result
from the prior two equations?)

(9.8) Phonons in 2d*

Consider a mass and spring model of a two-
dimensional triangular lattice as shown in the fig-
ure (assume the lattice is extended infinitely in
all directions). Assume that identical masses m
are attached to each of their six neighbors by
equal springs of equal length and spring constant
κ. Calculate the dispersion curve ω(k). The two-
dimensional structure is more difficult to handle
than the one-dimensional examples given in this
chapter. In Chapters 12 and 13 we study crystals
in two and three dimensions, and it might be useful
to read those chapters first and then return to try
this exercise again.



Vibrations of a
One-Dimensional Diatomic
Chain 10
In the previous chapter we studied in detail a one-dimensional model of a
solid where every atom is identical to every other atom. However, in real
materials not every atom is the same (for example, in sodium chloride,
NaCl, we have two types of atoms!). We thus intend to generalize our
previous discussion of the one-dimensional solid to a one-dimensional
solid with two types of atoms. We are not, however, just studying this
for the sake of adding complexity. In fact we will see that several fun-
damentally new features will emerge in this more general situation.

10.1 Diatomic Crystal Structure: Some
Useful Definitions

m1 m2
κ1 κ2

m1 m2
κ1 κ2

Fig. 10.1 A general diatomic chain
with two different types of atoms (i.e.,
two different masses) and two different
types of springs.

Consider the model system shown in Fig. 10.1 which represents a peri-
odic arrangement of two different types of atoms. Here we have given
them two masses m1 and m2 which alternate along the one-dimensional
chain. The springs connecting the atoms have spring constants κ1 and
κ2 and also alternate.
In this circumstance with more than one type of atom, we first would

like to identify the so-called unit cell which is the repeated motif in the
arrangement of atoms. In Fig. 10.2, we have put a box around the unit
cell. The length of the unit cell in one dimension is known as the lattice
constant and it is labeled a.

a

Fig. 10.2 A unit cell for the diatomic
chain.

Note however, that the definition of the unit cell is extremely non-
unique. We could just as well have chosen (for example) the unit cell to
be that shown in Fig. 10.3.

a

Fig. 10.3 Another possible unit cell for
the diatomic chain.

The important thing in defining a periodic system is to choose some
unit cell and then construct the full system by reproducing the same
unit cell over and over (in other words, make a definition of the unit cell
and stick with that definition!).
It is sometimes useful to pick some reference point inside each unit

cell. This set of reference points makes a simple lattice (we will define
the term “lattice” more closely in Chapter 12, but for now the idea is
that a lattice has only one type of point in it—not two different types
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of points). So in Fig. 10.4 we have marked our reference point in each
unit cell (at positions rn) with an X (again, the choice of this reference
point is arbitrary).

a

XX X

7a
20

3a
40

r1 r2 r3

Fig. 10.4 The basis describes the ob-
jects in the crystal with respect to the
positions of the reference lattice points.
Here the reference point (at position
rn) is marked with an X.

Given the reference lattice point in the unit cell, the description of all
of the atoms in the unit cell with respect to this reference point is known
as a basis. In the case of Fig. 10.4 we might describe our basis as

light gray atom
at position 3a/40 to the left of the reference lattice point,

dark gray atom
at position 7a/20 to the right of the reference lattice point.

Thus if the reference lattice point in unit cell n is called rn (and the
spacing between the lattice points is a) we can set

rn = an

with a the size of the unit cell. Then the (equilibrium) position of the
light gray atom in the nth unit cell is

xeq
n = an− 3a/40

whereas the (equilibrium) position of the dark gray atom in the nth unit
cell is

yeqn = an+ 7a/20.

10.2 Normal Modes of the Diatomic Solid

For simplicity, let us focus on the case shown in Fig. 10.5 where all of the
masses along our chain are the same m1 = m2 = m but the two spring
constants κ1 and κ2 are different (we still take the lattice constant to
be a). In Exercise 10.1 we will consider the case where the masses are
different, but the spring constants are the same. The physics of both
cases are quite similar, but the case we address here is slightly easier
algebraically. The current case is sometimes known as the alternating
chain (presumably because the spring constants alternate).

κ1 κ2 κ1 κ2
x1 y1 x2 y2 x3 y3

m m m m m m

Fig. 10.5 The alternating chain has all
masses the same but the values of the
spring constants alternate.

Given the spring constants in the picture, we can write down Newton’s
equations of of motion for the deviations of the positions of the masses
from their equilibrium positions. We obtain

m δ̈xn = κ2(δyn − δxn) + κ1(δyn−1 − δxn) (10.1)

m δ̈yn = κ1(δxn+1 − δyn) + κ2(δxn − δyn) (10.2)

Analogous to the monatomic case we propose ansätze1 for these quan-1This is the proper pluralization of
ansatz. See margin note 1 from the pre-
vious chapter. “Ansätze” would be a
great name for a heavy metal band.

tities that have the form of a wave

δxn = Axe
iωt−ikna (10.3)

δyn = Aye
iωt−ikna (10.4)



10.2 Normal Modes of the Diatomic Solid 91

where, as in the previous chapter, we implicitly mean to take the real
part of the complex number. As such, we can always choose to take
ω > 0 as long as we consider k to be either positive and negative.
As we saw in the previous chapter, values of k that differ by 2π/a

are physically equivalent. We can thus focus our attention to the first
Brillouin zone −π/a ! k < π/a. Any k outside the first Brillouin zone is
redundant with some other k inside the zone. Note that the important
length here is the unit cell length or lattice constant a.
As we found in the previous chapter, if our system has N unit cells

(hence L = Na) then (putting periodic boundary conditions on the
system) k will be quantized in units of 2π/(Na) = 2π/L. Note that
here the important quantity is N , the number of unit cells, not the
number of atoms (2N).
Dividing the range of k in the first Brillouin zone by the spacing

between neighboring k’s, we obtain exactly N different possible values
of k exactly as we did in Eq. 9.6. In other words, we have exactly one
value of k per unit cell.
We might recall at this point the intuition that Debye used—that there

should be exactly one possible excitation mode per degree of freedom of
the system. Here we obviously have two degrees of freedom per unit cell,
but we obtain only one possible value of k per unit cell. The resolution,
as we will see in a moment, is that there will be two possible oscillation
modes for each wavevector k.
We now proceed by plugging in our ansätze (Eqs. 10.3 and 10.4) into

our equations of motion (Eqs. 10.1 and 10.2). We obtain

−ω2mAxe
iωt−ikna =

κ2Aye
iωt−ikna + κ1Aye

iωt−ik(n−1)a − (κ1 + κ2)Axe
iωt−ikna

−ω2mAye
iωt−ikna =

κ1Axe
iωt−ik(n+1)a + κ2Axe

iωt−ikna − (κ1 + κ2)Aye
iωt−ikna

which simplifies to

−ω2mAx = κ2Ay + κ1Aye
ika − (κ1 + κ2)Ax

−ω2mAy = κ1Axe
−ika + κ2Ax − (κ1 + κ2)Ay .

This can be rewritten conveniently as an eigenvalue equation

mω2

(
Ax

Ay

)
=

(
(κ1 + κ2) −κ2 − κ1eika

−κ2 − κ1e−ika (κ1 + κ2)

)(
Ax

Ay

)

.

(10.5)

The solutions of this are obtained by finding the zeros of the character-
istic determinant2

2The characteristic determinant is
sometimes called a “secular determi-
nant”. This old-style nomenclature
does not have to do with religion (or
lack thereof) but rather refers to secu-
lar astronomical phenomena—meaning
on the time-scale of a century. De-
terminants were used to calculate the
weak perturbative effects on the plane-
tary orbits, hence explaining these sec-
ular phenomena.

0 =

∣∣∣∣
(κ1 + κ2)−mω2 −κ2 − κ1eika

−κ2 − κ1e−ika (κ1 + κ2)−mω2

∣∣∣∣

=
∣∣(κ1 + κ2)−mω2

∣∣2 − |κ2 + κ1e
ika|2 ,
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the roots of which are clearly given by

mω2 = (κ1 + κ2)± |κ1 + κ2e
ika| .

The second term here can be simplified to

|κ1 + κ2e
ika| =

√
(κ1 + κ2eika)(κ1 + κ2e−ika)

=
√
κ2
1 + κ2

2 + 2κ1κ2 cos(ka)
,

so we finally obtain

ω± =

√
κ1 + κ2

m
±

1

m

√
κ2
1 + κ2

2 + 2κ1κ2 cos(ka)

=

√
κ1 + κ2

m
±

1

m

√
(κ1 + κ2)2 − 4κ1κ2 sin

2(ka/2)
.
(10.6)

Note in particular that for each k we find two normal modes—usually
referred to as the two branches of the dispersion. Thus since there are
N different k values, we obtain 2N modes total (if there are N unit
cells in the entire system). This is in agreement with Debye’s intuition
that we should have exactly one normal mode per degree of freedom in
our system. The dispersion of these two modes is shown in Fig. 10.6.

Fig. 10.6 Dispersion relation for vibra-
tions of the one-dimensional diatomic
chain. The dispersion is periodic in
k → k + 2π/a. Here the dispersion is
shown for the case of κ2 = 1.5κ1. This
scheme of plotting dispersions, putting
all normal modes within the first Bril-
louin zone, is the reduced zone scheme.
Compare this to Fig. 10.8.

 ω

0  k=+π/a k=−π/a

 ω+ = √
2κ1

 m
2κ2

 ω− = √

 ω+ = 

 m

2(κ1 + κ2)√  m

Aco
ust

ic

Optical

A few things to note about this dispersion. First of all we note that
there is a long-wavelength low-energy branch of excitations with linear
dispersion (corresponding to ω− in Eq. 10.6). This is the sound wave,
or acoustic mode. Generally the definition of an acoustic mode is any
mode that has linear dispersion as k → 0.
By expanding Eq. 10.6 for small k it is easy to check that the sound

velocity is

vsound =
dω−
dk

=

√
a2κ1κ2

2m(κ1 + κ2)
.

(10.7)
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In fact, we could have calculated this sound velocity on general principles
analogous to what we did in Eq. 8.2 and Eq. 8.3. The density of the
chain is 2m/a. The effective spring constant of two springs κ1 and κ2

in series is κ̃ = (κ1κ2)/(κ1 + κ2) so the compressibility of the chain is
β = 1/(κ̃a) (see Eq. 8.1). Then, plugging into Eq. 8.2 gives exactly the
same sound velocity as we calculate here in Eq. 10.7.
The higher-energy branch of excitations is known as the optical mode.

It is easy to check that in this case the optical mode goes to frequency√
2(κ1 + κ2)/m at k = 0, and also has zero group velocity at k = 0.

The reason for the nomenclature “optical” has to do with how light
scatters from solids (we will study scattering from solids in much more
depth in Chapter 14). For now we give a very simplified description
of why it is named this way. Consider a solid being exposed to light.
It is possible for the light to be absorbed by the solid, but energy and
momentum must both be conserved. However, light travels at a very
high velocity c, so ω = ck is very large. Since phonons have a maximum
frequency, this means that photons can only be absorbed for very small
k. However, for small k, acoustic phonons have energy vk # ck so that
energy and momentum cannot be conserved. On the other hand, optical
phonons have energy ωoptical which is finite for small k so that at some
value of small k, we have ωoptical = ck and one can match the energy
and momentum of the photon to that of the phonon.3 Thus, whenever 3From this naive argument, one might

think that the process where one pho-
ton with frequency ωoptical is absorbed
while emitting a phonon is an allowed
process. This is not true since the pho-
tons carry spin while phonons do not,
and spin must also be conserved. Much
more typically the interaction between
photons and phonons is one where a
photon is absorbed and then re-emitted
at a different frequency while emitting a
phonon. I.e., the photon is inelastically
scattered. We will discuss this later in
Section 14.4.2.

phonons interact with light, it is inevitably the optical phonons that are
involved.
Let us examine a bit more closely the acoustic and the optical mode

as k → 0. Examining our eigenvalue problem Eq. 10.5, we see that in
this limit the matrix to be diagonalized takes the simple form

ω2

(
Ax

Ay

)
=

κ1 + κ2

m

(
1 −1
−1 1

)(
Ax

Ay

)

.

(10.8)

The acoustic mode (which has frequency 0) corresponds to the eigenvec-
tor (

Ax

Ay

)
=

(
1
1

)

.

This tells us that the two masses in the unit cell (at positions x and y)
move together for the case of the acoustic mode in the long wavelength
limit. This is not surprising considering our understanding of sound
waves as being very long wavelength compressions and rarefactions. This
is depicted in Fig. 10.7. Note in the figure that the amplitude of the
compression is slowly modulated, but always the two atoms in the unit
cell move almost exactly the same way.

κ1 κ2 κ1 κ2

m m m m m m

Fig. 10.7 A long wavelength acoustic
mode for the alternating chain.

On the other hand, the optical mode at k = 0, having frequency
ω2 = 2(κ1+κ2)

m , has the eigenvector
(

Ax

Ay

)
=

(
1
−1

)

which described the two masses in the unit cell moving in opposite di-
rections, for the optical mode. This is depicted in Fig. 10.9. Note in the
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Fig. 10.8 Dispersion relation of vibra-
tions of the one-dimensional diatomic
chain in the extended zone scheme
(again choosing κ2 = 1.5κ1). Com-
pare this to Fig. 10.6. One can think
of this as just unfolding the dispersion
such that there is only one excitation
plotted at each value of k. The first
and second Brillouin zones are labeled
here

 ω

0  k=+2π/a k=−2π/a

Optical

Aco
ust

ic

Optical

−π/a π/a
First Brillouin Zone

2nd Zone 2nd Zone

figure that the amplitude of the compression is slowly modulated, but
always the two atoms in the unit cell move almost exactly the opposite
way.44As mentioned at the beginning of this

section, many books discuss instead the
diatomic chain where the two masses
are are different but the two spring con-
stants are the same (see Exercise 10.1).
Be warned that many references then
incorrectly describe the motion of the
masses—in that case the amplitude of
motion of the two different masses is
not the same except in the case of the
very long wavelength acoustic mode!

κ1 κ2 κ1 κ2

m m m m m m

Fig. 10.9 A long-wavelength optical
mode for the alternating chain.

In order to get a better idea of how motion occurs for both the optical
and acoustic modes, it is useful to see animations, which you can find
on the web.5 In this example we had two atoms per unit cell and we

5Currently you can find links on my
website, but there are plenty of other
places to look as well!

obtained two modes per distinct value of k. One of these modes is
acoustic and one is optical. More generally, if there are M atoms per
unit cell (in one dimension) we will have M modes per distinct value of
k (i.e., M branches of the dispersion) of which one mode will be acoustic
(goes to zero energy at k = 0) and all of the remaining modes are optical
(do not go to zero energy at k = 0).

Caution: We have been careful to discuss a true one-dimensional system,

where the atoms are allowed to move only along the one-dimensional line. Thus
each atom has only one degree of freedom. However, if we allow atoms to move in

other directions (transverse to the one-dimensional line) we will have more degrees
of freedom per atom. When we get to the 3d solid we should expect three degrees

of freedom per atom—there should be three different acoustic modes at each k at

long wavelength. In 3d, if there are n atoms per unit cell, there will be 3(n− 1)
optical modes but always three acoustic modes totalling 3n degrees of freedom

per unit cell.

One thing that we should study closely is the behavior at the Brillouin
zone boundary. It is also easy to check that the frequencies ω± at the
zone boundary (k = ±π/a) are

√
2κ1/m and

√
2κ2/m, the larger of the

two being ω+. We can also check that the group velocity dω/dk of both
modes goes to zero at the zone boundary (similarly the optical mode
has zero group velocity at k = 0).
In Fig. 10.6 we have shown both modes at each value of k, such that

we only need to show k within the first Brillouin zone. This is known
as the reduced zone scheme. Another way to plot exactly the same
dispersions is shown in Fig. 10.8, and is known as the extended zone
scheme. Essentially you can think of this as “unfolding” the dispersions
such that there is only one mode at each value of k.
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 ω

0  k=+2π/a k=−2π/a −π/a π/a
First Brillouin Zone

2nd Zone 2nd Zone

Fig. 10.10 How a diatomic disper-
sion becomes a monatomic dispersion
when the two different atoms become
the same. Solid: Dispersion relation
of vibrations of the one-dimensional
diatomic chain in the extended zone
scheme with κ2 not too different from
κ1 (κ2 = 1.25κ1 here). Dashed: Dis-
persion relation when κ2 = κ1. In this
case, the two atoms become exactly the
same, and we have a monatomic chain
with lattice spacing a/2. This single
band dispersion precisely matches that
calculated in Chapter 9, only with the
lattice constant redefined to a/2.

In Fig. 10.8 we have defined (for the first time) the second Brillouin
zone. Recall the first zone in 1d is defined as |k| ! π/a. Analogously
the second Brillouin zone is now π/a ! |k| ! 2π/a. In Chapter 13 we
will define the Brillouin zones more generally.
Here is an example where it is very useful to think using the extended

zone scheme. We have been considering cases with κ2 > κ1; now let us
consider what would happen if we take the limit of κ2 → κ1. When the
two spring constants become the same, then in fact the two atoms in
the unit cell become identical, and we have a simple monotomic chain
(which we discussed at length in the previous chapter). As such we
should define a new smaller unit cell with lattice constant a/2, and the
dispersion curve is now just a simple | sin | as it was in Chapter 9 (see
Eq. 9.3).
Thus it is frequently useful, if the two atoms in a unit cell are not

too different from each other, to think about the dispersion as being a
small perturbation to a situation where all atoms are identical. When
the atoms are made slightly different, a small gap opens up at the zone
boundary, but the rest of the dispersion continues to look mostly as if it
is the dispersion of the monatomic chain. This is illustrated in Fig. 10.10.

Chapter summary

A number of key concepts are introduced in this chapter:

• A unit cell is the repeated motif that comprises a crystal.

• The basis is the description of the unit cell with respect to a ref-
erence lattice.

• The lattice constant is the size of the unit cell (in 1d).
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• If there are M atoms per unit cell we will find M normal modes
at each wavevector k (for one-dimensional motion).

• One of these modes is an acoustic mode, meaning that it has linear
dispersion at small k, whereas the remaining M − 1 are optical,
meaning they have finite frequency at k = 0.

• For the acoustic mode, all atoms in the unit cell move in-phase
with each other (at k = 0), whereas for optical modes they move
out of phase with each other (at k = 0).

• If all of the dispersion curves are plotted within the first Brillouin
zone |k| ! π/a we call this the reduced zone scheme. If we “unfold”
the curves such that there is only one excitation plotted per k, but
we use more than one Brillouin zone, we call this the extended zone
scheme.

• For a diatomic chain, if the two atoms in the unit cell become
identical, the new unit cell is half the size of the old unit cell. It is
convenient to describe this limit in the extended zone scheme.

References

• Ashcroft and Mermin, chapter 22 (but not the 3d part)
• Ibach and Luth, section 4.3
• Kittel, chapter 4
• Hook and Hall, sections 2.3.2, 2.4, 2.5
• Burns, section 12.3
• Dove, section 8.5

Exercises

(10.1) Normal modes of a One-Dimensional Di-
atomic Chain

(a) What is the difference between an acoustic
mode and an optical mode.

! Describe how particles move in each case.

(b) Derive the dispersion relation for the longitudi-
nal oscillations of a one-dimensional diatomic mass-
and-spring crystal where the unit cell is of length
a and each unit cell contains one atom of mass m1

and one atom of mass m2 connected together by
springs with spring constant κ, as shown in the
figure (all springs are the same, and motion of par-
ticles is in one dimension only).

a

m1
m2

κ κ

(c) Determine the frequencies of the acoustic and
optical modes at k = 0 as well as at the Brillouin
zone boundary.

! Describe the motion of the masses in each case
(see margin note 4 of this chapter!).

! Determine the sound velocity and show that the
group velocity is zero at the zone boundary.

! Show that the sound velocity is also given by
vs =

√
β−1/ρ where ρ is the chain density and β is

the compressibility.
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(d) Sketch the dispersion in both reduced and ex-
tended zone scheme.

! If there are N unit cells, how many different
normal modes are there?

! How many branches of excitations are there?
I.e., in reduced zone scheme, how many modes are
there there at each k?

(e) What happens when m1 = m2 ?

(10.2) Decaying Waves

Consider the alternating diatomic chain dispersion
as discussed in the text Eq. 10.6 and shown in
Fig. 10.6. For frequencies above ω+(k = 0) there
are no propagating wave modes, and similarly for
frequencies between ω−(k = π/a) and ω+(k = π/a)
there are no propagating wave modes. As in Exer-
cise 9.4, if this chain is driven at a frequency ω for
which there are no propagating wave modes, then
there will be a decaying, or evanescent, wave in-
stead. By solving Eq. 10.6 for a complex k, find
the length scale of this decaying wave.

(10.3) General Diatomic Chain*

Consider a general diatomic chain as shown in
Fig. 10.1 with two different masses m1 and m2 as
well as two different spring constants κ1 and κ2 and
lattice constant a.

(a) Calculate the dispersion relation for this sys-
tem.

(b) Calculate the acoustic mode velocity and com-
pare it to vs =

√
β−1/ρ where ρ is the chain density

and β is the compressibility.

(10.4) Second Neighbor Diatomic Chain*

Consider the diatomic chain from Exercise 10.1. In
addition to the spring constant κ between neigh-

boring masses, suppose that there is also a next
nearest-neighbor coupling with spring constant κ′

connecting equivalent masses in adjacent unit cells.
Determine the dispersion relation for this system.
What happens if κ′ $ κ?

(10.5) Triatomic Chain*

Consider a mass-and-spring model with three dif-
ferent masses and three different springs per unit
cell as shown in this diagram.

a

m3 m1 m2 m3 m1 m2
κ3 κ1 κ2 κ3 κ1

As usual, assume that the masses move only in one
dimension.

(a) At k = 0 how many optical modes are there?
Calculate the energies of these modes. Hint: You
will get a cubic equation. However, you already
know one of the roots since it is the energy of the
acoustic mode at k = 0

(b)* If all the masses are the same and κ1 = κ2

determine the frequencies of all three modes at the
zone boundary k = π/a. You will have a cubic
equation, but you should be able to guess one root
which corresponds to a particularly simple normal
mode.

(c)* If all three spring constants are the same, and
m1 = m2 determine the frequencies of all three
modes at the zone boundary k = π/a. Again you
should be able to guess one of the roots.
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Tight Binding Chain
(Interlude and Preview) 11
In the previous two chapters we considered the properties of vibrational
waves (phonons) in a one-dimensional system. At this point, we are
going to make a bit of an excursion to consider electrons in solids again.
The point of this excursion, besides being a preview of much of the
physics that will reoccur later on, is to make the point that all waves
in periodic environments (in crystals) are similar. In the previous two
chapters we considered vibrational waves, whereas in this chapter we will
consider electron waves (remember that in quantum mechanics particles
are just as well considered to be waves!).

11.1 Tight Binding Model in One
Dimension

We described the molecular orbital, tight binding, or LCAO picture for
molecules previously in Section 6.2.2. Here we will consider a chain
of such molecular orbitals to represent orbitals in a macroscopic (one-
dimensional) solid as shown in Fig. 11.1.

a

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉

Fig. 11.1 The tight binding chain.
There is one orbital on each atom, and
electrons are allowed to hop from one
atom to the neighboring atom.

In this picture, there is a single orbital on atom n which we call |n〉.
For convenience we will assume that the system has periodic boundary
conditions (i.e., there are N sites, and site N is the same as site 0).
Further, we assume that all of the orbitals are orthogonal to each other1

1As in Section 6.2.2 this is not a great
approximation, particularly when the
atoms get close to each other. Doing
it more correctly, however, only adds
algebraic complexity and is not all that
enlightening. See Exercise 6.5 and 11.3,
where we work through the calculation
more correctly.

〈n|m〉 = δn,m . (11.1)

Let us now take a general trial wavefunction of the form

|Ψ〉 =
∑

n

φn|n〉 .

As we discussed for the tight-binding model (see Eq. 6.4 and Exercise
6.2) the effective Schroedinger equation can be written as2

2Another way to get this effective
equation is to start with the real
Schroedinger equation H|ψ〉 = E|ψ〉,
insert a complete set 1 =

∑
m |m〉〈m|

between H and |ψ〉 and then apply 〈n|
from the left on both sides to obtain
Eq. 11.2 where φn = 〈n|ψ〉. If the set
|m〉 were really complete set (which it
is not) this would be a good derivation.
However, to the extent that these or-
bitals approximate a complete set, this
is an approximate derivation. More
precisely one should interpret this as a
variational approximation as discussed
in Exercise 6.2.

∑

m

Hnmφm = Eφn (11.2)

where Hnm is the matrix element of the Hamiltonian

Hnm = 〈n|H |m〉 .
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As mentioned previously when we studied the molecular orbital model
(Section 6.2.2), this Schroedinger equation is actually a variational ap-
proximation. For example, instead of finding the exact ground state, it
finds the best possible ground state made up of the orbitals that we have
put in the model.
One can make the variational approach increasingly better by expand-

ing the Hilbert space and putting more orbitals into the model. For
example, instead of having only one orbital |n〉 at a given site, one could
consider many |n,α〉 where α runs from 1 to some number p. As p is in-
creased the approach becomes increasingly more accurate and eventually
is essentially exact. This method of using tight-binding-like orbitals to
increasingly well approximate the exact Schroedinger equation is known
as LCAO (linear combination of atomic orbitals). However, one compli-
cation (which we treat in Exercise 11.3) is that when we add many more
orbitals we typically have to give up our nice orthogonality assumption,
i.e., 〈n,α|m,β〉 = δnmδαβ no longer holds. This makes the effective
Schroedinger equation a bit more complicated, but not fundamentally
different (see comments in Section 6.2.2).
At any rate, in the current chapter we will work with only one orbital

per site, and we assume the orthogonality Eq. 11.1.
We write the Hamiltonian as

H = K +
∑

j

Vj

where K = p2/(2m) is the kinetic energy and Vj is the Coulomb inter-
action of the electron at position r with the nucleus at site j,

Vj = V (r−Rj)

where Rj is the position of the jth nucleus.
With these definitions we have

H |m〉 = (K + Vm)|m〉+
∑

j "=m

Vj |m〉 .

Now, we should recognize that K + Vm is the Hamiltonian which we
would have if there were only a single nucleus (the mth nucleus) and no
other nuclei in the system. Thus, if we take the tight-binding orbitals
|m〉 to be the atomic orbitals, then we have

(K + Vm)|m〉 = εatomic|m〉

where εatomic is the energy of an electron on nucleus m in the absence
of any other nuclei. Thus we can write

Hn,m = 〈n|H |m〉 = εatomic δn,m +
∑

j "=m

〈n|Vj |m〉 .

We now have to figure out what the final term of this equation is. The
meaning of this term is that, via the interaction with some nucleus which
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is not the mth, an electron on the mth atom can be transferred (can
“hop”) to the nth atom. Generally this can only happen if n and m are
very close to each other. Thus, we write

∑

j "=m

〈n|Vj |m〉 =






V0 n = m
−t n = m± 1
0 otherwise

(11.3)

which defines both V0 and t. (The V0 term here does not hop an electron
from one site to another, but rather just shifts the energy on a given site.)
Note that by translational invariance of the system, we expect that the
result should depend only on n −m, which this form does. These two
types of terms V0 and t are entirely analogous to the two types of terms
Vcross and t that we met in Section 6.2.2 when we studied covalent
bonding of two atoms.3 The situation here is similar except that now 3Just to be confusing, atomic physicists

sometimes use J where I have used t
here.

there are many nuclei instead of just two.
With the above matrix elements we obtain

Hn,m = ε0δn,m − t (δn+1,m + δn−1,m) (11.4)

where we have now defined4 4Once again ε0 is not a dielectric con-
stant or the permittivity of free space,
but rather just the energy of having an
electron sit on a site.

ε0 = εatomic + V0 .

This Hamiltonian is a very heavily studied model, known as the tight
binding chain. Here t is known as the hopping term, as it allows the
Hamiltonian (which generates time evolution) to move the electron from
one site to another, and it has dimensions of energy. It stands to rea-
son that the magnitude of t depends on how close together the orbitals
are—becoming large when the orbitals are close together and decaying
exponentially when they are far apart.

11.2 Solution of the Tight Binding Chain

The solution of the tight binding model in one dimension (the tight
binding chain) is very analogous to what we did to study vibrations (and
hence the point of presenting the tight binding model at this point!). We
propose an ansatz solution5 5Recall that in Section 4.5 we ran into

a puzzle that the mean free path of
electrons in metals seems unreasonably
long. The fact that electrons hopping
between orbitals form eigenstates which
are plane waves (i.e., are delocalized
across the entire system) hints towards
the solution to this puzzle. We will re-
turn to reconsider this issue in more de-
tail in Section 15.2.

φn =
e−ikna

√
N

(11.5)

where the denominator is included for normalization where there are
N sites in the system. We now plug this ansatz into the Schroedinger
equation Eq. 11.2. Note that in this case (as compared to the vibrational
chains) there is no frequency in the exponent of our ansatz. This is
simply because we are trying to solve the time-independent Schroedinger
equation. Had we used the time-dependent Schroedinger equation, we
would need a factor of eiωt as well!
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As with vibrations, it is obvious that k → k + 2π/a gives the same
solution. Further, if we consider the system to have periodic boundary
conditions with N sites (length L = Na), the allowed values of k are
quantized in units of 2π/L. As with Eq. 9.6 there are preciselyN possible
different solutions of the form of Eq. 11.5.
Plugging the ansatz into the left side of the Schroedinger equation

11.2 and then using Eq. 11.4 gives us

∑

m

Hn,mφm = ε0
e−ikna

√
N

− t

(
e−ik(n+1)a

√
N

+
e−ik(n−1)a

√
N

)

which we set equal to the right side of the Schroedinger equation

Eφn = E
e−ikna

√
N

to obtain the spectrum

E = ε0 − 2t cos(ka) (11.6)

which looks rather similar to the phonon spectrum of the one-dimensional
monatomic chain which was (see Eq. 9.2)

ω2 = 2
κ

m
− 2

κ

m
cos(ka) .

Note however, that in the electronic case one obtains the energy whereas
in the phonon case one obtains the square of the frequency.66This difference is due to the fact that

the time dependent Schroedinger equa-
tion has one time derivative, but New-
ton’s equation of motion (F = ma) has
two.

The dispersion curve of the tight binding chain (Eq. 11.6) is shown in
Fig. 11.2. Analogous to the phonon case, it is periodic in k → k+2π/a.
Further, analogous to the phonon case, the dispersion always has zero
group velocity (is flat) for k = nπ/a for n any integer (i.e., at the
Brillouin zone boundary).

 k=+π/a k=−π/a

 +2t

−2t

−t

+t

 E - ε0

Fig. 11.2 Dispersion of the tight bind-
ing chain. Energy is plotted versus
wavevector in the first Brillouin zone.

Note that unlike free electrons, the electron dispersion here has a
maximum energy as well as a minimum energy. Electrons only have
eigenstates within a certain energy band. The word “band” is used both
to describe the energy range for which eigenstates exist, as well as to
describe one connected branch of the dispersion curve. (In this picture
there is only a single mode at each k, hence one branch, hence a single
band.)
The energy difference from the bottom of the band to the top is known

as the bandwidth. Within this bandwidth (between the top and bottom
of the band) for any energy there exists at least one k state having that
energy. For energies outside the bandwidth there are no k-states with
that energy.
The bandwidth (which in this model is 4t) is determined by the mag-

nitude of the hopping, which depends on the distance between nuclei.7

7Since the hopping t depends on an
overlap between orbitals on adjacent
atoms (see Eq. 11.3 and comments
thereafter), in the limit that the atoms
are well separated, the bandwidth will
decrease exponentially as the atoms are
pulled further apart.

As a function of the interatomic spacing the bandwidth changes roughly
as shown in Fig 11.3. On the right of this diagram there are N states,
each one being an atomic orbital |n〉. On the left of the diagram these N
states form a band, yet as discussed above in this section, there remain
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precisely N states (this should not surprise us, being that we have not
changed the dimension of the Hilbert state, we have just expressed it in
terms of the complete set of eigenstates of the Hamiltonian). Note that
the average energy of a state in this band remains always ε0.
By allowing hopping between orbitals, some of the eigenstates in the

band have decreased in energy from the energy ε0 of the atomic eigen-
state and some of the eigenstates have increased in energy. This is
entirely analogous to what we found in Section 6.2.2 when we found
bonding and antibonding orbitals form when we allow hopping between
two atoms. In both cases, the hopping splits the energy levels (originally
ε0) into some higher energy states and some lower energy states.

increased atomic spacing →
← increased hopping

Fig. 11.3 Caricature of the dependence
of bandwidth on interatomic spacing.
On the far right there is no hopping
and the energy of every state in the
band is ε0. As hopping increases (to-
wards the left) the energies of states in
the band spread out. At each value of
hopping there are eigenstates with en-
ergies within the shaded region, but not
outside the shaded region.

Aside: Note that if the band is not completely filled, the total energy of all

of the electrons decreases as the atoms are moved together and the band width
increases (since the average energy remains zero, but some of the higher energy

states are not filled). This decrease in energy is precisely the binding force of a

“metallic bond” which we discussed in Section 6.4.8 We also mentioned previously

8Of course, we have not considered the
repulsive force between neighboring nu-
clei, so the nuclei do not get too close
together. As in the case of the covalent
bond considered in Section 6.2.2, some
of the Coulomb repulsion between nu-
clei will be canceled by Vcross (here V0),
the attraction of the electron on a given
site to other nuclei.

that one property of metals is that they are typically soft and malleable. This is a

result of the fact that the electrons that hold the atoms together are mobile—in
essence, because they are mobile, they can readjust their positions somewhat as

the crystal is deformed.

Near the bottom of the band, the dispersion is parabolic. For the
dispersion Eq. 11.6, expanding for small k, we obtain

E(k) = Constant + ta2k2 .

(Note that for t < 0, the energy minimum is at the Brillouin zone bound-
ary k = π/a. In this case we would expand for k close to π/a instead of
for k close to 0.) The resulting parabolic behavior is similar to that of
free electrons which have a dispersion

Efree(k) =
!2k2

2m .

We can therefore view the bottom of the band as being almost like free
electrons, except that we have to define a new effective mass which we
call m∗ such that

!2k2

2m∗
= ta2k2

which gives us

m∗ =
!2

2ta2 .

In other words, the effective mass m∗ is defined such that the dispersion
of the bottom of the band is exactly like the dispersion of free particles
of mass m∗. (We will discuss effective mass in much more depth in
Chapter 17. This is just a quick first look at it.) Note that this mass has
nothing to do with the actual mass of the electron, but rather depends
on the hopping matrix element t. Further, we should keep in mind that
the k that enters into the dispersion relationship is actually the crystal
momentum, not the actual momentum of the electron (recall that crystal
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momentum is defined only modulo 2π/a). However, so long as we stay
at very small k, then there is no need to worry about the periodicity of
k which occurs. Nonetheless, we should keep in mind that if electrons
scatter off of other electrons, or off of phonons, it is crystal momentum
that is conserved (see the discussion in Section 9.4).

Fig. 11.4 Top: If each atom has va-
lence 1, then the band is half-filled. The
states that are shaded are filled with
both up and down spin electrons. The
Fermi surface is the boundary between
the filled and unfilled states. Bott-
tom: When a small electric field is ap-
plied, at only a small cost of energy, the
Fermi sea can shift slightly (moving a
few electrons from the right side to the
left side) thus allowing current to flow.

11.3 Introduction to Electrons Filling
Bands

We now imagine that our tight binding model is actually made up of
atoms and each atom “donates” one electron into the band (i.e., the
atom has valence one). Since there are N possible k-states in the band,
and electrons are fermions, you might guess that this would precisely fill
the band. However, there are two possible spin states for an electron at
each k, so in fact, this then only half-fills the band. This is depicted in
the top of Fig. 11.4. The filled states (shaded) in this picture are filled
with both up and down spins.
It is crucial in this picture that there is a Fermi surface—the points

where the shaded meets the unshaded region. If a small electric field is
applied to the system, it only costs a very small amount of energy to
shift the Fermi surface as shown in the bottom of Fig. 11.4, populating
a few k-states moving right and depopulating some k-states moving left.
In other words, the state of the system responds by changing a small
bit and a current is induced. As such, this system is a metal in that it
conducts electricity. Indeed, crystals of atoms that are monovalent are
very frequently metals!
On the other hand, if each atom in our model were di-valent (donates

two electrons to the band) then the band would be entirely full of elec-
trons. In fact, it does not matter if we think about this as being a full
band where every k-state |k〉 is filled with two electrons (one up and one
down), or a filled band where every site |n〉 is filled—these two state-
ments describe the same multi-electron wavefunction. In fact, there is a
single unique wavefunction that describes this completely filled band.
In the case of the filled band, were one to apply a small electric field

to this system, the system cannot respond at all. There is simply no
freedom to repopulate the occupation of k-states because every state is
already filled. Thus we conclude an important principle.

Principle: A filled band carries no current.9

9In one dimension this principle is ab-
solutely correct. In higher dimensions,
it is sometimes possible to have Hall ef-
fect current (but not longitudinal cur-
rent) from bands that are entirely filled.
While this situation, a so-called “Chern
band”, is of great current research in-
terest, it is far beyond the scope of this
book. As such, I’d recommend ignoring
this unusual possibility and just view-
ing the principle as being almost always
true for most practical situations.

Thus our example of a divalent tightbinding model is an insulator (this
type of insulator is known as a band insulator). Indeed, many systems
of divalent atoms are insulators (although in a moment we will discuss
how divalent atoms can also form metals).
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Fig. 11.5 Diatomic tight binding dis-
persion in one dimension. Bottom:
Reduced zone scheme. Top: Extended
zone scheme. Note that in obtaining
the extended zone scheme from the re-
duced zone scheme, one simply trans-
lates pieces of the dispersion curve by
appropriate reciprocal lattice vectors.

11.4 Multiple Bands

In the tight binding chain considered in this chapter, we considered only
the case where there is a single atom in the unit cell and a single orbital
per atom. However, more generally we might consider a case where we
have multiple orbitals per unit cell.
One possibility is to consider one atom per unit cell, but several or-

bitals per atom.10 Analogous to what we found for the tight binding

10Each atom actually has an infinite
number of orbitals to be considered at
higher and higher energy. But only a
small number of them are filled, and
within our level of approximation we
can only consider very few of them.

model having only one orbital per atom, when the atoms are very far
apart, one has only the atomic orbitals on each atom. However, as the
atoms are moved closer together, the orbitals merge together and the
energies spread to form bands.11 Analogous to Fig. 11.3 we have shown

11This picture of atomic orbitals in the
weak hopping limit merging together to
form bands does not depend on the fact
that the crystal of atoms is ordered.
Glasses and amorphous solids can have
this sort of band structure as well!

how this occurs for the two band case in Fig. 11.6.
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Fig. 11.6 Caricature of bands for a
two-band model as a function of inter-
atomic spacing. In the atomic limit,
the orbitals have energies ε1atomic and
ε2atomic. If the system has valence two
per unit cell, then in the atomic limit
the lower orbital is filled and the up-
per orbital is empty. When the atoms
are pushed together, the lower band
remains filled, and the upper remains
empty, until the bands start to over-
lap, whereupon we have two bands both
partially filled, which becomes a metal.

A very similar situation occurs when we have two atoms per unit
cell but only one orbital per atom (see Exercises 11.2 and 11.4.) The
general result will be quite analogous to what we found for vibrations of
a diatomic chain in Chapter 10.
In Fig. 11.5 we show the spectrum of a tight-binding model with two

different atoms per unit cell—each having a single orbital. We have
shown results here in both the reduced and extended zone schemes.
As for the case of vibrations, we see that there are now two possible

energy eigenstates at each value of k. In the language of electrons, we
say that there are two bands (we do not use the words “acoustic” and
“optical” for electrons, but the idea is similar). Note that there is a gap
between the two bands where there are simply no energy eigenstates.
Let us think for a second about what might result in this situation

where there are two atoms per unit cell and one orbital per atom. If each
atom (of either type) were divalent, then the two electrons donated per
atom would completely fill the single orbital on each atom. In this case,
both bands would be completely filled with both spin-up and spin-down
electrons.
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On the other hand, if each atom (of either type) is monovalent, then
this means exactly half of the states of the system should be filled.
However, here, when one fills half of the states of the system, then all
of the states of the lower band are completely filled (with both spins)
but all of the states in the upper band are completely empty. In the
extended zone scheme it appears that a gap has opened up precisely
where the Fermi surface is (at the Brillouin zone boundary!).
In the situation where a lower band is completely filled but an upper

band is completely empty, if we apply a weak electric field to the system
can current flow? In this case, one cannot rearrange electrons within
the lower band, but one can remove an electron from the lower band
and put it in the upper band in order to change the overall (crystal)
momentum of the system. However, moving an electron from the lower
band requires a finite amount of energy—one must overcome the gap
between the bands. As a result, for small enough electric fields (and at
low temperature), this cannot happen. We conclude that a filled band is
an insulator as long as there is a finite gap to any higher empty bands.
As with the single-band case, one can imagine the magnitude of hop-

ping changing as one changes the distance between atoms. When the
atoms are far apart, then one is in the atomic limit, but these atomic
states spread into bands as the atoms get closer together, as shown in
Fig. 11.6.
For the case where each of the two atoms is monovalent, in the atomic

limit, half of the states are filled—that is, the lower-energy atomic orbital
is filled with both spin-up and spin-down electrons, whereas the higher-
energy orbital is completely empty (i.e., an electron is transferred from
the higher-energy atom to the lower-energy atom and this completely fills
the lower-energy band). As the atoms are brought closer together, the
atomic orbitals spread into bands (the hopping t increases). However,
at some point the bands get so wide that their energies overlap12—in12See Exercise 11.4.

which case there is no gap to transfer electrons between bands, and the
system becomes a metal as marked in Fig. 11.6. (If it is not clear how
bands may overlap, consider, for example, the right side of Fig. 16.2. In
fact band overlap of this type is very common in real materials!)

Chapter Summary

• Solving the tight-binding Schroedinger equation for electron waves
is very similar to solving Newton’s equations for vibrational
(phonon) waves. The structure of the reciprocal lattice and the
Brillouin zone remains the same.

• We obtain energy bands where energy eigenstates exist, and gaps
between bands.

• Zero hopping is the atomic limit. As hopping increases, atomic
orbitals spread into bands.
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• Energies are parabolic in k near bottom of band—like free elec-
trons, but with a modified effective mass.

• A filled band with a gap to the next band is an insulator (a band
insulator), a partially filled band has a Fermi surface and is a metal.

• Whether a band is filled depends on the valence of the atoms.

• As we found for phonons, gaps open at Brillouin zone boundaries.
Group velocities are also zero at zone boundaries.

References

No book has an approach to tight binding that is exactly like what we
have here. The books that come closest do essentially the same thing,
but in three dimensions (which complicates life a bit). These books are:

• Ibach and Luth, section 7.3
• Kittel, chapter 9, section on tight-binding
• Burns, sections 10.9–10.10
• Singleton, chapter 4

Possibly the nicest (albeit short) description is given by
• Dove, section 5.5.5.

Also a nice short description of the physics (without detail) is given by
• Rosenberg, section 8.19.

Finally, an alternative approach to tight binding is given by
• Hook and Hall, section 4.3.

This is a good discussion, but they insist on using time-dependent Schroedinger
equation, which is annoying.

Exercises

(11.1) Monatomic Tight Binding Chain

Consider a one-dimensional tight binding model of
electrons hopping between atoms. Let the distance
between atoms be called a, and here let us label
the atomic orbital on atom n as |n〉 for n = 1 . . . N
(you may assume periodic boundary conditions,
and you may assume orthonormality of orbitals,
i.e., 〈n|m〉 = δnm). Suppose there is an on-site
energy ε and a hopping matrix element −t. In
other words, suppose 〈n|H |m〉 = ε for n = m and
〈n|H |m〉 = −t for n = m± 1.

! Derive and sketch the dispersion curve for elec-
trons. (Hint: Use the effective Schroedinger equa-
tions of Exercise 6.2a. The resulting equation

should look very similar to that of Exercise 9.2.)

! How many different eigenstates are there in this
system?

! What is the effective mass of the electron near
the bottom of this band?

! What is the density of states?

! If each atom is monovalent (it donates a single
electron) what is the density of states at the Fermi
surface?

! Give an approximation of the heat capacity of
the system (see Exercise 4.3).

! What is the heat capacity if each atom is diva-
lent?
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(11.2) Diatomic Tight Binding Chain

We now generalize the calculation of the previous
exercise to a one-dimensional diatomic solid which
might look as follows:

−A−B − A−B − A−B−

Suppose that the onsite energy of type A is differ-
ent from the onsite energy of type B. I.e, 〈n|H |n〉
is εA for n being on a site of type A and is εB for
n being on a site of type B. (All hopping matrix
elements −t are still identical to each other.)

! Calculate the new dispersion relation. (This is
extremely similar to Exercise 10.1. If you are stuck,
try studying that exercise again.)

! Sketch this dispersion relation in both the re-
duced and extended zone schemes.

! What happens if εA = εB?

! What happens in the “atomic” limit when t be-
comes very small.

! What is the effective mass of an electron near
the bottom of the lower band?

! If each atom (of either type) is monovalent, is
the system a metal or an insulator?

! *Given the results of this exercise, explain why
LiF (which has very ionic bonds) is an extremely
good insulator.

(11.3) Tight Binding Chain Done Right

Let us reconsider the one-dimensional tight bind-
ing model as in Exercise 11.1. Again we assume an
on-site energy ε and a hopping matrix element −t.
In other words, suppose 〈n|H |m〉 = ε for n = m
and 〈n|H |m〉 = −t for n = m ± 1. However, now,
let us no longer assume that orbitals are orthonor-
mal. Instead, let us assume 〈n|m〉 = A for n = m
and 〈n|m〉 = B for n = m + 1 with 〈n|m〉 = 0 for
|n−m| > 1.

! Why is this last assumption (the |n − m| > 1
case) reasonable?

Treating the possible non-orthogonality of orbitals
here is very similar to what we did in Exercise 6.5.
Go back and look at that exercise.

! Use the effective Schroedinger equation from
Exercise 6.5 to derive the dispersion relation for
this one-dimensional tight binding chain.

(11.4) Two Orbitals per Atom

(a) Consider an atom with two orbitals, A and
B having eigenenergies εAatomic and εBatomic. Now
suppose we make a one-dimensional chain of such
atoms and let us assume that these orbitals remain

orthogonal. We imagine hopping amplitudes tAA

which allows an electron on orbital A of a given
atom to hop to orbital A on the neighboring atom.
Similarly we imagine a hopping amplitude tBB that
allows an electron on orbital B of a given atom to
hop to orbital B on the neighboring atom. (We as-
sume that V0, the energy shift of the atomic orbital
due to neighboring atoms, is zero).

! Calculate and sketch the dispersion of the two
resulting bands.

! If the atom is diatomic, derive a condition on
the quantities εAatomic − εBatomic, as well as tAA

and tBB which determines whether the system is
a metal or an insulator.

(b)* Now suppose that there is in addition a hop-
ping term tAB which allows an electron on one atom
in orbital A to hop to orbital B on the neighbor-
ing atom (and vice versa). What is the dispersion
relation now?

(11.5) Electronic Impurity State*

Consider the one-dimensional tight binding Hamil-
tonian given in Eq. 11.4. Now consider the situ-
ation where one of the atoms in the chain (atom
n = 0) is an impurity such that it has an atomic
orbital energy which differs by ∆ from all the other
atomic orbital energies. In this case the Hamilto-
nian becomes

Hn,m = ε0δn,m − t(δn+1,m + δn−1,m) +∆δn,mδn,0.

(a) Using an ansatz

φn = Ae−qa|n|

with q real, and a the lattice constant, show that
there is a localized eigenstate for any negative ∆,
and find the eigenstate energy. This exercise is very
similar to Exercise 9.6.

(b) Consider instead a continuum one-dimensional
Hamiltonian with a delta-function potential

H = − !
2

2m∗
∂2
x + (a∆)δ(x).

Similarly show that there is a localized eigenstate
for any negative ∆ and find its energy. Compare
your result to that of part (a).

(11.6) Reflection from an Impurity*

Consider the tight binding Hamiltonian from the
previous exercise representing a single impurity in
a chain. Here the intent is to see how this impu-
rity scatters a plane wave incoming from the left
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with unit amplitude (this is somewhat similar to
Exercise 9.5). Use an ansatz wavefunction

φn =

{
Te−ikna n " 0

e−ikna +Re+ikna n < 0

to determine the transmission T and reflection R
as a function of k.

(11.7) Transport in One Dimension*

(a) Consider the one-dimensional tight binding
chain discussed in this chapter at (or near) zero
temperature. Suppose the right end of this chain
is attached to a reservoir at chemical potential µR

and the left end of the chain is attached to a reser-
voir at chemical potential µL and let us assume
µL > µR. The particles moving towards the left
will be filled up to chemical potential µR, whereas
the particles moving towards the right will be filled
up to chemical potential µL, as shown in the bot-
tom of Fig. 11.4, and also diagrammed schemati-
cally in the following figure

µL µR

µR

µL

(i) Argue that the total current of all the particles
moving to the right is

jR =

∫ ∞

0

dk
π
v(k)nF (β(E(k)− µL))

with v(k) = (1/!)dε(k)/dk the group velocity and
nF the Fermi occupation factor; and an analogous
equation holds for left moving current.

(ii) Calculate the conductance G of this wire, de-
fined as

Jtotal = GV

where Jtotal = jL − jR and eV = µL − µR, and
show G = 2e2/h with h Planck’s constant. This
“quantum” of conductance is routinely measured
in disorder free one-dimensional electronic systems.

(iii) In the context of Exercise 11.6, imagine that
an impurity is placed in this chain between the two
reservoirs to create some backscattering. Argue
that the conductance is reduced to G = 2e2|T |2/h.
This is known as the Landauer formula and is a
pillar of nano-scale electronics.

(b) Now suppose that the chemical potentials at
both reservoirs are the same, but the temperatures
are TL and TR respectively.

(i) Argue that the heat current jq of all the parti-
cles moving to the right is

jqR =

∫ ∞

0

dk
π
v(k) (E(k)− µ) nF (βL(E(k)− µ))

and a similar equation holds for left-moving heat
current.

(ii) Define the thermal conductance K to be

Jq = K(TL − TR)

where Jq = jqL − jqR and TL − TR is assumed to be
small. Derive that the thermal conductance can be
rewritten as

K =
−2
hT

∫ ∞

−∞

dE(E − µ)2
∂
∂E

nF (β(E − µ)).

Evaluating this expression, confirm the
Wiedemann–Franz ratio for clean one-dimensional
systems

K
TG

=
π2k2

B

3e2

(Note that this is a relationship between conduc-
tance and thermal conductance rather than be-
tween conductivity and thermal conductivity.) In
evaluating the above integral you will want to use

∫ ∞

−∞

dx x2 ∂
∂x

1
ex + 1

= −π2

3 .

If you are very adventurous, you can prove this
nasty identity using the techniques analogous to
those mentioned in footnote 20 of Chapter 2, as
well as the fact that the Riemann zeta function
takes the value ζ(2) = π2/6 which you can prove
analogous to the appendix of that chapter.

(11.8) Peierls Distortion*

Consider a chain made up of all the same type of
atom, but in such a way that the spacing between
atoms alternates as long-short-long-short as follows

−A = A− A = A− A = A−

In a tight binding model, the shorter bonds
(marked with =) will have hopping matrix ele-
ment tshort = t(1 + ε) whereas the longer bonds
(marked with −) have hopping matrix element
tlong = t(1 − ε). Calculate the tight-binding en-
ergy spectrum of this chain. (The onsite energy ε
is the same on every atom). Expand your result to
linear order in ε. Suppose the lower band is filled
and the upper band is empty (what is the valence
of each atom in this case?). Calculate the total
ground-state energy of the filled lower band, and
show it decreases linearly with increasing ε.
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Now consider a chain of equally spaced identical
A atoms connected together with identical springs
with spring constant κ. Show that making a distor-
tion whereby alternating springs are shorter/longer
by δx costs energy proportional to (δx)2. Conclude
that for a chain with the valence as in the first part
of this problem, a distortion of this sort will occur
spontaneously. This is known as a Peierls distor-
tion.

(11.9) Tight Binding in 2d*

Consider a rectangular lattice in two dimensions as
shown in the figure. Now imagine a tight bind-
ing model where there is one orbital at each lat-
tice site, and where the hopping matrix element is
〈n|H |m〉 = t1 if sites n and m are neighbors in
the horizontal direction and is = t2 if n and m
are neighbors in the vertical direction. Calculate
the dispersion relation for this tight binding model.
What does the dispersion relation look like near
the bottom of the band? (The two-dimensional

structure is more difficult to handle than the one-
dimensional examples given in this chapter. In
Chapters 12 and 13 we study crystals in two and
three dimensions, and it might be useful to read
those chapters first and then return to try this ex-
ercise again.)

t1

t2
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Crystal Structure 12
Having introduced a number of important ideas in one dimension, we
must now deal with the fact that our world is actually spatially three-
dimensional. While this adds a bit of complication, really the important
concepts are no harder in three dimensions than they were in one di-
mension. Some of the most important ideas we have already met in one
dimension, but we will reintroduce them more generally here.
There are two things that might be difficult here. First, we do need to

wrestle with a bit of geometry. Hopefully most will not find this too hard.
Secondly we will also need to establish a language in order to describe
structures in two and three dimensions intelligently. As such, much of
this chapter is just a list of definitions to be learned, but unfortunately
this is necessary in order to be able to continue further at this point.

12.1 Lattices and Unit Cells

Definition 12.1 A lattice1 is an infinite set of points defined by integer

1Warning: Some books (Ashcroft and
Mermin in particular) refer to this as a
Bravais lattice. This enables them to
use the term lattice to describe other
things that we would not call a lattice
(e.g., the honeycomb). However, the
definition we use here is more common
among crystallographers, and more cor-
rect mathematically as well.

sums of a set of linearly independent primitive lattice2 vectors.

2Very frequently “primitive lattice vec-
tors” are called “primitive basis vec-
tors” (not the same use of the word
“basis” as in Section 10.1) or “primi-
tive translation vectors”.

a1

a2

[1, 2] = a1 + 2a2

Fig. 12.1 A lattice is defined as integer
sums of of primitive lattice vectors.

For example, in two dimensions, as shown in Fig. 12.1 the lattice
points are described as

R[n1 n2] = n1a1 + n2a2 n1, n2 ∈ Z (2d)

with a1 and a2 being the primitive lattice vectors and n1 and n2 being
integers. In three dimensions points of a lattice are analogously indexed
by three integers:

R[n1 n2 n3] = n1a1 + n2a2 + n3a3 n1, n2, n3 ∈ Z (3d).
(12.1)

Note that in one dimension this definition of a lattice fits with our pre-
vious description of a lattice as being the points R = na with n an
integer.
It is important to point out that in two and three dimensions, the

choice of primitive lattice vectors is not unique,3 as shown in Fig. 12.2.
(In one dimension, the single primitive lattice vector is unique up to the
sign, or direction, of a.) Fig. 12.2 The choice of primitive lat-

tice vectors for a lattice is not unique.
(Four possible sets of primitive lattice
vectors are shown, but there are an in-
finite number of possibilities!)

3Given a set of primitive lattice vectors ai a new set of primitive lattice vectors may
be constructed as bi =

∑
j mijaj so long as mij is an invertible matrix with integer

entries and the inverse matrix [m−1]ij also has integer entries.
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It turns out that there are several definitions that are entirely equiv-
alent to the one we have just given:

Equivalent Definition 12.1.1 A lattice is an infinite set of vectors
where addition of any two vectors in the set gives a third vector in the
set.

It is easy to see that our first definition 12.1 implies the second one 12.1.1.
Here is a less crisply defined, but sometimes more useful definition.

Equivalent Definition 12.1.2 A lattice is a set of points where the
environment of any given point is equivalent to the environment of any
other given point.

Fig. 12.3 Any periodic structure can
be represented as a lattice of repeating
motifs.

P

R

Q

Fig. 12.4 The honeycomb is not a lat-
tice. Points P and R are inequivalent
(points P and Q are equivalent).

It turns out that any periodic structure can be expressed as a lattice of
repeating motifs. A cartoon of this statement is shown in Fig. 12.3. One
should be cautious however, that not all periodic arrangements of points
are lattices. The honeycomb4 shown in Fig. 12.4 is not a lattice. This

4One should be very careful not to
call the honeycomb a hexagonal lattice.
First of all, by our definition it is not
a lattice at all since all points do not
have the same environment. Secondly,
some people (perhaps confusingly) use
the term “hexagonal” to mean what
the rest of us call a triangular lattice:
a lattice of triangles where each point
has six nearest neighbor points (see
Fig. 12.6).

is obvious from the third definition 12.1.2: The environment of point
P and point R are actually different—point P has a neighbor directly
above it (the point R), whereas point R has no neighbor directly above.
In order to describe a honeycomb (or other more complicated arrange-

ments of points) we have the idea of a unit cell, which we have met before
in Section 10.1. Generally we have

Definition 12.2 A unit cell is a region of space such that when many
identical units are stacked together it tiles (completely fills) all of space
and reconstructs the full structure.

An equivalent (but less rigorous) definition is

Equivalent Definition 12.2.1 A unit cell is the repeated motif which
is the elementary building block of the periodic structure.

To be more specific we frequently want to work with the smallest possible
unit cell:

Definition 12.3 A primitive unit cell for a periodic crystal is a unit
cell containing exactly one lattice point.

As mentioned in Section 10.1 the definition of the unit cell is never
unique. This is shown, for example, in Fig. 12.5.
Sometimes it is useful to define a unit cell which is not primitive in

order to make it simpler to work with. This is known as a conventional
unit cell. Almost always these conventional unit cells are chosen so as
to have orthogonal axes.
Some examples of possible unit cells are shown for the triangular lat-

tice in Fig. 12.6. In this figure the conventional unit cell (upper left) is
chosen to have orthogonal axes—which is often easier to work with than
axes which are non-orthogonal.
A note about counting the number of lattice points in the unit cell. It

is frequently the case that we will work with unit cells where the lattice
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points live at the corners (or edges) of the cells. When a lattice point is
on the boundary of the unit cell, it should only be counted fractionally
depending on what fraction of the point is actually in the cell. So for
example in the conventional unit cell shown in Fig. 12.6, there are two
lattice points within this cell. There is one point in the center, then four
points at the corners—each of which is one quarter inside the cell, so we
obtain 2 = 1+4(14 ) points in the cell. (Since there are two lattice points
in this cell, it is by definition not primitive.) Similarly for the primitive
cell shown in Fig. 12.6 (upper right), the two lattice points at the far
left and the far right have a 60o degree slice (which is 1/6 of a circle)
inside the cell. The other two lattice points each have 1/3 of the lattice
point inside the unit cell. Thus this unit cell contains 2(13 ) + 2(16 ) = 1
point, and is thus primitive. Note however, that we can just imagine
shifting the unit cell a tiny amount in almost any direction such that a
single lattice point is completely inside the unit cell and the others are
completely outside the unit cell. This sometimes makes counting much
easier.

Fig. 12.5 The choice of a unit cell is
not unique. All of these unit cells can
be used as “tiles” to perfectly recon-
struct the full crystal.

A conventional
unit cell

A primitive
unit cell

Wigner–Seitz
unit cell

Fig. 12.6 Some unit cells for the trian-
gular lattice.

Also shown in Fig. 12.6 is a so-called Wigner–Seitz unit cell

Definition 12.4 Given a lattice point, the set of all points in space
which are closer to that given lattice point than to any other lattice point
constitute the Wigner–Seitz cell of the given lattice point.5

5A construction analogous to Wigner–
Seitz can be performed on an irregular
collection of points as well as on a peri-
odic lattice. For such an irregular set of
point the region closer to one particular
point than to any other of the points is
known as a Voronoi cell.

There is a rather simple scheme for constructing such a Wigner–Seitz
cell: choose a lattice point and draw lines to all of its possible near
neighbors (not just its nearest neighbors). Then draw perpendicular
bisectors of all of these lines. The perpendicular bisectors bound the
Wigner–Seitz cell. It is always true that the Wigner–Seitz construction
for a lattice gives a primitive unit cell. In Fig. 12.7 we show another
example of the Wigner–Seitz construction for a two-dimensional lattice.

Fig. 12.7 The Wigner–Seitz construction for a lattice in two dimensions. On the left
perpendicular bisectors are added between the darker point and each of its neighbors.
The area bounded defines the Wigner–Seitz cell. On the right it is shown that the
Wigner–Seitz cell is a primitive unit cell. (The cells on the right are exactly the same
shape as the bounded area on the left!)
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A similar construction can be performed in three dimensions in which
case one must construct perpendicular-bisecting planes to bound the
Wigner–Seitz cell.6 See for example, Figs. 12.13 and 12.16.

6Eugene Wigner was yet another Nobel
laureate who was one of the truly great
minds of the last century of physics.
Perhaps as important to physics was
the fact that his sister, Margit, mar-
ried Dirac. It was often said that Dirac
could be a physicist only because Mar-
git handled everything else. Fredrick
Seitz was far less famous, but gained
notoriety in his later years by being
a consultant for the tobacco industry,
a strong proponent of the Regan-era
Star Wars missile defense system, and
a prominent sceptic of global warming.
He passed away in 2007.

Definition 12.5 The description of objects in the unit cell with respect
to the reference lattice point in the unit cell is known as a basis.

This is the same definition of “basis” that we used in Section 10.1. In
other words, we think of reconstructing the entire crystal by associating
with each lattice point a basis of atoms.

a

a

[0, 0]

[ a4 ,
a
4 ]

[ a4 ,
3a
4 ]

[ 3a4 , a
4 ]

[ 3a4 , 3a
4 ]

[ a2 ,
a
2 ]

Fig. 12.8 Top: A periodic structure in
two dimensions. A unit cell is marked
with the dotted lines. Bottom: A
blow-up of the unit cell with the coor-
dinates of the objects in the unit cell
with respect to the reference point in
the lower left-hand corner. The basis is
the description of the atoms along with
these positions.

In Fig. 12.8 (top) we show a periodic structure in two dimension made
of two types of atoms. On the bottom we show a primitive unit cell
(expanded) with the position of the atoms given with respect to the
reference point of the unit cell which is taken to be the lower left-hand
corner. We can describe the basis of this crystal as follows:

Basis for crystal in Fig. 12.8 =

Large Light Gray Atom Position= [a/2, a/2]

Small Dark Gray Atoms Position= [a/4, a/4]
[a/4, 3a/4]
[3a/4, a/4]
[3a/4, 3a/4]

The reference points (the small black dots in the figure) forming the
square lattice have positions

R[n1 n2] = [a n1, a n2] = a n1x̂+ a n2ŷ (12.2)

with n1, n2 integers so that the large light gray atoms have positions

Rlight−gray
[n1 n2]

= [a n1, a n2] + [a/2, a/2]

whereas the small dark gray atoms have positions

Rdark−gray1
[n1 n2]

= [a n1, a n2] + [a/4, a/4]

Rdark−gray2
[n1 n2]

= [a n1, a n2] + [a/4, 3a/4]

Rdark−gray3
[n1 n2]

= [a n1, a n2] + [3a/4, a/4]

Rdark−gray4
[n1 n2]

= [a n1, a n2] + [3a/4, 3a/4].

In this way you can say that the positions of the atoms in the crystal
are “the lattice plus the basis”.
We can now return to the case of the honeycomb shown in Fig. 12.4.

The same honeycomb is shown in Fig. 12.9 with the lattice and the basis
explicitly shown. Here, the reference points (small black dots) form a
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(triangular) lattice, where we can write the primitive lattice vectors as

a1 = a x̂

a2 = (a/2) x̂+ (a
√
3/2) ŷ. (12.3)

In terms of the reference points of the lattice, the basis for the primitive
unit cell, i.e., the coordinates of the two larger circles with respect to
the reference point, are given by 1

3 (a1 + a2) and
2
3 (a1 + a2).

a2

a1

1
3 (a1 + a2)

2
3 (a1 + a2)

Fig. 12.9 Left: The honeycomb from
Fig. 12.4 is shown with the two inequiv-
alent points of the unit cell given dif-
ferent shades. The unit cell is out-
lined dotted and the corners of the
unit cell are marked with small black
dots (which form a triangular lattice).
Right: The unit cell is expanded and
coordinates are given with respect to
the reference point at the lower left cor-
ner.

12.2 Lattices in Three Dimensions

Fig. 12.10 A cubic lattice, otherwise
known as cubic “P” or cubic primitive.

The simplest lattice in three dimensions is the simple cubic lattice shown
in Fig. 12.10 (sometimes known as cubic “P” or cubic-primitive lattice).
The primitive unit cell in this case can most conveniently be taken to
be a single cube—which includes 1/8 of each of its eight corners (see
Fig. 12.11).

Fig. 12.11 Unit cells for cubic, tetrag-
onal, and orthorhombic lattices.

Only slightly more complicated than the simple cubic lattice are the
tetragonal and orthorhombic lattices where the axes remain perpendicu-
lar, but the primitive lattice vectors may be of different lengths (shown
in Fig. 12.11). The orthorhombic unit cell has three different lengths of
its perpendicular primitive lattice vectors, whereas the tetragonal unit
cell has two lengths the same and one different.

a
a

a

Cubic
unit cell

a
a

c

c (= a

Tetragonal
unit cell

a
b

c

a, b, c
all different

Orthorhombic
unit cell
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Conventionally, to represent a given vector amongst the infinite num-
ber of possible lattice vectors in a lattice, one writes

[uvw] = ua1 + va2 + wa3 (12.4)

where u,v, and w are integers. For cases where the lattice vectors are
orthogonal, the basis vectors a1, a2, and a3 are assumed to be in the x̂,
ŷ, and ẑ directions. We have seen this notation before,7 for example, in7This notation is also sometimes

abused, as in Eq. 12.2 or Fig. 12.8,
where the brackets enclose not integers,
but distances. The notation can also
be abused to specify points which are
not members of the lattice, by choos-
ing, u, v, or w to be non-integers. We
will sometimes engage in such abuse.

the subscripts of the equations after definition 12.1.
Lattices in three dimensions also exist where axes are not orthogonal.

We will not cover all of these more complicated lattices in detail in
this book. (In Section 12.2.4 we will briefly look through these other
cases, but only at a very cursory level.) The principles we learn in the
more simple cases (with orthogonal axes) generalize fairly easily, and just
add further geometric and algebraic complexity without illuminating the
physics much further.
Two particular lattices (with orthogonal axes) which we will cover

in some detail are body-centered cubic (bcc) lattices and face-centered
cubic (fcc) lattices.

12.2.1 The Body-Centered Cubic (bcc) Lattice

Fig. 12.12 Conventional unit cell for
the body-centered cubic (I) lattice.
Left: 3D view. Right: A plan view
of the conventional unit cell. Unlabeled
points are both at heights 0 and a. a

a

a

Body-centered cubic

unit cell

a/2

a
Plan view

The body-centered cubic (bcc) lattice is a simple cubic lattice where
there is an additional lattice point in the very center of the cube (this
is sometimes known8 as cubic-I.) The unit cell is shown in the left of8Cubic-I comes from “Innenzentriert”

(inner-centered). This notation was in-
troduced by Bravais in his 1848 trea-
tise (Interestingly, Europe was burning
in 1848, but obviously that didn’t stop
science from progressing.)

Fig. 12.12. Another way to show this unit cell, which does not rely on
showing a three-dimensional picture, is to use a so-called plan view of the
unit cell, shown in the right of Fig. 12.12. A plan view (a term used in
engineering and architecture) is a two-dimensional projection from the
top of an object where heights are labeled to show the third dimension.
In the picture of the bcc unit cell, there are eight lattice points on the

corners of the cell (each of which is 1/8 inside of the conventional unit
cell) and one point in the center of the cell. Thus the conventional unit
cell contains exactly two (= 8× 1/8 + 1) lattice points.
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Packing together these unit cells to fill space, we see that the lattice
points of a full bcc lattice can be described as being points having co-
ordinates [x, y, z] where either all three coordinates are integers [uvw]
times the lattice constant a, or all three are half-odd-integers times the
lattice constant a.
It is often convenient to think of the bcc lattice as a simple cubic lattice

with a basis of two atoms per conventional cell. The simple cubic lattice
contains points [x, y, z] where all three coordinates are integers in units
of the lattice constant. Within the conventional simple-cubic unit cell
we put one point at position [0, 0, 0] and another point at the position
[ 12 ,

1
2 ,

1
2 ] in units of the lattice constant. Thus the points of the bcc

lattice are written in units of the lattice constant as

Rcorner = [n1, n2, n3]

Rcenter = [n1, n2, n3] + [ 12 ,
1
2 ,

1
2 ]

as if the two different types of points were two different types of atoms,
although all points in this lattice should be considered equivalent (they
only look inequivalent because we have chosen a conventional unit cell
with two lattice points in it). From this representation we see that we can
also think of the bcc lattice as being two interpenetrating simple cubic
lattices displaced from each other by [12 ,

1
2 ,

1
2 ]. (See also Fig. 12.14.)

We may ask why it is that this set of points forms a lattice. In terms of
our first definition of a lattice (definition 12.1) we can write the primitive
lattice vectors of the bcc lattice as

a1 = [1, 0, 0]

a2 = [0, 1, 0]

a3 = [ 12 ,
1
2 ,

1
2 ]

in units of the lattice constant. It is easy to check that any combination

R = n1a1 + n2a2 + n3a3 (12.5)

with n1, n2, and n3 integers gives a point within our definition of the bcc
lattice (that the three coordinates are either all integers or all half-odd
integers times the lattice constant). Further, one can check that any
point satisfying the conditions for the bcc lattice can be written in the
form of Eq. 12.5.

Fig. 12.13 The Wigner–Seitz cell of
the bcc lattice (this shape is a “trun-
cated octahedron”). The hexago-
nal face is the perpendicular bisecting
plane between the lattice point (shown
as a sphere) in the center and the lattice
point (also a sphere) on the corner. The
square face is the perpendicular bisect-
ing plane between the lattice point in
the center of the unit cell and a lattice
point in the center of the neighboring
unit cell.

Fig. 12.14 The Wigner–Seitz cells of
the bcc lattice pack together to tile all
of space. Note that the structure of the
bcc lattice is that of two interpenetrat-
ing simple cubic lattices.

We can also check that our description of a bcc lattice satisfies our
second description of a lattice (definition 12.1.1) that addition of any
two points of the lattice (given by Eq. 12.5) gives another point of the
lattice.
More qualitatively we can consider definition 12.1.2 of the lattice—

that the local environment of every point in the lattice should be the
same. Examining the point in the center of the unit cell, we see that
it has precisely eight nearest neighbors in each of the possible diagonal
directions. Similarly, any of the points in the corners of the unit cells will
have eight nearest neighbors corresponding to the points in the center
of the eight adjacent unit cells.
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The coordination number of a lattice (frequently called Z or z) is the
number of nearest neighbors any point of the lattice has. For the bcc
lattice the coordination number is Z = 8.
As in two dimensions, a Wigner–Seitz cell can be constructed around

each lattice point which encloses all points in space that are closer to that
lattice point than to any other point in the lattice. This Wigner–Seitz
unit cell for the bcc lattice is shown in Fig. 12.13. Note that this cell is
bounded by the perpendicular bisecting planes between lattice points.
These Wigner–Seitz cells, being primitive, can be stacked together to fill
all of space as shown in Fig. 12.14.

12.2.2 The Face-Centered Cubic (fcc) Lattice

Fig. 12.15 Conventional unit cell for
the face-centered cubic (F) lattice.
Left: 3D view. Right: A plan view
of the conventional unit cell. Unlabeled
points are both at heights 0 and a. a

a

a

Face-centered cubic

unit cell

a/2a/2

a/2

a/2

a
Plan view

The face-centered (fcc) lattice is a simple cubic lattice where there
is an additional lattice point in the center of every face of every cube
(this is sometimes known as cubic-F, for “face-centered”). The unit
cell is shown in the left of Fig. 12.15. A plan view of the unit cell is
shown on the right of Fig. 12.15 with heights labeled to indicate the
third dimension.

Fig. 12.16 The Wigner–Seitz cell of
the fcc lattice (this shape is a “rhombic
dodecahedron”). Each face is the per-
pendicular bisector between the central
point and one of its 12 nearest neigh-
bors.

In the picture of the fcc unit cell, there are eight lattice points on the
corners of the cell (each of which is 1/8 inside of the conventional unit
cell) and one point in the center of each of the six faces (each of which
is 1/2 inside the cell). Thus the conventional unit cell contains exactly
four (= 8 × 1/8 + 6 × 1/2) lattice points. Packing together these unit
cells to fill space, we see that the lattice points of a full fcc lattice can
be described as being points having coordinates (x, y, z) where either all
three coordinates are integers times the lattice constant a, or two of the
three coordinates are half-odd integers times the lattice constant a and
the remaining one coordinate is an integer times the lattice constant
a. Analogous to the bcc case, it is sometimes convenient to think of
the fcc lattice as a simple cubic lattice with a basis of four atoms per
conventional unit cell. The simple cubic lattice contains points [x, y, z]
where all three coordinates are integers in units of the lattice constant
a. Within the conventional simple-cubic unit cell we put one point at
position [0, 0, 0] and another point at the position [ 12 ,

1
2 , 0] another point
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at [ 12 , 0,
1
2 ] and another point at [0, 1

2 ,
1
2 ]. Thus the lattice points of the

fcc lattice are written in units of the lattice constant as

Rcorner = [n1, n2, n3] (12.6)

Rface−xy = [n1, n2, n3] + [ 12 ,
1
2 , 0]

Rface−xz = [n1, n2, n3] + [ 12 , 0,
1
2 ]

Rface−yz = [n1, n2, n3] + [0, 1
2 ,

1
2 ].

Again, this expresses the points of the lattice as if they were four dif-
ferent types of points but they only look inequivalent because we have
chosen a conventional unit cell with four lattice points in it. Since the
conventional unit cell has four lattice points in it, we can think of the
fcc lattice as being four interpenetrating simple cubic lattices.
Again we can check that this set of points forms a lattice. In terms

of our first definition of a lattice (definition 12.1) we write the primitive
lattice vectors of the fcc lattice as

a1 = [ 12 ,
1
2 , 0]

a2 = [ 12 , 0,
1
2 ]

a3 = [0, 1
2 ,

1
2 ]

in units of the lattice constant. Again it is easy to check that any
combination

R = n1a1 + n2a2 + n3a3

with n1, n2, and n3 integers gives a point within our definition of the
fcc lattice (that the three coordinates are either all integers, or two of
three are half-odd integers and the remaining is an integer in units of
the lattice constant a).

Fig. 12.17 The Wigner–Seitz cells of
the fcc lattice pack together to tile all
of space. Also shown in the picture are
two conventional (cubic) unit cells.

We can also similarly check that our description of a fcc lattice satisfies
our other two definitions of (definition 12.1.1 and 12.1.2) of a lattice.
The Wigner–Seitz unit cell for the fcc lattice is shown in Fig. 12.16. In
Fig. 12.17 it is shown how these Wigner–Seitz cells pack together to fill
all of space.

12.2.3 Sphere Packing
Fig. 12.18 Top: Simple cubic, Mid-
dle: bcc, Bottom: fcc. The left shows
packing of spheres into these lattices.
The right shows a cutaway of the con-
ventional unit cell exposing how the fcc
and bcc lattices leave much less empty
space than the simple cubic.

Although the simple cubic lattice (see Fig. 12.10) is conceptually the
simplest of all lattices, in fact, real crystals of atoms are rarely simple
cubic.9 To understand why this is so, think of atoms as small spheres

9Of all of the chemical elements, polo-
nium is the only one which can form a
simple cubic lattice with a single atom
basis. (It can also form another crystal
structure depending on how it is pre-
pared.)

that weakly attract each other and therefore try to pack close together.
When you assemble spheres into a simple cubic lattice you find that it
is a very inefficient way to pack the spheres together—you are left with
a lot of empty space in the center of the unit cells, and this turns out
to be energetically unfavorable in most cases. Packings of spheres into
simple cubic, bcc, and fcc lattices are shown in Fig. 12.18. It is easy
to see that the bcc and fcc lattices leave much less open space between
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the spheres than packing the spheres in a simple cubic lattice10 (see also
Exercise 12.4). Correspondingly, bcc and fcc lattices are realized much
more frequently in nature than simple cubic (at least in the case of a
single atom basis). For example, the elements Al, Ca, Au, Pb, Ni, Cu,
Ag (and many others) are fcc whereas the elements Li, Na, K, Fe, Mo,
Cs (and many others) are bcc.

10In fact it is impossible to pack spheres
more densely than you would get by
placing the spheres at the vertices of
an fcc lattice. This result (known em-
pirically to people who have tried to
pack oranges in a crate) was first offi-
cially conjectured by Johannes Kepler
in 1611, but was not mathematically
proven until 1998! Note however that
there is another lattice, the hexago-
nal close packed lattice which achieves
precisely the same packing density for
spheres as the fcc lattice.

12.2.4 Other Lattices in Three Dimensions

Fig. 12.19 Conventional unit cells for
the fourteen Bravais lattice types. Note
that if you tried to construct a “face-
centered tetragonal” lattice, you would
find that by turning the axes at 45 de-
grees it would actually be equivalent
to a body-centered tetragonal lattice.
Hence face-centered tetragonal is not
listed as a Bravais lattice type (nor is
base-centered tetragonal for a similar
reason, etc.).

In addition to the simple cubic, orthorhombic, tetragonal, fcc, and
bcc lattices, there are nine other types of lattices in three dimensions.
These are known as the fourteen Bravais lattice types.11 Although the

11Named after Auguste Bravais who
classified all the three-dimensional lat-
tices in 1848. Actually they should be
named after Moritz Frankenheim who
studied the same thing over ten years
earlier—although he made a minor er-
ror in his studies, and therefore missed
getting his name associated with them.

study of all of these lattice types is beyond the scope of this book, it is
probably a good idea to know that they exist.
Figure 12.19 shows the full variety of Bravais lattice types in three di-
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mensions. While it is an extremely deep fact that there are only fourteen
lattice types in three dimensions, the precise statement of this theorem,
as well of the proof of it, are beyond the scope of this book. The key re-
sult is that any crystal, no matter how complicated, has a lattice which
is one of these fourteen types.12

12There is a real subtlety here in clas-
sifying a crystal as having a particu-
lar lattice type. There are only these
fourteen lattice types, but in principle a
crystal could have one lattice, but have
the symmetry of another lattice. An ex-
ample of this would be if the a lattice
were cubic, but the unit cell did not
look the same from all six sides. Crys-
tallographers would not classify this as
being a cubic material even if the lat-
tice happened to be cubic. The reason
for this is that if the unit cell did not
look the same from all six sides, there
would be no particular reason that the
three primitive lattice vectors should
have the same length—it would be an
insane coincidence were this to happen,
and almost certainly in any real mate-
rial the primitive lattice vector lengths
would actually have slightly different
values if measured more closely.

12.2.5 Some Real Crystals

Once we have discussed lattices we can combine a lattice with a basis to
describe any periodic structure—and in particular, we can describe any
crystalline structure. Several examples of real (and reasonably simple)
crystal structures are shown in Figs. 12.20 and 12.21.

Fig. 12.20 Top: Sodium forms a bcc
lattice. Bottom: Caesium chloride
forms a cubic lattice with a two atom
basis. Note carefully: CsCl is not bcc!
In a bcc lattice all of the points (includ-
ing the body center) must be identical.
For CsCl, the point in the center is Cl
whereas the points in the corner are Cs.

Sodium (Na)
Lattice = Cubic-I (bcc)

Basis = Na at [000] Plan view
unlabeled points at z = 0, 1

1/2

Caesium chloride (CsCl)
Lattice = Cubic-P

Basis = Cs at [000]

and Cl at [ 12
1
2
1
2 ] Plan view

unlabeled points at z = 0, 1

1/2
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Fig. 12.21 Some crystals based on the
fcc lattice. Top: Copper forms an fcc
lattice. Middle: Diamond (carbon) is
an fcc lattice with a two-atom basis.
Bottom: NaCl (salt) is also an fcc lat-
tice with a two atom basis. Note that
in every case, a conventional unit cell
is shown but the basis is given for the
primitive unit cell.

Copper(Cu)
Lattice = Cubic-F (fcc)

Basis = Cu at [000] Plan view
unlabeled points at z = 0, 1

1
2

1
2

1
2

1
2

Diamond (C); also Si and Ge
Lattice = Cubic-F (fcc)

Basis = C at [000]

and C at [ 14
1
4
1
4 ] Plan view

unlabeled points at z = 0, 1
1
2

1
2

1
2

1
2

3
4

1
4

3
4

1
4

Sodium Chloride (NaCl)
Lattice = Cubic-F (fcc)

Basis = Na at [000]

and Cl at [ 12
1
2
1
2 ] Plan view

z = 0, 1 layer z = 1
2 layer
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Chapter summary

This chapter introduced a plethora of new definitions, aimed at describ-
ing crystal structure in three dimensions. Here is a list of some of the
concepts that one should know:

• Definition of a lattice in three different ways. See definitions 12.1,
12.1.1, 12.1.2.

• Definition of a unit cell for a periodic structure, and definition of
a primitive unit cell and a conventional unit cell.

• Definition and construction of the Wigner–Seitz (primitive) unit
cell.

• One can write any periodic structure in terms of a lattice and a
basis (see examples in Fig. 12.20 and 12.21).

• In 3d, know the simple cubic lattice, the fcc lattice and the bcc
lattices in particular. Orthorhombic and tetragonal lattices are
also very useful to know.

• The fcc and bcc lattices can be thought of as simple cubic lattices
with a basis.

• Know how to read a plan view of a structure.

References

All solid state books cover crystal. Some books give way too much detail.
I recommend the following as giving not too much and not too little:

• Kittel, chapter 1
• Ashcroft and Mermin, chapter 4 (Caution of the nomenclature issue,

see margin note 1 of this chapter.)
• Hook and Hall, sections 1.1–1.3 (probably not enough detail here!)

For greater detail about crystal structure see the following:

• Glazer, chapters 1–3
• Dove, sections 3.1–3.2 (brief but good)

Exercises

(12.1) Crystal Structure of NaCl

Consider the NaCl crystal structure shown in
Fig. 12.21. If the lattice constant is a = 0.563
nm, what is the distance from a sodium atom to
the nearest chlorine? What is the distance from a
sodium atom to the nearest other sodium atom?

(12.2) Neighbors in the Face-Centered Lattice.

(a) Show that each lattice point in an fcc lattice
has twelve nearest neighbors, each the same dis-
tance from the initial point. What is this distance
if the conventional unit cell has lattice constant a?

(b)∗ Now stretch the side lengths of the fcc lattice
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such that you obtain a face-centered orthorhombic
lattice where the conventional unit cell has sides
of length a, b, and c which are all different. What
are the distances to these twelve neighboring points
now? How many nearest neighbors are there?

(12.3) Crystal Structure

The diagram of Fig. 12.22 shows a plan view of a
structure of cubic ZnS (zincblende) looking down
the z axis. The numbers attached to some atoms
represent the heights of the atoms above the z = 0
plane expressed as a fraction of the cube edge a.
Unlabeled atoms are at z = 0 and z = a.

(a) What is the Bravais lattice type?

(b) Describe the basis.

(c) Given that a = 0.541 nm, calculate the nearest-
neighbor Zn–Zn, Zn–S, and S–S distances.

1
4

3
4

3
4

1
4

1
2

1
2

1
2

1
2a

a

Zn= S =

Fig. 12.22 Plan view of conventional unit cell of
zincblende.

(12.4) Packing Fractions

Consider a lattice with a sphere at each lattice
point. Choose the radius of the spheres to be such
that neighboring spheres just touch (see for exam-
ple, Fig. 12.18). The packing fraction is the fraction
of the volume of all of space which is enclosed by
the union of all the spheres (i.e., the ratio of the
volume of the spheres to the total volume).

(a) Calculate the packing fraction for a simple cubic
lattice.

(b) Calculate the packing fraction for a bcc lattice.

(c) Calculate the packing fraction for an fcc lattice.

(12.5) Fluorine Beta Phase

Fluorine can crystalize into a so-called beta-
phase at temperatures between 45 and 55 Kelvin.
Fig. 12.23 shows the cubic conventional unit cell
for beta phase fluorine in three-dimensional form
along with a plan view.

1
2

1
2

1
2

1
2

1
2

1
4 and 3

4
1
4 and 3

4

Fig. 12.23. A conventional unit cell for fluorine
beta phase. All atoms in the picture are fluo-
rine. Lines are drawn for clarity Top: Three-
dimensional view. Bottom: Plan view. Unlabeled
atoms are at height 0 and 1 in units of the lattice
constant.

! How many atoms are in this conventional unit
cell?

! What is the lattice and the basis for this crys-
tal?



Reciprocal Lattice,
Brillouin Zone, Waves in
Crystals 13
In the last chapter we explored lattices and crystal structure. However,
as we saw in Chapters 9–11, the important physics of waves in solids
(whether they are vibrational waves, or electron waves) is best described
in reciprocal space. This chapter thus introduces reciprocal space in
three dimensions. As with the previous chapter, there is some tricky
geometry in this chapter, and a few definitions to learn as well. As
a result this material is a bit tough to slog through, but stick with it
because soon we will make substantial use of what we learn here. At the
end of this chapter we will finally have enough definitions to describe
the dispersions of phonons and electrons in three-dimensional systems.

13.1 The Reciprocal Lattice in Three
Dimensions

13.1.1 Review of One Dimension

Let us first recall some results from our study of one dimension. We
consider a simple lattice in one dimension Rn = na with n an integer.
Recall that two points in k-space (reciprocal space) were defined to be
equivalent to each other if k1 = k2 + Gm where Gm = 2πm/a with m
an integer. The points Gm form the reciprocal lattice.
Recall that the reason that we identified different k values with each

other was because we were considering waves of the form

eikxn = eikna

with n an integer. Because of this form of the wave, we find that shifting
k→ k +Gm leaves this functional form unchanged since

ei(k+Gm)xn = ei(k+Gm)na = eiknaei(2πm/a)na = eikxn

where we have used
ei2πmn = 1

in the last step. Thus, so far as the wave is concerned, k is the same as
k +Gm.
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13.1.2 Reciprocal Lattice Definition

Generalizing this one-dimensional result, we define

Definition 13.1 Given a (direct) lattice of points R, a point G is a
point in the reciprocal lattice if and only if

eiG·R = 1 (13.1)

for all points R of the direct lattice.

To construct the reciprocal lattice, let us first write the points of the
direct lattice in the form1 (here we specialize to the three-dimensional1There are certainly other ways to

specify the points of a direct lattice.
For example, it is sometimes convenient
to choose ai’s to describe the edges vec-
tors of a conventional unit cell, but then
the ni’s are not simply described as all
integers. This is done in section 13.1.5,
and is relevant for the Important Com-
ment there.

case)
R = n1a1 + n2a2 + n3a3 (13.2)

with n1, n2, and n3 integers, and with a1, a2, and a3 being primitive
lattice vectors of the direct lattice.
We now make two key claims:

(1) We claim that the reciprocal lattice (defined by Eq. 13.1) is a
lattice in reciprocal space (thus explaining its name).

(2) We claim that the primitive lattice vectors of the reciprocal lattice
(which we will call b1, b2, and b3) are defined to have the following
property:

ai · bj = 2πδij (13.3)

where δij is the Kronecker delta.22Leopold Kronecker was a mathemati-
cian who is famous (among other
things) for the sentence “God made the
integers, everything else is the work of
man”. In case you don’t already know
this, the Kronecker delta is defined as
δij = 1 for i = j and is zero otherwise.
(Kronecker did a lot of other interesting
things as well.)

We can certainly construct vectors bi to have the desired property of
Eq. 13.3, as follows:

b1 =
2π a2 × a3

a1 · (a2 × a3)

b2 =
2π a3 × a1

a1 · (a2 × a3)

b3 =
2π a1 × a2

a1 · (a2 × a3) .

It is easy to check that Eq. 13.3 is satisfied. For example,

a1 · b1 =
2π a1 · (a2 × a3)

a1 · (a2 × a3)
= 2π

a2 · b1 =
2π a2 · (a2 × a3)

a1 · (a2 × a3)
= 0.

Now, given vectors b1, b2, and b3 satisfying Eq. 13.3 we have claimed
that these are in fact primitive lattice vectors for the reciprocal lattice.
To prove this, let us write an arbitrary point in reciprocal space as

G = m1b1 +m2b2 +m3b3 (13.4)
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and for the moment, let us not require m1,m2, and m3 to be integers.
(We are about to discover that for G to be a point of the reciprocal
lattice, they must be integers, but this is what we want to prove!)
To find points of the reciprocal lattice we must show that Eq. 13.1 is

satisfied for all points R = n1a1+n2a2+n3a3 of the direct lattice with
n1, n2, and n3 integers. We thus write

eiG·R = ei(m1b1+m2b2+m3b3)·(n1a1+n2a2+n3a3) = e2πi(n1m1+n2m2+n3m3)
.

In order for G to be a point of the reciprocal lattice, this must equal
unity for all points R of the direct lattice, i.e., for all integer values
of n1, n2 and n3. Clearly this can only be true if m1,m2 and m3 are
also integers. Thus, we find that the points of the reciprocal lattice are
precisely those of the form of Eq. 13.4 withm1,m2 andm3 integers. This
further proves our claim that the reciprocal lattice is in fact a lattice!

13.1.3 The Reciprocal Lattice as a Fourier
Transform

Quite generally one can think of the reciprocal lattice as being a Fourier
transform of the direct lattice. It is easiest to start by thinking in one
dimension. Here the direct lattice is given again by Rn = an. If we want
to describe a “density” of lattice points in one dimension, we might put
a delta function at each lattice points and write the density as3

3Since the sums are over all lattice
points they should go from −∞ to +∞.
Alternatively, one uses periodic bound-
ary conditions and sums over all points.

ρ(r) =
∑

n

δ(r − an).

Fourier transforming this function gives4 4With Fourier transforms there are sev-
eral different conventions about where
one puts the factors of 2π. Possibly in
your mathematics class you learned to
put 1/

√
2π with each integral. How-

ever, in solid state physics, convention-
ally 1/(2π) comes with each k integral,
and no factor of 2π comes with each r
integral. See Section 2.2.1 to see why
this is used.

F [ρ(r)] =

∫
dreikrρ(r) =

∑

n

∫
dreikrδ(r − an) =

∑

n

eikan

=
2π

|a|
∑

m

δ(k − 2πm/a).

The last step here is a bit non-trivial.5 Here eikan is clearly unity if
5This is sometimes known as the Pois-
son resummation formula, after Siméon
Denis Poisson, the same guy after
whom Poisson’s equation ∇2φ = −ρ/ε0
is named, as well as other mathematical
things such as the Poisson random dis-
tribution. His last name means “fish”
in French.

k = 2πm/a, i.e., if k is a point on the reciprocal lattice. In this case,
each term of the sum contributes unity to the sum and one obtains an
infinite result.6 If k is not such a reciprocal lattice point, then the terms

6Getting the prefactor right is a bit
harder. But actually, the prefactor isn’t
going to be too important for us.

of the sum oscillate and the sum comes out to be zero.
This principle generalizes to the higher (two- and three-)dimensional

cases. Generally

F [ρ(r)] =
∑

R

eik·R =
(2π)D

v

∑

G

δD(k−G) (13.5)

where in the middle term, the sum is over lattice points R of the direct
lattice, and in the last term it is a sum over points G of the reciprocal
lattice and v is the volume of the unit cell. Here D is the number of
dimensions (1, 2 or 3) and the δD is a D-dimensional delta function.7

7For example, in two dimensions
δ2(r− r0) = δ(x − x0)δ(y − y0) where
r = (x, y)
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The equality in Eq. 13.5 is similar to the one-dimensional case. If k
is a point of the reciprocal lattice, then eik·R is always unity and the
sum is infinite. However, if k is not a point on the reciprocal lattice
then the summands oscillate, and the sum comes out to be zero. Thus
one obtains delta-function peaks precisely at the positions of reciprocal
lattice vectors.

Aside: It is an easy exercise to show8 that the reciprocal lattice of an fcc8See Exercise 13.1.

direct lattice is a bcc lattice in reciprocal space. Conversely, the reciprocal lattice
of a bcc direct lattice is an fcc lattice in reciprocal space.

Fourier Transform of Any Periodic Function

In the prior section we considered the Fourier transform of a function
ρ(r) which is just a set of delta functions at lattice points. However,
it is not too different to consider the Fourier transform of any function
with the periodicity of the lattice (and this will be quite important in
Chapter 14). We say a function ρ(r) has the periodicity of a lattice if
ρ(r) = ρ(r+R) for any lattice vector R. We then want to calculate

F [ρ(r)] =

∫
dr eik·rρ(r).

The integral over all of space can be broken up into a sum of integrals
over each unit cell. Here we write any point in space r as the sum of a
lattice point R and a vector x within the unit cell

F [ρ(r)] =
∑

R

∫

unit−cell
dx eik·(x+R)ρ(x+R) =

∑

R

eik·R
∫

unit−cell
dx eik·xρ(x).

where here we have used the invariance of ρ under lattice translations
x → x +R. The sum of exponentials, as in Eq. 13.5, just gives a sum
of delta functions yielding

F [ρ(r)] = (2π)D
∑

G

δD(k−G)S(k)

where

S(k) =

∫

unit−cell
dx eik·xρ(x) (13.6)

is known as the structure factor and will become very important in the
next chapter.

13.1.4 Reciprocal Lattice Points as Families of
Lattice Planes

Another way to understand the reciprocal lattice is via families of lattice
planes of the direct lattice.

Definition 13.2 A lattice plane (or crystal plane) is a plane con-
taining at least three non-collinear (and therefore an infinite number of)
points of a lattice.
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Definition 13.3 A family of lattice planes is an infinite set of equally
separated parallel lattice planes which taken together contain all points
of the lattice.

In Fig. 13.1, several examples of families of lattice planes are shown.
Note that the planes are parallel and equally spaced, and every point of
the lattice is included in exactly one lattice plane.

(010) family of lattice planes

(110) family of lattice planes

(111) family of lattice planes

Fig. 13.1 Examples of families of lat-
tice planes on the cubic lattice. Each of
these planes is a lattice plane because
it intersects at least three non-collinear
lattice points. Each picture is a fam-
ily of lattice planes since every lattice
point is included in one of the parallel
lattice planes. The families are labeled
in Miller index notation. Top (010);
Middle (110); Bottom (111). In the
top and middle the x-axis points to the
right and the y-axis points up. In the
bottom figure the axes are rotated for
clarity.

I now make the following claim:

Claim 13.1 The families of lattice planes are in one-to-one correspon-
dence9 with the possible directions of reciprocal lattice vectors, to which
they are normal. Further, the spacing between these lattice planes is
d = 2π/|Gmin| where Gmin is the minimum length reciprocal lattice
vector in this normal direction.

This correspondence is made as follows. First we consider the set of
planes defined by points r such that for some integer m,

G · r = 2πm. (13.7)

This defines an infinite set of parallel planes normal to G. Since eiG·r =
1 we know that every lattice point is a member of one of these planes
(since this is the definition of G in Eq. 13.1). However, for the planes
defined by Eq. 13.7, not every plane needs to contain a lattice point (so
generically this is a family of parallel equally spaced planes, but not a
family of lattice planes). For this larger family of planes, the spacing
between planes is given by

d =
2π

|G| .
(13.8)

To prove this we simply note (from Eq. 13.7) that two adjacent planes
must have

G · (r1 − r2) = 2π.

Thus in the direction parallel to G, the spacing between planes is 2π/|G|
as claimed.
Clearly different values of G that happen to point in the same direc-

tion, but have different magnitudes, will define parallel sets of planes.
As we increase the magnitude of G, we add more and more planes. For
example, examining Eq. 13.7 we see that when we double the magnitude
of G we correspondingly double the density of planes, which we can see
from the spacing formula Eq. 13.8. However, whichever G we choose, all
of the lattice points will be included in one of the defined planes. If we
choose the maximally possible spaced planes, hence the smallest possi-
ble value of G allowed in any given direction which we call Gmin, then
in fact every defined plane will include lattice points and therefore be

9For this one-to-one correspondence to be precisely true we must define G and −G to
be the same direction. If this sounds like a cheap excuse, we can say that “oriented”
families of lattice planes are in one-to-one correspondence with the directions of
reciprocal lattice vectors, thus keeping track of the two possible normals of the family
of lattice planes.
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lattice planes, and the spacing between these planes is correspondingly
2π/|Gmin|. This proves10 Claim 13.1.

13.1.5 Lattice Planes and Miller Indices

There is a useful notation for describing lattice planes (or reciprocal lat-
tice vectors) known as Miller indices.11 One first chooses edge vectors ai11These are named after the nineteenth

century mineralogist William Hallowes
Miller.

for a unit cell in direct space (which may be primitive or non-primitive).
One then constructs reciprocal space vectors bi to satisfy ai ·bj = 2πδij
(see Eq. 13.3). In terms of these vectors bi, one writes (h, k, l) or (hkl)
with integers h, k and l, to mean the reciprocal space vector1212We have already used the corre-

sponding notation [uvw] to represent
lattice points of the direct lattice. See
for example, Eq. 12.1 and Eq. 12.4.

G(h,k,l) = hb1 + kb2 + lb3. (13.9)

Note that Miller indices can be negative, such as (1,−1, 1). Conven-
tionally, the minus sign is denoted with an over-bar rather than a minus
sign, so we write (11̄1) instead.1313How (11̄1) is pronounced is a bit ran-

dom. Some people say “one-(bar-one)-
one” and others say “one-(one-bar)-
one”. I have no idea how the commu-
nity got so confused as to have these
two different conventions. I think in
Europe the former is more prevalent
whereas in America the latter is more
prevalent. At any rate, it is always clear
when it is written.

Note that if one chooses ai to be the real (direct) space primitive lattice
vectors, then bi will be the primitive lattice vectors for the reciprocal
lattice. In this case, any set of integer Miller indices (hkl) represents
a reciprocal lattice vector. To represent a family of lattice plane, one
should take the shortest reciprocal lattice vector in the given direction
(see Claim 13.1), meaning h, k, and l should have no common divisors. If
(hkl) are not the shortest reciprocal lattice vector in a given direction,
then they represent a family of planes that is not a family of lattice
planes (i.e., there are some planes that do not intersect lattice points).
On the other hand, if one chooses ai to describe the edges of some

non-primitive (conventional) unit cell, the corresponding bi will not be
primitive reciprocal lattice vectors. As a result not all integer sets of
Miller indices will be reciprocal lattice vectors.

Important Comment: For any cubic lattice (simple cubic, fcc, or bcc) it
is conventional to choose ai to be ax̂, aŷ, and aẑ with a the cube edge length.

I.e., one chooses the orthogonal edge vectors of the conventional (cube) unit cell.
Correspondingly, bi are the vectors 2πx̂/a, 2πŷ/a, and 2πẑ/a. For the primitive

(simple) cubic case these are primitive reciprocal lattice vectors, but for the fcc

and bcc case, they are not.14 So in the fcc and bcc cases not all integer sets of

14Although this convention of work-
ing with non-primitive vectors bi makes
some things very complicated our only
other option would be to work with the
non-orthogonal coordinate axes of the
primitive lattice vectors—which would
complicate life even more!

Miller indices (hkl) are reciprocal lattice vectors.

To illustrate this point, consider the (010) family of planes for the cu-
bic lattice, shown in the top of Fig. 13.1. This family of planes intersects
every corner of the cubic unit cell. However, if we were discussing a bcc
lattice, there would also be another lattice point in the center of every
conventional unit cell which the (010) lattice planes would not intersect
(see top of Fig. 13.2). However, the (020) planes would intersect these

10More rigorously, if there is a family of lattice planes in direction Ĝ with spacing between planes d, then G = 2πĜ/d is
necessarily a reciprocal lattice vector. To see this note that eiG·R = 1 will be unity for all lattice points. Further, in a family
of lattice planes, all lattice points are included within the planes, so eiG·R = 1 for all R a lattice point, which implies G is a
reciprocal lattice vector. Furthermore, G is the shortest reciprocal lattice vector in the direction of Ĝ since increasing G will
result in a smaller spacing of lattice planes and some planes will not intersect lattice points R.
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central points as well, so in this case (020) represents a true family of
lattice planes (and hence a reciprocal lattice vector) for the bcc lattice
whereas (010) does not! (See Fig. 13.2.) In Section 14.2 we will discuss
the “selection rules” for knowing when a set of Miller indices represents
a true family of lattice planes in the fcc and bcc cases.
From Eq. 13.8 one can write the spacing between adjacent planes of

a family of planes specified by Miller indices (h, k, l)

d(hkl) =
2π

|G|
=

2π
√
h2|b1|2 + k2|b2|2 + l2|b3|2

(13.10)

where we have assumed that the coordinate axes of the lattice vectors bi

are orthogonal. Recall that in the case of orthogonal axes |bi| = 2π/|ai|
where ai are the lattice constants in the three orthogonal directions.
Thus we can equivalently write

1

|d(hkl)|2
=

h2

a21
+

k2

a22
+

l2

a23 .

(13.11)

Note that for a cubic lattice this simplifies to

dcubic(hkl) =
a√

h2 + k2 + l2 .

(13.12)

(010) family of planes

(not all lattice points included)

(020) family of lattice planes

(110) family of lattice planes

Fig. 13.2 Top: For the bcc lattice, the
(010) planes are not a true family of lat-
tice planes since the (010) planes do not
intersect the lattice points in the mid-
dle of the cubes. Middle: The (020)
planes are a family of lattice planes
since they intersect all of the lattice
points. Bottom The (110) planes are
also a family of lattice planes.

A useful shortcut for figuring out the geometry of lattice planes is to
look at the intersection of a plane with the three coordinate axes. The
intersections x1, x2, x3 with the three coordinate axes (in units of the
three lattice constants) are related to the Miller indices via

1

x1
:
1

x2
:
1

x3
= h : k : l.

This construction is illustrated in Fig. 13.3.

x

y

z

a1
a2

a3

1

2

3

1 2

1

2

3

Fig. 13.3 Determining Miller indices from the intersection of a plane with the co-
ordinate axes. This plane intersects the coordinate axes at x = 2, y = 2 and z = 3
in units of the lattice constants. The reciprocals of these intercepts are 1

2 ,
1
2 ,

1
3 . The

smallest integers having these ratios are 3, 3, 2. Thus the Miller indices of this family
of lattice planes are (332). The spacing between lattice planes in this family would
be 1/|d(233) |2 = 32/a21 + 32/a22 + 22/a23 (assuming orthogonal axes).
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Finally, we note that different lattice planes may be the same under a
symmetry of the crystal. For example, in a cubic lattice, (111) looks the
same as (11̄1) after rotation (and possibly reflection) of the axes of the
crystal (but would never look like (122) under any rotation or reflection
since the spacing between planes is different!).15 If we want to describe

15It can sometimes be subtle to figure
out if a crystal looks the same from two
different directions: one needs to check
that the basis of the crystal looks the
same from the two directions! all lattice planes that are equivalent in this way, we write {111} instead.

It is interesting that lattice planes in crystals were well understood
long before people even knew for sure there was such a thing as atoms.
By studying how crystals cleave along certain planes, scientists like
Miller and Bravais could reconstruct a great deal about how these ma-
terials must be assembled.16

16There is a law known as “Bravais’
law”, which states that crystals cleave
most readily along faces having the
highest density of lattice points, or
equivalently the largest distance be-
tween lattice planes. To a large extent
this means that crystals cleave on lat-
tice planes with small Miller indices.

13.2 Brillouin Zones

The whole point of going into such gross detail about the structure of
reciprocal space is in order to describe waves in solids. In particular, it
will be important to understand the structure of the Brillouin zone.
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Fig. 13.4 Phonon spectrum of a di-
atomic chain in one dimension. Top:
Reduced zone scheme. Bottom: Ex-
tended zone scheme. (See Figs. 10.6
and 10.8.) We can display the dis-
persion in either form due to the fact
that wavevector is only defined modulo
2π/a, that is, it is periodic in the Bril-
louin zone.

13.2.1 Review of One-Dimensional Dispersions and
Brillouin Zones

As we learned in Chapters 9–11, the Brillouin zone is extremely impor-
tant in describing the excitation spectrum of waves in periodic media.
As a reminder, in Fig. 13.4 we show the excitation spectrum of vibra-
tions of a diatomic chain (Chapter 10) in both the reduced, and ex-
tended zone schemes. Since waves are physically equivalent under shifts
of the wavevector k by a reciprocal lattice vector 2π/a, we can always
express every excitation within the first Brillouin zone, as shown in the
reduced zone scheme (top of Fig. 13.4). In this example, since there
are two atoms per unit cell, there are precisely two excitation modes
per wavevector. On the other hand, we can always unfold the spectrum
and put the lowest (acoustic) excitation mode in the first Brillouin zone
and the higher-energy excitation mode (optical) in the second Brillouin
zone, as shown in the extended zone scheme (bottom of Fig. 13.4). Note
that there is a jump in the excitation spectrum at the Brillouin zone
boundary.

13.2.2 General Brillouin Zone Construction

Definition 13.4 A Brillouin zone is any primitive unit cell of the
reciprocal lattice.

Entirely equivalent to the one-dimensional situation, physical waves in
crystals are unchanged if their wavevector is shifted by a reciprocal lat-
tice vector k → k + G. Alternately, we realize that the physically rel-
evant quantity is the crystal momentum. Thus, the Brillouin zone has
been defined to include each physically different crystal momentum ex-
actly once (each k point within the Brillouin zone is physically different,
and all physically different points occur once within the zone).
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While the most general definition of Brillouin zone allows us to choose
any shape primitive unit cell for the reciprocal lattice, there are some
definitions of unit cells which are more convenient than others.
We define the first Brillouin zone in reciprocal space quite analogously

to the construction of the Wigner–Seitz cell for the direct lattice.

Definition 13.5 Start with the reciprocal lattice point G = 0. All k
points which are closer to 0 than to any other reciprocal lattice point
define the first Brillouin zone. Similarly all k points where the point
0 is the second closest reciprocal lattice point to that point constitute the
second Brillouin zone, and so forth. Zone boundaries are defined in
terms of this definition of Brillouin zones.

As with the Wigner–Seitz cell, there is a simple algorithm to construct
the Brillouin zones. Draw the perpendicular bisector between the point
0 and each of the reciprocal lattice vectors. These bisectors form the
Brillouin zone boundaries. Any point that you can get to from 0 without
crossing a perpendicular bisector is in the first Brillouin zone. If you
cross only one perpendicular bisector, you are in the second Brillouin
zone, and so forth.
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ŷ)

Fig. 13.5 First, second, third, and
fourth Brillioun zones of the square lat-
tice. All of the lines drawn in this figure
are perpendicular bisectors between the
central point 0 and some other recipro-
cal lattice point. Note that zone bound-
aries occur in parallel pairs symmetric
around the central point 0 and are sep-
arated by a reciprocal lattice vector.

In Fig. 13.5, we show the Brillouin zones of the square lattice. A few
general principles to note:

(1) The first Brillouin zone is necessarily connected, but the higher
Brillouin zones typically are made of disconnected pieces.

(2) A point on a Brillouin zone boundary lies on the perpendicular
bisector between the point 0 and some reciprocal lattice point
G. Adding the vector −G to this point necessarily results in a
point (the same distance from 0) which is on another Brillouin
zone boundary (on the bisector of the segment from 0 to −G).
This means that Brillouin zone boundaries occur in parallel pairs
symmetric around the point 0 which are separated by a reciprocal
lattice vector (see Fig. 13.5).

(3) Each Brillouin zone has exactly the same total area (or volume in
three dimensions). This must be the case since there is a one-to-
one mapping of points in each Brillouin zone to the first Brillouin
zone. Finally, as in one dimension, we claim that there are exactly
as many k-states within the first Brillouin zone as there are unit
cells in the entire system.17 17Here’s the proof for a square lat-

tice. Let the system be Nx by Ny unit
cells. With periodic boundary condi-
tions, the value of kx is quantized in
units of 2π/Lx = 2π/(Nxa) and the
value of ky is quantized in units of
2π/Ly = 2π/(Nya). The size of the
Brillouin zone is 2π/a in each direction,
so there are precisely NxNy different
values of k in the Brillouin zone.

Note, that as in the case of the Wigner–Seitz cell construction, the
shape of the first Brillouin zone can look a bit strange, even for a rela-
tively simple lattice (see Fig. 12.7).
The construction of the Brillouin zone is similar in three dimensions

as it is in two, and is again entirely analogous to the construction of the
Wigner–Seitz cell in three dimensions. For a simple cubic lattice, the
first Brillouin zone is simply a cube. For fcc and bcc lattices, however,
the situation is more complicated. As we mentioned in the Aside at
the end of Section 13.1.3, the reciprocal lattice of the fcc lattice is bcc,
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and vice-versa. Thus, the Brillouin zone of the fcc lattice is the same
shape as the Wigner–Seitz cell of the bcc lattice! The Brillouin zone
for the fcc lattice is shown in Fig. 13.6 (compare to Fig. 12.13). Note
that in Fig. 13.6, various k-points are labeled with letters. There is a
complicated labeling convention that we will not discuss, but it is worth
knowing that it exists. For example, we can see in the figure that the
point k = 0 is labeled Γ, and the point k = (2π/a)ŷ is labeled X .
Now that we can describe the fcc Brillouin zone, we finally have a way

to properly describe the physics of waves in some real crystals!

Γ
L

X

X

X
WK

K

4π
a

Fig. 13.6 First Brillouin zone of the fcc
lattice. Note that it is the same shape
as the Wigner–Seitz cell of the bcc lat-
tice, see Fig. 12.13. Special points of
the Brillioun zone are labeled with code
letters such as X, K, and Γ. Note that
the lattice constant of the conventional
unit cell is 4π/a (see Exercise 13.1).

13.3 Electronic and Vibrational Waves in
Crystals in Three Dimensions
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Fig. 13.7 Electronic excitation
spectrum of diamond (E = 0 is the
Fermi energy). The momentum,
along the horizontal axis is taken
in straight line cuts between special
labeled points in the Brillouin zone.
Figure is from J. R. Chelikowsky and
S. G. Louie, Phys. Rev. B 29, 3470
(1984), http://prb.aps.org/abstract/
PRB/v29/i6/p3470 1. Copyright
American Physical Society. Used by
permission.

In Fig. 13.7 we show the electronic band-structure (i.e., dispersion re-
lation) of diamond, which can be described as an fcc lattice with a
diatomic basis (see Fig. 12.21). As in the one-dimensional case, we can
work in the reduced zone scheme where we only need to consider the
first Brillouin zone. Since we are trying to display a three-dimensional
spectrum (energy as a function of k) on a one-dimensional diagram, we
show several single-line cuts through reciprocal space.18 Starting on the
left of the diagram, we start at the L-point of the Brillouin zone and
show E(k) as k traces a straight line to the Γ point, the center of the
Brillouin zone (see Fig. 13.6 for the labeling of points in the zone). Then
we continue to the right and k traces a straight line from the Γ point to
the X point. Then we make a straight line from X to K and then X
back to Γ.19 Note that the lowest band is quadratic at the center of the
Brillouin zone (a dispersion !2k2/(2m∗) for some effective mass m∗).
Similarly, in Fig. 13.8, we show the phonon spectrum of diamond.

There are several things to note about this figure. First of all, since
diamond has a unit cell with two atoms in it (it is fcc with a basis of
two atoms) there should be six modes of oscillation per k-points (three
directions of motion times two atoms per unit cell). Indeed, this is what
we see in the picture, at least in the central third of the picture. In the
other two parts of the picture, one sees fewer modes per k-point, but
this is because, due to the symmetry of the crystal along this particular
direction, several excitation modes have exactly the same energy. (Note
examples at the X-point where two modes come in from the right, but
only one goes out to the left. This means the two modes have the same
energy on the left of the X point.) Secondly, we note that at the Γ-
point, k = 0, there are exactly three modes which come down linearly to
zero energy. These are the three acoustic modes—the higher one being a
longitudinal mode and the lower two being transverse. The other three
modes, which are finite energy at k = 0, are the optical modes.

18This type of plot, because it can look like a jumble of lines, is sometimes called a
“spaghetti diagram”.
19In fact if one travels in a straight line from X to K and continues in a straight line,
one ends up at Γ in the neighboring Brillouin zone!
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Chapter Summary

• The reciprocal lattice is a lattice in k-space defined by the set of
points such that eiG·R = 1 for allR in the direct lattice. Given this
definition, the reciprocal lattice can be thought of as the Fourier
transform of the direct lattice.

• A reciprocal lattice vectorG defines a set of parallel equally spaced
planes via G · r = 2πm such that every point of the direct lattice
is included in one of the planes. The spacing between the planes is
d = 2π/|G|. If G is the smallest reciprocal lattice vector parallel
to G then this set of planes is a family of lattice planes, meaning
that all planes intersect points of the direct lattice.

• Miller Indices (h, k, l) are used to describe families of lattice planes,
or reciprocal lattice vectors.

• The general definition of Brillouin zone is any unit cell in reciprocal
space. The first Brillouin zone is the Wigner–Seitz cell around the
point 0 of the reciprocal lattice. Each Brillouin zone has the same
volume and contains one k-state per unit cell of the entire system.
Parallel Brillouin zone boundaries are separated by reciprocal lat-
tice vectors.

Fig. 13.8 Phonon spectrum of dia-
mond (points are from experiment,
solid line is a modern theoretical
calculation). Figure is from A. Ward
et al., Phys. Rev. B 80, 125203
(2009), http://prb.aps.org/abstract/
PRB/v80/i12/e125203, Copyright
American Physical Society. Used by
permission.
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Exercises

(13.1) Reciprocal Lattice

Show that the reciprocal lattice of a fcc (face-
centered cubic) lattice is a bcc (body-centered cu-
bic) lattice. Correspondingly, show that the recip-
rocal lattice of a bcc lattice is an fcc lattice. If
an fcc lattice has conventional unit cell with lat-

tice constant a, what is the lattice constant for the
conventional unit cell of the reciprocal bcc lattice?

Consider now an orthorhombic face-centered lat-
tice with conventional lattice constants a1, a2, a3.
What it the reciprocal lattice now?
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(13.2) Lattice Planes

Consider the crystal shown in Exercise 12.3. Copy
this figure and indicate the [210] direction and the
(210) family of lattice planes.

(13.3) Directions and Spacings of Crystal Planes

! ‡Explain briefly what is meant by the terms
“crystal planes” and “Miller indices”.

! Show that the general direction [hkl] in a cubic
crystal is normal to the planes with Miller indices
(hkl).

! Is the same true in general for an orthorhombic
crystal?

! Show that the spacing d of the (hkl) set of
planes in a cubic crystal with lattice parameter a
is

d =
a√

h2 + k2 + l2

! What is the generalization of this formula for
an orthorhombic crystal?

(13.4) ‡Reciprocal Lattice

(a) Define the term Reciprocal Lattice.

(b) Show that if a lattice in 3d has primitive lattice
vectors a1, a2 and a3 then primitive lattice vectors
for the reciprocal lattice can be taken as

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(13.13)

b2 = 2π
a3 × a1

a1 · (a2 × a3)
(13.14)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
(13.15)

What is the proper formula in 2d?

(c) Define tetragonal and orthorhombic lattices.
For an orthorhombic lattice, show that |bj| =
2π/|aj|. Hence, show that the length of the recip-
rocal lattice vector G = hb1 + kb2 + lb3 is equal
to 2π/d, where d is the spacing of the (hkl) planes
(see question 13.3)

(13.5) More Reciprocal Lattice

A two-dimensional rectangular crystal has a unit
cell with sides a1 = 0.468 nm and a2 = 0.342 nm.

(a) Draw to scale a diagram of the reciprocal lat-
tice.

! Label the reciprocal lattice points for indices in
the range 0 ! h ! 3 and 0 ! k ! 3.

(b) Draw the first and second Brillouin zones using
the Wigner–Seitz construction.

(13.6) Brillouin Zones

(a) Consider a cubic lattice with lattice constant
a. Describe the first Brillouin zone. Given an
arbitrary wavevector k, write an expression for
an equivalent wavevector within the first Brillouin
zone (there are several possible expressions you can
write).

(b) Consider a triangular lattice in two dimen-
sions (primitive lattice vectors given by Eqs. 12.3).
Find the first Brillouin zone. Given an arbitrary
wavevector k (in two dimensions), write an expres-
sion for an equivalent wavevector within the first
Brillouin zone (again there are several possible ex-
pressions you can write).

(13.7) Number of States in the Brillouin Zone

A specimen in the form of a cube of side L has
a primitive cubic lattice whose mutually orthogo-
nal fundamental translation vectors (primitive lat-
tice vectors) have length a. Show that the number
of different allowed k-states within the first Bril-
louin zone equals the number of primitive unit cells
forming the specimen. (One may assume periodic
boundary conditions, although it is worth thinking
about whether this still holds for hard-wall bound-
ary conditions as well.)

(13.8) Calculating Dispersions in d > 1*

(a) In Exercises 9.8 and 11.9 we discussed disper-
sion relations of systems in two dimensions (if you
have not already solved those exercises, you should
do so now).

! In Exercise 11.9, describe the Brillouin zone
(you may assume perpendicular lattice vectors with
length a1 and a2). Show that the tight-binding dis-
persion is periodic in the Brillouin zone. Show that
the dispersion curve is always flat crossing a zone
boundary.

! In Exercise 9.8, describe the Brillouin zone.
Show that the phonon dispersion is periodic in the
Brillouin zone. Show that the dispersion curve is
always flat crossing a zone boundary.

(b) Consider a tight binding model on a three-
dimensional fcc lattice where there are hopping
matrix elements −t from each site to each of the
nearest-neighbor sites. Determine the energy spec-
trum E(k) of this model. Show that near k = 0
the dispersion is parabolic.
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Wave Scattering by
Crystals 14
In the last chapter we discussed reciprocal space, and explained how
the energy dispersion of phonons and electrons is plotted within the
Brillouin zone. We understand how electrons and phonons are similar
to each other due to the wave-like nature of both. However, much of
the same physics occurs when a crystal scatters waves (or particles1) 1Remember, in quantum mechanics

there is no real difference between par-
ticles and waves! Planck and Einstein
showed us that light waves are parti-
cles. Then de Broglie showed us that
particles are waves!

that impinge upon it externally. Indeed, exposing a solid to a wave in
order to probe its properties is an extremely useful thing to do. The
most commonly used probe is X-rays. Another common, more modern,
probe is neutrons. It can hardly be overstated how important this type
of experiment is to science.
The general setup that we will examine is shown in Fig. 14.1.

sample
incident

k

unscattered

k
sc
at
te
re
dk

′

Fig. 14.1 A generic scattering experi-
ment.

14.1 The Laue and Bragg Conditions

14.1.1 Fermi’s Golden Rule Approach

If we think of the incoming wave as being a particle, then we should think
of the sample as being some potential V (r) that the particle experiences
as it goes through the sample. According to Fermi’s golden rule,2 the

2Fermi’s golden rule should be familiar
to you from quantum mechanics. In-
terestingly, Fermi’s golden rule was ac-
tually discovered by Dirac, giving us
yet another example where something
is named after Fermi when Dirac really
should have credit as well, or even in-
stead. See also margin note 7 in Section
4.1.

transition rate Γ(k′,k) per unit time for the particle scattering from k
to k′ is given by

Γ(k′,k) =
2π

!
|〈k′|V |k〉|2 δ(Ek′ − Ek).

The matrix element here

〈k′|V |k〉 =
∫

dr
e−ik′·r

√
L3

V (r)
eik·r√
L3

=
1

L3

∫
dr e−i(k′−k)·r V (r)

is nothing more than the Fourier transform of the potential (where L
is the linear size of the sample, so the

√
L3 terms just normalize the

wavefunctions).
Note that these expressions are true whether or not the sample is a

periodic crystal. However, if the sample is periodic the matrix element
is zero unless k− k′ is a reciprocal lattice vector! To see this is true, let
us write positions r = R+ x where R is a lattice vector position and x
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is a position within the unit cell

〈k′|V |k〉 =
1

L3

∫
dr e−i(k′−k)·r V (r)

=
1

L3

∑

R

∫

unit−cell
dx e−i(k′−k)·(x+R) V (x+R).

Now since the potential is assumed periodic, we have V (x+R) = V (x),
so this can be rewritten as

〈k′|V |k〉 =
1

L3

[
∑

R

e−i(k′−k)·R

][ ∫

unit−cell
dx e−i(k′−k)·x V (x)

]

.

(14.1)
As we discussed in Section 13.1.3, the first term in brackets must vanish
unless k′ − k is a reciprocal lattice vector.3 This condition,3We also discussed how this first term

in brackets diverges if k′ −k is a recip-
rocal lattice vector. This divergence is
not a problem here because it gives just
the number of unit cells and is canceled
by the 1/L3 normalization factor leav-
ing a factor of the inverse volume of the
unit cell.

k′ − k = G (14.2)

is known as the Laue equation (or Laue condition).4 ,5 This condition is
precisely the statement of the conservation of crystal momentum.6 Note

6Real momentum is conserved since the
crystal itself absorbs any missing mo-
mentum. In this case, the center of
mass of the crystal has absorbed mo-
mentum !(k′−k). See the comment in
margin note 13 in Section 9.4. Strictly
speaking, when the crystal absorbs mo-
mentum, in order to conserve energy
some tiny amount of energy must be
lost from the scattered wave. However,
in the limit that the crystal is large, this
loss of energy can be neglected.

also that when the waves leave the crystal, they should have

|k| = |k′|

which is just the conservation of energy, which is enforced by the delta
function in Fermi’s golden rule. (In Section 14.4.2 we will consider more
complicated scattering where energy is not conserved.)

14.1.2 Diffraction Approach

It turns out that this Laue condition is nothing more than the scattering
condition associated with a diffraction grating. This description of the
scattering from crystals is known as the Bragg formulation of (X-ray)
diffraction.7

Consider the configuration shown in Fig. 14.2. An incoming wave is
reflected off of two adjacent layers of atoms separated by a distance d.
A few things to note about this diagram. First note that the wave has
been deflected by 2θ in this diagram.8 Secondly, from simple geometry

8This is a very common source of errors
on exams. The total deflection angle is
2θ.

4Max von Laue won the Nobel Prize for his work on X-ray scattering from crystals in 1914. Although von Laue never left
Germany during the second world war, he remained openly opposed to the Nazi government. During the war he hid his gold
Nobel medal at the Niels Bohr Institute in Denmark to prevent the Nazis from taking it. Had he been caught doing this, he
may have been jailed or worse, since shipping gold out of Nazi Germany was considered a serious offense. After the occupation
of Denmark in April 1940, George de Hevesy (a Nobel laureate in chemistry) decided to dissolve the medal in the solvent
aqua regia to remove the evidence. He left the solution on a shelf in his lab. Although the Nazis occupied Bohr’s institute
and searched it very carefully, they did not find anything. After the war, the gold was recovered from solution and the Nobel
Foundation presented Laue with a new medal made from the same gold.
5The reason this is called “Laue condition” rather than “von Laue” condition is because he was born Max Laue. In 1913 his
father was elevated to the nobility and his family added the “von”.
7William Henry Bragg and William Lawrence Bragg were a father-and-son team who won the Nobel Prize together in 1915 for
their work on X-ray scattering. William Lawrence Bragg was 25 years old when he won the prize, and remains the youngest
Nobel laureate ever. Most people believe that the younger Bragg was the more deserving of the two!
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note that the additional distance traveled by the component of the wave
that reflects off of the further layer of atoms is

extra distance = 2d sin θ.

In order to have constructive interference, this extra distance must be

d sin θ
d

θ

Fig. 14.2 Bragg scattering off of a
plane of atoms in a crystal. The excess
distance traveled by the wave striking
the lower plane is 2d sin θ.

equal to an integer number n of wavelengths. Thus we derive the Bragg
condition for constructive interference, or what is known as Bragg’s law

nλ = 2d sin θ. (14.3)

Note that we can have diffraction from any two parallel planes of atoms
such as the one shown in Fig. 14.3.

d

Fig. 14.3 Scattering off of the (21̄0)
plane of atoms.

What we will see next is that this Bragg condition for constructive
interference is precisely equivalent to the Laue condition!

14.1.3 Equivalence of Laue and Bragg conditions

Consider Fig. 14.4 (essentially the same as Fig. 14.2). Here we have
shown the reciprocal lattice vector G which corresponds to the family
of lattice planes. As we discussed in Chapter 13 the spacing between
lattice planes is d = 2π/|G| (see Eqn. 13.8).

d

k k′
G

θ θ

Fig. 14.4 Geometry of scattering.

Just from geometry we have

k̂ · Ĝ = sin θ = −k̂′ · Ĝ

where the hatsˆover vectors indicate unit vectors.
Suppose the Laue condition is satisfied. That is, k− k′ = G with

|k| = |k′| = 2π/λ with λ the wavelength. We can rewrite the Laue
equation as

2π

λ
(k̂− k̂′) = G.

Now let us dot this equation with Ĝ to give

Ĝ ·
2π

λ
(k̂− k̂′) = Ĝ ·G

2π

λ
(sin θ − sin θ′) = |G|

2π

|G|
(2 sin θ) = λ

2d sin θ = λ

which is the Bragg condition (in the last step we have used the relation,
Eq. 13.8, between G and d). You may wonder why in this equation we
obtained λ on the right-hand side rather than nλ as we had in Eq. 14.3.
The point here is that there if there is a reciprocal lattice vector G,
then there is also a reciprocal lattice vector nG, and if we did the same
calculation with that lattice vector we would get nλ. The plane spacing
associated with nG does not generally correspond to a family of lattice
planes (since it is not the shortest reciprocal lattice vector in the given
direction) but it still allows for diffraction.



144 Wave Scattering by Crystals

Thus we conclude that the Laue condition and the Bragg condition
are equivalent. It is equivalent to say that interference is constructive
(as Bragg indicates) or to say that crystal momentum is conserved (as
Laue indicates).

14.2 Scattering Amplitudes

If the Laue condition is satisfied, we would now like to ask how much
scattering we actually get. Recall in Section 14.1.1 we started with
Fermi’s golden rule

Γ(k′,k) =
2π

!
|〈k′|V |k〉|2 δ(Ek′ − Ek)

and we found out that if V is a periodic function, then the matrix element
is given by (see Eq. 14.1)

〈k′|V |k〉 =

[
1

L3

∑

R

e−i(k′−k)·R

][ ∫

unit−cell
dx e−i(k′−k)·x V (x)

]

.

(14.4)
The first factor in brackets gives zero unless the Laue condition is satis-
fied, in which case it gives a constant (due to the 1/L3 out front, this is
now a non-divergent constant). The second term in brackets is known
as the structure factor (compare to Eq. 13.6)

S(G) =

∫

unit−cell
dx eiG·x V (x) (14.5)

where we have used G for (k−k′), since this must be a reciprocal lattice
vector or the first term in brackets vanishes.
Frequently, one writes the scattering intensity as

I(hkl) ∝ |S(hkl)|2 (14.6)

which is shorthand for saying that I(hkl), the intensity of scattering off
of the lattice planes defined by the reciprocal lattice vector (hkl), is
proportional to the square of the structure factor at this reciprocal lattice
vector. Sometimes a delta function is also written explicitly to indicate
that the wavevector difference (k′−k) must be a reciprocal lattice vector.
It is usually a very good approximation to assume that the scattering

potential is the sum over the scattering potentials of the individual atoms
in the system,9 so that we can write9I.e., the influence of one atom on an-

other does not affect how the atoms in-
teract with the probe wave. V (x) =

∑

atoms j

Vj(x− xj)

where Vj is the scattering potential from atom j. The form of the func-
tion Vj will depend on what type of probe wave we are using and what
type of atom j is.
We now turn to examine this structure factor more closely for our

main two types of scattering probes—neutrons and X-rays.
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Neutrons10

Since neutrons are uncharged, they scatter almost exclusively from nuclei
(rather than from electrons) via the nuclear forces. As a result, the
scattering potential is extremely short-ranged, and can be approximated
as a delta function. We thus have 10Brockhouse and Shull were awarded

the Nobel Prize for pioneering the use
of neutron scattering experiments for
understanding properties of materials.
Shull’s initial development of this tech-
nique began around 1946, just after
the second world war, when the US
atomic energy program made neutrons
suddenly available. The Nobel Prize
was awarded in 1994, making this one
of the longest time-lags ever between a
discovery and the awarding of the prize.

V (x) =
∑

atoms j

fj δ(x − xj)

where xj is the position of the jth atom in the unit cell. Here, fj is
known as the form factor or atomic form factor, and represents the
strength of scattering from that particular nucleus. In fact, for the
case of neutrons this quantity is proportional to11 the so-called “nuclear

11To be precise, fj = 2π!2bj/m with
m the mass of the neutron.

scattering-length” bj . Thus for neutrons we frequently write

V (x) ∼
∑

atoms j

bj δ(x− xj).

Plugging this expression into Eq. 14.5, we obtain

S(G) ∼
∑

atom j in unit cell

bj eiG·xj
. (14.7)

X-rays

X-rays scatter from the electrons in a system.12 As a result, one can 12The coupling of photons to mat-
ter is via the usual minimal coupling
(p + eA)2/(2m). The denominator m,
which is much larger for nuclei than for
electrons, is why the nuclei are not im-
portant.

take the scattering potential V (x) to be proportional to the electron
density13

13The scattering here is essentially
Thomson scattering, i.e., the scattering
of light from free electrons. Here the
electrons can be taken to be almost free
since their binding energy to the atom
is much less than the X-ray energy.

Vj(x− xj) = Zj gj(x− xj)

where Zj is the atomic number of atom j (i.e., its number of electrons)
and gj is a somewhat short-ranged function (i.e., it has a few Ångstroms
range—roughly the size of an atom). From this we derive

S(G) =
∑

atom j in unit cell

fj(G) eiG·xj (14.8)

where fj , the form factor, is roughly proportional to Zj, but has some
dependence on the magnitude of the reciprocal lattice vector G as well
(compare to Eq. 14.7). Frequently, however, we approximate fj to be in-
dependent of G (which would be true if g were extremely short-ranged),
although this is not strictly correct.

Aside: To be precise fj(G) is always just the Fourier transform of the scat-
tering potential for atom j. We can write

fj(G) =

∫
dx eiG·x Vj(x) (14.9)

where the scattering potential Vj(x) is just proportional to the electron density
a distance x from the nucleus. Note that the integral here is over all of space,
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not just over the unit cell (see Exercise 14.9.a). Taking the density to be a delta
function results in fj being a constant. Taking the slightly less crude approxima-
tion that the density is constant inside a sphere of radius r0 and zero outside of
this radius will result in a Fourier transform

fj(G) ∼ 3Zj

(
sin(x)− x cos(x)

x3

)
(14.10)

with x = |Gr0| (see Exercise 14.9.b). If the scattering angle is sufficiently small

(i.e., G is small compared to 1/r0), the right-hand side is roughly Zj with no

strong dependence on G.

Comparison of Neutrons and X-rays

• For X-rays, since fj ∼ Zj , the X-rays scatter very strongly from
heavy atoms, and hardly at all from light atoms. This makes it
very difficult to “see” light atoms like hydrogen in a solid. Further,
it is hard to distinguish atoms that are very close to each other in
their atomic number (since they scatter almost the same amount).
Also, fj is slightly dependent on the scattering angle.

• In comparison, for neutron scattering, the nuclear scattering length
bj varies rather erratically with atomic number (it can even be
negative). In particular, hydrogen scatters fairly well, so it is easy
to see. Further, one can usually distinguish atoms with similar
atomic numbers rather easily.

• For neutrons, the scattering really is very short-ranged, so the form
factor really is proportional to the scattering length bj independent
of G. For X-rays there is a dependence on G that complicates
matters.

• Neutrons also have spin. Because of this they can detect whether
various electrons in the unit cell have their spins pointing up or
down. The scattering of the neutrons from the electrons is much
weaker than the scattering from the nuclei, but is still observable.
We will return to this situation where the spin of the electron is
spatially ordered in Section 20.1.2.

Electron Diffraction is Similar!

Much of the physics we learn from studying the diffraction of X-rays
and neutrons from crystals can be applied just as well to other waves
scattering from crystals. A particularly important technique is electron
diffraction crystallography14 which has been used very effectively to de-

14In fact electron diffraction can be
sometimes even more powerful because
S(hkl) can be measured directly rather
than just |S(hkl)|2. See Hammond’s
book on crystallography, for example.

termine the structure of some very complicated biological structures.15

15Aaron Klug won the chemistry No-
bel Prize in 1978 for developing the
technique of electron crystallography
and using it to deduce the structure
of nucleic acid and protein complexes.
However, the general idea of electron
diffraction dates much further back.
In 1927 Davisson and Germer, work-
ing at Bell Laboratories, demonstrated
Bragg’s law in the diffraction of elec-
trons from a crystal, thus confirming de
Broglie’s hypothesis of the wave nature
of matter. A Nobel Prize was awarded
to Davisson along with George Paget
Thomson, the son of J. J. Thompson,
in 1937.

14.2.1 Simple Example

Generally, as in Eq. 14.6, we write the intensity of scattering as

I(hkl) ∝ |S(hkl)|2 .
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Assuming we have orthogonal lattice vectors, we can then generally write

S(hkl) =
∑

atom j in unit cell

fj e2πi(hxj+kyj+lzj) (14.11)

where [xj , yj, zj ] are the coordinates of atom j within the unit cell, in
units of the three lattice vectors. (For X-rays, fj may depend on G(hkl)

as well.)

Fig. 14.5 Caesium chloride unit cell.
Cs is the white corner atoms, Cl is the
darker central atom. This is simple cu-
bic with a basis. Note that bcc Cs can
be thought of as just replacing the Cl
with another Cs atom.

Example 1: Caesium Chloride: Let us now consider the simple
example of CsCl, whose unit cell is shown in Fig. 14.5. This system can
be described as simple cubic with a basis given by16

16Do not make the mistake of calling
CsCl bcc! Bcc is a lattice where all
points must be the same.

Basis for CsCl

Cs Position= [0, 0, 0]

Cl Position= [ 12 ,
1
2 ,

1
2 ].

Thus the structure factor is given by

S(hkl) = fCs + fCl e
2πi(h,k,l)·[ 12 ,

1
2 ,

1
2 ]

= fCs + fCl(−1)h+k+l

with the f ’s being the appropriate form factors for the corresponding
atoms. Recall that the scattered wave intensity is I(hkl) ∼ |S(hkl)|2.

14.2.2 Systematic Absences and More Examples

Example 2: Caesium bcc: Let us now consider instead a pure Cs
crystal. In this case the crystal is bcc. We can think of this as simply
replacing the Cl in CsCl with another Cs atom. Analogously we think
of the bcc lattice as a simple cubic lattice with a basis (similar to CsCl!)
which we now write as

Basis for Cs bcc
(conventional unit cell)

Cs Position= [0, 0, 0]

Cs Position= [ 12 ,
1
2 ,

1
2 ].

Now the structure factor is given by

S(hkl) = fCs + fCs e
2πi(h,k,l)·[ 12 ,

1
2 ,

1
2 ]

= fCs

[
1 + (−1)h+k+l

]
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Crucially, note that the structure factor, and therefore the scattering
intensity, vanishes for h+k+ l being any odd integer! This phenomenon
is known as a systematic absence.
To understand why this absence occurs, consider the simple case of

the (100) family of planes (see Fig. 13.1). This is simply a family of
planes along the crystal axes with spacing a. You might expect a wave
of wavelength 2π/a oriented perpendicular to these planes to scatter
constructively. However, if we are considering a bcc lattice, then there
are additional planes of atoms half-way between the (100) planes which
then cause perfect destructive interference. In Section 14.2.3 we will give
a more geometric understanding of these absences.

Example 3: Copper fcc: Quite similarly there are systematic ab-
sences for scattering from fcc crystals as well. Recall from Eq. 12.6 that
the fcc crystal can be thought of as a simple cubic lattice with a basis
given by the points [0, 0, 0], [ 12 ,

1
2 , 0], [

1
2 , 0,

1
2 ], and [0, 12 ,

1
2 ] in units of the

cubic lattice constant. As a result the structure factor of fcc copper is
given by (plugging into Eq. 14.11)

S(hkl) = fCu

[
1 + eiπ(h+k) + eiπ(h+l) + eiπ(k+l)

]

.
(14.12)

It is easily shown that this expression vanishes unless h, k and l are either
all odd or all even.

Summary of Systematic Absences

Systematic absences of scattering

simple cubic all h, k, l allowed
bcc h+ k + l must be even
fcc h, k, l must be all odd or all even

Systematic absences are sometimes known as selection rules. Note
that these selection rules do not depend on the fact that all three axes of
the lattice are the same length.17 For example, face-centered orthorhom-17In Eq. 14.11, no mention is made of

the lattice constant—both (h, k, l) and
[u, v, w] are simply written in terms of
the lattice vector lengths.

bic has the same selection rules as face-centered cubic!
It is very important to note that these absences, or selection rules,

occur for any structure with the given (Bravais) lattice type. Even if
a material is bcc with a basis of five different atoms per primitive unit
cell, it will still show the same systematic absences as the bcc lattice we
considered in Example 2 with a single atom per primitive unit cell. To
see why this is true we consider yet another example.
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Fig. 14.6 Zinc sulfide (zincblende) con-
ventional unit cell. This is fcc with
a basis given by a Zn atom (light) at
[0, 0, 0] and a S atom (dark) at [ 14 ,

1
4 ,

1
4 ].

Example 4: Zinc Sulfide = fcc with a basis: As shown in
Fig. 14.6, the zinc sulfide (zincblende) crystal is a an fcc lattice with
a basis given by a Zn atom at [0, 0, 0] and an S atom at [14 ,

1
4 ,

1
4 ] (this

is known as a zincblende structure). If we consider the fcc lattice to be
a cubic lattice with basis given by the points [0, 0, 0], [ 12 ,

1
2 , 0], [

1
2 , 0,

1
2 ],

and [0, 12 ,
1
2 ], we then have the eight atoms in the conventional unit cell

having positions given by the combination of the two bases, i.e.,

Basis for conventional unit cell of ZnS

Zn Positions= [0, 0, 0], [ 12 ,
1
2 , 0], [ 12 , 0,

1
2 ], [0, 1

2 ,
1
2 ]

S Positions= [ 14 ,
1
4 ,

1
4 ], [ 34 ,

3
4 ,

1
4 ], [ 34 ,

1
4 ,

3
4 ], [ 14 ,

3
4 ,

3
4 ].

The structure factor for ZnS is thus given by

S(hkl) = fZn

[
1 + e2πi(hkl)·[

1
2 ,

1
2 ,0] + . . .

]

+ fS
[
e2πi(hkl)·[

1
4 ,

1
4 ,

1
4 ] + e2πi(hkl)·[

3
4 ,

3
4 ,

1
4 ] + . . .

]

.

This combination of eight terms can be factored to give

S(hkl) =
[
1 + eiπ(h+k) + eiπ(h+l) + eiπ(k+l)

]

×
[
fZn + fS e2πi(hkl)·[

1
4 ,

1
4 ,

1
4 ]
]

.
(14.13)

The first term in brackets is precisely the same as the term we found
for the fcc crystal in Eq. 14.12. In particular it has the same systematic
absences that it vanishes unless h, k, and l are either all even or all odd.
The second term gives structure associated specifically with ZnS.
Since the positions of the atoms are the positions of the underlying

lattice plus the vectors in the basis, it is easy to see that the struc-
ture factor of a crystal system with a basis will always factorize into a
piece which comes from the underlying lattice structure times a piece
corresponding to the basis. Generalizing Eq. 14.13 we can write

S(hkl) = SLattice
(hkl) × Sbasis

(hkl) (14.14)

(where, to be precise, the form factors only occur in the latter term).

14.2.3 Geometric Interpretation of Selection Rules

The absence of certain scattering peaks has a very nice geometric inter-
pretation. The fact that scattering does not occur at certain wavevectors
for bcc and fcc lattices stems the Important Comment mentioned in Sec-
tion 13.1.5. Recall that for these lattices we work with orthogonal axes
for describing reciprocal space and Miller indices rather than working
with the more complicated non-orthogonal primitive reciprocal lattice
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vectors. As a result, not all sets of Miller indices correspond to families
of lattice planes.
Let us recall from Section 13.1.4 that when we give a set of Miller

indices (hkl) for a (say, simple cubic) lattice, we are describing a set of
parallel planes orthogonal to G(hkl) and spaced by 2π/|G(hkl)|. We are
further guaranteed that every lattice point of the simple cubic lattice
will be included in one of these planes. If we consider (010) as shown in
the top of Fig. 13.2, while these planes are perfectly good lattice planes
for the simple cubic lattice, they do not intersect the additional lattice
point in the center of the bcc unit cell. Thus (010) is not a reciprocal
lattice vector for the bcc lattice. However, as shown in the middle of
Fig. 13.2, the (020) planes do intersect all of the bcc lattice points, and
therefore (020) is a real reciprocal lattice vector for the bcc lattice. The
general rule is that waves can always scatter by reciprocal lattice vectors,
and thus the selection rule for scattering from a bcc lattice (h + k + l
being even) is both the condition that (hkl) is a reciprocal lattice vector
and is also the condition that assures that the point in the middle of the
unit cell is intersected by one of the corresponding planes. The situation
is similar for the fcc lattice. The selection rule for an allowed scattering
from an fcc lattice both defines which (hkl) are actual reciprocal lattice
vectors and simultaneously gives a condition such that all points of the
fcc lattice are included in one of the planes defined by (hkl).

14.3 Methods of Scattering Experiments

There are many methods of performing scattering experiments. In prin-
ciple they are all similar—one sends in a probe wave of known wavelength
(an X-ray, for example) and measures the angles at which it diffracts
when it comes out. Then, using Bragg’s laws (or the Laue equation) one
can deduce the spacings of the lattice planes in the system.

14.3.1 Advanced Methods

Laue Method

Conceptually, perhaps the simplest method is to take a large single crys-
tal of a material, fire waves at it (X-rays, say) from one direction, and
measure the direction of the outgoing waves. However, given a single
direction of the incoming wave, it is unlikely that you precisely achieve
the Bragg condition for any set of lattice planes. In order to get more
data, one can vary the wavelength of the incoming wave. This allows
one to achieve the Bragg condition, at least at some wavelength.

Rotating Crystal Method

A similar technique is to rotate the crystal continuously so that at some
angle of the crystal with respect to the incoming waves, one achieves the
Bragg condition and measures an outcoming diffracted wave.
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Both of these methods are indeed used. However, there is an important
reason that they are often impossible to use. Frequently it is not possible
to obtain a single crystal of a material. Growing large crystals (the
beautiful ones shown in Fig. 7 are mined not grown) can be an enormous
challenge.18 In the case of neutron scattering, the problem is even more

18For example, high-temperature su-
perconducting materials were discov-
ered in 1986 (and resulted in a No-
bel Prize the next year!). Despite a
concerted world-wide effort, good sin-
gle crystals of these materials were not
available for 5 to 10 years.

acute since one typically needs fairly large single crystals compared to
X-rays.

14.3.2 Powder Diffraction

Powder diffraction, or the Debye–Scherrer method,19 is the use of wave 19Debye is the same guy from the spe-
cific heat of solids. Paul Scherrer was
Swiss but worked in Germany during
the second world war, where he passed
information to the famous American
spy (and baseball player), Moe Berg,
who had been given orders to find and
shoot Heisenberg if he felt that the Ger-
mans were close to developing a bomb.

scattering on a sample which is not single crystalline, but is powdered.
Because one does not need single crystals this method can be used on a
much wider variety of samples.
In this case, the incoming wave can scatter off of any one of many

small crystallites which may be oriented in any possible direction. In
spirit this technique is similar to the rotating crystal method in that
there is always some angle at which a crystal can be oriented to diffract
the incoming wave. A schematic of the Debye–Scherrer setup is shown
in Fig. 14.7 and sample data is shown in Fig. 14.8. Using Bragg’s law,
given the wavelength of the incoming wave, we can deduce the possible
spacings between lattice planes.

2!

incident
X-ray beam

polycrystalline
specimen

Debye–Scherrer
cone

Fig. 14.7 Schematic of a Debye–
Scherrer powder diffraction experi-
ment.

2θ = 0 2θ = 90◦ 2θ = 180◦

Fig. 14.8 Debye–Scherrer powder diffraction data exposed on photographic film. In
modern experiments digital detectors are used.

A Fully Worked Example

We now present in detail a fully worked example of how to analyze a
powder diffraction pattern.20 But first, it is useful to write down a table 20At Oxford, powder diffraction prob-

lems end up on exams every year, and
unfortunately it is hard to find refer-
ences that explain how to solve them.

(Table 14.1) of possible lattice planes and the selection rules that can
occur for the smallest reciprocal lattice vectors.
The selection rules are those given in Section 14.2.2: simple cubic

allows scattering from any plane, bcc must have h+ k + l be even, and
fcc must have h, k, l either all odd or all even. On the table we have also
added a column N which is the square magnitude of the Miller indices.
We have also added an additional column labeled “multiplicity”. This

quantity is important for figuring out the amplitude of scattering. The
point here is that the (100) planes have some particular spacing but there
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Table 14.1 Selection rules for cubic,

bcc, and fcc lattices.

{hkl} N = h2 + k2 + l2 multiplicity cubic bcc fcc

100 1 6 #
110 2 12 # #
111 3 8 # #
200 4 6 # # #
210 5 24 #
211 6 24 # #
220 8 12 # # #
221 9 24 #
300 9 6 #
310 10 24 # #
311 11 24 # #
222 12 8 # # #
...

...
...

...

are five other families of planes with the same spacing: (010), (001), (1̄00),
(01̄0), (001̄). (Because we mean all of these possible families of lat-
tice planes, we use the notation {hkl} introduced at the end of Section
13.1.5.) In the powder diffraction method, the crystal orientations are
random, and here there would be six possible equivalent orientations of
a crystal which will present the right angle for scattering from one of
these planes, so there will be scattering intensity which is six times as
large as we would otherwise calculate—this is known as the multiplicity
factor. For the case of the 111 family, we would instead find eight possi-
ble equivalent planes: (111), (111̄), (11̄1), (11̄1̄), (1̄11), (1̄11̄), (1̄1̄1), (1̄1̄1̄).
Thus, we should replace Eq. 14.6 with

I{hkl} ∝M{hkl}|S{hkl}|2 (14.15)

where M is the multiplicity factor.
Calculating this intensity is straightforward for neutron scattering,

but is much harder for X-ray scattering because the form factor for X-
rays depends on G. I.e, since in Eq. 14.7 the form factor (or scattering
length bj) is a constant independent of G, it is easy to calculate the
expected amplitudes of scattering based only on these constants. For
the case of X-rays you need to know the functional forms of fj(G). At
some very crude level of approximation it is a constant. More precisely
we see in Eq. 14.10 that it is constant for small scattering angle but can
vary quite a bit for large scattering angle.
Even if one knows the detailed functional form of fj(G), experimen-

tally observed scattering intensities are never quite of the form predicted
by Eq. 14.15. There can be several sources of corrections21 that modify

21Many of these corrections were first
worked out by Charles Galton Darwin,
the grandson of Charles Robert Dar-
win, the brilliant naturalist and propo-
nent of evolution. The younger Charles
was a terrific scientist in his own right.
Later in life his focus turned to ideas
of eugenics, predicting that the human
race would eventually fail as we con-
tinue to breed unfavorable traits. (His
interest in eugenics is not surprising
considering that the acknowledged fa-
ther of eugenics, Francis Galton, was
also part of the same family.)

this result (these corrections are usually swept under the rug in elemen-
tary introductions to scattering, but you should at least be aware that
they exist). Perhaps the most significant corrections22 are known as

22Another important correction is due
to the thermal vibrations of the crys-
tal. Using Debye’s theory of vibra-
tion, Ivar Waller derived what is now
known as the Debye–Waller factor that
accounts for the thermal smearing of
Bragg peaks.
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Lorentz corrections or Lorentz-polarization corrections. These terms,
which depend on the detailed geometry of the experiment, give various
prefactors (involving terms like cos θ for example)23 which are smooth 23These factors are fairly flat between

80◦ and 140◦, and can be roughly ig-
nored. However, outside of this range
these factors vary rapidly and need to
be accounted for more carefully.

as a function of θ.
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Fig. 14.9 Powder diffraction of neu-
trons from PrO2. The wavelength of
the neutron beam is λ = .123 nm. (One
should assume that Lorentz corrections
have been removed from the displayed
intensities.)

The Example:

Consider the powder diffraction data24 from PrO2 shown in Fig. 14.9. 24Data very similar to this was pre-
sented in the 2009 Oxford exam. Cau-
tion to Oxford students: there were
some fairly serious errors on that exam.

Given the wavelength .123 nm, (and tentatively assuming a cubic lattice
of some sort) we first would like to figure out the type of lattice and the
lattice constant.
Note that the full deflection angle is 2θ. We will want to use Bragg’s

law and the expression for the spacing between planes

d(hkl) =
λ

2 sin θ
=

a√
h2 + k2 + l2

where we have also used the expression Eq. 13.12 for the spacing between
planes in a cubic lattice given the lattice constant a. Note that this then
gives us

a2/d2 = h2 + k2 + l2 = N

which is what we have labeled N in Table 14.1 of selection rules. We
now make another table (Table 14.2). In the first two columns we just
read the angles off of the given graph. You should try to make the
measurements of the angle from the data as carefully as possible. It
makes the analysis much easier if you measure the angles right!
In the third column of the table we calculate the distance between

lattice planes for the given diffraction peak using Bragg’s law. In the
fourth column we have calculated the squared ratio of the lattice spacing
d for the given peak to the lattice spacing for the first peak (labeled a)
as a reference. We then realize that these ratios are pretty close to whole
numbers divided by 3, so we try multiplying each of these quantities by
3 in the next column. If we round these numbers to integers (given in
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peak 2θ d = λ/(2 sin θ) d2a/d
2 3d2a/d

2 N = h2 + k2 + l2 {hkl} a = d
√
h2 + k2 + l2

a 22.7◦ 0.313 nm 1 3 3 111 .542 nm
b 26.3◦ 0.270 nm 1.33 3.99 4 200 .540 nm
c 37.7◦ 0.190 nm 2.69 8.07 8 220 .537 nm
d 44.3◦ 0.163 nm 3.67 11.01 11 311 .541 nm
e 46.2◦ 0.157 nm 3.97 11.91 12 222 .544 nm
f 54.2◦ 0.135 nm 5.35 16.05 16 400 .540 nm

Table 14.2 Analysis of data shown in Fig. 14.9.

the next column), we produce precisely the values of N = h2 + k2 + l2

expected for the fcc lattice as shown in Table 14.1, and we thus conclude
that we are looking at an fcc lattice.25 The final column then calculates

25We emphasize that this is the general
scheme for identifying a lattice type.
Calculate d2a/d

2 and if these quantities
are in the ratio of 3,4,8,11 then you have
an fcc lattice. If they are in the ratios
1, 2, 3, 4, 5, 6, 8, . . . then you have a sim-
ple cubic lattice. If they are in the ratio
of 2, 4, 6, 8, 10, 12, 14, . . . then you have
a bcc lattice (see Table 14.1).

the lattice constant. Averaging these numbers26 gives us a measurement

26Which one of these measured data
points is likely to have the least error?
See Exercise 14.10.

of the lattice constant a = .541± .002 nm.
The analysis thus far is equivalent to what one would do for X-ray

scattering. However, with neutrons, assuming the scattering length
is independent of scattering angle (which is typically a good assump-
tion) we can go a bit further by analyzing the intensity of the scatter-
ing peaks.27 In real data intensities are often weighted by the above-

27For X-rays, we would need to know
the form factors fj as a function of an-
gle to make further progress.

mentioned Lorentz factors. In Fig. 14.9, note that these factors have
been removed so that we can expect that Eq. 14.15 holds precisely.

Fig. 14.10 The fluorite structure of
PrO2. This is fcc with a basis given by
a white atom (Pr) at [0, 0, 0] and dark
atoms (O) at [ 14 ,

1
4 ,

1
4 ] and [ 14 ,

1
4 ,

3
4 ].

It turns out that the basis for the PrO2 crystal is a Pr atom at position
[0, 0, 0] and O at [ 14 ,

1
4 ,

1
4 ] and [ 14 ,

1
4 ,

3
4 ]. Thus, the Pr atoms form a fcc

lattice and the O’s fill in the holes as shown in Fig. 14.10. Given this
structure, let us see what further information we might extract from the
data in Fig. 14.9.
Let us start by calculating the structure factor for this crystal. Using

Eq. 14.14 we have

S(hkl) =
[
1 + eiπ(h+k) + eiπ(h+l) + eiπ(k+l)

]

×
[
bPr + bO

(
ei(π/2)(h+k+l) + ei(π/2)(h+k+3l)

)]

.

The first term in brackets is the structure factor for the fcc lattice, and
it gives 4 for every allowed scattering point (when h, k, l are either all
even or all odd). The second term in brackets is the structure factor for
the basis.
The scattering intensity of the peaks are then given in terms of this

structure factor and the peak multiplicities as shown in Eq. 14.15. We
thus can write for all of our measured peaks28

28Again assuming that smooth Lorentz
correction terms have been removed
from our data so that Eq. 14.15 is ac-
curate.

I{hkl} = CM{hkl}

∣∣∣bPr + bO
(
ei(π/2)(h+k+l) + ei(π/2)(h+k+3l)

)∣∣∣
2

where the constant C contains other constant factors (including the
factor of 42 from the fcc structure factor). Note: We have to be a bit
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careful here to make sure that the bracketed factor gives the same result
for all possible (hkl) included in {hkl}, but in fact it does. Thus we can
compile another table showing the predicted relative intensities of the
peaks:

Table 14.3 Predicted versus measured
scattering intensities. Here the predic-
tion is based purely on the scattering
structure factor and the scattering mul-
tiplicity (Lorentz factors are not consid-
ered).

Scattering Intensity

peak {hkl} I{hkl}/C ∝M |S|2 Measured Intensity

a 111 8 b2Pr 0.05
b 200 6 [bPr − 2bO]2 0.1
c 220 12 [bPr + 2bO]2 1.0
d 311 24 b2Pr 0.15
e 222 8 [bPr − 2bO]2 0.13
f 400 6 [bPr + 2bO]2 0.5

where the final column lists the intensities measured from the data in
Fig. 14.9.
From the analytic expressions in the third column we can immediately

predict that we should have

Id = 3Ia Ic = 2If Ie =
4

3
Ib .

Examining the fourth column of this table, it is clear that these equations
are properly satisfied (at least to a good approximation).
To further examine the data, we can look at the ratio Ic/Ia which in

the measured data has a value of about 20. Thus we have

Ic
Ia

=
12[bPr + 2bO]2

8 b2Pr

= 20

with some algebra this can be reduced to a quadratic equation with two
roots, resulting in

bPr = −.43 bO or bPr = .75 bO . (14.16)

Further we can calculate

Ib
Ia

=
6[bPr − 2bO]2

8 b2Pr

= 2

which we can solve to give

bPr = .76 bO or bPr = −3.1 bO .

The former solution is consistent with Eq. 14.16, whereas the latter is
not. We thus see how this neutron data can be used to experimentally
determine the ratio of the nuclear scattering lengths bPr/bO ≈ .75. In
fact, were we to look up these scattering lengths on a table we would
find that this ratio is very close to correct!
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14.4 Still More About Scattering

Scattering experiments such as those discussed here are the method for
determining the microscopic structures of materials. One can use these
methods (and extensions thereof) to sort out even very complicated
atomic structures such as those of biological molecules.

Aside: In addition to the obvious work of von Laue and Bragg that initiated
the field of X-ray diffraction (and Brockhouse and Shull for neutrons) there have

been about half a dozen Nobel Prizes that have relied on, or further developed

these techniques. In 1962 a chemistry Nobel Prize was awarded to Perutz and
Kendrew for using X-rays to determine the structure of the biological proteins

hemoglobin and myoglobin. The same year, Watson and Crick were awarded
the prize in biology for determining the structure of DNA—which they did with

the help of X-ray diffraction data taken by Rosalind Franklin.29 Two years later

29There remains quite a controversy
over the fact that Watson and Crick,
at a critical juncture, were shown
Franklin’s data without her knowledge!
Franklin may have won the prize in ad-
dition to Watson and Crick and thereby
received a bit more of the appropriate
credit, but she tragically died of cancer
at age 37 in 1958, four years before the
prize was awarded.

in 1964, Dorothy Hodgkin30 won the prize for determination of the structure
of penicillin and other biological molecules. Further Nobel Prizes were given

in chemistry for using X-rays to determine the structure of boranes (Lipscomb,

1976), photosynthetic proteins (Deisenhofer, Huber, Michel, 1988), and ribosomes
(Ramakrishnan, Steitz, Yonath, 2009).

30 Dorothy Hodgkin was a student and
later a fellow at Somerville College,
Oxford. Yay!

14.4.1 Variant: Scattering in Liquids and
Amorphous Solids

Fig. 14.11 The structure factor of liq-
uid copper. Broad peaks are shown due
to the approximately periodic structure
of a liquid. Figure from K. S. Vah-
vaselka, Physica Scripta, 18, 266, 1978.
doi:10.1088/0031-8949/18/4/005 Used
by permission of IOP Publishing.

A material need not be crystalline to scatter waves. However, for amor-
phous solids or liquids, instead of having delta-function peaks in the
structure factor at reciprocal lattice vectors (as in Fig. 14.9), the struc-
ture factor (defined as the Fourier transform of the density) will have
smooth behavior—with incipient peaks corresponding to 2π/d, where d
is roughly the typical distance between atoms. An example of a mea-
sured structure factor in liquid Cu is shown in Fig. 14.11. As the material
gets close to its freezing point, the peaks in the structure factor will get
more pronounced, becoming more like the structure of a solid where the
peaks are delta functions.

14.4.2 Variant: Inelastic Scattering

It is also possible to perform scattering experiments which are inelastic.
Here, “inelastic” means that some of the energy of the incoming wave is
left behind in the sample, and the energy of the outgoing wave is lower.31

31At finite temperature the outgoing
wave could also be at higher energy
than the incoming wave, thus taking
away some of the sample’s thermal en-
ergy.

The general process is shown in Fig. 14.12. A wave is incident on the
crystal with momentum k and energy ε(k) (For neutrons the energy is
!2k2/(2m), whereas for photons the energy is !c|k|). This wave transfers
some of its energy and momentum to some internal excitation mode
of the material—such as a phonon, or a spin or electronic excitation
quanta. One measures the outgoing energy E and momentum Q of the
wave. Since energy and crystal momentum are conserved

Q = k− k′ +G

E(Q) = ε(k)− ε(k′)
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thus allowing one to determine the dispersion relation of the internal
excitation (i.e., the relationship between Q and E(Q)). This technique
is extremely useful for determining phonon dispersions experimentally.
In practice, the technique is much more useful with neutrons than with
X-rays. The reason for this difference stems from the fact that the speed
of light c is so large. Since there is a maximum energy !ωmax that a
phonon can absorb, the maximum change in crystal momentum k that
can occur, !ωmax/c is tiny. Thus there is only a very very small range
of possible k′ for each k. A second reason that this technique is difficult
for X-rays is because it is much harder to measure small changes in the
energy of X-rays than it is for neutrons (since for X-rays one needs to
measure a small change in a large energy whereas for neutrons it is a
small change in a small energy).

incident

k, ε(k)

sc
at
te
re
d

k
′ , ε

(k
′ )

Q, E(Q)

phonon

Fig. 14.12 Inelastic scattering. Energy
and crystal momentum must be con-
served.14.4.3 Experimental Apparatus

Perhaps the most interesting piece of this kind of experiment is the ques-
tion of how one actually produces and measures the waves in question.
Since at the end of the day one ends up counting photons or neutrons,

brighter sources (higher flux of probe particles) are always better—as
it allows one to do experiments quicker, and allows one to reduce noise
(since counting error on N counts is proportional to

√
N , meaning a

fractional error that drops as 1/
√
N). Further, with a brighter source,

one can examine smaller samples more easily.
X-rays: Even small laboratories can have X-ray sources that can do

very useful crystallography. A typical source accelerates electrons elec-
trically (with 10s of keV) and smashes them into a metal target.32 X-rays 32Wilhelm Conrad Roentgen discov-

ered X-rays using roughly this tech-
nique. In 1901 he was the first recip-
ient of the Physics Nobel Prize for this
work. In many languages, X-rays are
called “Roentgen rays”.

with a discrete spectrum of energies are produced when an electron is
knocked out of a low atomic orbital, and an electron in a higher orbital
drops down to refill the hole (this is known as X-ray fluorescence). Also,
a continuous Bremsstrahlung spectrum is produced by electrons coming
near the charged nuclei, but for monochromatic diffraction experiments,
this is less useful. (Although one wavelength from a spectrum can always
be selected—using diffraction from a known crystal!)
Much higher brightness X-ray sources are provided by huge (and

hugely expensive) facilities known as synchrotron light sources—where
electrons are accelerated around enormous loops (at energies in the GeV
range). Then, using magnets these electrons are rapidly accelerated
around corners which makes them emit X-rays extremely brightly and
in a highly columnated fashion.
Detection of X-rays can be done with photographic films (the old

style) but is now more frequently done with more sensitive semiconduc-
tor detectors.
Neutrons: Although it is possible to generate neutrons in a small lab,

the flux of these devices is extremely small, so neutron scattering exper-
iments are always done in large neutron source facilities. Although the
first neutron sources simply used the byproduct neutrons from nuclear
reactors, more modern facilities now use a technique called spallation,33

33The word “spallation” is generally
used when some fragment is ejected
from a larger body due to an impact.
This word is often used in planetary
science to describe the result of meteor
impacts.
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where protons are accelerated into a target and neutrons are emitted. As
with X-rays, neutrons can be monochromated (made into a single wave-
length) by diffracting them from a known crystal. Another technique is
to use time-of-flight. Since more energetic neutrons move faster, one can
send a pulse of polychromatic neutrons and select only those that arrive
at a certain time in order to obtain monochromatic neutrons. On the
detection side, one can again select for energy similarly. We won’t say
too much about neutron detection as there are many methods. Needless
to say, they all involve interaction with nuclei.

Fig. 14.13 The Rutherford Appleton Laboratory in Oxfordshire, UK. (Photo used by permis-
sion of STFC). On the right, the large circular building is the DIAMOND synchrotron light
source. The building on the left is the ISIS spallation neutron facility. This was the brightest
neutron source on earth until August 2007, when it was surpassed by one in Oak Ridge, US.
The next generation neutron source is being built in Sweden and is expected to start operating
in 2019. The price tag for construction of this device is over 109 euros.

Chapter Summary

• Understand diffraction of waves from crystals in both the Laue and
Bragg formulations (equivalent to each other).

• The structure factor (the Fourier transform of the scattering po-
tential) in a periodic crystal has sharp peaks at allowed reciprocal
lattice vectors for scattering. The scattering intensity is propor-
tional to the square of the structure factor.

• There are systematic absences of diffraction peaks depending on
the crystal structure (fcc, bcc). Know how to figure these out.

• Know how to analyze a powder diffraction pattern (very common
exam question!).
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References

It is hard to find references that give enough information about diffrac-
tion to suit the tastes of Oxford. These are not bad:

• Kittel, chapter 2
• Ashcroft and Mermin, chapter 6
• Dove, chapter 6 (most detailed, perhaps a bit too much information)

In addition, the following have nice, but incomplete discussions:
• Rosenberg, chapter 2
• Ibach and Luth, chapter 3
• Burns, chapter 4

Exercises

(14.1) Reciprocal Lattice and X-ray Scattering

Consider the lattice described in Exercise 13.5 (a
two-dimensional rectangular crystal having a unit
cell with sides a1 = 0.468 nm and a2 = 0.342 nm).
A collimated beam of monochromatic X-rays with
wavelength 0.166 nm is used to examine the crystal.

(a) Draw to scale a diagram of the reciprocal lat-
tice.

(b) Calculate the magnitude of the wavevectors k
and k′ of the incident and reflected X-ray beams,
and hence construct on your drawing the “scatter-
ing triangle” corresponding to the Laue condition
∆k = G for diffraction from the (210) planes (the
scattering triangle includes k, k′ and ∆k).

(14.2) ‡ X-ray scattering II

BaTiO3 has a primitive cubic lattice and a basis
with atoms having fractional coordinates

Ba [0,0,0]

Ti [ 12 ,
1
2 ,

1
2 ]

O [ 12 ,
1
2 , 0], [ 12 , 0,

1
2 ], [0, 1

2 ,
1
2 ]

! Sketch the unit cell.

! Show that the X-ray structure factor for the
(00l) Bragg reflections is given by

S(hkl) = fBa + (−1)lfTi +
[
1 + 2(−1)l

]
fO

where fBa is the atomic form factor for Ba, etc.

! Calculate the ratio I(002)/I(001), where I(hkl)
is the intensity of the X-ray diffraction from the

(hkl) planes. You may assume that the atomic
form factor is proportional to atomic number (Z),
and neglect its dependence on the scattering vector.
(ZBa = 56, ZTi = 22, ZO = 8.)

(14.3) ‡ X-ray scattering and Systematic Absences

(a) Explain what is meant by “Lattice Constant”
for a cubic crystal structure.

(b) Explain why X-ray diffraction may be observed
in first order from the (110) planes of a crystal
with a body-centered cubic lattice, but not from
the (110) planes of a crystal with a face-centered
cubic lattice.

! Derive the general selection rules for which
planes are observed in bcc and fcc lattices.

(c) Show that these selection rules hold indepen-
dent of what atoms are in the primitive unit cell,
so long as the lattice is bcc or fcc respectively.

(d) A collimated beam of monochromatic X-rays of
wavelength 0.162 nm is incident upon a powdered
sample of the cubic metal palladium. Peaks in the
scattered X-ray pattern are observed at angles of
42.3◦, 49.2◦, 72.2◦, 87.4◦, and 92.3◦ from the di-
rection of the incident beam.

! Identify the lattice type.

! Calculate the lattice constant and the nearest-
neighbor distance.

! If you assume there is only a single atom in
the basis does this distance agree with the known
data that the density of palladium is 12023 kg m−3?
(Atomic mass of palladium = 106.4.)

(e) How could you improve the precision with which
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the lattice constant is determined. (For one sugges-
tion, see Exercise 14.10.)

(14.4) ‡ Neutron Scattering
(a) X-ray diffraction from sodium hydride (NaH)
established that the Na atoms are arranged on a
face-centered cubic lattice.

! Why is it difficult to locate the positions of the
H atoms using X-rays?

The H atoms were thought to be displaced from
the Na atoms either by [ 14 ,

1
4 ,

1
4 ] or by [ 12 ,

1
2 ,

1
2 ],

to form the ZnS (zincblende) structure or NaCl
(sodium chloride) structure, respectively. To dis-
tinguish these models a neutron powder diffraction
measurement was performed. The intensity of the
Bragg peak indexed as (111) was found to be much
larger than the intensity of the peak indexed as
(200).

! Write down expressions for the structure factors
S(hkl) for neutron diffraction assuming NaH has

(i) the sodium chloride (NaCl) structure
(ii) the zinc blende (ZnS) structure.

! Hence, deduce which of the two structure mod-
els is correct for NaH. (Nuclear scattering length of
Na = 0.363 × 105nm; nuclear scattering length of
H = −0.374 × 105 nm.)

(b) How does one produce monochromatic neutrons
for use in neutron diffraction experiments?

! What are the main differences between neu-
trons and X-rays?
! Explain why (inelastic) neutron scattering is
well suited for observing phonons, but X-rays are
not.

(14.5) And More X-ray Scattering

A sample of aluminum powder is put in an Debye–
Scherrer X-ray diffraction device. The incident X-
ray radiation is from Cu–Ka X-ray transition (this
just means that the wavelength is λ = .154 nm).
The following scattering angles were observed:

19.48◦ 22.64◦ 33.00◦ 39.68◦ 41.83◦ 50.35◦ 57.05◦

59.42◦

Given also that the atomic weight of Al is 27, and
the density is 2.7 g/cm3, use this information to
calculate Avagadro′s number. How far off are you?
What causes the error?

(14.6) More Neutron Scattering

The conventional unit cell dimension for a partic-
ular bcc solid is .24nm. Two orders of diffraction
are observed. What is the minimum energy of the
neutrons? At what temperature would such neu-
trons be dominant if the distribution is Maxwell–
Boltzmann.

(14.7) Lattice and Basis

Prove that the structure factor for any crystal (de-
scribed with a lattice and a basis) is the product of
the structure factor for the lattice times the struc-
ture factor for the basis (i.e., prove Eq. 14.14).

(14.8) Cuprous Oxide and Fluorine Beta

(a) The compound Cu2O has a cubic conventional
unit cell with the basis:

O [000] ; [ 12 ,
1
2 ,

1
2 ]

Cu [ 14 ,
1
4 ,

1
4 ] ; [ 14 ,

3
4 ,

3
4 ] ; [ 34 ,

1
4 ,

3
4 ] ; [ 34 ,

3
4 ,

1
4 ]

Sketch the conventional unit cell. What is the lat-
tice type? Show that certain diffraction peaks de-
pend only on the Cu form factor fCu and other
reflections depend only on the O form factor fO .

(b) Consider fluorine beta phase as described in ex-
ercise 12.5. Calculate the structure factor for this
crystal. What are the selection rules?

(14.9) Form Factors

(a) Assume that the scattering potential can be
written as the sum over the contributions of the
scattering from each of the atoms in the system.
Write the positions of the atoms in terms of a lat-
tice plus a basis so that

V (x) =
∑

R,α

Vα(x−R− yα)

where R are lattice points, α indexes the particles
in the basis and yα is the position of atom α in the
basis. Now use the definition of the structure fac-
tor Eq. 14.5 and derive an expression of the form of
Eq. 14.8 and hence derive expression 14.9 for the
form factor. (Hint: Use the fact that an integral
over all space can be decomposed into a sum over
integrals of individual unit cells.)

(b) Given the equation for the form factor you just
derived (Eq. 14.9), assume the scattering potential
from an atom is constant inside a radius a and is
zero outside that radius. Derive Eq. 14.10.

(c)* Use your knowledge of the wavefunction of an
electron in a hydrogen atom to calculate the X-ray
form factor of hydrogen.

(14.10) Error Analysis

Imagine you are trying to measure the lattice con-
stant a of some crystal using X-rays. Suppose a
diffraction peak is observed at a scattering angle of
2θ. However, suppose that the value of θ is mea-
sured only within some uncertainty δθ. What is the
fractional error δa/a in the resulting measurement
of the lattice constant? How might this error be
reduced? Why could it not be reduced to zero?
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Electrons in a Periodic
Potential 15
In Chapters 9 and 10 we discussed the wave nature of phonons in solids,
and how crystal momentum is conserved (i.e., momentum is conserved
up to reciprocal lattice vectors). Further, we found that we could de-
scribe the entire excitation spectrum within a single Brillouin zone in
a reduced zone scheme. We also found in Chapter 14 that X-rays and
neutrons scatter from solids by conserving crystal momentum. In this
chapter we will consider the nature of electron waves in solids, and we
will find that similarly crystal momentum is conserved and the entire
excitation spectrum can be described within a single Brillouin zone using
a reduced zone scheme.
We have seen a detailed preview of properties of electrons in periodic

systems when we considered the one-dimensional tight binding model in
Chapter 11, so the results of this section will be hardly surprising. How-
ever, in the current chapter we will approach the problem from a very
different (and complementary) starting point. Here, we will consider
electrons as free-electron waves that are only very weakly perturbed by
the periodic potential from the atoms in the solid. The tight binding
model is exactly the opposite limit where we consider electrons bound
strongly to the atoms, and they only weakly hop from one atom to the
next.

15.1 Nearly Free Electron Model

We start with completely free electrons whose Hamiltonian is

H0 =
p2

2m .

The corresponding energy eigenstates, the plane waves |k〉, have eigenen-
ergies given by

ε0(k) =
!2|k|2

2m .

Now consider a weak periodic potential perturbation to this Hamiltonian

H = H0 + V (r)

with V periodic, meaning

V (r) = V (r+R)
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where R is any lattice vector. The matrix elements of this potential are
then just the Fourier components

〈k′|V |k〉 =
1

L3

∫
dr ei(k−k′)·r V (r) ≡ Vk′−k (15.1)

which is zero unless k′ − k is a reciprocal lattice vector (see Eq. 14.1).
Thus, any plane-wave state k can scatter into another plane-wave state
k′ only if these two plane waves are separated by a reciprocal lattice
vector.

E
ne

rg
y

-π/a π/a0
Wavevector

G

Fig. 15.1 Scattering from Brillouin
zone boundary to Brillouin zone bound-
ary. The states at the two zone bound-
aries are separated by a reciprocal lat-
tice vector G and have the same energy.
This situation leads to a divergence in
perturbation theory, Eq. 15.2, because
when the two energies match, the de-
nominator is zero.

We now apply the rules of perturbation theory. At first order in the
perturbation V , we have

ε(k) = ε0(k) + 〈k|V |k〉 = ε0(k) + V0

which is just an uninteresting constant energy shift to all of the eigen-
states. In fact, it is an exact statement (at any order of perturbation
theory) that the only effect of V0 is to shift the energies of all of the
eigenstates by this constant.1 Henceforth we will assume that V0 = 0 for

1Since the Fourier mode at G = 0 is
just a constant independent of position.

simplicity.
At second order in perturbation theory we have

ε(k) = ε0(k) +
′∑

k′=k+G

|〈k′|V |k〉|2

ε0(k)− ε0(k′)
(15.2)

where the ′ means that the sum is restricted to have G (= 0. In this sum,
however, we have to be careful. It is possible that, for some k′ it happens
that ε0(k) is very close to ε0(k′) or perhaps they are even equal, in which
case the corresponding term of the sum diverges and the perturbation
expansion makes no sense. This is what we call a degenerate situation
and it needs to be handled with degenerate perturbation theory, which
we shall consider in a moment.
To see when this degenerate situation occurs, we look for solutions of

the two equations

ε0(k) = ε0(k
′) (15.3)

k′ = k+G. (15.4)
2To see this generally, recall that a Bril-
louin zone boundary is a perpendicu-
lar bisector of the segment between 0
and some G. We can write the given
point k = G/2+k⊥ where k⊥ ·G = 0.
Then if we construct the point k′ =
−G/2 + k⊥, then clearly 15.4 is sat-
isfied, k′ is an element of the perpen-
dicular bisector of the segment between
0 and −G and therefore is on a zone
boundary, and |k| = |k′| which implies
that Eq. 15.3 is satisfied.

First, let us consider the one-dimensional case. Since ε(k) ∼ k2, the
only possible solution of Eq. 15.3 is k′ = −k. This means the two
equations are only satisfied for

k′ = −k =
nπ

a

or precisely on the Brillouin zone boundaries (see Fig. 15.1).
In fact, this is quite general even in higher dimensions: given a point

k on a Brillouin zone boundary, there is another point k′ (also on a
Brillouin zone boundary) such that Eqs. 15.3 and 15.4 are satisfied (see
in particular Fig. 13.5 for example).2
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When we are very near a zone boundary, since Eq. 15.2 is divergent,
we need to handle this situation with degenerate perturbation theory.3 In
this approach, one diagonalizes4 the Hamiltonian within the degenerate
space first (and other perturbations can be treated after this). In other
words, we take states of the same energy that are connected by the
matrix element and treat their mixing exactly. 3Hopefully you have learned this in

your quantum mechanics courses al-
ready!
4By “diagonalizing” a matrix M we
mean essentially to find the eigenvalues
λi and normalized eigenvectors v(i) of
the matrix. Determining these is “di-
agonalizing” since you can then write
M = U†DU where Uij = v(i)∗j and
D is the diagonal matrix of eigenvalues
Dij = λiδij .

15.1.1 Degenerate Perturbation Theory

If two plane-wave states |k〉 and |k′〉 = |k+G〉 are of approximately the
same energy (meaning that k and k′ are close to zone boundaries), then
we must diagonalize the matrix elements of these states first. We have

〈k| H |k〉 = ε0(k)
〈k′| H |k′〉 = ε0(k′) = ε0(k+G)
〈k| H |k′〉 = Vk−k′ = V ∗G
〈k′| H |k〉 = Vk′−k = VG

(15.5)

where we have used the definition of VG from Eq. 15.1, and the fact that
V−G = V ∗G is guaranteed by the fact that V (r) is real.
Now, within this two-dimensional space we can write any wavefunction

as
|Ψ〉 = α|k〉 + β|k′〉 = α|k〉+ β|k +G〉. (15.6)

Using the variational principle to minimize the energy is equivalent to
solving the effective Schroedinger equation5 5This should look similar to our 2 by 2

Schroedinger equation 6.9.(
ε0(k) V ∗G
VG ε0(k+G)

)(
α
β

)
= E

(
α
β

)

.

(15.7)

The characteristic equation determining E is then
(

ε0(k) − E

)(

ε0(k+G)− E

)

− |VG|2 = 0. (15.8)

(Note that once this degenerate space is diagonalized, one could go back
and treat further, non-degenerate, scattering processes in perturbation
theory.)

Simple Case: k Exactly at the Zone Boundary

The simplest case we can consider is when k is precisely on a zone bound-
ary (and therefore k′ = k+G is also precisely on a zone boundary). In
this case ε0(k) = ε0(k+G) and our characteristic equation simplifies to

(

ε0(k)− E

)2

= |VG|2

or equivalently
E± = ε0(k) ± |VG|. (15.9)
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Thus we see that a gap opens up at the zone boundary. Whereas both k
and k′ had energy ε0(k) in the absence of the added potential VG, when
the potential is added, the two eigenstates form two linear combinations
with energies split by ±|VG|.

In One Dimension

-a a0

|ψ−|2

|ψ+|2

V (x)

Fig. 15.2 Structure of wavefunctions
at the Brillouin zone boundary. The
higher-energy eigenstate ψ+ has its
density concentrated near the maxima
of the potential V , whereas the lower-
energy eigenstate ψ− has its density
concentrated near the minima of V .

In order to understand this better, let us focus on the one-dimensional
case. Let us assume we have a potential V (x) = Ṽ cos(2πx/a) with Ṽ >
0. The Brillouin zone boundaries are at k = π/a and k′ = −k = −π/a
so that k′ − k = G = −2π/a and ε0(k) = ε0(k′).
Examining Eq. 15.7, we discover that the solutions (when ε0(k) =

ε0(k′)) are given by α = ±β, thus giving the eigenstates

|ψ±〉 =
1√
2

(
|k〉± |k′〉

)
(15.10)

corresponding to E± respectively. Since we can write the real space
version of these |k〉 wavefunctions as6

6Formally what we mean here is

〈x|k〉 = eikx/
√
L.

|k〉 → eikx = eixπ/a

|k′〉 → e−ik′x = e−ixπ/a

we discover that the two eigenstates are given by

ψ+ ∼ eixπ/a + e−ixπ/a ∝ cos(xπ/a)

ψ− ∼ eixπ/a − e−ixπ/a ∝ sin(xπ/a).

If we then look at the densities |ψ±|2 associated with these two wavefunc-
tions (see Fig. 15.2) we see that the higher energy eigenstate ψ+ has its
density concentrated mainly at the maxima of the potential V whereas
the lower energy eigenstate ψ− has its density concentrated mainly at
the minima of the potential.
So the general principle is that the periodic potential scatters between

the two plane waves |k〉 and |k+G〉. If the energy of these two plane
waves are the same, the mixing between them is strong, and the two
plane waves can combine to form one state with higher energy (con-
centrated on the potential maxima) and one state with lower energy
(concentrated on the potential minima).

k Not Quite on a Zone Boundary (Still in One Dimension)

It is not too hard to extend this calculation to the case where k is
not quite on a zone boundary. For simplicity though we will stick to
the one-dimensional situation. We need only solve the characteristic
equation 15.8 for more general k. To do this, we expand around the
zone boundaries.
Let us consider the states at the zone boundary k = ±nπ/a which

are separated by the reciprocal lattice vectors G = ±2πn/a. As noted
in Eq. 15.9, the gap that opens up precisely at the zone boundary will
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be ±|VG|. Now let us consider a plane wave near this zone boundary
k = nπ/a+δ with δ being very small (and n an integer). This wavevector
can scatter into k′ = −nπ/a+ δ due to the periodic potential. We then
have

ε0(nπ/a+ δ) =
!2

2m

[
(nπ/a)2 + 2nπδ/a+ δ2

]

ε0(−nπ/a+ δ) =
!2

2m

[
(nπ/a)2 − 2nπδ/a+ δ2

]
.

Fig. 15.3 Dispersion of a nearly free
electron model. In the nearly free elec-
tron model, gaps open up at the Bril-
louin zone boundaries in an otherwise
parabolic spectrum. Compare this to
what we found for the tight binding
model in Fig. 11.5.

Forbidden Gap

Forbidden Gap

Forbidden Gap

Allowed

Band
Allowed

E
ne

rg
y

Wavevector, k
0 π/a-π/a 3π/a-3π/a

Band

AllowedBand

Fig. 15.4 Dispersion of a nearly free
electron model. Same as Fig. 15.3,
but plotted in repeated zone scheme.
This is equivalent to the reduced zone
scheme but the equivalent zones are re-
peated. Forbidden bands are marked
where there are no eigenstates. The
similarity to the free electron parabolic
spectrum is emphasized.

The characteristic equation (Eq. 15.8) is then
(

!2

2m

[
(nπ/a)2 + δ2

]
− E +

!2

2m
2nπδ/a

)

×

(
!2

2m

[
(nπ/a)2 + δ2

]
− E −

!2

2m
2nπδ/a

)

− |VG|2 = 0

which simplifies to
(

!2

2m

[
(nπ/a)2 + δ2

]
− E

)2

=

(
!2

2m
2nπδ/a

)2

+ |VG|2

or

E± =
!2

2m

[
(nπ/a)2 + δ2

]
±

√(
!2

2m
2nπδ/a

)2

+ |VG|2 . (15.11)

Expanding the square root for small δ we obtain7

7The conditions of validity for this ex-
pansion is that the first term under
the square root of Eqn. 15.11 is much
smaller than the second, meaning that
δ is very small, or we must be very close
to the Brillouin zone boundary. Note
that as VG gets smaller and smaller, the
expansion is valid only for k closer and
closer to the zone boundary.

E± =
!2(nπ/a)2

2m
± |VG|+

!2δ2

2m

[
1±

!2(nπ/a)2

m

1

|VG|

]

.

(15.12)

Note that for small perturbation (which is what we are concerned with),
the second term in the square brackets is larger than unity, so that for
one of the two solutions the square bracket is negative.
Thus we see that near the band gap at the Brillouin zone boundary,

the dispersion is quadratic (in δ) as shown in Fig. 15.3. In Fig. 15.4, we
see (using the repeated zone scheme) that small gaps open at the Bril-
louin zone boundaries in what is otherwise a parabolic spectrum. (This
plotting scheme is equivalent to the reduced zone scheme if restricted to
a single zone.)
The general structure we find is thus very much like what we expected

from the tight binding model we considered previously in Chapter 11.
As in the tight binding picture there are energy bands where there are
energy eigenstates, and there are gaps between bands where there are
no energy eigenstates. As in the tight binding model, the spectrum is
periodic in the Brillouin zone (see Fig 15.4).
In Section 11.2 we introduced the idea of the effective mass—if a

dispersion is parabolic, we can describe the curvature at the bottom of

En
er
gy

G = 2π /a

G = 4π /a

π/a 2π/a−π/a−2π/a 0
Wavevector,  k

2|V2π/a|
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the band in terms of an effective mass. In this model at every Brillouin
zone boundary the dispersion is parabolic (indeed, if there is a gap,
hence a local maximum and a local minimum, the dispersion must be
parabolic around these extrema). Thus we can write the dispersion
Eq. 15.12 (approximately) as

E+(G+ δ) = C+ +
!2δ2

2m∗+

E−(G+ δ) = C− −
!2δ2

2m∗−

where C+ and C− are constants, and the effective masses are given by88Note that since VG is assumed small,

1− !
2(nπ/a)2

m
1

|VG| is negative.
m∗± =

m∣∣∣1± !2(nπ/a)2

m
1

|VG|

∣∣∣
.

We will define effective mass more precisely, and explain its physics in
Chapter 17. For now we just think of this as a convenient way to describe
the parabolic dispersion near the Brillouin zone boundary.

Nearly Free Electrons in Two and Three Dimensions

The principles of the nearly free electron model are quite similar in two
and three dimensions. In short, near the Brillouin zone boundary, a
gap opens up due to scattering by a reciprocal lattice vector. States
of energy slightly higher than the zone boundary intersection point are
pushed up in energy, whereas states of energy slightly lower than the
zone boundary intersection point are pushed down in energy. We will
return to the detailed geometry of this situation in Section 16.2.
There is one more key difference between one dimension and higher

dimensions. In one dimension, we found that if k is on a zone boundary,
then there will be exactly one other k′ such that k − k′ = G is a
reciprocal lattice vector and such that ε(k′) = ε(k) (i.e., Eqs. 15.3 and
15.4 are satisfied). As described earlier in this subsection, these two
plane-wave states mix with each other (see Eq. 15.6) and open up a
gap. However, in higher dimensions it may occur that given k there may
be several different k′ which will satisfy these equations—i.e., many k′

which differ from k by a reciprocal lattice vector and which all have the
same unperturbed energy. In this case, we need to mix together all of
the possible plane waves in order to discover the true eigenstates. One
example of when this occurs is the two-dimensional square lattice, where
the four points (±π/a,±π/a) all have the same unperturbed energy and
are all separated from each other by reciprocal lattice vectors.

Aside: The idea that gaps open at the Brillouin zone boundaries for nearly

free waves in a periodic medium is not restricted to only electron waves. Another

prominent example of very similar physics occurs for visible light. We have already
seen in the previous chapter how X-ray light can scatter by reciprocal lattice

vectors in a crystal. In order to arrange for visible light to scatter similarly we
must have a material with a lattice constant that is on the order of the wavelength
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of the light which is roughly a fraction of a micron (which is much longer than

a typical atomic length scale). Such materials can occur naturally9 or can be 9Natural examples of photonic crys-
tals include the gemstone opal, which
is a periodic array of sub-micron sized
spheres of silica, and the wings of but-
terflies which are periodic arrays of
polymer.

made artificially by assembling small sub-micron building blocks to create what
are known as photonic crystals. Like electron waves in solids, light in photonic

crystals has a band-structure. The free light dispersion !ω = !c|k| is modified by

the periodic medium, such that gaps open at Brillouin zone boundaries entirely
analogously to what happens for electrons. Such gaps in materials can be used

to reflect light extremely well. When a photon strikes a material, if the photon’s
frequency lies within a band gap, then there are no eigenstates for that photon to

enter, and it has no choice but to be fully reflected! This is just another way of

saying that the Bragg condition has been satisfied, and the putative transmitted
light is experiencing destructive interference.

15.2 Bloch’s Theorem

In the “nearly free electron” model we started from the perspective of
plane waves that are weakly perturbed by a periodic potential. But
in real materials, the scattering from atoms can be very strong so that
perturbation theory may not be valid (or may not converge until very
high order). How do we know that we can still describe electrons with
anything remotely similar to plane waves?
In fact, by this time, after our previous experience with waves, we

should know the answer in advance: the plane-wave momentum is not a
conserved quantity, but the crystal momentum is. No matter how strong
the periodic potential, so long as it is periodic, crystal momentum is
conserved. This important fact was first discovered by Felix Bloch10 in 10Felix Bloch later won a Nobel Prize

for inventing nuclear magnetic reso-
nance. In medicine NMR was re-
named MRI (magnetic resonance imag-
ing) when people decided the word “nu-
clear” sounds too much like it must be
related to some sort of bomb.

1928, very shortly after the discovery of the Schroedinger equation, in
what has become known as Bloch’s theorem.11

11Bloch’s theorem was actually discov-
ered by a mathematician, Gaston Flo-
quet in 1883, and rediscovered later by
Bloch in the context of solids. This
is an example of what is known as
Stigler’s law of eponomy: “Most things
are not named after the person who
first discovers them”. In fact, Stigler’s
law was discovered by Merton.

Bloch’s Theorem: An electron in a periodic potential has eigen-
states of the form

Ψα
k(r) = eik·ruα

k(r)

where uα
k is periodic in the unit cell and k (the crystal momentum)

can be chosen within the first Brillouin zone.

In reduced zone scheme there may be many states at each k and these
are indexed by α. The periodic function u is usually known as a Bloch
function, and Ψ is sometimes known as a modified plane wave. Because
u is periodic, it can be rewritten as a sum over reciprocal lattice vectors

uα
k(r) =

∑

G

ũα
G,k eiG·r .

This form guarantees12 that uα
k(r) = uα

k(r+R) for any lattice vector 12In fact, the function u is periodic in
the unit cell if and only if it can be writ-
ten as a sum over reciprocal lattice vec-
tors in this way. See Exercise 15.2.

R. Therefore the full wavefunction is expressed as

Ψα
k(r) =

∑

G

ũα
G,k ei(G+k)·r . (15.13)

Thus an equivalent statement of Bloch’s theorem is that we can write
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each eigenstate as being made up of a sum of plane-wave states k which
differ by reciprocal lattice vectors G.
Given this equivalent statement of Bloch’s theorem, we now under-

stand that the reason for Bloch’s theorem is that the scattering matrix
elements 〈k′|V |k〉 are zero unless k′ and k differ by a reciprocal lattice
vector. This is just the Laue condition! As a result, the Schroedinger
equation is “block diagonal”13 in the space of k, and in any given eigen-13No pun intended.

function only plane waves k that differ by someG can be mixed together.
One way to see this more clearly is to take the Schroedinger equation

[
p2

2m
+ V (r)

]
Ψ(r) = EΨ(r)

and Fourier transform it to obtain
∑

G

VGΨk−G =

[
E −

!2|k|2

2m

]
Ψk

where we have used the fact that Vk−k′ is only non-zero if k− k′ = G.
It is then clear that for each k we have a Schroedinger equation for the
set of Ψk−G’s and we must obtain solutions of the form of Eq. 15.13.
Although by this time it may not be surprising that electrons in a pe-

riodic potential have eigenstates labeled by crystal momenta, we should
not overlook how important Bloch’s theorem is. This theorem tells us
that even though the potential that the electron feels from each atom is
extremely strong, the electrons still behave almost as if they do not see
the atoms at all! They still almost form plane-wave eigenstates, with
the only modification being the periodic Bloch function u and the fact
that momentum is now crystal momentum.

A quote from Felix Bloch:

When I started to think about it, I felt that the main problem was
to explain how the electrons could sneak by all the ions in a metal so
as to avoid a mean free path of the order of atomic distances. . . By
straight Fourier analysis I found to my delight that the wave differed
from the plane wave of free electrons only by a periodic modulation.

Chapter Summary

• When electrons are exposed to a periodic potential, gaps arise in
their dispersion relation at the Brillouin zone boundary. (The dis-
persion is quadratic approaching a zone boundary.)

• Thus the electronic spectrum breaks into bands, with forbidden
energy gaps between the bands. In the nearly free electron model,
the gaps are proportional to the periodic potential |VG|.

• Bloch’s theorem guarantees that all eigenstates are some periodic
function times a plane wave. In repeated zone scheme the wavevec-
tor (the crystal momentum) can always be taken in the first Bril-
louin zone.
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Exercises

(15.1) ‡Nearly Free Electron Model

Consider an electron in a weak periodic potential in
one dimension V (x) = V (x+a). Write the periodic
potential as

V (x) =
∑

G

eiGxVG

where the sum is over the reciprocal lattice G =
2πn/a, and V ∗

G = V−G assures that the potential
V (x) is real.

(a) Explain why for k near to a Brillouin zone
boundary (such as k near π/a) the electron wave-
function should be taken to be

ψ = Aeikx +Bei(k+G)x (15.14)

where G is a reciprocal lattice vector such that |k|
is close to |k +G|.
(b) For an electron of mass m with k exactly at a
zone boundary, use the above form of the wavefunc-
tion to show that the eigenenergies at this wavevec-
tor are

E =
!
2k2

2m
+ V0 ± |VG|

where G is chosen so |k| = |k +G|.
! Give a qualitative explanation of why these two
states are separated in energy by 2|VG|.
! Give a sketch (don’t do a full calculation) of the
energy as a function of k in both the extended and
the reduced zone schemes.

(c) *Now consider k close to, but not exactly at,
the zone boundary. Give an expression for the en-
ergy E(k) correct to order (δk)2 where δk is the

wavevector difference from k to the zone boundary
wavevector.

! Calculate the effective mass of an electron at
this wavevector.

(15.2) Periodic Functions

Consider a lattice of points {R} and a function
ρ(x) which has the periodicity of the lattice ρ(x) =
ρ(x+R). Show that ρ can be written as

ρ(x) =
∑

G

ρG eiG·x

where the sum is over points G in the reciprocal
lattice.

(15.3) Tight Binding Bloch Wavefunctions

Analogous to the wavefunction introduced in Chap-
ter 11, consider a tight-binding wave ansatz of the
form

|ψ〉 =
∑

R

eik·R|R〉

where the sum is over the points R of a lattice, and
|R〉 is the ground-state wavefunction of an electron
bound to a nucleus on site R. In real space this
ansatz can be expressed as

ψ(r) =
∑

R

eik·Rϕ(r−R).

Show that this wavefunction is of the form required
by Bloch’s theorem (i.e., show it is a modified plane
wave).
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(15.4) *Nearly Free Electrons in Two Dimensions

Consider the nearly free electron model for a square
lattice with lattice constant a. Suppose the peri-
odic potential is given by

V (x, y) = 2V10[cos(2πx/a) + cos(2πy/a)]

+ 4V11[cos(2πx/a) cos(2πy/a)]

(a) Use the nearly free electron model to find the
energies of states at wavevector G = (π/a, 0).

(b) Calculate the energies of the states at wavevec-
tor G = (π/a,π/a). (Hint: You should write down
a 4 by 4 secular determinant, which looks difficult,
but actually factors nicely. Make use of adding to-
gether rows or columns of the determinant before
trying to evaluate it!)

(15.5) Decaying Waves

As we saw in this chapter, in one dimension, a
periodic potential opens a band gap such that
there are no plane-wave eigenstates between en-
ergies ε0(G/2) − |VG| and ε0(G/2) + |VG| with G
a reciprocal lattice vector. However, at these for-
bidden energies, decaying (evanescent) waves still
exist. Assume the form

ψ(x) = eikx−κx

with 0 < κ) k and κ real. Find κ as a function of
energy for k = G/2. For what range of VG and E
is your result valid?

(15.6) Kronig–Penney Model*

Consider electrons of mass m in a so-called “delta-
function comb” potential in one dimension

V (x) = aU
∑

n

δ(x− na)

(a) Argue using the Schroedinger equation that in-
between delta functions, an eigenstate of energy E

is always of a plane wave form eiqEx with

qE =
√
2mE/!.

Using Bloch’s theorem conclude that we can write
an eigenstate with energy E as

ψ(x) = eikxuE(x)

where uE(x) is a periodic function defined as

uE(x) = A sin(qEx) +B cos(qEx) 0 < x < a

and uE(x) = uE(x + a) defines u outside of this
interval.

(b) Using continuity of the wavefunction at x = 0
derive

B = e−ika[A sin(qEa) +B cos(qEa)],

and using the Schroedinger equation to fix the dis-
continuity in slope at x = 0 derive

qEA−eikak[A cos(qEa)−B sin(qEa)] = 2maUB/!2

Solve these two equations to obtain

cos(ka) = cos(qEa) +
mUa
!2qE

sin(qEa)

The left-hand side of this equation is always be-
tween −1 and 1, but the right-hand side is not.
Conclude that there must be values of E for
which there are no solutions of the Schroedinger
equation—hence concluding there are gaps in the
spectrum.

(c) For small values of the potential U show that
this result agrees with the predictions of the nearly
free electron model (i.e., determine the size of the
gap at the zone boundary).
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In Chapter 11, when we discussed the tight-binding model in one dimen-
sion, we introduced some of the basic ideas of band structure. In Chapter
15 we found that an electron in a periodic potential shows exactly the
same type of band-structure as we found for the tight-binding model.
In both cases, we found that the spectrum is periodic in momentum (so
all momenta can be taken to be in the first Brillouin zone, in reduced
zone scheme) and that gaps open at Brillouin zone boundaries. These
principles, the idea of bands and band structure, form the fundamental
underpinning of our understanding of electrons in solids. In this chapter
(and the next) we explore these ideas in further depth.

16.1 Energy Bands in One Dimension

 k=+π/a k=−π/a  k=−π/a  k=+π/a

Fig. 16.1 Band diagrams of a one-
dimensional monovalent chain with two
orbitals per unit cell. Left: A band di-
agram with two bands is shown where
each unit cell has one valence elec-
tron so that the lowest band is exactly
half filled, and is therefore a metal.
The filled states are thickly shaded,
the chemical potential is the horizon-
tal dashed line. Right: When electric
field is applied, electrons accelerate, fill-
ing some of the k states to the right and
emptying k-states to the left (in one di-
mension this can be thought of as hav-
ing a different chemical potential on the
left versus the right). Since there are an
unequal number of left-moving versus
right-moving electrons, the situation on
the right represents net current flow.
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Ground State Current Flowing

As we pointed out in Chapter 13, the number of k-states in a single
Brillouin zone is equal to the number of unit cells in the entire system.
Thus, if each unit cell has exactly one free electron (i.e., is valence 1)
there would be exactly enough electrons to fill the band if there were
only one spin state of the electron. Being that there are two spin states
of the electron, when each unit cell has only one valence electron, then
the band is precisely half full. This is shown in the left of Fig. 16.1.
Here, there is a Fermi surface where the unfilled states meet the filled
states (in the figure, the Fermi energy is shown as a horizontal dashed
line). When a band is partially filled, the electrons can repopulate when
a small electric field is applied, allowing current to flow as shown in the
right of Fig. 16.1. Thus, the partially filled band is a metal.
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Fig. 16.2 Band diagrams of a one-
dimensional divalent chain with two or-
bitals per unit cell. When there are two
electrons per unit cell, then there are
exactly enough electrons to fill the low-
est band. In both pictures the chemi-
cal potential is drawn as the horizon-
tal dashed line. Left: one possibil-
ity is that the lowest band (the valence
band) is completely filled and there is
a gap to the next band (the conduc-
tion band) in which case we get an
insulator. This is a direct band gap
as the valence band maximum and the
conduction band minimum are both at
the same crystal momentum (the zone
boundary). Right: Another possibil-
ity is that the band energies overlap, in
which case there are two bands, each
of which is partially filled, giving a
metal. If the bands were separated by
more (imagine just increasing the ver-
tical spacing between bands) we would
have an insulator again, this time with
an indirect band gap, since the valence
band maximum is at the zone boundary
while the conduction band minimum is
at the zone center.

[

 k=+π/a k=−π/a  k=−π/a  k=+π/a
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On the other hand, if there are two electrons per unit cell, then we
have precisely enough electrons to fill one band. One possibility is shown
on the left of Fig. 16.2—the entire lower band is filled and the upper
band is empty, and there is a band gap between the two bands (note
that the chemical potential is between the bands). When this is the
situation, the lower (filled) band is known as the valence band and the
upper (empty) band is known as the conduction band. In this situation
the minimum energy excitation is created by moving an electron from
the valence to the conduction band, which is non-zero energy. Because
of this, at zero temperature, a sufficiently small electric perturbation will
not create any excitations—the system does not respond at all to electric
field. Thus, systems of this type are known as (electrical) insulators (or
more specifically band insulators). If the band gap is below about 4 eV,
then these type of insulators are called semiconductors, since at room
temperature a few electrons can be thermally excited into the conduction
band, and these electrons then can move around freely, carrying some
amount of current.
One might want to be aware that in the language of chemists, a band

insulator is a situation where all of the electrons are tied up in bonds. For
example, in diamond, carbon has valence four—meaning there are four
electrons per atom in the outermost shell. In the diamond crystal, each
carbon atom is covalently bonded to each of its four nearest neighbors,
and each covalent bond requires two electrons. One electron is donated
to each bond from each of the two atoms on either end of the bond—this
completely accounts for all of the four electrons in each atom. Thus all
of the electrons are tied up in bonds. This turns out to be equivalent
to the statement that certain bonding bands are completely filled, and
there is no mobility of electrons since there are no partially filled bands.

Weak
periodic
potential

Strong
periodic
potential

Fig. 16.3 Fermi sea of a square lat-
tice of monovalent atoms in two dimen-
sions as the strength of the periodic
potential is varied. Left: In the ab-
sence of a periodic potential, the Fermi
sea forms a circle whose area is pre-
cisely half that of the Brillouin zone
(the black square). Middle: when
a periodic potential is added, states
closer to the zone boundary are pushed
down in energy deforming the Fermi
sea. Right: With strong periodic po-
tential, the Fermi surface touches the
Brillouin zone boundary. The Fermi
surface remains continuous since the
Brillouin zone is periodic. Note that
the area of the Fermi sea remains fixed
as the strength of the periodic potential
is changed.

When there are two electrons per atom, one frequently obtains a band
insulator as shown in the left of Fig. 16.2. However, another possibility
is that the band energies overlap, as shown in the right of Fig. 16.2. In
this case, although one has precisely the right number of electrons to fill
a single band, instead one has two partially filled bands. As in Fig. 16.1
there are low-energy excitations available, and the system is metallic.
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16.2 Energy Bands in Two and Three
Dimensions

Fig. 16.4 Fermi surfaces of monova-
lent metals potassium (left), lithium
(middle) and copper (right). Left:
The potassium Fermi surface is almost
exactly spherical, corresponding to
nearly free electrons in very weak
periodic potentials. Middle: The
periodic potential for lithium is slightly
stronger, and correspondingly the
Fermi surface is distorted towards
the zone boundaries. Right: The
periodic potential is so strong in
the case of copper that the Fermi
surface intersects the Brillouin zone
boundary. Compare these real Fermi
surfaces to the cartoons of Fig. 16.3.
The wire frames demark the first
Brillouin zones, which are half filled.
Potassium and lithium are bcc crystals
whereas copper is fcc (thus copper
has a different-shaped Brillouin zone
from potassium and lithium). Fig-
ures reproduced with permission from
http://www.phys.ufl.edu/fermisurface/.

Potassium Lithium Copper

It is useful to try to understand how the nearly-free electron model
results in band structure in two dimensions. Let us consider a square lat-
tice of monovalent atoms. The Brillouin zone is correspondingly square,
and since there is one electron per atom, there should be enough elec-
trons to half fill a single Brillouin zone. In the absence of a periodic
potential, the Fermi sea forms a circular disc as shown in the left of
Fig. 16.3. The area of this disc is precisely half the area of the zone. Now
when a periodic potential is added, gaps open up at the zone bound-
aries. This means that states close to the zone boundary get moved
down in energy—and the closer they are to the boundary, the more they
get moved down. As a result, states close to the boundary get filled up
preferentially at the expense of states further from the boundary. This
deforms the Fermi surface1 roughly as shown in the middle of Fig. 16.3. 1Recall that the Fermi surface is the

locus of points at the Fermi energy (so
all states at the Fermi surface have the
same energy), separating the filled from
unfilled states. Keep in mind that the
area inside the Fermi surface is fixed
by the total number of electrons in the
system.

In either case, there are low-energy excitations possible and therefore
the system is a metal.
If the periodic potential is strong enough the Fermi surface may even

touch2 the Brillouin zone boundary, as shown in the right of Fig. 16.3.

2Note that whenever a Fermi surface
touches the Brillouin zone boundary, it
must do so perpendicularly. This is
due to the fact that the group velocity
is zero at the zone boundary—i.e., the
energy is quadratic as one approaches
normal to the zone boundary. Since
the energy is essentially not changing in
the direction perpendicular to the zone
boundary, the Fermi surface must in-
tersect the zone boundary normally.

Although this looks a bit strange, the Fermi surface remains perfectly
continuous since the Brillouin zone is periodic in k-space. Thus if you
walk off the right-hand side, you come back in the left!
The physics shown in Fig. 16.3 is quite similar to what is seen in

many real materials. In Fig. 16.4 we show the Fermi surfaces for the
monovalent metals potassium, lithium, and copper. Potassium is an
almost ideal free electron metal, with an almost precisely spherical Fermi
surface. For lithium, the Fermi surface is slightly distorted, bulging
out near the zone boundaries. For copper, the Fermi surface is greatly
distorted touching the Brillouin zone boundary in tubes. In all three
cases, however, the Fermi seas fill exactly half the Brillouin zone volume
since the metals are monovalent.
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No Periodic
Potential

Strong
Periodic
Potential

Fig. 16.5 Fermi sea of a square lattice
of divalent atoms in two dimensions.
Left: In the absence of a periodic po-
tential, the Fermi sea forms a circle
whose area is precisely that of the Bril-
louin zone (the black square). Right:
When a sufficiently strong periodic po-
tential is added, states inside the zone
boundary are pushed down in energy so
that all of these states are filled and no
states outside the first Brillouin zone
are filled. Since there is a gap at the
zone boundary, this situation is an insu-
lator. (Note that the area of the Fermi
sea remains fixed.)

Let us now consider the case of a two-dimensional square lattice of
divalent atoms. In this case the number of electrons is precisely enough
to fill a single zone. In the absence of a periodic potential, the Fermi
surface is still circular, although it now crosses into the second Brillouin
zone, as shown in the left of Fig. 16.5. Again, when a periodic potential
is added a gap opens at the zone boundary—this gap opening pushes
down the energy of all states within the first zone and pushes up energy
of all states in the second zone. If the periodic potential is sufficiently
strong,3 then the states in the first zone are all lower in energy than
states in the second zone. As a result, the Fermi sea will look like the
right of Fig. 16.5. I.e., the entire lower band is filled, and the upper
band is empty. Since there is a gap at the zone boundary, there are no
low-energy excitations possible, and this system is an insulator.

Extended
zone scheme

2nd band in
reduced

zone scheme

Fig. 16.6 Fermi sea of a square lat-
tice of divalent atoms in two dimen-
sions. Left: For intermediately strong
periodic potential, although there are
just enough electrons to completely fill
the first zone, there are still some states
filled in the second zone, and some
states empty in the first zone, thus the
system is still a metal. Right: The
states in the second zone can be moved
into the first zone by translation by a
reciprocal lattice vector. This is the
reduced zone scheme representation of
the occupancy of the second Brillouin
zone and we should think of these states
as being in the second band.

It is worth considering what happens for intermediate strength of the
periodic potential. Again, states outside of the first Brillouin zone are
raised in energy and states inside the first Brillouin zone are lowered
in energy. Therefore fewer states will be occupied in the second zone
and more states occupied in the first zone. However, for intermediate
strength of potential, some states will remain occupied in the second
zone and some states will remain empty within the first zone as shown
in Fig. 16.6. (In a reduced zone scheme we would say that there are some
states filled in the second band and some empty in the first band.) This
is precisely analogous to what happens in the right half of Fig. 16.2—
there will still be some low-energy excitations available, and the system
remains a metal. This physics is quite common in real materials. In
Fig. 16.7 the Fermi surface of the divalent metal calcium is shown. As
in the cartoon of Fig. 16.6 the Fermi surface intersects the Brillouin
zone boundary; and although there are precisely enough electrons to
completely fill the first band, instead the lowest two bands are each
partially filled, and thus calcium is a metal.
We emphasize that in the case where there are many atoms per unit

cell, we should count the total valence of all of the atoms in the unit
cell put together to determine if it is possible to obtain a filled-band
insulator. If the total valence of all the atoms in the unit cell is even,
then for strong enough periodic potential, it is possible that some set of
low-energy bands will be completely filled, there will be a gap, and the
remaining bands will be empty, i.e., it will be a band insulator. However,
if the periodic potential is not sufficiently strong, bands will overlap and
the system will be a metal.

3We can estimate how strong the potential needs to be. We need to have the highest-
energy state in the first Brillouin zone be lower energy than the lowest-energy state in
the second zone. The highest-energy state in the first zone, in the absence of periodic
potential, is in the zone corner and therefore has energy εcorner = 2!2(π/2)2/(2ma2).
The lowest-energy state in the second zone is in the middle of the zone boundary
edge and in the absence of periodic potential has energy εedge = !2(π/2)2/(2ma2).
Thus we need to open up a gap at the zone boundary which is sufficiently large
that the edge becomes higher in energy than the corner. This requires roughly that
2V = εcorner − εedge. See Exercise 15.4 to obtain a more precise estimate.
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16.3 Tight Binding

So far in this chapter we have described band structure in terms of the
nearly free electron model. Similar results can be obtained starting from
the opposite limit—the tight binding model introduced in Chapter 11.
In this model we imagine some number of orbitals on each atom (or in
each unit cell) and allow them to only weakly hop between orbitals. This
spreads the eigen-energies of the atomic orbitals out into bands.
Writing down a two- (or three-)dimensional generalization of the tight

binding Hamiltonian Eq. 11.4 is quite straightforward and is a good exer-
cise to try (see for example Exercise 11.9). One only needs to allow each
orbital to hop to neighbors in all available directions. The eigenvalue
problem can then always be solved with a plane-wave ansatz analogous
to Eq. 11.5. The solution of a tight binding model of atoms, each hav-
ing a single atomic orbital, on a square lattice, is given by (compare
Eq. 11.6)

E(k) = ε0 − 2t cos(kxa)− 2t cos(kya). (16.1)

Equi-energy contours for this expression are shown in Fig. 16.8. Note
the similarity in the dispersion to our qualitative expectations shown
in Fig. 16.3 (right) and Fig. 16.6, which were based on a nearly free
electron picture.

First zone Second zone

Fig. 16.7 Fermi surface of the (fcc) di-
valent metal calcium. Left: The first
band is almost completely filled with
electrons. The solid region is where
the Fermi surface is inside the Brillouin
zone boundary (the zone boundary is
demarcated by the wire frame). Right:
A few electrons fill small pockets in the
second band. As in Fig. 16.6 there are
just enough electrons to completely fill
the lowest band, but there are states
in the lowest band which are of higher
energy than some states in the second
band, so that a few states are empty in
the first band (left), and a few states
are filled in the second band (right).
Figure reproduced by permission from
www.physik.tu-dresden.de/~fermisur.

Fig. 16.8 Equi-energy contours for the
dispersion of a tight binding model on
a square lattice. This is a contour plot
of Eq. 16.1. The first Brillouin zone is
shown. Note that the contours intersect
the Brillouin zone boundary normally.

In the above described tight binding picture, there is only a single
band. However, one can make the situation more realistic by starting
with several atomic orbitals per unit cell, to obtain several bands (an-
other good exercise to try!). As mentioned in Section 6.2.2 and Chapter
11, as more and more orbitals are added to a tight binding (or LCAO)
calculation, the results become increasingly accurate.
In the case where a unit cell is divalent it is crucial to determine

whether bands overlap (i.e., is it insulating like the left of Fig. 16.2
or metallic type like the right of Fig. 16.2). This, of course, requires
detailed knowledge of the band structure. In the tight binding picture,
if the atomic orbitals start sufficiently far apart in energy, then small
hopping between atoms cannot spread the bands enough to make them
overlap (see Fig. 11.6). In the nearly free electron picture, the gap
between bands formed at the Brillouin zone boundary is proportional to
|VG|, and it is the limit of strong periodic potential that will guarantee
that the bands do not overlap (see Fig. 16.5). Qualitatively these two
are the same limit—very far from the idea of a freely propagating wave!

16.4 Failures of the Band-Structure
Picture of Metals and Insulators

The picture we have developed is that the band structure, and the fill-
ing of bands, determines whether a material is a metal or insulator (or
semiconductor, meaning an insulator with a small band gap). One thing
we might conclude at this point is that any system where the unit cell
has a single valence electron (so the first Brillouin zone is half full)
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must be a metal. However, it turns out that this is not always true!
The problem is that we have left out a very important effect—Coulomb
interaction between electrons. We have so far completely ignored the
Coulomb repulsion between electrons. Is this neglect justified at all? If
we try to estimate how strong the Coulomb interaction is between elec-
trons, (roughly e2/(4πε0r) where r is the typical distance between two
electrons—i.e., the lattice constant a) we find numbers on the order of
several eV. This number can be larger, or even far larger, than the Fermi
energy (which is already a very large number, on the order of 10,000 K).
Given this, it is hard to explain why it is at all justified to have thrown
out such an important contribution. In fact, one might expect that ne-
glecting this term would give complete nonsense! Fortunately, it turns
out that in many cases it is justified to assume non-interacting electrons.
The reason this works is actually quite subtle and was not understood
until the 1950s due to the work of Lev Landau (See margin note 18 in
Chapter 4 about Landau). This (rather deep) explanation, however, is
beyond the scope of this book so we will not discuss it. Nonetheless,
with this in mind it is perhaps not too surprising that there are cases
where the non-interacting electron picture, and hence our view of band
structure, fails.

Magnets

A case where the band picture of electrons fails is when the system is
ferromagnetic.4 We will discuss ferromagnetism in detail in Chapters4Or antiferromagnetic or ferrimagnetic,

for that matter. See Chapter 20 for def-
initions of these terms.

20–23, but in short this is where, due to interaction effects, the electron
spins spontaneously align. From a kinetic energy point of view this
seems unfavorable, since filling the lowest-energy eigenstates with both
spin states can lower the Fermi energy compared to filling more states
with only a single spin type. However, it turns out that aligning all of
the spins can lower the Coulomb energy between the electrons, and thus
our rules of non-interacting electron band theory no longer hold.

Mott Insulators

Another case where interaction physics is important is the so-called
Mott insulator.5 Consider a monovalent material. From band theory5Named after the English Nobel laure-

ate, Nevill Mott. Classic examples of
Mott insulators include NiO and CoO.

one might expect a half-filled lowest band, therefore a metal. But if one
considers the limit where the electron–electron interaction is extremely
strong, this is not what you get. Instead, since the electron–electron in-
teraction is very strong, there is a huge penalty for two electrons to be on
the same atom (even with opposite spins). As a result, the ground state
is just one electron sitting on each atom. Since each atom has exactly
one electron, no electron can move from its atom—since that would re-
sult in a double occupancy of the atom it lands on. As a result, this type
of ground state is insulating. Arguably, this type of insulator—which
can be thought of as more-or-less a traffic jam of electrons—is actually
simpler to visualize than a band insulator! We will also discuss Mott
insulators further in Sections 19.4 and particularly 23.2.

6Very weak processes can occur where,
say, two photons together excite an
electron.
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16.5 Band Structure and Optical
Properties

To the extent that electronic band structure is a good description of the
properties of materials (and usually it is), one can attribute many of the
optical properties of materials to this band structure.

16.5.1 Optical Properties of Insulators and
Semiconductors

Band insulators cannot absorb photons which have energies less than
their band-gap energy. The reason for this is that a single such photon
does not have the energy to excite an electron from the valence band
into the conduction band. Since the valence band is completely filled,
the minimum energy excitation is of the band-gap energy—so a low-
energy photon creates no excitations at all. As a result, these low-energy
photons do not get absorbed by this material at all, and they simply
pass right through the material.6 Light absorption spectra are shown
for three common semiconductors in Fig. 16.9. Note, for example, the
strong drop in the absorption for GaAs for wavelengths greater than
about .86 micron corresponding to photon energies less than the band-
gap energy of 1.44 eV.

Fig. 16.9 Optical absorption of sev-
eral semiconductors (Si, Ge, GaAs) as
a function of photon wavelength or en-
ergy. For energies below the band-
gap, the absorption is extremely small.
(Note the absorption is on a log scale!)
GaAs has a (direct) gap energy 1.44
eV where the absorption drops very
rapidly. For Ge the drop at 0.8 eV re-
flects the direct band gap energy. Note
however there is still some weak absorp-
tion at longer wavelengths due to the
smaller energy indirect band gap. Si
has a somewhat more complicated band
structure with many indirect transi-
tions and direct gap of 3.4 eV. (Figure
kindly provided by David Miller, Stan-
ford University.)

Table 16.1 Colors correspond-
ing to photon energies.

Color !ω

Infrared < 1.65 eV
Red ∼ 1.8 eV

Orange ∼ 2.05 eV
Yellow ∼ 2.15 eV
Green ∼ 2.3 eV
Blue ∼ 2.7 eV
Violet ∼ 3.1 eV

Ultraviolet > 3.2 eV

Let us now recall the properties of visible light, shown in Table 16.1.
With this table in mind we see that if an insulator (or wide-bandgap
semiconductor) has a band gap of greater than 3.2 eV, then it appears
completely transparent since it cannot absorb any wavelength of visible
light. Materials such as quartz, diamond, aluminum oxide, and so forth
are insulators of this type.
Semiconductors with somewhat smaller band gaps will absorb photons

with energies above the band gap (exciting electrons from the valence
to the conduction band), but will be transparent to photons below this
band gap. For example, cadmium sulfide (CdS) is a semiconductor with
a band gap of roughly 2.6 eV, so that violet and blue light are absorbed
but red and green light are transmitted. As a result this material looks
reddish.7 Semiconductors with very small band gaps (such as GaAs, Si,

7Colors of materials can be quite a bit
more complicated than this simple pic-
ture, as when a color is absorbed one
often needs to look at details to find
out how strongly it is absorbed!

or Ge) look black, since they absorb all frequencies of visible light!

16.5.2 Direct and Indirect Transitions

While the band gap determines the minimum energy excitation that
can be made in an insulator (or semiconductor), this is not the complete
story in determining whether or not a photon can be absorbed by a
material. It turns out to matter quite a bit at which values of k the
maximum of the valence band and the minimum of the conduction band
lies. If the value of k for the valence band maximum is the same as
the value of k for the conduction band minimum, then we say that it
is a direct band gap. If the values of k differ, then we say that it is an
indirect band gap. For example, the system shown on the left of Fig. 16.2
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is a direct band gap, where both the valence band maximum and the
conduction band minimum are at the zone boundary. In comparison,
if the band shapes were as in the right of Fig. 16.2, but the band gap
were large enough such that it would be an insulator (just imagine the
bands separated by more), this would be an indirect band gap since the
valence band maximum is at the zone boundary, but the conduction
band minimum is at k = 0.

wavevector k
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Conduction Band
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Fig. 16.10 Direct and indirect tran-
sitions. While the indirect transition
is lower energy, it is hard for a pho-
ton to excite an electron across an in-
direct band gap because photons carry
very little momentum (since the speed
of light, c, is large).

One can also have both indirect and direct band gaps in the same
material, as shown in Fig. 16.10. In this figure, the minimum energy
excitation is the indirect transition—meaning an excitation of an electron
across an indirect band gap, or equivalently a transition of non-zero
crystal momentum8 where the electron is excited from the top of the

8By “non-zero” we mean, substantially
non-zero—like a fraction of the Bril-
louin zone.

valence band to the bottom of the conduction band at a very different
k. While this may be the lowest energy excitation that can occur, it
is very hard for this type of excitation to result from exposure of the
system to light—the reason for this is energy–momentum conservation.
If a photon is absorbed, the system absorbs both the energy and the
momentum of the photon. But given an energy E in the eV range, the
momentum of the photon !|k| = E/c is extremely small, because c is so
large. Thus the system cannot conserve momentum while exciting an
electron across an indirect band gap. Nonetheless, typically if a system
like this is exposed to photons with energy greater than the indirect band
gap a small number of electrons will manage to get excited—usually
by some complicated process including absorption of a photon exciting
an electron with simultaneous emission of a phonon9 to arrange the

9Another way to satisfy the conserva-
tion of momentum is via a “disorder
assisted” process. Recall that the rea-
son we conserve crystal momentum is
because the system is perfectly peri-
odic. If the system has some disorder,
and is therefore not perfectly periodic,
then crystal momentum is not perfectly
conserved. Thus the greater the dis-
order level, the less crystal momentum
needs to be conserved and the easier it
is to make a transition across an indi-
rect band gap.

conservation of energy and momentum. In comparison, if a system has
a direct band gap, and is exposed to photons of energy greater than this
direct band gap, then it strongly absorbs these photons while exciting
electrons from the valence band to the conduction band.
In Fig. 16.9, the spectrum of Ge shows weak optical absorption for en-

ergies lower than its direct band gap of 0.8 eV—this is due to excitations
across its lower-energy indirect band gap.

16.5.3 Optical Properties of Metals

The optical properties of metals are a bit more complicated than that
of insulators. Since metals are very conductive, photons (which are
electromagnetic) excite the electrons,10 which then re-emit light. This10Note the contrast with insulators—

when an electron is excited above the
band gap, since the conductivity is
somewhat low, the electron does not re-
emit quickly, and the material mostly
just absorbs the given wavelength.

re-emission (or reflection) of light is why metals look shiny. Noble metals
(gold, silver, platinum) look particularly shiny because their surfaces do
not form insulating oxides when exposed to air, which many metals (such
as sodium) do within seconds.
Even amongst metals (ignoring possible oxide surfaces), colors vary.

For example, silver looks brighter than gold and copper, which look
yellow or orange-ish. This again is a result of the band structure of
these materials. All of the noble metals have valence 1 meaning that
a band should be half filled. However, the total energy width of the
conduction band is greater for silver than it is for gold or copper (in
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tight-binding language t is larger for silver; see Chapter 11). This means
that higher-energy electronic transitions within the band are much more
possible for silver than they are for gold and copper. For copper and
gold, photons with blue and violet colors are not well absorbed and re-
emitted, leaving these material looking a bit more yellow and orange. For
silver on the other hand, all visible colors are re-emitted well, resulting in
a more perfect (or “white”) mirror. While this discussion of the optical
properties of metals is highly over-simplified,11 it captures the correct 11Really there are many bands over-

lapping in these materials, and the full
story addresses inter- and intra-band
transitions.

essence—that the details of the band structure determine which color
photons are easily absorbed and/or reflected, and this in turn determines
the apparent color of the material.

16.5.4 Optical Effects of Impurities

It turns out that small levels of impurities put into periodic crystals
(particularly into semiconductors and insulators) can have dramatic ef-
fects on many of their optical (as well as electrical!) properties. For
example, one nitrogen impurity per million carbon atoms in a diamond
crystal gives the crystal a yellowish color. One boron atom per million
carbon atoms give the diamond a blueish color.12 We will discuss the 12Natural blue diamonds are extremely

highly prized and are very expensive.
Possibly the world’s most famous di-
amond, the Hope Diamond, is of this
type (it is also supposed to be cursed,
but that is another story). With mod-
ern crystal growth techniques, in fact it
is possible to produce man-made dia-
monds of “quality” better than those
that are mined. Impurities can be
placed in as desired to give the diamond
any color you like. Due to the pow-
erful lobby of the diamond industry,
most synthetic diamonds are labeled as
such—so although you might feel cheap
wearing a synthetic, in fact, you prob-
ably own a better product than those
that have come out of the earth! (Also
you can rest with a clean conscience
that the production of your diamond
did not finance any wars in Africa.)

physics that causes this in Section 17.2.1.

Chapter Summary

• A material is a metal if it has low-energy excitations. This happens
when at least one band is partially full. (Band) insulators and
semiconductors have only filled bands and empty bands and have
a gap for excitations.

• A semiconductor is a (band) insulator with a small band gap.

• The valence of a material determines the number of carriers being
put into the band—and hence can determine if one has a metal
or insulator/semiconductor. However, if bands overlap (and fre-
quently they do) one might not be able to fill the bands to a point
where there is a gap.

• The gap between bands is determined by the strength of the pe-
riodic potential. If the periodic potential is strong enough (the
atomic limit in tight binding language), bands will not overlap.

• The band picture of materials fails to account for electron–electron
interaction. It cannot describe (at least without modification)
interaction-driven physics such as magnetism and Mott insulators.

• Optical properties of solids depend crucially on the possible ener-
gies of electronic transitions. Photons easily create transitions with
low momentum, but cannot create transitions with larger momen-
tum easily. Optical excitations over an indirect (finite momentum)
gap are therefore weak.
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Exercises

(16.1) Metals and Insulators

Explain the following:

(a) sodium, which has two atoms in a bcc (conven-
tional cubic) unit cell, is a metal;

(b) calcium, which has four atoms in a fcc (conven-
tional cubic) unit cell, is a metal;

(c) diamond, which has eight atoms in a fcc (con-
ventional cubic) unit cell with a basis, is an elec-
trical insulator, whereas silicon and germanium,
which have similar structures, are semiconductors.
(Try to think up several possible reasons!)

! Why is diamond transparent?

(16.2) Fermi Surface Shapes

(a) Consider a tight binding model of atoms on a
(two-dimensional) square lattice where each atom
has a single atomic orbital. If these atoms are
monovalent, describe the shape of the Fermi sur-
face.

(b) Now suppose the lattice is not square, but is
rectangular instead with primitive lattice vectors of
length ax and ay in the x and y directions respec-
tively, where ax > ay. In this case, imagine that
the hoppings have a value −tx in the x-direction
and a value −ty in the y-direction, with ty > tx.
(Why does this inequality match ax > ay ?)

! Write an expression for the dispersion of the
electronic states ε(k).

! Suppose again that the atoms are monovalent,
what is the shape of the Fermi surface now?

(16.3) More Fermi Surface Shapes*

Consider a divalent atom, such as Ca or Sr, that
forms an fcc lattice (with a single atom basis). In
the absence of a periodic potential, would the Fermi
surface touch the Brillouin zone boundary? What
fraction of the states in the first Brillouin zone re-
main empty?
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17.1 Electrons and Holes

Suppose we start with an insulator or semiconductor and we excite one
electron from the valence band to the conduction band, as shown in the
left of Fig. 17.1. This excitation may be due to absorbing a photon, or
it might be a thermal excitation. (For simplicity in the figure we have
shown a direct band gap. For generality we have not assumed that the
curvature of the two bands are the same.) When the electron has been
moved up to the conduction band, there is an absence of an electron
in the valence band known as a hole. Since a completely filled band is
inert, it is very convenient to only keep track of the few holes in the
valence band (assuming there are only a few) and to treat these holes
as individual elementary particles. The electron can fall back into the
empty state that is the hole, emitting energy (a photon, say) and “anni-
hilating” both the electron from the conduction band and the hole from
the valence band.1 Note that while the electrical charge of an electron

1This is equivalent to pair annihila-
tion of an electron with a positron. In
fact, the analogy between electron–hole
and electron–positron is fairly precise.
As soon as Dirac constructed his equa-
tion (in 1928) describing the relativis-
tic motion of electrons, and predicting
positrons, it was understood that the
positron could be thought of as an ab-
sence of an electron in a filled sea of
states. The filled sea of electron states
with a gap to exciting electron–positron
pairs is the inert vacuum, which is anal-
ogous to an inert filled valence band.

is negative the electrical charge of a hole (the absence of an electron) is
positive—equal and opposite to that of the electron.2

2If this does not make intuitive sense
consider the process of creating an
electron–hole pair as described in
Fig. 17.1. Initially (without the excited
electron–hole pair) the system is charge
neutral. We excite the system with a
photon to create the pair, and we have
not moved any additional net charge
into the system. Thus if the electron
is negative, the hole must be positive
to preserve overall charge neutrality.

Fig. 17.1 Electrons and holes in a
semiconductor. Left: A single hole in
the valence band and a single electron
in the conduction band. Right: Mov-
ing the hole to a momentum away from
the top of the valence band costs posi-
tive energy—like pushing a balloon un-
der water. As such, the effective mass
of the hole is defined to be positive.
The energy of the configuration on the
right is greater than that on the left by
E = !2|k− kmax|2/(2m∗)
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Effective Mass of Electrons

As mentioned in Sections 11.2 and 15.1.1, it is useful to describe the
curvature at the bottom of a band in terms of an effective mass. Let us
assume that near the bottom of the conduction band (assumed to be at
k = kmin) the energy is given by3,4,5,6

3It is an important principle that
near a minimum or a maximum one
can always expand and get something
quadratic plus higher order corrections.

4For simplicity we have assumed the
system to be isotropic. In the more gen-
eral case we would have

E = Emin + αx(kx − kmin
x )2

+ αy(ky − kmin
y )2

+ αz(kz − kmin
z )2 + . . .

for some orthogonal set of axes (the
“principal axes”) x, y, z. In this case
we would have an effective mass which
can be different in the three different
principal directions.

5For simplicity we also neglect the spin
of the electron here. In general, spin–
orbit coupling can make the dispersion
depend on the spin state of the electron.
Among other things, this can modify
the effective electron g-factor.

6It often occurs that the bottom of con-
duction band has more than one min-
imum at different points k

(n)
min in the

Brillouin zone with exactly the same
energy. We then say that there are
multiple “valleys” in the band struc-
ture. Such a situation occurs due
to the symmetry of the crystal. For
example, in silicon (an fcc structure
with a basis, see Fig. 12.21), six con-
duction band minima with the same
energy occur approximately at the
k-points (±5.3/a, 0, 0), (0,±5.3/a, 0),
and (0, 0,±5.3/a).

E = Emin + α|k− kmin|2 + . . .

with α > 0, where the dots mean higher-order term in the deviation
from kmin. We then define the effective mass to be given by

!2

m∗
=

∂2E

∂k2
= 2α (17.1)

at the bottom of the band (with the derivative being taken in any di-
rection for an isotropic system). Correspondingly, the (group) velocity
is given by7

7More accurately, v = ∇kE(k)/! + K
where the additional term K is known
as the “Karplus–Luttinger” anomalous
velocity and is proportional to applied
electric field. This correction, result-
ing from subtle quantum-mechanical ef-
fects, is almost always neglected in solid
state texts and rarely causes trouble
(this is related to footnote 9 in Chapter
11). Only recently has research focused
more on systems where such terms do
matter. Proper treatment of this effect
is beyond the scope of this book.

v =
∇kE

!
=

!(k− kmin)

m∗ .
(17.2)

This definition is chosen to be in analogy with the free electron behavior
E = !2|k|2/(2m) with corresponding velocity v = ∇kE/! = !k/m.

Effective Mass of Holes

Analogously we can define an effective mass for holes. Here things get
a bit more complicated. For the top of the valence band, the energy
dispersion for electrons would be

E = Emax − α|k− kmax|2 + . . . (17.3)

with α > 0. The modern convention is to define the effective mass for
holes at the top of a valence band to be always positive8

8Be warned: a few books define the
mass of holes to be negative. This
is a bit annoying but not inconsistent
as long as the negative sign shows up
somewhere else as well!

!2

m∗hole
= −

∂2E

∂k2
= 2α. (17.4)

The convention of the effective mass being positive makes sense because
the energy to boost the hole from zero velocity (k = kmax at the top of
the valence band) to finite velocity is positive. This energy is naturally
given by

Ehole = constant +
!2|k− kmax|2

2m∗hole .

The fact that boosting the hole away from the top of the valence band is
positive energy may seem a bit counter-intuitive being that the disper-
sion of the hole band is an upside-down parabola. However, one should
think of this as being like pushing a balloon under water. The lowest en-
ergy configuration is with the electrons at the lowest energy possible and
the hole at the highest energy possible. So pushing the hole under the
electrons costs positive energy. (This is depicted in the right-hand side
of Fig. 17.1.) A good way to handle this bookkeeping is to remember

E(absence of electron in state k) = −E(electron in state k). (17.5)
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The momentum and velocity of a hole

There is a bit of complication with signs in keeping track of the momen-
tum of a hole. If an electron is added to a band in a state k then the
crystal momentum contained in the band increases by !k. Likewise, if
an electron in state k is removed from an otherwise filled band, then the
crystal momentum in the band must decrease by !k. Then, since a fully
filled band carries no net crystal momentum the absence of an electron
in state k should be a hole whose crystal momentum is −!k. It is thus
convenient to define the wavevector khole of a hole to be the negative of
the wavevector kelectron of the corresponding absent electron.9 9Other conventions are possible but

this is probably the simplest.This definition of wavevector is quite sensible when we try to calculate
the group velocity of a hole. Analogous to the electron, we write the
hole group velocity as the derivative of the hole energy

vhole =
∇khole

Ehole

! .
(17.6)

Now, using Eq. 17.5, and also the fact that that the wavevector of the
hole is minus the wavevector of the missing electron, we get two canceling
minus signs and we find that

vhole = vmissing electron.

This is a rather fundamental principle. The time evolution of a quantum
state is independent of whether that state is occupied with a particle or
not!

Effective Mass and Equations of Motion

We have defined the effective masses above in analogy with that of free
electrons, by looking at the curvature of the dispersion. An equivalent
definition (equivalent at least at the top or bottom of the band) is to
define the effective massm∗ as being the quantity that satisfies Newton’s
second law, F = m∗a for the particle in question. To demonstrate this,
our strategy is to imagine applying a force to an electron in the system
and then equate the work done on the electron to its change in energy.
Let us start with an electron in momentum state k. Its group velocity
is v = ∇kE(k)/!. If we apply a force,10 the work done per unit time is 10For example, if we apply an electric

field E and it acts on an electron of
charge −e, the force is F = −eE.dW/dt = F · v = F ·∇kE(k)/!.

On the other hand, the change in energy per unit time must also be (by
the chain rule)

dE/dt = dk/dt ·∇kE(k).

Setting these two expressions equal to each other we (unsurprisingly)
obtain Newton’s equation

F = !
dk

dt
=

dp

dt
(17.7)

where we have used p = !k.



186 Semiconductor Physics

If we now consider electrons near the bottom of a band, we can plug
in the expression Eq. 17.2 for the velocity, and this becomes

F = m∗
dv

dt

exactly as Newton would have expected. In deriving this result recall
that we have assumed that we are considering an electron near the bot-
tom of a band so that we can expand the dispersion quadratically (or
similarly we assumed that holes are near the top of a band). One might
wonder how we should understand electrons when they are neither near
the top nor the bottom of a band. More generally Eq. 17.7 always holds,
as does the fact that the group velocity is v = ∇kE/!. It is then some-
times convenient to define an effective mass for an electron as a function
of momentum to be given by1111For simplicity we write this in its one-

dimensional form.
!2

m∗(k)
=

∂2E

∂k2

which agrees with our definition (Eq. 17.1) near the bottom of band.
However, near the top of a band it is the negative of the corresponding
hole mass (note the sign in Eq. 17.4). Note also that somewhere in
the middle of the band the dispersion must reach an inflection point
(∂2E/∂k2 = 0), whereupon the effective mass actually becomes infinite
as it changes sign.

Aside: It is useful to compare the time evolution of electrons and holes near

the top of bands. If we think in terms of holes (the natural thing to do near the
top of a band) we have F = +eE and the holes have a positive mass. However,

if we think in terms of electrons, we have F = −eE but the mass is negative.

Either way, the acceleration of the k-state is the same, whether we are describing
the dynamics in terms of an electron in the state or in terms of a hole in the

state. As mentioned below Eq. 17.6, this equivalence is expected, since the time

evolution of an eigenstate is independent of whether that eigenstate is filled with
an electron or not.

17.1.1 Drude Transport: Redux

Back in Chapter 3 we studied Drude theory—a simple kinetic theory of
electron motion. The main failure of Drude theory was that it did not
treat the Pauli exclusion principle properly: it neglected the fact that in
metals the high density of electrons makes the Fermi energy extremely
high. However, in semiconductors or band insulators, when only a few
electrons are in the conduction band and/or only a few holes are in the
valence band, then we can consider this to be a low-density situation,
and to a very good approximation, we can ignore Fermi statistics. (For
example, if only a single electron is excited into the conduction band,
then we can completely ignore the Pauli principle, since it is the only
electron around—there is no chance that any state it wants to sit in will
already be filled!) As a result, when there is a low density of conduc-
tion electrons or valence holes, it turns out that Drude theory works
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extremely well! We will come back to this issue later in Section 17.3,
and make this statement much more precise.
At any rate, in the semiclassical picture, we can write a simple Drude

transport equation (really Newton’s equations!) for electrons in the
conduction band

m∗e dv/dt = −e(E+ v ×B)−m∗e v/τ

with m∗e the electron effective mass. Here the first term on the right-
hand side is the Lorentz force on the electron, and the second term is a
drag force with an appropriate scattering time τ . The scattering time
determines the so-called mobility µ which measures the ease with which
the particle moves. The mobility is generally defined as the ratio of the
velocity to the electric field.12 In this Drude approach we then obtain

12Mobility is defined to be positive for
both electrons and holes.

µ = |v|/|E| = |eτ/m∗|.

Similarly, we can write equations of motion for holes in the valence
band

m∗h dv/dt = e(E+ v ×B)−m∗h v/τ

where m∗h is the hole effective mass. Note again that here the charge on
the hole is positive. This should make sense—the electric field pulls on
an electron in a direction opposite to the direction that it pulls on the
absence of an electron!
If we think back all the way to Chapters 3 and 4, one of the physical

puzzles that we could not understand is why the Hall coefficient some-
times changes sign (see Table 3.1). In some cases it looked as if the
charge carrier had positive charge. Now we understand why this is true.
In some materials the main charge carrier is the hole!

17.2 Adding Electrons or Holes with
Impurities: Doping

In a pure band insulator or semiconductor, if we excite electrons from
the valence to the conduction band (either with photons or thermally)
we can be assured that the density of electrons in the conduction band
(typically called n, which stands for “negative” charges) is precisely
equal to the density of holes left behind in the valence band (typically
called p, which stands for “positive” charges). However, in an impure
semiconductor or band insulator this is not the case.
Without impurities, a semiconductor is known as intrinsic. The oppo-

site of intrinsic, the case where there are impurities present, is sometimes
known as extrinsic.
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Fig. 17.2 Cartoon of doping a semicon-
ductor. Doping Si with P adds one free
electron to wander freely in the conduc-
tion band and leaves behind a positive
charge on the nucleus.

Let us now examine the extrinsic case more carefully. Consider for
example, silicon (Si), which is a semiconductor with a band gap of about
1.1 eV. Now imagine that a phosphorus (P) atom replaces one of the
Si atoms in the lattice as shown on the top of Fig. 17.2. This P atom,
being directly to the right of Si on the periodic table, can be thought
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of as nothing more than a Si atom plus an extra proton and an extra
electron,13 as shown in the bottom of Fig. 17.2. Since the valence band is13There are extra neutrons as well, but

they don’t do much in this context. already filled this additional electron must go into the conduction band.
The P atom is known as a donor (or electron donor) in silicon since it
donates an electron to the conduction band. It is also sometimes known
as an n-dopant,14 since n is the symbol for the density of electrons in

14“Dopant” generally means a chemi-
cal inserted into an object to alter its
properties. This definition is true more
broadly than the field of physics (e.g.
Lance Armstrong, Jerry Garcia).

the conduction band.
Analogously, we can consider aluminum, the element directly to the

left of Si on the periodic table. In this case, the aluminum dopant
provides one fewer electron than Si, so there will be one electron missing
from the valence band. In this case Al is known as an electron acceptor,
or equivalently as a p-dopant, since p is the symbol for the density of
holes.15,16

15Yes, it is annoying that the com-
mon dopant phosphorus has the chem-
ical symbol P, but it is not a p-dopant
in Si, it is an n-dopant.

16More frequently than Al, boron (B)
is used as a p-dopant in Si. Since B lies
just above Al in the periodic table, it
plays the same chemical role.

In a more chemistry-oriented language, we can depict the donors and
acceptors as shown in Fig. 17.3. In the intrinsic case, all of the electrons
are tied up in covalent bonds of two electrons. With the n-dopant, there
is an extra unbound electron, whereas with the p-dopant there is an
extra unbound hole (one electron too few).

Fig.17.3 Cartoon of doping a semicon-
ductor. Left: In the intrinsic case, all
of the electrons are tied up in covalent
bonds of two electrons. Middle: In
the n-dopant case there is an extra un-
bound electron, and the dopant carries
an extra nuclear charge. Right: In the
p-dopant case there is one electron too
few to complete all the bonds so there
is an extra hole (denoted h) and the nu-
clear charge has one less positive charge
than in the intrinsic case (the + sign is
supposed to look slightly less large). Intrinsic
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17.2.1 Impurity States

Let us consider even more carefully what happens when we add dopants.
For definiteness let us consider adding an n-dopant such as P to a semi-
conductor such as Si. Once we add a single n-dopant to an otherwise
intrinsic sample of Si, we get a single electron above the gap in the con-
duction band. This electron behaves like a free particle with mass m∗e.
However, in addition, we have a single extra positive charge +e at some
point in the crystal due to the P nucleus. The free electron is attracted
back to this positive charge and forms a bound state that is similar to a
hydrogen atom. There are two main differences between a real hydrogen
atom and this bound state of an electron in the conduction band and the
impurity nucleus. First of all, the electron has effective mass m∗e which
can be very different from the real (bare) mass of the electron (and is
typically smaller than the bare mass of the electron). Secondly, instead
of the two charges attracting each other with a potential V = e2/(4πε0r)
they attract each other with a potential V = e2/(4πεrε0r), where εr is
the relative permittivity (or relative dielectric constant) of the material.
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With these two small differences we can calculate the energies of the
hydrogenic bound states exactly as we do for genuine hydrogen in our
quantum mechanics courses.
We recall that the energy eigenstates of the hydrogen atom are given

by EH−atom
n = −Ry/n2 where Ry is the Rydberg constant given by

Ry =
me2

8ε20h
2
≈ 13.6eV

with m the electron mass. The corresponding radius of this hydrogen
atom wavefunction is rn ≈ n2a0 with the Bohr radius given by

a0 =
4πε0!2

me2
≈ .51× 10−10m.

The analogous calculation for a hydrogenic impurity state in a semicon-
ductor gives precisely the same expression, only ε0 is replaced by ε0εr
and m is replaced by m∗e. One obtains

Ryeff = Ry

(
m∗e
m

1

ε2r

)

and

aeff

0 = a0

(
εr

m

m∗e

)

.

Because the dielectric constant of semiconductors is typically high (on
the order of 10 for most common semiconductors) and because the effec-
tive mass is frequently low (a third of m or even smaller), the effective
Rydberg Ryeff can be tiny compared to the real Rydberg, and the effec-
tive Bohr radius aeff

0 can be huge compared to the real Bohr radius.17 17Note that the large Bohr Radius jus-
tifies post facto our use of a contin-
uum approximation for the dielectric
constant εr. On small length scales,
the electric field is extremely inhomo-
geneous due to the microscopic struc-
ture of the atoms, but on large enough
length scales we can use classical elec-
tromagnetism and simply model the
material as a medium with a dielectric
constant.

For example, in silicon18 the effective Rydberg, Ryeff, is much less than

18Because silicon has an anisotropic
band, and therefore an anisotropic
mass, the actual formula is more com-
plicated.

.1 eV and aeff
0 is above 30 Ångstroms! Thus this donor impurity forms

an energy eigenstate with energy just below the bottom of the conduc-
tion band (Ryeff below the band bottom only). At zero temperature this
eigenstate will be filled, but it takes only a small temperature to excite
a bound electron out of a hydrogenic orbital and into the conduction
band.
A depiction of this physics is given in Fig. 17.4 where we have plotted

an energy diagram for a semiconductor with donor or acceptor impuri-
ties. Here the energy eigenstates are plotted as a function of position.
Between the valence and conduction band (which are uniform in po-
sition), there are many localized hydrogen-atom-like eigenstates. The
energies of these states are not all exactly the same, since each impurity
atom is perturbed by other impurity atoms in its environment. If the
density of impurities is high enough, electrons (or holes) can hop from
one impurity to the next, forming an impurity band.
Note that because the effective Rydberg is very small, the impurity

eigenstates are only slightly below the conduction band or above the
valence band respectively. With a small temperature, these donors or
acceptors can be thermally excited into the band. Thus, except at low



190 Semiconductor Physics

Fig. 17.4 Energy diagram of a doped
semiconductor (left) with donor impu-
rities, or (right) with acceptor impuri-
ties. The energy eigenstates of the hy-
drogenic orbitals tied to the impurities
are not all the same because each im-
purity is perturbed by neighbor impuri-
ties. At low temperature, the donor im-
purity eigenstates are filled and the ac-
ceptor eigenstates are empty. But with
increasing temperature, the electrons in
the donor eigenstates are excited into
the conduction band, and similarly the
holes in the acceptor eigenstates are ex-
cited into the valence band.

enough temperature that the impurities bind the carrier, we can think
of the impurities as simply adding carriers to the band. So the donor
impurities donate free electrons to the conduction band, whereas the
acceptor impurities give free holes to the valence band. However, at very
low temperature these carriers get bound back to their respective nuclei
so that they can no longer carry electricity—a phenomenon known as
carrier freeze out. We will typically assume that we are at temperatures
high enough (such as room temperature) such that freeze-out does not
occur.
Note that in the absence of impurities, the Fermi energy (the chemical

potential at zero temperature) is in the middle of the band gap. When
donor impurities are added, at zero temperature, impurity states near
the top of the band gap are filled. Thus the Fermi energy is moved up
to the top of the band gap. On the other hand, when acceptors are
added, the acceptor states near the bottom of the band gap are empty
(remember it is a bound state of a hole to a nucleus!). Thus, the Fermi
energy is moved down to the bottom of the band gap.

Optical Effects of Impurities (Redux)

As mentioned previously in Section 16.5.4, the presence of impurities in
a material can have dramatic effects on its optical properties. There are
two main optical effects of impurities. The first effect is that the impuri-
ties add charge carriers to an otherwise insulating material—turning an
insulator into something that conducts at least somewhat. This obvi-
ously can have some important effects on the interaction with light. The
second important effect is the introduction of new energy levels within
the gap. Whereas before the introduction of impurities, the lowest en-
ergy transition that can be made is the full energy of the gap, now one
can have optical transitions between impurity states, or from the bands
to the impurity states.
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17.3 Statistical Mechanics of
Semiconductors

We now use our knowledge of statistical physics to analyze the occupa-
tion of the bands at finite temperature.

Imagine a band structure as shown in Fig. 17.5. The minimum energy
of the conduction band is defined to be εc and the maximum energy of
the valence band is defined to be εv. The band gap is correspondingly
Egap = εc − εv.
Recall from way back in Eq. 4.10 that the density of states per unit

volume for free electrons (in three dimensions with two spin states) is
given by

g(ε ! 0) =
(2m)3/2

2π2!3

√
ε.

Fig. 17.5 A band diagram of a semi-
conductor near the top of the valence
band (mostly filled) and the bottom of
the conduction band (mostly empty).
This diagram shows a direct band gap,
but the considerations of this section
apply to indirect gaps as well.

The electrons in our conduction band are exactly like these free electrons,
except that (a) the bottom of the band is at energy εc and (b) they have
an effective mass m∗e. Thus the density of states for these electrons near
the bottom of the conduction band is given by

gc(ε ! εc) =
(2m∗e)

3/2

2π2!3

√
ε− εc.

Similarly, the density of states for holes near the top of the valence band
is given by

gv(ε " εv) =
(2m∗h)

3/2

2π2!3

√
εv − ε.

At fixed chemical potential µ the total density of electrons n in the
conduction band, as a function of temperature T , is thus given by

n(T ) =

∫ ∞

εc

dε gc(ε) nF (β(ε − µ)) =

∫ ∞

εc

dε
gc(ε)

eβ(ε−µ) + 1

where nF is the Fermi occupation factor, and β−1 = kBT as usual.
If the chemical potential is “well below” the conduction band (i.e., if
β(ε− µ)& 1), then we can approximate

1

eβ(ε−µ) + 1
≈ e−β(ε−µ)

.

In other words, Fermi statistics can be replaced by Boltzmann statistics
when the temperature is low enough that the density of electrons in the
band is very low. (We have already run into this principle in Section
17.1.1 when we discussed that Drude theory, a classical approach that
neglects Fermi statistics, actually works very well for electrons above the
band gap in semiconductors!) We thus obtain

n(T ) ≈
∫ ∞

εc

dεgc(ε)e
−β(ε−µ) =

(2m∗e)
3/2

2π2!3

∫ ∞

εc

dε (ε− εc)
1/2e−β(ε−µ)

=
(2m∗e)

3/2

2π2!3
eβ(µ−εc)

∫ ∞

εc

dε (ε− εc)
1/2e−β(ε−εc)

.
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The last integral is (using y2 = x = ε− εc).

∫ ∞

0
dxx1/2e−βx = 2

∫ ∞

0
dy y2e−βy2

= −2
d

dβ

∫ ∞

0
dy e−βy2

= −
d

dβ

√
π

β
=

1

2
β−3/2√π.

Thus we obtain the standard expression for the density of electrons in
the conduction band:

n(T ) =
1

4

(
2m∗ekBT

π!2

)3/2

e−β(εc−µ)
. (17.8)

Note that this is mainly just exponential activation from the chemical
potential to the bottom of the conduction band, with a prefactor which
doesn’t change too quickly as a function of temperature (obviously the
exponential changes very quickly with temperature!).
Quite similarly, we can write the density of holes in the valence band

p as a function of temperature:1919If the Fermi factor nF gives the prob-
ability that a state is occupied by an
electron, then 1 − nF gives the prob-
ability that the state is occupied by a
hole.

p(T ) =

∫ εv

−∞
dε gv(ε)

[
1−

1

eβ(ε−µ) + 1

]
=

∫ εv

−∞
dε

gv(ε)eβ(ε−µ)

eβ(ε−µ) + 1 .

Again, if µ is substantially above the top of the valence band, we have
eβ(ε−µ) ' 1 so we can replace this by

p(T ) =

∫ εv

−∞
dε gv(ε)e

β(ε−µ)

and the same type of calculation then gives

p(T ) =
1

4

(
2m∗hkBT

π!2

)3/2

e−β(µ−εv) (17.9)

again showing that the holes are activated from the chemical potential
down into the valence band (recall that pushing a hole down into the
valence band costs energy!).

Law of Mass Action

A rather crucial relation is formed by combining Eqs. 17.8 and 17.9,

n(T )p(T ) =
1

2

(
kBT

π!2

)3

(m∗e m
∗
h)

3/2 e−β(εc−εv)

=
1

2

(
kBT

π!2

)3

(m∗e m
∗
h)

3/2 e−βEgap (17.10)

where we have used the fact that the gap energy Egap = εc−εv. Eq. 17.10
is sometimes known as the law of mass action,20 and it is true indepen-

20The nomenclature here, “law of mass
action”, is a reference to an analog in
chemistry. In chemical reactions we
may have an equilibrium between two
objects A and B and their compound
AB. This is frequently expressed as

A+ B # AB

There is some chemical equilibrium
constant K which gives the ratio of con-
centrations

K =
[AB]

[A][B]

where [X] is the concentration of
species X. The law of mass ac-
tion states that this constant K re-
mains fixed, independent of the indi-
vidual concentrations. In semiconduc-
tor physics it is quite similar, only the
“reaction” is

e+ h # 0,

the annihilation of an electron and a
hole, so that the product of [e] = n and
[h] = p is fixed. dent of doping of the material.
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Intrinsic Semiconductors

For an intrinsic (i.e., undoped) semiconductor the number of electrons
excited into the conduction band must be equal to the number of holes
left behind in the valence band, so p = n. We can then divide Eq. 17.8
by 17.9 to get

1 =

(
m∗e
m∗h

)3/2

e−β(εv+εc−2µ)
.

Taking the log of both sides gives the useful relation

µ =
1

2
(εc + εv) +

3

4
(kBT ) log(m

∗
h/m

∗
e). (17.11)

Note that at zero temperature, the chemical potential is precisely mid-
gap.
Using either this expression, or by using the law of mass action along

with the constraint n = p, we can obtain an expression for the intrinsic
density of carriers in the semiconductor

nintrinsic = pintrinsic =
√
np =

1√
2

(
kBT

π!2

)3/2

(m∗e m
∗
h)

3/4 e−βEgap/2
.

Doped Semiconductors

For doped semiconductors, the law of mass action still holds. If we
further assume that the temperature is high enough so that there is no
carrier freeze-out (i.e., carriers are not bound to impurities) then we
have

n− p = (density of donors)− (density of acceptors).

This, along with the law of mass action, gives us two equations with two
unknowns which can be solved.21 In short, the result is that if we are

21Here is how to solve these two equa-
tions. Let

D = doping = n− p.

Let us further assume that n > p so
D > 0 (we can do the calculation again
making the opposite assumption, at the
end). Also let

I = nintrinsic = pintrinsic

so that

I2 =
1

2

(
kBT

π!2

)3

(m∗
e m∗

h)
3/2 e−βEgap

from the law of mass action. Using
np = I2, we can then construct

D2 + 4I2 = (n− p)2 + 4np = (n+ p)2

So we obtain

n =
1

2

(√
D2 + 4I2 +D

)

p =
1

2

(√
D2 + 4I2 −D

)

.

As stated in the main text, if I " D
then the dopingD is not important. On
the other hand, if I # D then the ma-
jority carrier density is determined by
the doping only, the thermal factor I
is unimportant, and the minority car-
rier density is fixed by the law of mass
action.

at a temperature where the undoped intrinsic carrier density is much
greater than the dopant density, then the dopants do not matter much,
and the chemical potential is roughly midgap as in Eq. 17.11 (this is
the intrinsic regime). On the other hand, if we are at a temperature
where the intrinsic undoped density is much smaller than the dopant
density, then we can think of this as a low-temperature situation where
the carrier concentration is mainly set by the dopant density (this is the
extrinsic regime). In the n-doped case, the bottom of the conduction
band gets filled with the density of electrons from the donors, and the
chemical potential gets shifted up towards the conduction band. Corre-
spondingly, in the p-doped case, holes fill the top of the valence band,
and the chemical potential gets shifted down towards the valence band.
Note that in this case of strong doping, the majority carrier concen-
tration is obtained just from the doping, whereas the minority carrier
concentration—which might be very small—is obtained via law of mass
action. The ability to add carriers of either charge to semiconductors
by doping is absolutely crucial to being able to construct semiconductor
devices, as we will see in the next chapter.
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Chapter Summary

• Holes are the absence of an electron in the valence band. These
have positive charge (electrons have negative charge), and positive
effective mass. The energy of a hole gets larger at larger momentum
(away from the maximum of the band) as they get pushed down
into the valence band. The positive charge of the hole as a charge
carrier explains the puzzle of the sign of the Hall coefficient.

• Effective mass of electrons is determined by the curvature at the
bottom of the conduction band. Effective mass of holes is deter-
mined by the curvature at top of conduction band.

• Mobility of a carrier is µ = |eτ/m∗| in Drude theory.

• When very few electrons are excited into the conduction band, or
very few holes into the valence band, Boltzmann statistics is a good
approximation for Fermi statistics, and Drude theory is accurate.

• Electrons or holes can be excited thermally, or can be added to a
system by doping and can greatly change the optical and electrical
properties of the material. The law of mass action assures that the
product np is fixed independent of the amount of doping (it only
depends on the temperature, the effective masses, and the band
gap).

• Know how to derive the law of mass action!

• At very low temperature carriers may freeze out, binding to the
impurity atoms that they came from. However, because the ef-
fective Rydberg is very small, carriers are easily ionized into the
bands.

References
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Exercises

(17.1) Holes

(a) In semiconductor physics, what is meant by a
hole and why is it useful?

(b) An electron near the top of the valence band in
a semiconductor has energy

E = −10−37|k|2

where E is in Joules and k is in m−1. An electron
is removed from a state k = 2 × 108m−1x̂, where
x̂ is the unit vector in the x-direction. For a hole,
calculate (and give the sign of!)

(i) the effective mass

(ii) the energy

(iii) the momentum

(iv) the velocity.

! If there is a density p = 105m−3 of such holes all
having almost exactly this same momentum, calcu-
late the current density and its sign.

(17.2) Law of Mass Action and Doping of Semicon-
ductors

(a) Assume that the band-gap energy Eg is much
greater than the temperature kBT . Show that in a
pure semiconductor at a fixed T , the product of the
number of electrons (n) and the number of holes (p)
depends only on the density of states in the conduc-
tion band and the density of states in the valence
band (through their effective masses), and on the
band-gap energy.

! Derive expressions for n for p and for the
product np. You may need to use the integral∫∞
0

dxx1/2e−x =
√
π/2.

(b) The band gaps of silicon and germanium are
1.1 eV and 0.75 eV respectively. You may assume
the effective masses for silicon and germanium are
isotropic, roughly the same, and are roughly .5
of the bare electron mass for both electrons and
holes. (Actually the effective masses are not quite
the same, and furthermore the effective masses are
both rather anisotropic, but we are just making a
rough estimates here.)

! Estimate the conduction electron concentration
for intrinsic (undoped) silicon at room tempera-
ture.

! Make a rough estimate of the maximum con-
centration of ionized impurities that will still allow
for this “intrinsic” behavior.

! Estimate the conduction electron concentration
for germanium at room temperature.

(c) The graph in Fig. 17.6 shows the relationship
between charge-carrier concentration for a certain
n-doped semiconductor.

! Estimate the band gap for the semiconductor
and the concentration of donor ions.

! Describe in detail an experimental method by
which these data could have been measured, and
suggest possible sources of experimental error.

Fig. 17.6 Figure for Exercise 17.2.

(17.3) Chemical Potential

(a) Show that the chemical potential in an intrinsic
semiconductor lies in the middle of the gap at low
temperature.

(b) Explain how the chemical potential varies with
temperature if the semiconductor is doped with (i)
donors (ii) acceptors.

(c) A direct-gap semiconductor is doped to produce
a density of 1023 electrons/m3. Calculate the hole
density at room temperature given that the gap is
1.0 eV, and the effective mass of carriers in the con-
duction and valence band are 0.25 and 0.4 electron
masses respectively. Hint: use the result of Exer-
cise 17.2.a.
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(17.4) Energy Density

Show that the energy density of electrons in the
valence band of a semiconductor is

(εc +
3
2
kBT )n

where n is the density of these electrons and εc is
the energy of the bottom of the conduction band.

(17.5) Semiconductors

Describe experiments to determine the following
properties of a semiconductor sample: (i) sign of
the majority carrier (ii) carrier concentration (as-
sume that one carrier type is dominant) (iii) band
gap (iv) effective mass (v) mobility of the majority
carrier.

(17.6) More Semiconductors

Outline the absorption properties of a semiconduc-
tor and how these are related to the band gap. Ex-
plain the significance of the distinction between a
direct and an indirect semiconductor. What re-
gion of the optical spectrum would be interesting
to study for a typical semiconducting crystal?

(17.7) Yet More Semiconductors

Outline a model with which you could estimate the
energy of electron states introduced by donor atoms

into an n-type semiconductor. Write down an ex-
pression for this energy, explaining why the energy
levels are very close to the conduction band edge.

(17.8) Maximum Conductivity*

Suppose holes in a particular semiconductor have
mobility µh and electrons in this semiconductor
have mobility µe. The total conductivity of the
semiconductor will be

σ = e (nµe + p µh)

with n and p the densities of electrons in the con-
duction band and holes in the valence band. Show
that, independent of doping, the maximum conduc-
tivity that can be achieved is

σ = 2e nintrinic
√
µeµh

with nintrinsic the intrinsic carrier density. For
what value of n− p is this conductivity achieved?

(17.9) Hall Effect with Both n- and p-Dopants*

Suppose a semiconductor has a density p of holes
in the valence band with mobility µh and a density
n of electrons in the conduction band with mobility
µn. Use Drude theory to calculate the Hall resis-
tivity of this sample.
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The development of semiconductor electronic devices no doubt changed
the world. Constituting perhaps the greatest technological advance of
the modern era, it is hard to overstate how much we take for granted the
existence of electronics these days. We (indeed, the world!) should never
lose sight of the fact that this entire industry owes its very existence to
our detailed understanding of quantum condensed matter physics.
While a thorough discussion of the physics of semiconductor devices

can be quite involved, it is not hard to give the general idea of how some
of the elementary components work.1 This chapter is aimed to give a 1See the references at the end of the

chapter if you would like more details!brief cartoon-level description of some of the more important devices.

18.1 Band Structure Engineering

To make a semiconductor device one must have control over the detailed
properties of materials (band gap, doping, etc.) and one must be able
to assemble together semiconductors with differing such properties.

18.1.1 Designing Band Gaps

A simple example of engineering a device is given by aluminum-gallium-
arsenide. GaAs is a semiconductor (zincblende structure as in Fig. 14.6)
with a direct band gap (at k = 0) of about Egap(GaAs) = 1.4 eV. AlAs
is the same structure except that the Ga has been replaced by Al and the
gap2 at k = 0 is about 2.7 eV. One can also produce alloys (mixtures)

2AlAs is actually an indirect band-gap
semiconductor, but for x < .4 or so
AlxGa1−xAs is direct band gap.

where some fraction (x) of the Ga has been replaced by Al which we
notate as AlxGa1−xAs. To a fairly good approximation the direct band
gap just interpolates between the direct band gaps of the pure GaAs
and the pure AlAs. Thus we get roughly (for x < .4)

Egap(x) = (1− x) 1.4 eV + x 2.7 eV.

By producing this type of alloyed structure one can obtain any desired
band gap in this type of material.3 This technique of designing properties

3By alloying the material with arbi-
trary x, one must accept that the sys-
tem can no longer be precisely peri-
odic but instead will be some random
mixture. It turns out that as long as
we are concerned with long wavelength
electron waves (i.e, states near the bot-
tom of the conduction band or the top
of the valence band) this randomness
is very effectively averaged out and we
can roughly view the system as being a
periodic crystal of As and some average
of a AlxGa1−x atom. This is known as
a “virtual crystal” approximation.

of materials (such as band gaps) by alloying miscible materials4 can be

4“Miscible” means “mixable”.

applied very broadly. It is not uncommon to concoct compounds made
of three, four, or even five elements in order to engineer materials with
certain desired properties.
In the context of device physics one might want to build, for example,

a laser out of a semiconductor. The lowest-energy transition which re-
combines a hole with an electron is the gap energy (this is the “lasing”
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energy typically). By tuning the composition of the semiconductor, one
can tune the energy of the gap and therefore the optical frequency of the
laser. We will see in the rest of this chapter more examples of how band
structure engineering can be very powerful for building a wide range of
semiconductor devices.

18.1.2 Non-Homogeneous Band Gaps

GaAs

AlxGa1−xAs

AlxGa1−xAs

L
z

x

Fig. 18.1 A semiconductor het-
erostructure in a quantum well config-
uration. In the GaAs region, the con-
duction band is at lower energy and the
valence band is at higher energy than
in the AlGaAs region. Thus both elec-
trons in the conduction band and holes
in the valence band can be trapped in
the GaAs region.

Fig. 18.2 Band diagram of a quan-
tum well. A single electron in the con-
duction band can be trapped in the
particle-in-a-box states in the quantum
well. Similarly, a hole in the valence
band can be trapped in the quantum
well.

By constructing structures where the material (or the alloying of a mate-
rial) is a function of position, one can design more complex environments
for electrons or holes in a system. Consider, for example, the structure
shown in Fig. 18.1. Here a layer of GaAs with smaller band gap is in-
serted between two layers of AlGaAs5 which has a larger band gap.6

5One frequently writes “AlGaAs”
rather than “AlxGa1−xAs” for brevity.

6GaAs and AlGaAs are particularly
nice materials for building heterostruc-
tures because the lattice constants of
GaAs and AlGaAs are extremely close.
As a result, AlGaAs will attach very
nicely to a GaAs surface and vice versa.
If one builds heterostructures between
materials with very different lattice
constants, inevitably there are defects
at the interface.

This structure is known as a “quantum well”. In general a structure
made of several varieties of semiconductor is known as a semiconductor
heterostructure.7 A band diagram of the quantum well structure as a

7Development of semiconductor het-
erostructure devices (including semi-
conductor lasers and heterostructure
transistors) resulted in Nobel Prizes for
Zhores Alferov and Herbert Kroemer in
2000.

function of the vertical position z is given in Fig. 18.2. The band gap
is lower in the GaAs region than in the AlGaAs region. The changes in
band energy can be thought of as a potential that an electron (or hole)
would feel. For example, an electron in the conduction band can have a
lower energy if it is in the quantum well region (the GaAs region) than
it can have in the AlGaAs region. An electron in the conduction band
with low energy will be trapped in this region. Just like a particle in a
box, there will be discrete eigenstates of the electron’s motion in the z
direction, as shown in the figure. The situation is similar for holes in
the valence band (recall that it requires energy to push a hole down into
the valence band), so there will similarly be confined particle-in-a-box
states for holes in the quantum well.
The important physics of this section is to realize that electrons in a

semiconductor see the energy of the conduction band bottom (or corre-
spondingly the holes see the energy of the valence band top) as being a
potential as a function of position which they can then be trapped in!

Modulation Doping and the Two-Dimensional Electron Gas

To add electrons (or holes) to a quantum well, one typically has to in-
clude dopants to the heterostructure (n- or p-dopants respectively). A
very useful trick is to put the actual dopant atoms outside the quantum
well. Since the potential energy is lower in the well, electrons released
by n-donors will fall into the well and will be trapped there.8,9 For ex-
ample, in Figs. 18.1 and 18.2, one could put the dopants in the AlGaAs
region rather than in the GaAs region. This trick, known as “modula-
tion doping”,10 allows the carriers to move freely within the well region
without ever having to bump into a dopant ion. Such carriers can have
enormously long mean-free paths, and this is quite useful in designing
devices with very low dissipation.

E
n
er

gy
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8If electrons move too far from their
donor ions, an electrical charge builds
up (like a capacitor), so the number of
electrons that fall into the well is lim-
ited by this charging energy. This is
similar to the physics of the p-n junc-
tion which we discuss next.
9Similarly holes released by p-donors
“fall-up” into the well and will be
trapped!

Electrons that are trapped in a quantum well are free to travel in
two dimensions, but are confined in the third direction (denoted the
z-direction in Figs. 18.1 and 18.2). At low temperature, if such a con-

10Modulation doping was invented
by Horst Stormer and Ray Dingle.
Stormer later won a Nobel Prize for re-
search that was enabled by this trick!
See also margin note 12. Stormer was
also my boss’s boss for a while when I
worked at Bell Labs.

fined electron does not have enough energy to jump out of the well, or
even to jump to a higher particle-in-a-box state, then the electron mo-
tion is strictly two-dimensional.11 The study of such electrons in two

11This is known as a two-dimensional
electron gas or “2DEG”.

dimensions has turned out to be a veritable treasure trove12 of new

12Several Nobel Prizes have been
awarded for study of two-dimensional
electrons: von Klitzing in 1985 and
Tsui, Stormer, and Gossard in 1998
(see margin note 2 in Chapter 1). The
study of electrons in graphene, a single
atomic layer of carbon, which won the
prize in 2010 (Geim and Novoselov, see
also margin note 7 in Chapter 19), is
very closely related as well.

and exciting physics, with amazing connections to fields as diverse as
string theory and quantum computation. Unfortunately, detailed study
of these systems are beyond the scope of this book.13

13Since this is one of my favorite topics,
it may be the subject of my next book.
Or maybe this will be my next next
book after I write a romantic thriller
about physicists in the Amazon who de-
feat drug smugglers.

18.2 p-n Junction

One of the simplest, yet most important, semiconductor structures is the
p-n junction. This is nothing more than a system where a p-doped semi-
conductor is brought into direct contact with an n-doped semiconductor.
The resulting physics is quite surprising!
To understand the p-n junction, let us first consider p-doped and n-

doped semiconductors separately, as shown in Fig. 18.3 (compare to
Fig. 17.4). Although the n-doped system has free negatively charged
electrons and the p-doped system has free positively charged holes, both
systems are overall electrically neutral since charged ions compensate for
the charges of the mobile charge carriers. As shown in Fig. 18.3, in the
n-doped semiconductor the chemical potential is near the very top of the
band gap, whereas in the p-doped semiconductor the chemical potential
is near the bottom of the band gap. Thus when the two materials are
brought into contact the electrons in the conduction band will fall into
the valence band, filling the empty hole states (as depicted by the arrow
in Fig. 18.3), thus “pair-annihilating” both the electron and the hole.
This pair-annihilation process amounts to a gain in energy of Egap per
pair annihilated (where Egap is the gap energy between the bottom of
the conduction band and the top of the valence band). Fig. 18.3 The chemical potential for

an n-doped semiconductor (left) is near
the top of the band gap, whereas for a
p-doped semiconductor (right) it is near
the bottom of the band gap (compare
to Fig. 17.4). The n-doped semicon-
ductor has free electron (e−) carriers in
the mostly empty conduction band, but
remains electrically neutral due to the
positive ions. Similarly, the p-doped
semiconductor has free hole (h+) car-
riers in the mostly filled valence band,
but remains electrically neutral due to
the negative ions. When the two semi-
conductors are brought together the
electrons want to fall down to the lower
chemical potential, filling (and thus an-
nihilating) the empty holes (as shown
by the arrow).
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After this process of electrons falling into holes and annihilating occurs
there will be a region near the interface where there are no free carriers at
all. This is known as the “depletion region” or “space charge region” (see
Fig. 18.4). This region is electrically charged, since there are charged
ions but no carriers to neutralize them. Thus there is a net electric
field pointing from the positively charged to the negatively charged ions
(i.e., the electric field points from the n-doped to the p-doped region).
This electric field is very much like a capacitor—positive charge spatially
separated from negative charge with an electric field in the middle. We
now imagine moving an additional electron across the depletion region
in order to annihilate another hole. While the annihilation process gives
a gain in energy of Egap the process of moving the electron across the
depletion region costs an energy of −e∆φ where φ is the electrostatic
potential. When the depletion region is sufficiently large (so that the
charge on the capacitor is sufficiently large, and thus ∆φ is large) it
becomes no longer favorable for further electrons and holes to annihilate.
Thus, the depletion region grows only to a width where these two energy
scales are the same.14

14One can make a very crude approx-
imation of the junction as a plate ca-
pacitor (it is not a plate capacitor since
the charge is distributed throughout
the volume of the junction, not just on
two plates). For simplicity let us also
assume that the acceptor doping den-
sity na = p in the p-region is the same
as the donor doping density nd = n
in the n-region. The capacitance of a
plate capacitor per unit area is ε0εr/w
with w the depletion width, εr the rel-
ative dielectric constant, and ε0 the
usual vacuum permittivity. The total
charge per unit area on the capacitor
is nw/2 so the voltage across the ca-
pacitor is ∆φ = Q/C = nw2/(2ε0εr).
Setting e∆φ equal to the gap energy
Egap yields an approximation of w. In
Exercise 18.3 you are asked to do this
calculation more carefully.

Fig. 18.4 Once electrons near the p-n
interface have “fallen” into holes, thus
annihilating both electron and hole,
there is a depletion region near the in-
terface where there are no free carri-
ers. In this region, the charged ions cre-
ate an electric field. The corresponding
electrostatic potential −eφ is shown in
the bottom of the figure. The deple-
tion region will continue to grow until
the energy for another electron to cross
the depletion region (the size of the step
in −eφ) is larger than the gap energy
which would be gained by the electron
annihilating a hole.
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The depiction of the p-n junction shown in Fig. 18.4 is a bit deceptive.
From the top part of the figure it appears as if it would always lower the
energy to move an electron across the junction to annihilate a hole (since
the chemical potential of the electron on the left is plotted higher than
the chemical potential of the hole on the right). What is lacking in the
depiction of the top part of this figure is that it does not make apparent
the electrostatic potential generated by the charges in the junction (this
is shown as the plot in the lower half of the figure). It is therefore
convenient to replot this figure so as to reflect the electrostatic potential
as well as the (band structure) kinetic energy. This is shown in Fig. 18.5.
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Fig. 18.5 Band diagram of an unbi-
aised p-n junction. This is precisely
the same figure as Fig. 18.4, except
that the electrostatic potential is added
to the band energy. In this figure the
equality of the (electro)chemical poten-
tial on the left versus the right indi-
cates that there is no net driving force
for electrons to flow either left or right.
However, in the depletion region there
is a net electric field, so if electron–hole
pairs are created in this region by ab-
sorbing a photon, the electron will flow
left and the hole will flow right, creat-
ing a net current. Note that the total
potential voltage drop over the deple-
tion region amounts to exactly the band
gap.
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Note that in this figure, the shifted chemical potentials on the two sides
of the figure are now at the same level—reflecting the fact that the drop
in band energy is precisely compensated by the change in electrostatic
potential.15 Thus there is no driving force for electrons to be transferred 15The combination of chemical poten-

tial and electrostatic energy is usually
known as electrochemical potential.

either to the right or to the left in this junction.

The Solar Cell

If one applies light to a semiconductor, electron–hole pairs may be
excited if the energy of a photon is greater than the energy of the
bandgap.16 Consider now exposing the p-n junction of Fig. 18.5 to light. 16Optical absorbtion is very strong for

direct band gaps, and is less strong for
indirect band-gaps. See Section 16.5.2.

In most regions of the semiconductor, the created electrons and holes
will quickly reannihilate. However, in the depletion region, due to the
electric field in this region, electrons which are created flow off to the
left (towards the n-doped region) and holes which are created flow off
to the right (towards the p-doped region). In both cases, the charge
current is moving to the right (negative flowing left and positive flowing
right both constitute current flowing to the right). Thus a p-n junction
spontaneously creates a current (hence a voltage, hence power) just by
being exposed to light. Devices based on this principle, known as a solar
cells, photovoltaics, or photodiodes, currently provide tens of billions of
dollars-worth of electrical energy to the world!

Rectification: The Diode

This p-n junction has the remarkable property of rectification: it will
allow current to flow through the junction easily in one direction, but
not easily (with very high resistance) in the other direction.17 Such
asymmetric devices, frequently known as diodes,18 form crucial parts of

18“di-ode” is from Greek, meaning
“two path”, which refers to the fact
that such devices have two different
sides (the p and n sides).

many electrical circuits.
To understand the rectification effect, we imagine applying some volt-

age to the p-n junction to obtain a situation as shown in Fig. 18.6.
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Fig. 18.6 Band diagram of a biased
p-n junction (compare to Fig. 18.5).
In this case, the right-hand side of the
diagram is bent downwards by an ap-
plied voltage (+eV is negative in this
figure). The four processes that can
create current are labeled. In the ab-
sence of applied voltage the net current
is zero. When voltage is applied, cur-
rent flows—easily for eV negative, but
not easily for eV positive.
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This figure is entirely analogous to Fig. 18.5 except that the potential
hill (which has a total height of Egap in Fig. 18.5) has been reduced by
the applied voltage. Hence whereas the left and right chemical potentials
line up in Fig. 18.5, here they do not align. There are four processes
that can create current (labeled ©1 −©4 in the figure). Let us consider
these one at a time to determine how much current flows.
Process ©1 and ©2 : On the right-hand side of the diagram (the

p-doped side), electrons may be thermally excited into the conduction
band (process©1 ). Some of these electrons will will flow down the slope
to the left. Similarly on the left of the diagram (the n-doped side), holes
may be thermally excited down into the valence band (process ©2 ) and
will flow up the slope to the right. In both cases, the number of carriers
excited takes the usual activated19 form e−Egap/kBT , and in both cases19Given the law of mass action,

Eq. 17.10, np ∝ e−Egap/kBT . On each
side of the system, the majority carrier
density is fixed by the doping density,
and it is the minority carrier density
which is exponentially activated.

the resulting charge current flows to the right (electrons flow to the left).
Thus we obtain a contribution to the current of

Iright ∝ e−Egap/kBT
. (18.1)

20 Lest we violate the third law!
Process©3 and©4 : It is also possible that electrons in the conduction

band on the left-hand side of the diagram (the n-doped side) will be
thermally activated to climb up the potential slope in the depletion
layer (process ©3 ) and will annihilate with holes once they arrive at the
p-doped side. In the absence of applied voltage (as depicted in Fig. 18.4)
the potential hill which the electrons would have to climb is precisely
of height Egap. Thus the amount of such current is ∝ e−Egap/kBT .

17The phenomenon of rectification in semiconductors was discovered by Karl Ferdinand Braun way back in 1874, but was
not understood in detail until the middle of the next century. This discovery was fundamental to the development of radio
technology. Braun was awarded the Nobel Prize in 1909 with Guglielmo Marconi for contributions to wireless telegraphy.
Perhaps as important to modern communication, Braun also invented the cathode ray tube (CRT) which formed the display
for televisions for many years until the LCD display arrived very recently. The CRT is known as a “Braun tube” in many
countries.



18.3 The Transistor 203

Similarly, the holes in the valence band on the right-hand side (in the
p-doped side), may be thermally activated to climb down the potential
slope towards the n-doped side (process ©4 ) where they annihilate with
electrons. Again in the absence of an applied voltage the amount of such
current is ∝ e−Egap/kBT . In both of these cases, the charge current is
flowing to the left (electrons flow to the right).
When a voltage is applied to the system, the height of the potential

hill is modified from Egap to Egap+eV , and correspondingly the current
for these two processes (©3 and ©4 ) is modified giving

Ileft ∝ e−(Egap+eV )/kBT
. (18.2)

Note however that for processes ©1 and ©2 , voltage bias will not change
the number of excited carriers so that Iright is independent of voltage.
Thus the total current flow in this device, is the sum of all four pro-

cesses, Ileft + Iright. While we have only kept track of the exponential
factors in Eqs. 18.1 and 18.2, and not the prefactors, it is easy to ar-
gue that their prefactors must be the same. Since in the absence of
applied voltage (or applied photons) there must be no net current in the
system,20 we can therefore write

Itotal = Js(T )
(
e−eV/kBT − 1

)
(18.3)

where Js ∝ e−Egap/kBT is known as the saturation current. Eq. 18.3
is often known as the “diode equation” and is depicted in Fig. 18.7.
Current flows easily in one direction (the so-called forward biased direc-
tion) whereas it flows only very poorly in the opposite direction (the
reverse biased direction). At a cartoon level, one can think of a diode as
being a circuit element whose response looks like the simplified picture
in Fig. 18.8—essentially Ohmic (current proportional to voltage) in the
forward biased direction and no current at all in the reverse biased di-
rection. The reader might find it interesting to think about what sort of
practical circuits can be built using diodes (see Exercise 18.5). In circuit
diagrams the diode is depicted as shown in Fig. 18.9.

-e V

I

0

Fig. 18.8 A cartoon picture of the
current–voltage relation for a diode.
Roughly one imagines a diode as being
Ohmic in the forward bias direction and
allows no current to flow in the reverse
bias direction.
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-e V/kBT

I / Js
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Fig. 18.7 Current–voltage relation for
a diode (Eq. 18.3). Current flows eas-
ily in the forward bias direction, but
not easily in the reverse bias direction.
The scale of the y axis is set by the sat-
uration current Js, which is generally a
function of temperature and other de-
tails of the device.

Fig. 18.9 Symbol for a diode in a cir-
cuit. Current flows easily in the direc-
tion of the arrow (from the p to the n
side), but not in the opposite direction.
Remember that electrons flow opposite
the current direction.

18.3 The Transistor

Perhaps the most important invention21 of the 20th century was the
transistor—the simple semiconductor amplifier which forms the basis
of every modern electronic circuit. Every iPad, iPod, iPhone, and

21The invention of the transistor is usually credited to the Bell Labs team of John Bardeen, Walter Brattain, and William
Shockley in 1947. Shockley, the manager of the team, although brilliant, was a very difficult person. Shockley was infuriated
when he found out that Bardeen and Brattain had succeeded in making a prototype without his help. Although Shockley was
(rightly) included in the Nobel Prize (due to significant improvements he made to the design) he essentially made it impossible
for Bardeen and Brattain to contribute to any further development of the device. Bardeen left Bell Labs to the University of
Illinois, Champagne-Urbana, where he started work on the theory of superconductivity, for which he won a second Nobel Prize
(See margin note 5 in Section 6.1). Later in life Shockley became a strong proponent of eugenics, espousing opinions that were
viewed as racist. He died estranged from most of his friends and family. On the more positive side of his legacy, he pioneered
a nice rock climbing route in the Shawangunks of New York State which is now known as “Shockley’s Ceiling”.
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iBook literally contains billions of transistors. Even simple devices, like
alarm clocks, TVs, or radios contain many thousands or even millions
of them.22

22Potentially as important as the in-
vention of the transistor was figuring
out how to put millions of them on
a single piece of silicon. The inven-
tion of the so-called “integrated cir-
cuit” earned Jack Kilby a Nobel Prize.
Robert Noyce invented a similar device
a few months later and founded Intel.

Although there are many types of modern transistors, by far the most
common is known as the MOSFET,23 which stands for “Metal-Oxide-

23The first MOSFET was built in 1960,
although a patent by Lilienfeld from
1926 (!) proposed what was essentially
the same structure, although without a
complete understanding of what would
be required to make it work.

Semiconductor Field Effect Transisitor”. In Fig. 18.10 we show the
structure of an n-MOSFET device without voltage applied to the gate.
The regions around the source and drain contact are n-doped whereas
the rest of the semiconductor is p-doped. Depletion layers form between
the n- and p-doped regions. So in the absence of voltage applied to the
gate the effective circuit is equivalent to two back-to-back p-n junctions
as shown in Fig. 18.11. As a result, without voltage on the gate, current
cannot flow easily between the source and drain in either direction. Note
in particular the physical structure of the device which is Metal on top
of an Oxide insulator on top of a Semiconductor. These three layers
comprise the MOS of the acronym MOS-FET24 (most often in modern
devices the semiconductor is silicon and the oxide is silicon dioxide).

Fig. 18.10 An n-MOSFET transistor
with no bias applied to the gate. Re-
gions around the source and drain con-
tacts are n-doped, whereas the rest of
the semiconductor is p-doped. Note
the depletion layers separating the n-
from p-doped regions. In the absence
of voltage on the gate electrode, this
device is essentially two back to back
diodes as depicted in Fig. 18.11 so
that current cannot flow easily between
source to drain in either direction. Note
the Metal on top of Oxide on top of
Semiconductor which gives the device
the name MOS-FET. This device has
four electrical contacts including the
ground (lower right).

Fig. 18.11 In the absence of gate volt-
age, an n-MOSFET is just two p-n
junctions back to back as shown here.
Current cannot flow easily in either di-
rection.

When a positive voltage is applied to the metal gate (with respect
to the ground attached to the semiconductor), the metal gate acts as
one plate of a capacitor. The semiconductor forms the other plate of
the capacitor, so that a positive voltage on the gate attracts negative
charge to the region just under the oxide insulator. This attraction of
charge is known as a “field effect”, since it is the result of an electric
field caused by the gate. (The term “field effect transistor” is the FET
in the acronym MOSFET.) As a result, if the gate voltage is sufficiently
large, larger than some particular threshold voltage Vthreshold, the region
under the gate becomes effectively n-like. This then means that there
is a continuous channel of n-semiconductor that stretches all the way
from the source to the drain and as a result the conductance between
source and drain becomes very large as shown in Fig. 18.12. In this
way, a (relatively small) voltage on the gate can control a large current
between the source and drain, hence providing amplification of small
signals.

24In fact a transistor can perfectly well
be built using a gate which is not
metal and/or an insulating layer which
is not oxide. To be more inclusive of
these structures as well, one occasion-
ally hears the term “IGFET”, meaning
“insulated gate field effect transistor”.

To determine in more detail the behavior of the n-MOSFET transistor
we need to think about how electrons are attracted to the channel region.
This turns out to be quite similar to the considerations we used for the
p-n junction. In short, the electrostatic potential from the gate “bends”
the band structure (similar to Fig. 18.6) such that very near to the
gate the conduction band has been bent close to the chemical potential
and has started filling with electrons. Since activation of carriers into
the conduction band is exponential in the energy difference between the
chemical potential and the bottom of the conduction band (see Eq. 17.8)
the conductivity of the channel from source to drain is exponentially
sensitive to the voltage applied to the gate.
Note that we could also construct a p-MOSFET where the regions

around the source and drain would be p-doped and the rest of the semi-
conductor would be n-doped. For such a device, conductance between
source and drain would be turned on when the voltage on the gate is
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sufficiently negative so that holes are attracted to the region under the
gate making a conductive p-channel between source and drain. Modern
digital circuits almost always use a combination of n- and p-MOSFETS
built on the same piece of silicon. This is known as Complementary MOS
logic, or “CMOS”. In a circuit diagram, a MOSFET is frequently drawn
as shown in Fig. 18.13. Be warned, however, that there are many varia-
tions on this type of device, and they all have slightly different symbols.
This particular symbol indicates that the ground contact is connected
to the source electrode, which is very frequently the situation in circuits.

Fig. 18.12 An n-MOSFET with volt-
age V > Vthreshold applied to the gate.
Here, electrons are attracted to the
gate, making the region close to the ox-
ide layer effectively n-doped. As a re-
sult, the n region forms a continuous
conducting channel between the source
and the drain and current now flows
easily between these two. (Compare to
Fig. 18.10.)

Gate

Source Drain

n-MOSFET

Gate

Source Drain

p-MOSFET

Fig. 18.13 Common symbol for n-
and p-MOSFETs in circuit diagrams.
Note that in this symbol it is indicated
that the ground is connected to the
source—which is often the case in cir-
cuits. Other (frequently similarly look-
ing) symbols may be used if the device
is used in another context.

Chapter Summary

• Alloying semiconductors can tune the band gap.

• The band gaps act as a potential for carriers so one can build
particle-in-a-box potentials known as quantum wells.

• A junction between p- and n-doped semiconductor forms a deple-
tion layer with no mobile carrier, but intrinsic electric field. This
structure is the basis of the solar cell and the diode.

• An external potential applied to a semiconductor can attract car-
riers to a region, greatly changing the conduction properties of the
device. This “field effect” is the basis of the MOSFET.

References

There are many good references on semiconductor devices

• Hook and Hall, chapter 6 covers p-n junction fairly well
• Burns, section 10.17 covers p-n junction
• Ashcroft and Mermin, chapter 29 covers p-n junctions (This goes

into just enough depth to start to be confusing.)
• Ibach and Luth, chapter 12 covers many simple semiconductor de-

vices
• Sze (This is a good place to start if you want to learn a lot more

about semiconductor devices.)

Exercises

(18.1) Semiconductor Quantum Well

(a) A quantum well is formed from a layer of
GaAs of thickness L nm, surrounded by layers of
Ga1−xAlxAs (see Fig. 18.2). You may assume that
the band gap of the Ga1−xAlxAs is substantially
larger than that of GaAs. The electron effective

mass in GaAs is 0.068 me whereas the hole effective
mass is 0.45 me with me the mass of the electron.

! Sketch the shape of the potential for the elec-
trons and holes.

! What approximate value of L is required if the
band gap of the quantum well is to be 0.1 eV larger
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than that of GaAs bulk material?

(b) *What might this structure be useful for?

(18.2) Density of States for Quantum Wells

(a) Consider a quantum well as described in the
previous exercise. Calculate the density of states
for electrons and holes in the quantum well. Hint:
It is a 2D electron gas, but don’t forget that there
are several particle-in-a-box states.

(b) Consider a so-called “quantum wire” which is
a one-dimensional wire of GaAs embedded in sur-
rounding AlGaAs. (You can consider the wire
cross-section to be a square with side 30nm.) De-
scribe the density of states for electrons or holes
within the quantum wire. Why might this quan-
tum wire make a very good laser?

(18.3) p-n Junction*

Explain the origin of the depletion layer in an
abrupt p-n junction and discuss how the junction
causes rectifcation to occur. Stating your assump-
tions, show that the total width w of the depletion
layer of a p-n junction is:

w = wn +wp

where

wn =

(
2εrε0NAφ0

eND(NA +ND)

)1/2

and a similar expression for wp Here εr is the rela-
tive permittivity and NA and ND are the acceptor
and donor densities per unit volume, while φ0 is
the difference in potential across the p-n junction
with no applied voltage. You will have to use Pois-
son’s equation to calculate the form of φ given the
presence of the ion charges in the depletion region.

! Calculate the total depletion charge and infer
how this changes when an additional voltage V is
applied.

! What is the differential capacitance of the diode
and why might it be useful to use a diode as a ca-
pacitor in an electronic circuit?

(18.4) Single Heterojunction*

Consider an abrupt junction between an n-doped
semiconductor with minimum conduction band en-
ergy εc1 and an undoped semiconductor with min-
imum conduction band energy εc2 where εc1 < εc2.
Describe qualitatively how this structure might re-
sult in a two-dimensional electron gas at the inter-
face between the two semiconductors. Sketch the
electrostatic potential as a function of position.

(18.5) Diode Circuit

Design a circuit using diodes (and any other simple
circuit elements you need) to convert an AC (alter-
nating current) signal into a DC (direct current)
signal.

! *Can you use this device to design a radio re-
ciever?

(18.6) CMOS Circuit*

Design a circuit made of one n-MOSFET and one
p-MOSFET (and some voltage sources etc.) which
can act as a latch—meaning that it is stable in two
possible states and can act a single bit memory (i.e.,
when it is turned on it stays on by itself, and when
it is turned off it stays off by itself).
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Magnetic Properties of
Atoms: Para- and
Dia-Magnetism 19
The first question one might ask is why we are interested in magnets.
While the phenomenon of magnetism was known to the ancients,1 it

1Both the Chinese and the Greeks
probably knew about magnetic proper-
ties of Fe3O4, or magnetite (also known
as loadstone when magnetized) possi-
bly as far back as several thousand
years BC (with written records exist-
ing as far back as 600 BC). One legend
has it that a shepherd named Magnes,
in the provence of Magnesia, had the
nails in his shoes stuck to a large metal-
lic rock, and the scientific phenomenon
became named after him.

has only been since the discovery of quantum mechanics that we have
come to any understanding of what causes this effect.2 It may seem

2Animal magnetism not withstand-
ing... (that was a joke).

like this is a relatively small corner of physics for us to focus so much
attention (indeed, several chapters), but we will see that magnetism
is a particularly good place to observe the effects of both statistical
physics and quantum physics.3 As we mentioned in Section 16.4, one

3There is a theorem by Niels Bohr
and Hendrika van Leeuwen which shows
that any treatment of statistical me-
chanics without quantum mechanics
(i.e., classical statistical mechanics) can
never produce a non-zero magnetiza-
tion.

place where the band theory of electrons fails is in trying to describe
magnets. Indeed, this is precisely what makes magnets interesting! In
fact, magnetism remains an extremely active area of research in physics
(with many many hard and unanswered questions remaining). Much
of condensed matter physics continues to use magnetism as a testing
ground for understanding complex quantum and statistical physics both
theoretically and in the laboratory.
We should emphasize that most magnetic phenomena are caused by

the quantum-mechanical behavior of electrons. While nuclei do have
magnetic moments, and therefore can contribute to magnetism, the
magnitude of the nuclear moments is (typically) much less than that
of electrons.4 4To understand this, recall that the

Bohr magneton, which gives the size of
the magnetic moment of an electron, is
given by µB = e!

2m with m the elec-
tron mass. If one were to consider mag-
netism caused by nuclear moments, the
typical moments would be smaller by
a ratio of the mass of the electron to
the mass of a nucleus (a factor of over
1000). Nonetheless, the magnetism of
the nuclei, although small, does exist.

19.1 Basic Definitions of Types of
Magnetism

Let us first make some definitions. Recall that for a small magnetic field,
the magnetization of a system M (moment per unit volume) is typically
related linearly to the applied5 magnetic field H by a (magnetic) sus-
ceptibility χ. We write for small fields H,

M = χH. (19.1)

5The susceptibility is defined in terms of H. With a long rod-shaped sample oriented parallel to the applied field, H is the same
outside and inside the sample, and is thus directly controlled by the experimentalist. The susceptibility is defined in terms of
this standard configuration. However, one should remember that the field B that any electron in the sample experiences is
related to the applied field H via B = µ0(H +M).
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Note that χ is dimensionless.6 For small susceptibilities (and suscepti-6Many different types of units are used
in studying magnetism. We will stick to
SI units (for which χ is dimensionless),
but be warned that other books switch
between systems of units freely.

bilities are almost always small, except in ferromagnets) there is little
difference between µ0H and B (with µ0 the permeability of free space),
so we can also write

M = χB/µ0 . (19.2)

Definition 19.1 A paramagnet is a material where χ > 0 (i.e., the
resulting magnetization is in the same direction as the applied field).

We have run into (Pauli) paramagnetism previously in Section 4.3.
You may also be familiar with the paramagnetism of a free spin (which
we will cover again in Section 19.4). Qualitatively paramagnetism occurs
whenever there are magnetic moments that can be reoriented by an
applied magnetic field—thus developing magnetization in the direction
of the applied field.

Definition 19.2 A diamagnet is a material where χ < 0 (i.e., the re-
sulting magnetization is in the opposite direction from the applied field).

We will discuss diamagnetism more in Section 19.5. As we will see,
diamagnetism is quite ubiquitous and occurs generically unless it is over-
whelmed by other magnetic effects. For example, water, and almost any
other biological material, is diamagnetic.7 Qualitatively we can think of

7It is interesting to note that a diamag-
net repels the field that creates it, so
it is attracted to a magnetic field min-
imum. Earnshaw’s theorem forbids a
local maximum of the B field in free
space, but local minima can exist—and
this then allows diamagnets to levitate
in free space. In 1997 Andre Geim used
this effect to levitate a rather confused
frog. This feat earned him a so-called
Ig-Nobel Prize in 2000 (Ig-Nobel Prizes
are awarded for research that “cannot
or should not be reproduced”.) Ten
years later he was awarded a real Nobel
Prize for the discovery of graphene—
single-layer carbon sheets. This makes
him the only person so far to receive
both the Ig-Nobel and the real Nobel.

diamagnetism as being similar in spirit to Lenz’s law (part of Faraday’s
law) that an induced current generates a field that opposes the change
causing it. However, the analogy is not precise. If a magnetic field
is applied to a loop of wire, current will flow to create a magnetiza-
tion in the opposite direction. However, in any (non-superconducting)
loop of wire, the current will eventually decay back to zero and there
will be no magnetization remaining. In a diamagnet, in contrast, the
magnetization remains so long as the applied magnetic field remains.
For completeness we should also define a ferromagnet—this is what

we usually think of as a “magnet” (the thing that holds notes to the
fridge).

Definition 19.3 A ferromagnet is a material where M can be non-
zero, even in the absence of any applied magnetic field.8,9

8The definition of ferromagnetism
given here is a broad definition which
would also include ferrimagnets. We
will discuss ferrimagnets in Section
20.1.3, and we mention that occasion-
ally people use a more restrictive def-
inition (also commonly used) of ferro-
magnetism that excludes ferrimagnets.
At any rate, the broad definition given
here is common.
9The use of the word can in this sen-
tence is a bit of a weasel-wording. In
Section 21.1 we will see that ferromag-
nets, though they have a microscopic
tendency to have non-zero M, can have
zero M macroscopically.

It is worth already drawing the distinction between spontaneous and
non-spontaneous magnetism. Magnetism is said to be spontaneous if it
occurs even in the absence of externally applied magnetic field, as is
the case for a ferromagnet. The remainder of this chapter will mainly
be concerned with non-spontaneous magnetism, and we will return to
spontaneous magnetism in Chapter 20.
It turns out that a lot of the physics of magnetism can be understood

by just considering a single atom at a time. This will be the strategy of
the current chapter—we will discuss the magnetic behavior of a single
atom and only in Section 19.6 will we consider how the physics changes
when we put many atoms together to form a solid. We thus start this
discussion by reviewing some atomic physics that you might have learned
in prior courses.10

10You should have learned this in prior
courses. But if not, it is probably
not your fault! This material is rarely
taught in physics courses these days,
even though it really should be. Much
of this material is actually taught in
chemistry courses instead!
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19.2 Atomic Physics: Hund’s Rules

We start with some of the fundamentals of electrons in an isolated atom
(i.e., we ignore the fact that in materials atoms are not isolated, but are
bound to other atoms). Recall from basic quantum mechanics that an
electron in an atomic orbital can be labeled by four quantum numbers,
|n, l, lz,σz〉. In Section 5.2 we explained how the Aufbau principle and
Madelung’s rule determine in what order the n and l shells are filled in
the periodic table. Most elements will have several filled shells and a
single partially filled shell (known as the valence shell). To understand
much of magnetism, in these cases when shells are partially filled we
must first figure out which of the available (lz) orbitals are filled in
these shells and which spin states (σz) are filled. In particular we want
to know whether these electrons will have a net magnetic moment.
For an isolated atom there is a set of rules, known as “Hund’s Rules”,11 11Friedrich Hermann Hund was an im-

portant physicist and chemist whose
work on atomic structure began in
the very early days of quantum
mechanics—he wrote down Hund’s
rules in 1925. He is also credited with
being one of the inventors of molec-
ular orbital theory which we met in
Chapter 6.2.2. In fact, molecular or-
bital theory is sometimes known as
Hund–Mulliken molecular orbital the-
ory. Mulliken thanked Hund heavily in
his Nobel Prize acceptance speech (but
Hund did not share the prize). Hund
died in 1997 at the age of 101. The
word “Hund” means “Dog” in German.

which determines how the electrons fill orbitals and what spin states they
take, and hence whether the atom has a magentic moment. Perhaps the
simplest way to illustrate these rules is to consider an explicit example.
Here we will again consider the atom praseodymium which we discussed
earlier in Section 5.2. As mentioned there, this element in atomic form
has three electrons in its outermost shell, which is an f -shell, meaning
it has angular momentum l = 3, and therefore 7 possible values of lz,
and of course two possible values of the spin for each electron. So where
in these possible orbital/spin states do we put the three electrons?

Hund’s First Rule (paraphrased): Electrons try to align their
spins.

Given this rule, we know that the three valence electrons in Pr will have
their spins point in the same direction, thus giving us a total spin angular
momentum S = 3/2 from the three S = 1/2 spins. So locally (meaning
on the same atom), the three electron spins behave ferromagnetically—
they all align.12 The reason for this alignment will be discussed in Section 12We would not call this a true ferro-

magnet since we are talking about a sin-
gle atom here, not a macroscopic mate-
rial!

19.2.1, but in short, it is a result of the Coulomb interaction between
electrons (and between the electrons and the nucleus)—the Coulomb
energy is lower when the electron spins align.
We now have to decide which orbital states to put the electrons in.

For this we need another rule:

Hund’s Second Rule (paraphrased): Electrons try to maximize
their total orbital angular momentum, consistent with Hund’s first
rule.

lz =−3 −2 −1 0 1 2 3

Fig. 19.1 The filling of the f shell
of a Pr atom consistent with Hund’s
rules. We align spins and maximize Lz

to maximize L.

For the case of Pr, we fill the lz = 3 and lz = 2 and lz = 1 states to make
the maximum possible total Lz = 6 (this gives L = 6, and by rotational
invariance we can point L in any direction equally well). Thus, we fill
orbitals as shown in Fig. 19.1. In the figure we have put the spins as
far as possible to the right to maximize Lz (Hund’s second rule) and we
have aligned all the spins (Hund’s first rule). Note that we could not



212 Magnetic Properties of Atoms: Para- and Dia-Magnetism

have put two of the electrons in the same orbital, since they have to
be spin-aligned and we must obey the Pauli principle. Again the rule
of maximizing orbital angular momentum is driven by the physics of
Coulomb interaction.
At this point we have S = 3/2 and L = 6, but we still need to think

about how the spin and orbital angular momenta align with respect to
each other. This brings us to the final rule:

Hund’s Third Rule (paraphrased): Given Hund’s first and sec-
ond rules, the orbital and spin angular momentum either align or
antialign, so that the total angular momentum is J = |L± S| with
the sign being determined by whether the shell of orbitals is more
than half filled (+) or less than half filled (−).

The reason for this rule is not interaction physics, but is spin–orbit
coupling. The Hamiltonian will typically have a spin–orbit term α l · σ,
and the sign of α determines how the spin and orbit align to minimize the
energy.13 Thus for the case of Pr, where L = 6 and S = 3/2 and the shell13The fact that the sign switches at half

filling does not signal a change in the
sign of the underlying α (which is al-
ways positive) but rather is a feature
of careful bookkeeping. So long as the
shell remains less than half full, all of
the spins are aligned in which case we
have

∑
i li · σi = S · L thus always fa-

voring L counter-aligned with S. When
the shell is half filled L = 0. When
we add one more spin to a half-filled
shell, this spin must counter-align with
the many spins that comprise the half-
filled shell due to the Pauli exclusion
principle. The spin–orbit coupling li·σi

then makes this additional spin want to
counter-align with its own orbital an-
gular momentum li, which is equal to
the total orbital angular momentum L
since the half full shell has L = 0. This
means that the orbital angular momen-
tum is now aligned with the net spin,
since most of the net spin is made up of
the spins comprising the half-filled shell
and are counter-aligned with the spin of
the electron which has been added.

is less than half filled, we have total angular momentum J = L−S = 9/2.
One should be warned that people frequently refer to J as being the

“spin” of the atom. This is a colloquial use which is very persistent
but imprecise. More correctly, J is the total angular momentum of the
electrons in the atom, whereas S is the spin component of J .

19.2.1 Why Moments Align

We now return, as promised, to discuss roughly why Hund’s rules work—
in particular we want to know why magnetic moments (real spin mo-
ments or orbital moments) like to align with each other. This section
will be only qualitative, but should give at least a rough idea of the right
physics.
Let us first focus on Hund’s first rule and ask why spins like to align.

First of all, we emphasize that it has nothing to do with magnetic dipole
interactions. While the magnetic dipoles of the spins do interact with
each other, when dipole moments are on the order of the Bohr magneton,
this energy scale becomes tiny—way too small to matter for anything
interesting. Instead, the alignment comes from the Coulomb interaction
energy. To see how this works, let us consider a wavefunction for two
electrons on an atom.

Naive Argument

The overall wavefunction must be antisymmetric by Pauli’s exclusion
principle. We can generally write

Ψ(r1,σ1; r2,σ2) = ψorbital(r1, r2) χspin(σ1,σ2)

where ri are the particles’ positions and σi are their spin. Now, if the
two spins are aligned, say both are spin-up (i.e., χspin(↑, ↑) = 1 and
χspin = 0 for other spin configurations) then the spin wavefunction is
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symmetric and the spatial wavefunction ψorbital must be antisymmetric.
As a result we have

lim
r1→r2

ψorbital(r1, r2)→ 0.

So electrons with aligned spins cannot get close to each other, thus
reducing the Coulomb energy of the system.
The argument we have just given is frequently stated in textbooks.

Unfortunately, it is not the whole story.

Fig. 19.2Why aligned spins have lower
energy (Hund’s first rule). In this fig-
ure, the wavefunction is depicted for
one of the electrons whereas the other
electron (the one further left) is de-
picted as having fixed position. Top:
When the two electrons have opposite
spin, the effective charge of the nucleus
seen by the fixed electron is reduced
by the screening provided by the other
electron. Bottom: However, when the
spins are aligned, the two electrons can-
not come close to each other and the
fixed electron sees more of the charge
of the nucleus. As such, the binding
of the fixed electron to the nucleus is
stronger in the case where the two elec-
trons are spin aligned, therefore it is a
lower-energy configuration.

More Correct

In fact it turns out that the crucial Coulomb interaction is that between
the electron and the nucleus. Consider the case where there are two
electrons and a nucleus as shown in Fig. 19.2. Note in this figure that
the positive charge of the nucleus seen by one electron is screened by
the negative charge of the other electron. This screening reduces the
binding energy of the electrons to the nucleus. However, when the two
spins are aligned, the electrons repel each other and therefore screen the
nucleus less effectively. In this case, the electrons see the full charge of
the nucleus and bind more strongly, thus lowering their energies.
Another way of understanding this is to realize that when the spins

are not aligned, sometimes one electron gets between the other electron
and the nucleus—thereby reducing the effective charge seen by the outer
electron, reducing the binding energy, and increasing the total energy of
the atom. However, when the electrons are spin aligned, the Pauli prin-
ciple largely prevents this configuration from occurring, thereby lowering
the total energy of the system.

Exchange Energy

The energy difference between having two spins aligned versus antialigned
is usually known as the exchange interaction or exchange energy. The
astute reader will recall that atomic physicists use the word “exchange”
to refer to what we called the hopping matrix element (see margin note
13 in Section 6.2.2) which “exchanged” an electron from one orbital to
another. In fact the current name is very closely related. To see the
connection let us attempt a very simple calculation of the difference in
energy between two electrons having their spins aligned and two elec-
trons having their spins antialigned. Suppose we have two electrons on
two different orbitals which we will call A(r) and B(r). We write a
general wavefunction as ψ = ψspatialχspin, and overall the wavefunction
must be antisymmetric. If we choose the spins to be aligned (a triplet,
therefore symmetric, such as | ↑↑〉), then the spatial wavefunction must
be antisymmetric, which we can write14 as |AB〉 − |BA〉. On the other 14Here |AB〉 means A(r1)B(r2)

hand, if we choose the spins to be antialigned (a singlet, therefore an-
tisymmetric, i.e., | ↑↓〉 − | ↓↑〉) then the spatial wavefunction must be
symmetric |AB〉 + |BA〉. When we add Coulomb interaction V (r1, r2),
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the energy difference between the singlet and triplet can be calculated
as follows:

Esinglet = (〈AB|− 〈BA|) V (|AB〉 − |BA〉)
Etriplet = (〈AB|+ 〈BA|) V (|AB〉+ |BA〉)

Eexchange = Esinglet − Etriplet = −4Re〈AB|V |BA〉.

In the cross term 〈AB|V |BA〉 the two electrons have “exchanged” place.
Hence the name.

Magnetic Interactions in Molecules and Solids

One must be somewhat careful with these types of arguments however—
particularly when they are applied to molecules instead of atoms. In the
case of a diatomic molecule, say H2, we have two electrons and two
nuclei. While the screening effect (Fig. 19.2) still occurs, and tries to
align the electrons, it is somewhat less effective than for two electrons on
a single atom—since most of the time the two electrons are near opposite
nuclei anyway. Furthermore, there is a competing effect that tends to
make the electrons want to antialign. As mentioned in Section 6.2.1
when we discussed covalent bonding, we can think of the two nuclei as
being a square well (see Fig. 6.3), and the bonding is really a particle-in-
a-box problem. There is some lowest-energy (symmetric) wavefunction
in this large two-atom box, and the lowest-energy state of two electrons
would be to have the two spins antialigned so that both electrons can
go in the same low-energy spatial wavefunction. It can thus be quite
difficult to determine whether electrons on neighboring atoms want to
be aligned or antialigned. Generally either behavior is possible. (We
will discuss this further in Chapter 23.)

19.3 Coupling of Electrons in Atoms to an
External Field

Having discussed how electron moments (orbital or spin) can align with
each other, we now turn to discuss how the electrons in atoms couple to
an external magnetic field.
In the absence of a magnetic field, the Hamiltonian for an electron in

an atom is of the usual form15

15Again, whenever we discuss mag-
netism it is typical to use H for the
Hamiltonian so as not to confuse it with
the magnetic field strength H = B/µ0.

H0 =
p2

2m
+ V (r)

where V is the electrostatic potential from the nucleus (and perhaps from
the other electrons as well). Now consider adding an external magnetic
field. Recall that the Hamiltonian for a charged particle in a magnetic
field B takes the minimal coupling form16

16Recall that minimal coupling re-
quires p→ p−qA where q is the charge
of the particle. Here our particle has
charge q = −e. The negative charge
is also responsible for the fact that the
electron spin magnetic moment is an-
tialigned with its spin. Hence it is lower
energy to have the spin point opposite
the applied magnetic field (hence the
positive sign of the so-called Zeeman
term gµBB ·σ). Blame Ben Franklin.
(See margin note 15 of Section 4.3.)

H =
(p+ eA)2

2m
+ gµBB · σ + V (r)
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where −e is the charge of the particle (the electron), σ is the electron
spin, g is the electron g-factor (approximately 2), µB = e!/(2m) is the
Bohr magneton, and A is the vector potential. For a uniform magnetic
field, we may take A = 1

2B× r such that ∇×A = B. We then have17

17Note that while pi does not commute
with ri, it does commute with rj for
j '= i, so there is no ordering problem
between p and B× r

H =
p2

2m
+ V (r) +

e

2m
p · (B× r) +

e2

2m

1

4
|B× r|2 + gµBB · σ. (19.3)

The first two terms in this equation comprise the Hamiltonian H0 in the
absence of the applied magnetic field. The next term can be rewritten

e

2m
p · (B× r) =

e

2m
B · (r× p) = µBB · l (19.4)

where !l = r×p is the orbital angular momentum of the electron. This
can then be grouped with the so-called Zeeman term gµBB · σ to give

H = H0 + µBB · (l + gσ) +
e2

2m

1

4
|B× r|2 . (19.5)

The middle term on the right of this equation, known sometimes as the
paramagnetic term, is clearly just the coupling of the external field to
the total magnetic moment of the electron (both orbital moment −µBl
and spin moment −gµBσ). Note that when a B-field is applied, these
moments aligns with the B-field (meaning that l and σ antialign with
B) such that the energy is lowered by the application of the field.18 As

18If the sign of the magnetic moment
confuses you, it is good to remember
that moment is always −∂F/∂B, and
at zero temperature the free energy is
just the energy.

a result a moment is created in the same direction as the applied field,
and this term results in paramagnetism.
The final term of Eq. 19.5 is known as the diamagnetic term of the

Hamiltonian, and will be responsible for the effect of diamagnetism.
Since this term is quadratic in B it will always cause an increase in the
total energy of the atom when the magnetic field is applied, and hence
has the opposite effect from that of the above-considered paramagnetic
term. Also being that this term is quadratic in B it should be expected
to be less important than the paramagnetic term (which is linear in B)
for small B.
These two terms of the Hamiltonian are the ones responsible for both

the paramagnetic and diamagnetic response of atoms to external mag-
netic fields. We will treat them each in turn in the next two sections.
Keep in mind that at this point we are still considering the magnetic
response of a single atom!

19.4 Free Spin (Curie or Langevin)
Paramagnetism

We will start by considering the effect of the paramagnetic term of
Eq. 19.5. We assume that the unperturbed Hamiltonian H0 has been
solved and we need not pay attention to this part of the Hamiltonian—we
are only concerned with the reorientation of a spin σ and/or an orbital
angular momentum l of an electron. At this point we also disregard the
diamagnetic term of the Hamiltonian, as its effect is generally weaker
than that of the paramagnetic term.
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Free Spin 1/2

As a review let us consider a simpler case that you are probably fa-
miliar with from your statistical physics course: a free spin-1/2. The
Hamiltonian, you recall, of a single spin-1/2 is given by

H = gµBB · σ (19.6)

with g the g-factor of the spin which we set to be 2, and µB = e!/(2m)
is the Bohr magneton. We can think of this as being a simplified version
of the paramagnetic term of Eq. 19.5, for a single free electron where
we ignore the orbital moment. The eigenstates of B ·σ are ±B/2 so we
have a partition function

Z = e−βµBB + eβµBB (19.7)

and a corresponding free energy F = −kBT logZ, giving us a magnetic
moment (per spin) of

moment = −
∂F

∂B
= µB tanh(βµBB). (19.8)

If we have many such atoms together in a volume, we can define the
magnetization M to be the magnetic moment per unit volume. Then,
at small field (expanding the tanh for small argument) we obtain a sus-
ceptibility of

χ = lim
H→0

∂M

∂H
=

nµ0µ2
B

kBT
(19.9)

where n is the number of spins per unit volume (and we have used
B ≈ µ0H with µ0 the permeability of free space). Expression 19.9 is
known as the “Curie law”19 susceptibility (actually any susceptibility19Named after Pierre Curie. Pierre’s

work on magnetism was well before
he married his mega-brilliant wife
Marie Sk$lodowska-Curie. She won one
physics Nobel with Pierre, and then an-
other one in chemistry after he died.
(See margin note 5 in Section 6.1.)
Half-way between the two prizes, Pierre
was killed when he was run over by a
horse-drawn vehicle while crossing the
street. (Be careful!)

of the form χ ∼ C/(kBT ) for any constant C is known as Curie law),
and paramagnetism involving free spins like this is often called Curie
paramagnetism or Langevin20 paramagnetism.

20Paul Langevin was Pierre Curie’s
student. He is well known for many im-
portant scientific discoveries. He is also
well known for creating quite the scan-
dal by having an affair with Marie Curie
a few years after her husband’s death
(Langevin was married at the time).
Although the affair quickly ended, iron-
ically, the grandson of Langevin mar-
ried the granddaughter of Curie and
they had a son—all three of them are
physicists.

Free Spin J

The actual paramagnetic term in the Hamiltonian will typically be more
complicated than our simple spin-1/2 model, Eq. 19.6. Instead, examin-
ing Eq. 19.5 and generalizing to multiple electrons in an atom, we expect
to need to consider a Hamiltonian of the form

H = µBB · (L+ gS) (19.10)

where L and S are the orbital and spin components of all of the electrons
in the atom put together. Recall that Hund’s rules tell us the value of
L, S, and J . The form of Eq. 19.10 looks a bit inconvenient, since
Hund’s third rule tells us not about L + gS but rather tells us about
J = L+S. Fortunately, for the type of matrix elements we are concerned
with (reorientations of J without changing the value of J, S, or L which
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are dictated by Hund’s rules) the Hamiltonian Eq. 19.10 turns out to be
precisely equivalent to

H = g̃µBB · J (19.11)

where g̃ is an effective g-factor (known as the Landé g-factor) given by21

g̃ =
1

2
(g + 1) +

1

2
(g − 1)

[
S(S + 1)− L(L+ 1)

J(J + 1)

]

From our new Hamiltonian, it is easy enough to construct the partition
function

Z =
J∑

Jz=−J

e−βg̃µBBJz
. (19.12)

Analogous to the spin-1/2 case above one can differentiate to obtain
the moment as a function of temperature. If one considers a density
n of these atoms, one can then determine the magnetization and the
susceptibility (see Exercise 19.7). The result, of the Curie form, is that
the susceptibility per unit volume is given by (compare Eq. 19.9)

χ =
nµ0(g̃µB)2

3

J(J + 1)

kBT .

Note that the Curie law susceptibility diverges at low temperature.22

22The current calculation is a finite
temperature thermodynamic calcula-
tion resulting in divergent susceptibil-
ity at zero temperature. In the next
few sections we will study Larmor and
Landau diamagnetism as well as Pauli
and van Vleck paramagnetism. All of
these calculations will be zero temper-
ature quantum calculations and will al-
ways give much smaller finite suscepti-
bilities.

If this term is non-zero (i.e., if J is non-zero) then the Curie paramag-
netism is dominant compared to any other type of paramagnetism or
diamagnetism.23

23Not including superconductivity.

Aside: From Eqs. 19.7 or 19.12 we notice that the partition function of a

free spin is only a function of the dimensionless ratio µBB/(kBT ). From this we
can derive that the entropy S is also a function only of the same dimensionless

ratio. Let us imagine that we have a system of free spins at magnetic field
B and temperature T , and we thermally isolate it from the environment. If

we adiabatically reduce B, then since S must stay fixed, the temperature must

drop proportionally to the reduction in B. This is the principle of the adiabatic
demagnetization refrigerator.24 ,25

24Very-low-temperature adiabatic de-
magnetization refrigerators usually rely
on using nuclear moments rather than
electronic moments. The reason for
this is that the (required) approxima-
tion of spins being independent holds
down to much lower temperature for
nuclei, which are typically quite decou-
pled from their neighbors. Achieving
nuclear temperatures below 1µK is pos-
sible with this technique.

25The idea of adiabatic demagnetiza-
tion was thought up by Debye.

19.5 Larmor Diamagnetism

Since Curie paramagnetism is dominant whenever J 0= 0, the only time
we can possibly observe diamagnetism is if an atom has J = 0. A classic

21The derivation of this formula (although a bit off-topic) is not difficult. We are concerned in determining matrix elements of
B · (L+ gS) between different Jz states. To do this we write

B · (L+ gS) = B · J
[
L · J
|J|2

+ g
S · J
|J|2

]

.

The final bracket turns out to be just a number, which we evaluate by rewriting it as
[
|J|2 + |L|2 − |J− L|2

2|J|2

]
+ g

[
|J|2 + |S|2 − |J− S|2

2|J|2

]

Finally replacing J − L = S and J − S = L, then substituting in |J|2 = J(J + 1) and |S|2 = S(S + 1) and |L|2 = L(L + 1),
with a small bit of algebra gives the desired result.
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situation in which this occurs is for atoms with filled shell configurations,
like the noble gases26 where L = S = J = 0. Another possibility is that26Molecules with filled shells of molec-

ular orbitals, such as N2, are very sim-
ilar.

J = 0 even though L = S is non-zero (one can use Hund’s rules to show
that this occurs if a shell has one electron fewer than being half filled).
In either case, the paramagnetic term of Eq. 19.5 has zero expectation
and the term can be mostly ignored.27 We thus need to consider the
effect of the final term in Eq. 19.5, the diamagnetic term.
If we imagine that B is applied in the ẑ direction, the expectation of

the diamagnetic term of the Hamiltonian (Eq. 19.5) can be written as

δE =
e2

8m
〈|B× r|2〉 =

e2B2

8m
〈x2 + y2〉.

Using the fact that the atom is rotationally symmetric, we can write

〈x2 + y2〉 =
2

3
〈x2 + y2 + z2〉 =

2

3
〈r2〉,

so we have

δE =
e2B2

12m
〈r2〉.

Thus the magnetic moment per electron is28

28Here the magnetic moment is propor-
tional to the area 〈r2〉 enclosed by the
orbit of the electron. Note that the
magnetization we get for a current loop
is also proportional to the area of the
loop. This is in accordance with our
understanding of diamagnetism as be-
ing vaguely similar to Lenz’s law.

moment = −
dE

dB
= −

[
e2

6m
〈r2〉

]
B.

Assuming that there is a density ρ of such electrons in a system, we can
then write the susceptibility as

χ = −
ρe2µ0〈r2〉

6m .
(19.13)

This result, Eq. 19.13, is known as Larmor diamagnetism.29 For most

29Joseph Larmor was a rather impor-
tant physicist in the late 1800s. Among
other things, he published the Lorentz
transformations for time dilation and
length contraction two years before
Lorentz, and seven years before Ein-
stein. However, he insisted on the
aether, and rejected relativity at least
until 1927 (maybe longer).

atoms, 〈r2〉 is on the order of a few Bohr radii squared. In fact, the same
expression can sometimes be applied for large conductive molecules if the
electrons can freely travel the length of the molecule—by taking 〈r2〉 to
be the radius squared of the molecule instead of that of the atom.

19.6 Atoms in Solids

Up to this point, we have always been considering the magnetism (para-
magnetism or diamagnetism) of a single isolated atom. Although the

27Actually, to be more precise, even though J = L + S may be zero, the paramagnetic term in Eq. 19.5 may be important
in second-order perturbation theory if L and S are individually nonzero. At second order, the energy of the system will be
corrected by a term proportional to

δE0 ∼ +
∑

p>0

|〈p|B · (L+ gS)|0〉|2

E0 − Ep

and the matrix element in the numerator is generally non-zero if the state |p〉 has the same L and S as the ground state but
a different J . (Recall that our effective Hamiltonian, Eq. 19.11, is valid only within a space of fixed J). Since this energy
decreases with increasing B, this term is paramagnetic. This type of paramagnetism is known as van Vleck paramagnetism
after the Nobel laureate J. H. van Vleck, who was a professor at Balliol College Oxford in 1961–62 but spent most of his later
professional life at Harvard.
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atomic picture gives a very good idea of how magnetism occurs, the
situation in solids can be somewhat different. As we have discussed in
Chapters 15 and 16 when atoms are put together the electronic band
structure defines the physics of the material—we cannot usually think
of atoms as being isolated from each other. We thus must think a bit
more carefully about how our atomic calculations may or may not apply
to real materials.

19.6.1 Pauli Paramagnetism in Metals

Recall that in Section 4.3 we calculated the susceptibility of the free
Fermi gas. We found

χPauli = µ0µ
2
Bg(EF ) (19.14)

with g(EF ) the density of states at the Fermi surface. We might expect
that such an expression would hold for metals with non-trivial band
structure—with the only change being that the density of states would
need to be modified. Indeed, such an expression holds fairly well for
simple metals such as Li or Na.
Note that the susceptibility, per spin, of a Fermi gas (Eq. 19.14) is

smaller than the susceptibility of a free spin (Eq. 19.9) by roughly a
factor of kBT/EF (this can be proven using Eq. 4.11 for a free electron
gas). We should be familiar with this idea, that due to the Pauli ex-
clusion principle, only the small fraction of spins near the Fermi surface
can be flipped over, therefore giving a small susceptibility.

19.6.2 Diamagnetism in Solids

Our calculation of Larmor diamagnetism (Section 19.5) was applied to
isolated atoms each having J = L = S = 0, such as noble gas atoms.
At low temperature, noble gas atoms form very weakly bonded crystals
and the same calculation continues to apply (with the exception of the
case of helium which does not crystalize but rather forms a superfluid
at low temperature30). To apply Eq. 19.13 to a noble gas crystal, one 30Alas, superfluidity is beyond the

scope of this book. It is extremely in-
teresting and I encourage you to learn
more about it!

simply sets the density of electrons ρ to be equal to the density of atoms
n times the number of electrons per atom (the atomic number) Z. Thus
for noble gas atoms we obtain

χLarmor = −
Zne2µ0〈r2〉

6m
(19.15)

where 〈r2〉 is set by the atomic radius.
In fact, for any material, the diamagnetic term of the Hamiltonian

(the coupling of the orbital motion to the magnetic field) will result
in some amount of diamagnetism. To account for the diamagnetism
of electrons in core orbitals, Eq. 19.15 is usually fairly accurate. For
the conduction electrons in a metal, however, a much more complicated
calculation gives the so-called Landau diamagnetism (see margin note
14 of Chapter 4)

χLandau = − 1
3χPauli
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which combines with the Pauli paramagnetism to reduce the total para-
magnetism of the conduction electrons by 1/3.
If one considers, for example, a metal like copper, one might be

tempted to conclude that it should be a paramagnet, due to the above-
described Pauli paramagnetism (corrected by the Landau effect). How-
ever, copper is actually a diamagnet! The reason for this is that the core
electrons in copper have enough Larmor diamagnetism to overwhelm the
Pauli paramagnetism of the conduction electrons! In fact, Larmor dia-
magnetism is often strong enough to overwhelm Pauli paramagnetism in
metals (this is particularly true in heavy elements where there are many
core electrons that can contribute to the diamagnetism). Note however,
if there are free spins in the material, then Curie paramagnetism occurs
which is always stronger than any diamagnetism.23

19.6.3 Curie Paramagnetism in Solids

Where to find free spins?

As discussed in section 19.4, Curie paramagnetism describes the reorien-
tation of free spins in an atom. We might ask how a “free spin” can occur
in a solid? Our understanding of electrons in solids so far describes elec-
trons as being either in full bands, in which case they cannot be flipped
over at all, or in partially full bands, in which case the calculation of
the Pauli susceptibility in Section 4.3 is valid—albeit possibly with a
modified density of states at the Fermi surface to reflect the details of
the band structure (and with the Landau correction). So how is it that
we can have a free spin?
Let us think back to the description of Mott insulators in Section 16.4.

In these materials, the Coulomb interaction between electrons is strong
enough that no two electrons can double occupy the same site of the
lattice. As a result, having one electron per site results in a “traffic
jam” of electrons where no electron can hop to any other site. When
this sort of Mott insulator forms, there is exactly one electron per site,
which can be either spin-up or spin-down. Thus we have a free spin on
each site and we should expect Curie paramagnetism!3131This picture of a Mott insulator re-

sulting in independent free spins will be
examined more closely in Chapter 23.
Very weakly, some amount of (virtual)
hopping can always occur and this will
change the behavior at low enough tem-
peratures.

More generally we might expect that we could have some number N
valence electrons per atom, which fill orbitals to form free spins as dic-
tated by Hund’s rules. Again, if the Coulomb interaction is sufficiently
strong that electrons cannot hop to neighboring sites, then the system
will be Mott-insulating and we can think of the spins as being free.

Modifications of Free Spin Picture

Given that we have found free spins in a material, we can ask whether
there are substantial differences between a free spin in an isolated atom
and a free spin in a material.
One possible modification is that the number of electrons on an atom

become modified in a material. For example, we found in Section 5.2
that praseodymium (Pr) has three free electrons in its valence (4f) shell
which form a total angular momentum of J = 9/2 (as we found in



19.6 Atoms in Solids 221

Section 19.2). However, in many compounds Pr exists as a +3 ion. In
this case it turns out that both of the 6s electrons are donated as well
as a single f electron. This leaves the Pr atom with two electrons in its f
shell, thus resulting in a J = 4 angular momentum instead (you should
be able to check this with Hund’s rules!).
Another possibility is that the atoms are no longer in a rotation-

ally symmetric environment; they see the potential due to neighboring
atoms, the so-called “crystal field”. In this case orbital angular momen-
tum is not conserved and the degeneracy of states all having the same
L2 is broken, a phenomenon known as crystal field splitting.
As a (very) cartoon picture of this physics, we can imagine a crystal

which is highly tetragonal (see Fig. 12.11) where the lattice constant
in one direction is quite different from the constant in the other two.
We might imagine that an atom that is living inside such an elongated
box would have a lower energy if its orbital angular momentum pointed
along the long axes (say, the z-axis), rather than in some other direction.
In this case, we might imagine that Lz = +L and Lz = −L might be
lower energy than any of the other possible values of L.
Another thing that may happen due to crystal field splitting is that

the orbital angular momentum may be pinned to have zero expectation
(for example, if the ground state is a superposition of Lz = +L and
Lz = −L). In this case, the orbital angular momentum decouples from
the problem completely (a phenomenon known as quenching of the or-
bital angular momentum), and the only magnetically active degrees of
freedom are the spins—only S can be reoriented by a magnetic field.
This is precisely what happens for most transition metals.32 32The 3d shell of transition metals is

shielded from the environment only by
the 4s electrons, whereas for rare earths
the 4f shell is shielded by 6s and 5p.
Thus the transition metals are much
more sensitive to crystal field pertur-
bations than the rare earths.

The most important message to take home from this section is that
atoms can have many different effective values of J , and one needs to
know the microscopic details of the system before deciding which spin
and orbital degrees of freedom are active. Remember that whenever
there is a magnetic moment that can be reoriented by a magnetic field
the material will be paramagnetic.
One final word of caution. Throughout most of this chapter we have

treated the magnetism of atoms one atom at a time. In the next chap-
ters we will consider what happens when atoms magnetically couple to
their neighbors. Our approximation of treating atoms one at a time is
typically a good approximation when the temperature is much larger
than any coupling strength between atoms. However, at low enough
temperatures, even a very weak coupling will become important, as we
shall see in some detail in Chapter 22.
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Chapter Summary

• Susceptibility χ = dM/dH is positive for paramagnets and nega-
tive for diamagnets.

• Sources of paramagnetism: (a) Pauli paramagnetism of free elec-
tron gas (see Section 4.3) (b) Free spin paramagnetism—know how
to do the simple stat-mech exercise of calculating the paramag-
netism of a free spin.

• The magnitude of the free spin is determined by Hund’s rules. The
bonding of the atom, or environment of this atom (crystal field)
can modify this result.

• Larmor diamagnetism can occur when atoms have J = 0, therefore
not having strong paramagnetism. This comes from the diamag-
netic term of the Hamiltonian in first-order perturbation theory.
The diamagnetism per electron is proportional to the radius of the
orbital squared.

References

• Ibach and Luth, section 8.1
• Hook and Hall, chapter 7
• Ashcroft and Mermin, chapter 31 plus 32 for discussion of exchange
• Kittel, chapter 11
• Blundell, chapter 2 plus 4.2 for exchange
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• Goodstein, sections 5.4a–c (doesn’t cover diamagnetism)
• Rosenberg, chapter 11 (doesn’t cover diamagnetism)
• Pauling, for more on Hund’s rules and relation to chemistry
• Hook and Hall, appendix D for discussion of exchange

Exercises

(19.1) ‡ Atomic Physics and Magnetism

(a) Explain qualitatively why some atoms are para-
magnetic and others are diamagnetic with reference
to the electronic structure of these materials.

(b) Use Hund’s rules and the Aufbau principle to
determine L, S, and J for the following isolated
atoms:

(i) Sulfur (S) atomic number = 16

(ii) Vanadium (V), atomic number = 23

(iii) Zirconium (Zr), atomic number = 40

(iv) Dysprosium (Dy), atomic number = 66

(19.2) More Atomic Physics

(a) In solid erbium (atomic number=68), one elec-
tron from each atom forms a delocalized band so
each Er atom has eleven f electrons on it. Calcu-
late the Landé g-factor for the eleven electrons (the
localized moment) on the Er atom.

(b) In solid europium (atomic number =63), one
electron from each atom forms a delocalized band
so each Eu atom has seven f electrons. Calculate
the Landé g-factor for the seven electrons (the lo-
calized moment) on the Eu atom.
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(19.3) Hund’s Rules*

Suppose an atomic shell of an atom has angular
momentum l (l = 0 means an s-shell, l = 1 means
a p-shell etc, with an l shell having 2l + 1 orbital
states and two spin states per orbital.). Suppose
this shell is filled with n electrons. Derive a gen-
eral formula for S, L, and J as a function of l and
n based on Hund’s rules.

(19.4) ‡ Para and Diamagnetism

Manganese (Mn, atomic number=25) forms an
atomic vapor at 2000K with vapor pressure 105 Pa.
You can consider this vapor to be an ideal gas.

(a) Determine L, S, and J for an isolated man-
ganese atom. Determine the paramagnetic contri-
bution to the (Curie) susceptibility of this gas at
2000K.

(b) In addition to the Curie susceptibility, the man-
ganese atom will also have some diamagnetic sus-
ceptibility due to its filled core orbitals. Determine
the Larmor diamagnetism of the gas at 2000K. You
may assume the atomic radius of an Mn atom is one
Ångstrom.

Make sure you know the derivations of all the for-
mulas you use!

(19.5) ‡Diamagnetism

(a) Argon is a noble gas with atomic number 18 and
atomic radius of about .188 nm. At low tempera-
ture it forms an fcc crystal. Estimate the magnetic
susceptibility of solid argon.

(b) The wavefunction of an electron bound to an
impurity in n-type silicon is hydrogenic in form.

Estimate the impurity contribution to the dia-
magnetic susceptibility of a Si crystal containing
1020 m−3 donors given that the electron effective
mass m∗ = 0.4me and the relative permittivity is
εr = 12. How does this value compare to the dia-
magnetism of the underlying silicon atoms? Si has
atomic number 14, atomic weight 28.09, and den-
sity 2.33 g/cm3.

(19.6) ‡Paramagnetism

Consider a gas of monatomic atoms with spin S =
1/2 (and L = 0) in a magnetic field B. The gas has
density n.

(a) Calculate the magnetization as a function of B
and T . Determine the susceptibility.

(b) Calculate the contribution to the specific heat
of this gas due to the spins. Sketch this contribu-
tion as a function of µBB/kBT .

(19.7) Spin J Paramagnet*

Given the Hamiltonian for a system of non-
interacting spin-J atoms

H = g̃µBB · J

(a)* Determine the magnetization as a function of
B and T .

(b) Show that the susceptibility is given by

χ =
nµ0(g̃µB)2

3
J(J + 1)
kBT

where n is the density of spins. (You can do this
part of the exercise without having a complete
closed-form expression for part a!)



This page intentionally left blank 



Spontaneous Magnetic
Order: Ferro-, Antiferro-,
and Ferri-Magnetism 20
At the end of Section 19.2.1 we commented that applying Hund’s rules
to molecules and solids can be unreliable, since spins on neighboring
atoms could favor either having their spins aligned or having their spins
antialigned, depending on which of several effects is stronger. (In Chap-
ter 23 we will show a detailed models of how either behavior might
occur.) In the current chapter we will simply assume that there is an
interaction between neighboring spins (a so-called exchange interaction,
see the discussion at the end of Section 19.2.1) and we will explore how
the interaction between neighboring spins can align many spins on a
macroscopic scale.
We first assume that we have an insulator, i.e., electrons do not hop

from atom to atom.1 We then write a model Hamiltonian as

1This might be the situation if we have
a Mott insulator, as described in Sec-
tions 16.4 and 19.6.3, where strong in-
teraction prevents electron hopping. In
Chapter 23 we will also consider the
more complicated, but important, case
where the electrons in a ferromagnet
are mobile.

H = −
1

2

∑

i,j

JijSi · Sj +
∑

i

gµBB · Si (20.1)

where Si is the spin2 on atom3 i and B is the magnetic field experienced

2When one discusses simplified mod-
els of magnetism, very frequently one
writes angular momentum as S with-
out regards as to whether it is really S,
or L or J. It is also conventional to call
this variable the “spin” even if it is ac-
tually from orbital angular momentum
in a real material.
3A moment associated with a specific
atom is known as a local moment.

by the spins.4 Here JijSi · Sj is the interaction energy5 between spin i

4Once again the plus sign in the final
term assumes that we are talking about
electronic moments (see margin note 15
of Section 4.3).

5Warning: Many references use
Heisenberg’s original convention that
the interaction energy should be
defined as 2JijSi · Sj rather than
JijSi · Sj . However, more modern
researchers use the latter, as we have
here. This matches up with the
convention used for the Ising model in
Eq. 20.5, where the convention 2J is
never used. At any rate, if someone on
the street tells you J , you should ask
whether they intend a factor of 2 or
not.

and spin j. Note that we have included a factor of 1/2 out front to avoid
overcounting, since the sum actually counts both Jij and Jji (which are
equal to each other).
If Jij > 0 it is lower energy when spins i and j are aligned, whereas

if Jij < 0 it is lower energy when the spins are antialigned. This energy
difference is usually called the exchange energy as described in Section
19.2.1. Correspondingly Jij is called the exchange constant.
The coupling between spins typically drops rapidly as the distance

between the spins increases. A good model to use is one where only
nearest-neighbor spins interact with each other. Frequently one writes
(neglecting the magnetic field B)

H = −
1

2

∑

i,j neighbors

Jij Si · Sj .

One can use brackets 〈i, j〉 to indicate that i and j are neighbors:

H = −
1

2

∑

〈i,j〉

Jij Si · Sj .
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In a uniform system where each spin is coupled to its neighbors with the
same strength, we can drop the indices from Jij (since they all have the
same value) and obtain the so-called Heisenberg Hamiltonian

H = −
1

2

∑

〈i,j〉

J Si · Sj . (20.2)

20.1 (Spontaneous) Magnetic Order

As in the case of a ferromagnet, it is possible that even in the ab-
sence of any applied magnetic field, magnetism—or ordering of magnetic
moments—may occur. This type of phenomenon is known as sponta-
neous magnetic order (since it occurs without application of any field).
It is a subtle statistical mechanical question as to when magnetic inter-
action in a Hamiltonian actually results in spontaneous magnetic order.
At our level of analysis we will assume that systems can always find
ground states which “satisfy” the magnetic Hamiltonian. In Chapter 22
we will consider how temperature might destroy this magnetic ordering.

20.1.1 Ferromagnets

If J > 0 then neighboring spins want to be aligned. In this case the
ground state occurs when all spins align together developing a macro-
scopic magnetic moment—this is what we call a ferromagnet,6 and is

6A classic example of a Heisenberg fer-
romagnet is EuO, which is ferromag-
netic below about 70K. This material
has very simple NaCl structure where
the moment S is on the Eu. Here Eu
has seven electrons in an f shell, so by
Hund’s rule it has J = S = 7/2.

depicted on the left of Fig. 20.1. The study of ferromagnetism will oc-
cupy us for most of the remainder of this book.

Fig. 20.1 Magnetic Spin Order-
ings. Left: Ferromagnet—all spins
aligned (at least over some macro-
scopic regions) giving finite magneti-
zation. Right: Antiferromagnet—
Neighboring spins antialigned, but pe-
riodic. This so-called Néel state has
zero net magentization.

20.1.2 Antiferromagnets

On the other hand, if J < 0, neighboring spins want to point in oppo-
site directions, and the most natural ordered arrangement is a periodic
situation where alternating spins point in opposite directions, as shown
on the right of Fig. 20.1—this is known as an antiferromagnet. Such
an antiferromagnet has zero net magnetization but yet is magnetically
ordered. This type of antiperiodic ground state is sometimes known
as a Néel state after Louis Néel who proposed in the 1930s that such
states exist.7,8 We should be cautioned that our picture of spins point-

7Néel won a Nobel Prize for this work
in 1970. The great Lev Landau (see
margin note 18 in Chapter 4 about Lan-
dau) also proposed antiferromagnetism
at about the same time as Néel. How-
ever, soon thereafter, Landau started
to doubt that antiferromagnets actu-
ally existed in nature (his reasoning
was based on the fact that two spins
will form a quantum-mechanical singlet
rather than having one always spin-up
and one always spin-down). It was al-
most fifteen years before scattering ex-
periments convinced Landau that anti-
ferromagnets are indeed real. For one of
these fifteen years, Landau was in jail,
having compared Stalin to the Nazis.
He was very lucky not to have been ex-
ecuted.

8Some examples of antiferromagnets
include NiO and MnO (both having
NaCl structure, with the spins on Ni
and Mn respectively). A very impor-
tant class of antiferromagnets are ma-
terials such as LaCuO2, which when
doped give high-temperature supercon-
ductors.

ing in directions is a classical picture, and is not quite right quantum
mechanically (see Exercise 20.1). Particularly when the spin is small
(like spin-1/2) the effects of quantum mechanics are strong and classical
intuition can fail us. However, for spins larger than 1/2, the classical
picture is still fairly good.

Detecting Antiferromagnetism with Diffraction

Being that antiferromagnets have zero net magnetization, how do we
know they exist? What is their signature in the macroscopic world? It
is possible (using the techniques of Section 22.2.2, see in particular Ex-
ercise 22.5) to find signatures of antiferromagnetism by examining the
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susceptibility as a function of temperature.9 However, this method is 9In fact it was this type of experiment
that Néel was analyzing when he real-
ized that antiferromagnets exist!

somewhat indirect. A more direct approach is to examine the spin con-
figuration using diffraction of neutrons. As mentioned in Section 14.2,
neutrons are sensitive to the spin direction of the object they scatter
from. If we fix the spin polarization of an incoming neutron, it will
scatter differently from the two different possible spin states of atoms
in an antiferromagnet. The neutrons then see that the unit cell in this
antiferromagnet is actually of size 2a, where a is the distance between
atoms (i.e., the distance between two atoms with the same spin is 2a).
Thus when the spins align antiferromagnetically, the neutrons will de-
velop scattering peaks at reciprocal wavevectors G = 2π/(2a) which
would not exist if all the atoms were aligned the same way. This type
of neutron diffraction experiment are definitive in showing that antifer-
romagnetic order exists.10

10These are the experiments that won
the Nobel Prize for Clifford Shull. See
margin note 10 from Chapter 14.

Frustrated Antiferromagnets

On certain lattices, for certain interactions, there is no ground state that
fully “satisfies” the interaction for all spins. For example, on a triangular
lattice if there is an antiferromagnetic interaction, there is no way that
all the spins can point in the opposite direction from their neighbors.
As shown in the left of Fig. 20.2 on a triangle, once two of the spins are
aligned opposite each other, independent of which direction the spin on
the last site points, it cannot be antiparallel to both of its neighbors.
It turns out that (assuming the spins are classical variables) the ground
state of the antiferromagnetic Heisenberg Hamiltonian on a triangle is
the configuration shown on the right of Fig. 20.2. While each bond is
not quite optimally antialigned, the overall energy is optimal for this
Hamiltonian (at least if the spins are classical).

Fig. 20.2 Cartoon of a triangular anti-
ferromagnet. Left: An antiferromag-
netic interaction on a triangular lat-
tice is frustrated—not all spins can be
antialigned with all of their neighbors.
Right: The ground state of antiferro-
magnetic interaction on a triangle for
classical spins (large S) is the state on
the right, where spins are at 120◦ to
their neighbor.

20.1.3 Ferrimagnets

Fig. 20.3 Cartoon of a ferrimagnet.
Ordering is antiferromagnetic, but be-
cause the different spin species have dif-
ferent moments, there is a net magne-
tization.

Once one starts to look for magnetic structure in materials, one can
find many other interesting possibilities. One very common possibility
is where you have a unit cell with more than one variety of atom, where
the atoms have differing moments, and although the ordering is antifer-
romagnetic (neighboring spins point in opposite direction) there is still
a net magnetic moment. An example of this is shown in Fig. 20.3. Here,
the smaller moments point opposite the larger moments. This type of
configuration, where one has antiferromagnetic order, yet a net mag-
netization due to differing spin species, is known as ferrimagnetism. In
fact, many of the most common magnets, such as magnetite (Fe3O4) are
ferrimagnetic. Sometimes people speak of ferrimagnets as being a sub-
set of ferromagnets (since they have non-zero net magnetic moment in
zero field) whereas other people think the word “ferromagnet” excludes
ferrimagnets.11

11The fact that the scientific commu-
nity cannot come to agreement on so
many definitions does make life difficult
sometimes.
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20.2 Breaking Symmetry

In any of these ordered states, we have not yet addressed the question
of which direction the spins will actually point. Strictly speaking, the
Hamiltonian Eq. 20.2 is rotationally symmetric—the magnetization can
point in any direction and the energy will be the same! In a real system,
however, this is rarely the case: due to the asymmetric environment
the atom feels within the lattice, there will be some directions that the
spins would rather point than others (this physics was also discussed
in Section 19.6). Thus to be more accurate we might need to add an
additional term to the Heisenberg Hamiltonian. One possibility is to
write12 (again dropping any external magnetic field)12For small values of the spin quan-

tum number, these added terms may
be trivial. For example, for spin 1/2,
we have (Sx)2 = (Sy)2 = (Sz)2 = 1/4.
However, as S becomes larger, the spin
becomes more like a classical vector and
such anisotropy (κ) terms will favor the
spin pointing in the corresponding di-
rections.

H = −
1

2

∑

〈i,j〉

JSi · Sj − κ
∑

i

(Sz
i )

2
. (20.3)

The κ term here favors the spin to be pointing in the +ẑ direction or the
−ẑ direction, but not in any other direction (you could imagine this be-
ing appropriate for a tetragonal crystal elongated in the ẑ direction).
This energy from the κ term is sometimes known as the anisotropy
energy since it favors certain directions over others. Another possible
Hamiltonian is

H = −
1

2

∑

〈i,j〉

JSi · Sj − κ̃
∑

i

[(Sx
i )

4 + (Sy
i )

4 + (Sz
i )

4] (20.4)

which favors the spin pointing along any of the orthogonal axis directions—
but not towards any in-between angle.
In some cases (as we discussed in Section 19.6) the coefficient κ may

be substantial. In other cases it may be very small. However, since the
pure Heisenberg Hamiltonian Eq. 20.2 does not prefer any particular
direction, even if the anisotropy (κ) term is extremely small, it will
determine the direction of the magnetization in the ground state (in the
absence of any external B field). We say that this term “breaks the
symmetry”. Of course, there may be some symmetry remaining. For
example, in Eq. 20.3, if the interaction is ferromagnetic, the ground-state
magnetization may be all spins pointing in the +ẑ direction, or equally
favorably, all spins pointing in the −ẑ direction.13“Ising” is properly pronounced “Ee-

sing” or “Ee-zing”. In the United
States it is habitually mispronounced
“Eye-sing”. The Ising model was actu-
ally invented by Wilhelm Lenz (another
example of Stigler’s law, see margin
note 11 in Section 15.2). Ising was the
graduate student who worked on this
model for his graduate dissertation, but
soon left research to work at a teaching
college in the United States, where peo-
ple inevitably called him “Eye-sing”.

20.2.1 Ising Model

If the anisotropy (κ) term is extremely large, then this term can fun-
damentally change the Hamiltonian. For example, let us take a spin-S
Heisenberg model. Adding the κ term in 20.3 with a large coefficient,
forces the spin to be either Sz = +S or Sz = −S with all other values
of Sz having a much larger energy. In this case, a new effective model
may be written

H = −
1

2

∑

〈i,j〉

Jσiσj + gµBB
∑

i

σi (20.5)
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where σi = ±S only (and we have re-introduced the magnetic field B).
This model is known as the Ising model13 and is an extremely important
model in statistical physics.14 14The Ising model is frequently referred

to as the “hydrogen atom” of statisti-
cal mechanics since it is extremely sim-
ple, yet it shows many of the most
important features of complex statis-
tical mechanical systems. The one-
dimensional version of the model was
solved in by Ising in 1925, and the two-
dimensional version of the model was
solved by Onsager in 1944 (a chem-
istry Nobel laureate, who was amus-
ingly fired by my alma-mater, Brown
University, in 1933). Onsager’s achieve-
ment was viewed as so important that
Wolfgang Pauli wrote after world war
two that “nothing much of interest
has happened [in physics during the
war] except for Onsager’s exact solution
of the two-dimensional Ising model”.
(Perhaps Pauli was spoiled by the years
of amazing progress in physics between
the wars). If you are brave, you might
try solving the one-dimensional Ising
model (see Exercises 20.5 and 20.6).

Chapter Summary

• Ferromagnets: spins align. Antiferromagnets: spins antialign with
neighbors so there is no net magnetization. Ferrimagnets: spins
antialign with neighbors, but alternating spins are different mag-
nitude so there is a net magnitization anyway. Microscopic spins
stuctures of this sort can be observed with neutrons.

• Useful model Hamiltonians include the Heisenberg −JSi ·Sj Hamil-
tonian for isotropic spins, and the Ising −JSz

i S
z
j Hamiltonian for

spins that prefer to align along only one axis.

• Spins generally do not equally favor all directions (as the Heisen-
berg model suggest). Anisotropy terms that favor spins along par-
ticular axes may be weak or strong. Even if they are weak, they
will pick a direction among otherwise equally likely directions.
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Exercises

(20.1) Ferromagnetic vs Antiferromagnetic States

Consider the Heisenberg Hamiltonian

H = −1
2

∑

〈i,j〉

J Si · Sj +
∑

i

gµBB · Si (20.6)

and for this exercise set B = 0.

(a) For J > 0, i.e., for the case of a ferromagnet, in-
tuition tells us that the ground state of this Hamil-
tonian should simply have all spins aligned. Con-
sider such a state. Show that this is an eigenstate
of the Hamiltonian Eq. 20.6 and find its energy.

(b) For J < 0, the case of an antiferromagnet on

a cubic lattice, one might expect that (at least for
B = 0) the state where spins on alternating sites
point in opposite directions might be an eigenstate.
Unfortunately, this is not precisely true. Consider
such a state of the system. Show that the state in
question is not an eigenstate of the Hamiltonian.

Although the intuition of alternating spins on alter-
nating sites is not perfect, it becomes reasonable for
systems with large spins S. For smaller spins (like
spin 1/2) one needs to consider so-called “quantum
fluctuations” (which is much more advanced, so we
will not do that here).
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(20.2) Frustration

Consider the Heisenberg Hamiltonian as in Exer-
cise 20.1 with J < 0, and treat the spins as classical
vectors.

(a) If the system consists of only three spins ar-
ranged in a triangle (as in Fig. 20.2), show that the
ground state has each spin oriented 120◦ from its
neighbor.

(b) For an infinite triangular lattice, what does the
ground state look like?

(20.3) Spin Waves*

For the spin-S ferromagnet particularly for large S,
our “classical” intuition is fairly good and we can
use simple approximations to examine the excita-
tion spectrum above the ground state.

First recall the Heisenberg equations of motion for
any operator

i!
dÔ
dt

= [Ô,H]

with H the Hamiltonian (Eq. 20.6 with Si being a
spin S operator).

(a) Derive equations of motion for the spins in the
Hamiltonian Eq. 20.6. Show that one obtains

!
dSi

dt
= Si ×

(

J
∑

j

Sj − gµbB

)

(20.7)

where the sum is over sites j that neighbor i.

In the ferromagnetic case, particularly if S is large,
we can treat the spins as not being operators, but
rather as being classical variables. In the ground
state, we can set all Si = ẑS (Assuming B is in the
−ẑ direction so the ground state has spins aligned
in the ẑ direction). Then to consider excited states,
we can perturb around this solution by writing

Sz
i = S −O((δS)2/S)

Sx
i = δSx

i

Sy
i = δSy

i

where we can assume δSx and δSy are small com-
pared to S. Expand the equations of motion
(Eq. 20.7) for small perturbation to obtain equa-
tions of motion that are linear in δSx and δSy

(b) Further assume wavelike solutions

δSx
i = Axe

iωt−ik·r

δSy
i = Aye

iωt−ik·r

This ansatz should look very familiar from our prior
consideration of phonons.

Plug this form into your derived equations of mo-
tion.

! Show that Sx
i and Sy

i are out of phase by π/2.
What does this mean?

! Show that the dispersion curve for “spin-waves”
of a ferromagnet is given by !ω = |F (k)| where

F (k) = gµb|B|
+ JS(6− 2[cos(kxa) + cos(kya) + cos(kza)])

where we assume a cubic lattice.

! How might these spin waves be detected in an
experiment?

(c) Assume the external magnetic field is zero.
Given the spectrum you just derived, show that
the specific heat due to spin wave excitations is
proportional to T 3/2.

(20.4) Small Heisenberg Models

(a) Consider a Heisenberg model containing a chain
of only two spins, so that

H = −JS1 · S2 .

Supposing these spins have S = 1/2, calculate
the energy spectrum of this system. Hint: Write
2S1 · S2 = (S1 + S2)

2 − S1
2 − S1

2.

(b) Now consider three spins forming a triangle (as
shown in Fig. 20.2). Again assuming these spins
are S = 1/2, calculate the spectrum of the system.
Hint: Use the same trick as in part (a)!

(c) Now consider four spins forming a tetrahedron.
Again assuming these spins are S = 1/2, calculate
the spectrum of the system.

(20.5) One-Dimensional Ising Model with B = 0

(a) Consider the one-dimensional Ising model with
spin S = 1. We write the Hamiltonian for a chain
of N spins in zero magnetic field as

H = −J
N−1∑

i=1

σiσi+1

where each σi takes the value ±1. The partition
function can be written as

Z =
∑

σ1,σ2,...σN

e−βH
.

Using the transformation Ri = σiσi+1 rewrite the
partition function as a sum over the R variables,
and hence evaluate the partition function.

! Show that the free energy has no cusp or dis-
continuity at any temperature, and hence con-
clude that there is no phase transition in the one-
dimensional Ising model.
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(b) *At a given temperature T , calculate an expres-
sion for the probability that M consecutive spins
will be pointing in the same direction. How does
this probability decay with M for large M? What
happens as T becomes small? You may assume
N %M .

(20.6) One-Dimensional Ising Model with B &= 0 *

Consider the one-dimensional Ising model with spin
S = 1. We write the Hamiltonian (Eq. 20.5) for a
chain of N spins in magnetic field B as

H =
N∑

i=1

Hi (20.8)

where

H1 = hσ1

Hi = −Jσiσi−1 + hσi for i > 1

where each σi takes the value ±1 and we have de-
fined h = gµBB for simplicity of notation.

Let us define a partial partition function for the
first M spins (the first M terms in the Hamilto-
nian sum Eq. 20.8) given that the M th spin is in a
particular state. I.e.,

Z(M, σM ) =
∑

σ1,...,σM−1

e−β
∑M

i=1 Hi

so that the full partition function is Z =
Z(N,+1) + Z(N,−1).
(a) Show that these partial partition functions sat-
isfy a recursion relation

Z(M, σM ) =
∑

σM−1

TσM ,σM−1Z(M − 1,σM−1)

where T is a 2 by 2 matrix, and find the matrix T .
(T is known as a “transfer matrix”).

(b) Write the full partition function in terms of the
matrix T raised to the (N − 1)th power.

(c) Show that the free energy per spin, in the large
N limit, can be written as

F/N ≈ −kBT log λ+

where λ+ is the larger of the two eigenvalues of the
matrix T .

(d) From this free energy, derive the magnetization,
and show that the susceptibility per spin is given
by

χ ∝ βe2βJ

which matches the Curie form at high T .
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Domains and Hysteresis 21
21.1 Macroscopic Effects in Ferromagnets:

Domains

We might think that in a ferromagnet, all the spins in the system will
align as described in the previous chapter by the Heisenberg (or Ising)
model. However, in real magnets, this is frequently not the case. To
understand why this is so, we imagine splitting our sample into two
halves as shown in Fig. 21.1. Once we have two magnetic dipoles it
is clear that they would be lower energy if one of them flipped over,
as shown at the far right of Fig. 21.1 (the two north faces of these
magnets repel each other1). This energy, the long-range dipolar force of 1Another way to understand the dipo-

lar force is to realize that the magnetic
field will be much lower if the two mag-
nets are antialigned with each other.
Since the electromagnetic field carries
energy

∫
dV |B|2/µ0, minimizing this

magnetic field lowers the energy of the
two dipoles.

a magnet, is not described in the Heisenberg or Ising models at all. In
those models we have only included nearest-neighbor interaction between
spins. As we mentioned in Section 19.2.1, the actual magnetic dipolar
force between electronic spins (or orbital moments) is tiny compared to
the Coulomb interaction driven “exchange” force between neighboring
spins. But when you put together a whole lot of atoms (like 1023 of
them!) to make a macroscopic magnet, the summed effect of their dipole
moment can be substantial.
Of course, in an actual ferromagnet (or ferrimagnet), the material

does not really break apart, but nonetheless different regions will have
magnetization in different directions in order to minimize the dipolar
energy. A region where the moments all point in one given direction is
known as a domain or a Weiss domain.2 The boundary of a domain,

2After Pierre-Ernest Weiss, one of the
fathers of the study of magnets from
the early 1900s.

Fig. 21.1 Dipolar Forces Create Mag-
netic Domains. Left: The original
ferromagnet. Middle: The original
ferromagnet broken into two halves.
Right: Because two dipoles next to
each other are lower energy if their mo-
ments are antialigned, the two broken
halves would rather line up in opposing
directions to lower their energies (the
piece on the right-hand side has been
flipped over here). This suggests that in
large ferromagnets, domains may form.
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where the magnetization switches direction, is known as a domain wall.33Domain walls can also occur in anti-
ferromagnets. Instead of the magne-
tization switching directions we imag-
ine a situation where to the left of
the wall, the up-spins are on the even
sites, and the down-spins are on the
odd sites, whereas on the right of the
domain wall the up-spins are on the
odd sites and the down-spins are on the
even sites. At the domain wall, two
neighboring sites will be aligned rather
than antialigned. Since antiferromag-
nets have no net magnetization, the ar-
gument that domain walls should exist
in ferromagnets is not valid for antifer-
romagnets. In fact, it is always ener-
getically unfavorable for domain walls
to exist in antiferromagnets, although
they can occur at finite temperature.

Some possible examples of domain structures are sketched in Fig. 21.2.
In the left two frames we imagine an Ising-like ferromagnet where the
moment can only point up or down. The left most frame shows a magnet
with net zero magnetization. Along the domain walls, the ferromagnetic
Hamiltonian is “unsatisfied”. In other words, spin-up atoms on one side
of the domain wall have spin-down neighbors—where the local Hamilto-
nian says that they should want to have spin-up neighbors only. What
is happening is that the system is paying an energy cost along the do-
main wall in order that the global energy associated with the long-range
dipolar forces is minimized.
If we apply a small up-pointing external field to this system, we will

obtain the middle picture where the up-pointing domains grow at the
expense of the down-pointing domains to give an overall magnetization
of the sample. In the rightmost frame of Fig. 21.2 we imagine a sample
where the moment can point along any of the crystal axis directions.44See for example the Hamiltonian,

Eq. 20.4, which would have moments
pointing only along the coordinate
axes—although that particular Hamil-
tonian does not have the long-range
magnetic dipolar interaction written, so
it would not form domains.

Again in this picture the total magnetization is zero, but it has rather
complicated domain structure.

Fig. 21.2 Some possible domain struc-
tures for a ferromagnet. Left: An
Ising-like ferromagnet where in each do-
main the moment can only point ei-
ther up or down. Middle: When
an external magnetic field pointing up-
wards is applied to this ferromagnet, it
will develop a net moment by having
the down-domains shrink and the up-
domains expand (The local moment per
atom remains constant—only the size
of the domains change.) Right: In this
ferromagnet, the moment can point in
any of the (orthogonal) crystal axis di-
rections.

21.1.1 Domain Wall Structure and the Bloch/Néel
Wall

The detailed geometry of domains in a ferromagnet depends on a num-
ber of factors. First of all, it depends on the overall geometry of the
sample. (For example, if the sample is a very long thin rod and the sys-
tem is magnetized along the long axis, it may gain very little energy by
forming domains.) It also depends on the relative energies of the neigh-
bor interaction versus the long-range dipolar interaction: increasing the
strength of the long-range dipolar forces with respect to the neighbor
interaction will obviously decrease the size of domains (having no long-
range dipolar forces will result in domains of infinite size). Finally, the
detailed disorder in a sample can effect the shape and size of magnetic
domains. For example, if the sample is polycrystalline, each domain
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could be a single crystallite (a single microscopic crystal)—a case which
we will discuss in Section 21.2.2. In the current section we will take a
closer look at the microscopic structure of the domain wall.
Our discussion of domain walls so far has assumed that the spins can

only point in special directions picked out by the crystal axes—that is,
the anisotropy term κ in Eq. 20.3 (or Eq. 20.4) is extremely strong.
However, it often happens that this is not true—the spins would prefer
to point either up or down, but there is not a huge energy penalty for
pointing in other directions instead. In this case the domain wall might
instead be more of a smooth rotation from spins pointing up to spins
pointing down, as shown on the bottom of Fig. 21.3. This type of smooth
domain wall is known as a Bloch wall or Néel wall,5 depending on which 5We have already met our heroes

of magnetism—Felix Bloch and Louis
Néel.

direction the spin rotates with respect to the direction of the domain wall
itself (a somewhat subtle distinction, which we will not discuss further
here). The length of the domain wall (L in the figure, i.e., how many
spins are pointing neither up nor down) is clearly dependent on a balance
between the −JSi · Sj· term of Eq. 20.3 (known sometimes as the spin
stiffness) and the κ term, the anisotropy. If κ/J is very large, then the
spins must point either up or down only. In this case, the domain wall
is very sharp, as depicted on the top of Fig. 21.3. On the other hand,
if κ/J is small, then it costs little to point the spins in other directions,
and it is more important that each spin points mostly in the direction of
its neighbor. In this case, the domain wall will be very fat, as depicted
on the bottom of Fig. 21.3.

L

Fig. 21.3 Domain wall structures.
Top: A sharp domain wall. This would
be realized if the anisotropy energy (κ)
is extremely large so the spins must
point either up or down (i.e., this is
a true Ising system). Bottom: A
Bloch/Néel wall (actually this depicts a
Néel wall) where the spin flips contin-
uously from up to down over a length
scale L. The anisotropy energy here is
smaller so that the spin can point at in-
termediate angle for only a small energy
penalty. By twisting slowly the domain
wall will cost less spin-stiffness energy.

A very simple scaling argument can give us an idea of how fat the
Bloch/Néel wall is. Let us say that the length of the wall is N lattice
constants, so L = Na is the actual length of the twist in the domain wall
(see Fig. 21.3). Roughly let us imagine that the spin twists uniformly
over the course of these N spins, so between each spin and its neighbor,
the spin twists an angle δθ = π/N . The first term −JSi · Sj in the
Hamiltonian Eq. 20.3 can be rewritten in terms of the angle between
the neighbors (approximating spins as classical vectors here)

Eone−bond = −JSi · Sj = −JS2 cos(θi − θj) = −JS2

(
1−

(δθ)2

2
+ . . .

)

where we have used the fact that δθ is small to expand the cosine.
Naturally, the energy of this term is minimized if the two neighboring
spins are aligned, that is δθ = 0. However, if they are not quite aligned
there is an energy penalty of

δEone−bond = JS2(δθ)2/2 = JS2(π/N)2/2 .

This is the energy per bond. So the energy of the domain wall due to
this spin “stiffness” is

δEstiffness

A/a2
= NJS2(π/N)2/2

where we have written the energy per unit area A of the domain wall,
where area is measured in units of the lattice constant a.
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On the other hand, in Eq. 20.3 there is a penalty proportional to
κS2 per spin when the spins are not either precisely up or down. We
estimate the energy due to this term to be κS2 per spin, or a total of

δEanisotropy

A/a2
≈ κS2N

along the length of the twist. Thus the total energy of the domain wall
is

Etot

A/a2
= JS2(π2/2)/N + κS2N.

This can be trivially minimized, resulting in a domain wall twist having
length L = Na with

N = C1

√
(J/κ) (21.1)

and a minimum domain wall energy per unit area

Emin
tot

A/a2
= C2S

2
√
Jκ

where C1 and C2 are constants of order unity (which we will not get
right here considering the crudeness our approximation, but see Exer-
cise 21.3). As predicted, the length increases with J/κ. In many real
materials the length of a domain wall can be hundreds of lattice con-
stants.
Since domain walls cost an energy per unit area, they are energetically

unfavorable. However, as mentioned at the beginning of this chapter,
this energy cost is weighed against the long-range dipolar energy which
tries to introduce domain walls. The more energy the domain wall costs,
the larger individual domains will be (to minimize the number of domain
walls). Note that if a crystal is extremely small (or, say, one considers
a single crystallite within a polycrystaline sample) it can happen that
the size of the crystal is much smaller than the optimum size of the
domain wall twist. In this case the spins within this crystallite always
stay aligned with each other.

21.2 Hysteresis in Ferromagnets

21.2.1 Disorder Pinning

We know from our experience with electromagnetism that ferromagnets
show a hysteresis loop with respect to the applied magnetic field, as
shown in Fig. 21.4. After a large external magnetic field is applied, when
the field is returned to zero there remains a residual magnetization. We
can now ask why this should be true. In short, it is because there is a
large activation energy for changing the magnetization.

21.2.2 Single-Domain Crystallites

For example, let us consider the case of a ferromagnet made of many
small crystallites. We determined in Section 21.1.1 that domain walls
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Fig. 21.4 The hysteresis loop of a fer-
romagnet. Hysteresis can be under-
stood in terms of crystallites, or do-
mains, reorienting. The data shown
here is taken on samarium cobalt6

magnetic powder. Data from Leslie-
Pelecky et al., Phys. Rev. B, 59 457
(1999); http://prb.aps.org/abstract/
PRB/v59/i1/p457 1, copyright Ameri-
can Physical Society. Used by permis-
sion.

are unfavorable in small enough crystallites. So if the crystallites are
small enough then all of the moments in each crystallite point in a single
direction. So let us imagine that all of the microscopic moments (spins
or orbital moments) in this crystallite are locked with each other and
point in the same direction. The energy per volume of the crystallite in
an external field can be written as

6Samarium cobalt magnets have par-
ticularly high permanent magnetiza-
tion (neodymium magnets are the only
magnets having higher magnetization).
Fender Guitars makes some of their
electric pickup magnets from this ma-
terial.

E/V = E0 −M ·B− κ′(Mz)2

where here M is magnetization vector, and Mz is its component in the
ẑ crystal axis. Here the anisotropy term κ′ stems from the anisotropy
term κ in the Hamiltonian Eq. 20.3.7 Note that we have no J term since 7In particular, since M = −gµBSρ

with ρ the number of spins per unit vol-
ume we have κ′ = κ/[(gµB)2ρ]. Fur-
ther, we note that the −M ·B term is
precisely the Zeeman energy +gµBB ·S
per unit volume.

this would just give a constant if all the moments in the crystallite are
always aligned with each other.
Assuming that the external field B is pointing along the ẑ axis (al-

though we will allow it to point either up or down) we then have

E/V = E0 − |M ||B| cos θ − κ′|M |2(cos θ)2 (21.2)

where |M | is the magnitude of magnetization and θ is the angle of the
magnetization with respect to the ẑ axis.
We see that this energy is a parabola in the variable (cos θ) which

ranges from +1 to −1. The minimum of this energy is always when the
magnetization points in the same direction as the external field (which
we have taken to always point in the either the +ẑ or −ẑ direction,
corresponding to θ = 0 or π). However, for small Bz the energy is not
monotonic in θ. Indeed, having the magnetization point in the oppo-
site direction as B is also a local minimum (because the κ′ term favors
pointing along the z-axis). This is shown schematically in Fig. 21.5. It
is easy to show (see Exercise 21.2) that there will be a local minimum
of the energy with the magnetization pointing the opposite direction as
the applied field for B < Bcrit with

Bcrit = 2κ′|M |.
So if the magnetization is aligned along the −ẑ direction and a field
B < Bcrit is applied in the +ẑ direction, there is an activation barrier
for the moments to flip over. Indeed, since the energy shown in Eq. 21.2
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is an energy per volume, the activation barrier can be very large.8 As
a result, the moments will not be able to flip until a large enough field
(B > Bcrit) is applied to lower the activation barrier, at which point the
moments flip over. Clearly this type of activation barrier can result in
hysteretic behavior as shown in Fig. 21.4.8 In principle the spins can get over the

activation barrier either by being ther-
mally activated or by quantum tunnel-
ing. However, if the activation barrier
is sufficiently large (i.e., for a large crys-
tallite) both of these are greatly sup-
pressed.

Fig. 21.5 Energy of an anisotropic
ferromagnet in a magnetic field as a
function of angle. Left: Due to the
anisotropy, in zero field the energy is
lowest if the spins point either in the +ẑ
or −ẑ direction. Middle: When a field
is applied in the +ẑ direction the energy
is lowest when the moments are aligned
with the field, but there is a metastable
solution with the moments pointing in
the opposite direction. The moments
must cross an activation barrier to flip
over. Right: For large enough field,
there is no longer a metastable solution.

21.2.3 Domain Pinning and Hysteresis

Even for single-crystal samples, disorder can play an extremely impor-
tant role in the physics of domains. For example, a domain wall can have
lower energy if it passes over a defect in the crystal. To see how this
occurs let us look at a domain wall in an Ising ferromagnet as shown in
Fig. 21.6. Bonds are marked with solid lines where neighboring spins are
antialigned rather than aligned. In both figures the domain wall starts
and ends at the same points, but on the right it follows a path through a
defect in the crystal—in this case a site that is missing an atom. When
it intersects the location of the missing atom, the number of antialigned
bonds (marked) is lower, and therefore the energy is lower. Since this
lower energy makes the domain wall stick to the missing site, we say the
domain wall is pinned to the disorder. Even though the actual domain
wall may be hundreds of lattice constants thick (as we saw in Section
21.1.1) it is easy to see that these objects still have a tendency to stick
to disorder.
As mentioned at the beginning of this chapter, when a magnetic field

is externally applied to a ferromagnet, the domain walls move to re-
establish a new domain configuration (see the left two panels of Fig. 21.2)
and therefore a new magnetization. However, when there is disorder in
a sample, the domain walls can get pinned to the disorder: There is a
low-energy configuration where the domain wall intersects the disorder,
and there is then an activation energy to move the domain wall. This
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activation energy, analogous to what we found in Section 21.2.2, results
in hysteresis of the magnet. Indeed, we can think of the hysteresis
in single-domain crystallites as being very similar to the hysteresis we
find in crystalline samples. The only difference is that in the case of
crystallites, the domain walls always lie between the crystallites (since
each crystallite has all of its moments fully aligned). But in both cases,
it is the microscopic structure of the sample which prevents the domain
wall from moving freely.

Fig. 21.6 Domain wall pinning. The
energy of a domain wall is lower if the
domain wall goes through the position
of a defect in the crystal. Here, the
dot is supposed to represent a miss-
ing spin. The drawn solid segments,
where spins are antialigned, each cost
energy. When the domain wall inter-
sects the location of the missing spin,
there are fewer solid segments, there-
fore it is a lower energy configuration
(there are twelve solid segments on the
left, but only ten on the right).

It is frequently the case that one wants to construct a ferromag-
net which retains its magnetization extremely well—i.e., where there
is strong hysteresis, and even in the absence of applied magnetic field
there will be a large magnetization. This is known as a “hard” magnet
(also known as a “permanent” magnet). It turns out that much of the
trick of constructing hard magnets is arranging to insert appropriate
disorder and microstructure to strongly pin the domain walls.

Aside: Magnetic disk drives, which store most of the world’s digital informa-

tion, are based on the idea of magnetic hysteresis. The disk itself is made of
some ferromagnetic material. A magnetic field can be applied to magnetize a tiny

region in either the up or down direction, and this magnetization remains in place

so that it may be read out later.

Chapter Summary

• Although short-range interaction in a ferromagnet favors all ma-
gentic moments to align, long-range magnetic dipolar forces favors
moments to antialign. A compromise is reached with domains of
aligned moments where different domains point in different direc-
tions. A very small crystal may be a single domain.

• The actual domain wall boundary may be a continuous rotation of
the spin rather than a sudden flip over a single bond-length. The
size of this spin structure depends on the ratio of the ferromagnetic
energy to the anisotropy energy (i.e., if it is very costly to have
spins point in directions between up and down then the wall will
be over a single bond length).
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• Domain walls are lower energy if they intersect certain types of
disorder in the solid. This results in the pinning of domain walls—
they stick to the disorder.

• In a large crystal, changes in magnetization occur by changing the
size of domains. In polycrystalline samples with very small crys-
tallites, changes in magnetization occur by flipping over individual
single-domain crystallites. Both of these processes can require an
activation energy (domain motion requires activation energy if do-
main walls are pinned) and thus result in hysteretic behavior of
magnetization in ferromagnets.
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Exercises

(21.1) Domain Walls and Geometry

Suppose a ferromagnet is made up of a density ρ of
spins each with moment µB .

(a) Suppose a piece of this material forms a long
circular rod of radius r and length L% r. In zero
external magnetic field, if all of the moments are
aligned along the L-direction of the rod, calculate
the magnetic energy of this ferromagnet. (Hint: a
volume of aligned magnetic dipoles is equivalent to
a density of magnetic monopoles on its surface.)

(b) Suppose now the material is shaped such that
r % L. What is the magnetic energy now?

(c) If a domain wall is introduced into the material,
where might it go to minimize the magnetic energy
in the two different geometries. Estimate how much
magnetic energy is saved by the introduction of the
domain wall.

(d) Suppose the spins in this material are arranged
in a cubic lattice, and the exchange energy between
nearest neighbors is denoted J and the anisotropy
energy is very large. How much energy does the

domain wall cost? Comparing this energy to the
magnetic energy, what should we conclude about
which samples should have domain walls?

(e) Note that factors of the lattice constant a are of-
ten introduced in quoting exchange and anisotropy
energies to make them into energies per unit length
or unit volume. For magnetite, a common mag-
netic material, the exchange energy is JS2/a =
1.33 × 10−11 J/m and the anisotropy energy is
κS2/a3 = 1.35 × 104 J/m3. Estimate the width of
the domain wall and its energy per unit area. Make
sure you know the derivation of any formulas you
use!

(21.2) Critical Field for Crystallite

(a) Given that the energy of a crystallite in a mag-
netic field is given by

E/V = E0 − |M ||B| cos θ − κ′|M |2(cos θ)2

show that for |B| < Bcrit there is a local energy
minimum where the magnetization points opposite
the applied field, and find Bcrit.
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(b)* In part (a) we have assumed B is aligned with
the anisotropy direction of the magnetization. De-
scribe what can occur if these directions are not
aligned.

(c) For small B, roughly how large (in energy per
unit volume) is the activation barrier for the sys-
tem to get from the local minimum to the global
minimum.

(d) Can you make an estimate (in terms of actual
numbers) of how big this activation barrier would
be for a ferromagnetic crystal of magnetite that is
a sphere of radius 1 nm ? You may use the pa-
rameters given in Exercise 21.1.e (you may need to
estimate some other parameters as well).

(21.3) Exact Domain Wall Solution*

The approximation used in Section 21.1.1 of the
energy of the anisotropy (κ) term is annoyingly
crude. To be more precise, we should instead write
κS2(cos θi)

2 and then sum over all spins i. Al-
though this makes things more complicated, it is
still possible to solve the problem so long as the

spin twists slowly so that we can replace the fi-
nite difference δθ with a derivative, and replace the
sum over sites with an integral. In this case, we
can write the energy of the domain wall as

E =

∫
dx
a

{
JS2a2

2

(
dθ(x)
dx

)2

− κS2[cos θ(x)]2
}

with a the lattice constant.

(a) Using calculus of variations show that this en-
ergy is minimized when

(Ja2/κ)d2θ/dx2 − sin(2θ) = 0

(b) Verify that this differential equation has the so-
lution

θ(x) = 2 tan−1

(
exp

[√
2(x/a)

√
κ
J

])

thus demonstrating the same L ∼
√

J/κ scaling.

(c) Show that the total energy of the domain wall
becomes Etot/(A/a2) = 2

√
2S2

√
Jκ.
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Mean Field Theory 22
Given a Hamiltonian for a magnetic system, we are left with the theoret-
ical task of how to predict its magnetization as a function of temperature
(and possibly as a function of external magnetic field). Certainly at low
temperature the spins will be maximally ordered, and at high temper-
ature the spins will thermally fluctuate and will be disordered. But
calculating the magnetization as a function of temperature and applied
magnetic field is typically a very hard task. Except for a few very simple
exactly solvable models (like the Ising model in one dimension, see Exer-
cises 20.5 and 20.6) we must resort to approximations. The most impor-
tant and probably the simplest such approximation is known as “mean
field theory”. Generally a “mean field theory” is any method that ap-
proximates some non-constant quantity by an average.1 Although mean 1In Chapter 2 we already saw another

example of mean field theory, when we
considered the Boltzmann and Einstein
models of specific heat of solids. There
we considered each atom to be in a har-
monic well formed by all of its neigh-
bors. The single atom was treated ex-
actly, whereas the neighboring atoms
were treated only approximately in that
their positions were essentially aver-
aged in order to simply form the po-
tential well—and nothing further was
said of the neighbors. Another exam-
ple in similar spirit was given in mar-
gin note 3 of Chapter 18 where an alloy
of Al and Ga with As is replaced by
some averaged atom AlxGa1−x and is
still considered a periodic crystal.

field theories come in many varieties, there is a particularly simple and
useful variety of mean field theory known as “molecular field theory” or
“Weiss mean field theory”,2 which we will now discuss in depth.

2The same Pierre-Ernest Weiss for
whom Weiss domains are named.

Molecular or Weiss mean field theory generally proceeds in two steps:

• First, one examines one site (or one unit cell, or some small region)
and treats it exactly. Any object outside of this site (or unit cell
or small region) is approximated as an expectation (an average or
a mean).

• The second step is to impose self-consistency. Every site (or unit
cell, or small region) in the entire system should look the same.
So the one site we treated exactly should have the same average
as all of the others.

This procedure is extremely general and can be applied to problems
ranging from magnetism to liquid crystals to fluid mechanics. We will
demonstrate the procedure as it applies to ferromagnetism. In Exercise
22.5 we consider how mean field theory can be applied to antiferromag-
nets as well (further generalizations should then be obvious).

22.1 Mean Field Equations for the
Ferromagnetic Ising Model

As an example, let us consider the spin-1/2 Ising model

H = −
1

2

∑

〈i,j〉

Jσiσj + gµBB
∑

j

σj
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where J > 0, and here σ = ±1/2 is the z-component of the spin and
the magnetic field B is applied in the ẑ direction (and as usual µB is
the Bohr magneton). For a macroscopic system, this is a statistical
mechanical system with 1023 degrees of freedom, where all the degrees
of freedom are now coupled to each other. In other words, it looks like
a hard problem!
To implement mean field theory, we focus in on one site of the problem,

say, site i. The Hamiltonian for this site can be written as

Hi =



gµBB − J
∑

j

σj



σi

where the sum is over sites j that neighbor i. We think of the term in
brackets as being caused by some effective magnetic field seen by the
spin on site i, thus we define Beff,i such that

gµBBeff,i = gµBB − J
∑

j

σj

with again j neighboring i. Now Beff,i is not a constant, but is rather an
operator since it contains the variables σj which can take several values.
However, the first principle of mean field theory is that we should simply
take an average of all quantities that are not site i. Thus we write the
Hamiltonian of site i as Hi = gµB〈Beff 〉σi. This is precisely the same
Hamiltonian we considered when we studied paramagnetism in Eq. 19.6,
and it is easily solvable. In short, one writes the partition function

Zi = e−βgµB〈Beff 〉/2 + eβgµB〈Beff 〉/2
.

From this we can derive the expectation of the spin on site i (compare
Eq. 19.8)

〈σi〉 = −
1

2
tanh (βgµB〈Beff 〉/2). (22.1)

However, we can also write that

gµB〈Beff 〉 = gµBB − J
∑

j

〈σj〉.

The second step of the mean field approach is to set 〈σ〉 to be equal on
all sites of the lattice, so we obtain

gµB〈Beff 〉 = gµBB − Jz〈σ〉 (22.2)

where z is the number of neighbors j of site i (this is known as the
coordination number of the lattice, and this factor has replaced the sum
on j). Further, again assuming that 〈σ〉 is the same on all lattice sites,
from Eqs. 22.1 and 22.2, we obtain the self-consistency equation for 〈σ〉
given by

〈σ〉 = −
1

2
tanh (β [gµBB − Jz〈σ〉] /2). (22.3)

The expected moment per site will correspondingly be given by3
3Recall that the spin points opposite
the moment! Ben Franklin, why do you
torture us so? (See margin note 15 of
Section 4.3.) m = −gµB〈σ〉. (22.4)
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22.2 Solution of Self-Consistency Equation

The self-consistency equation, Eq. 22.3, is still complicated to solve. One
approach is to find the solution graphically. For simplicity, let us set the
external magnetic field B to zero. We then have the self-consistency
equation

〈σ〉 =
1

2
tanh

(
βJz

2
〈σ〉

)

.

(22.5)

-2 -1 11 2

-1

1

-2 -1 11 2

-1

1

 〈 σ 〉

y

 〈 σ 〉

T > Tc

T < Tc

Fig. 22.1 Graphical solution of the
mean field self-consistency equations.
Top: Relatively high temperature
βJz/2 = 1. The smooth line is the
tanh of Eq. 22.5. The straight line is
just the line y = x. Eq. 22.5 is satis-
fied only where the two curves cross—
i.e., at 〈σ〉 = 0, meaning that at this
temperature, within the mean field ap-
proximation, there is no magnetization.
Bottom: Relatively low temperature
βJz/2 = 4. Here, the curves cross
at three possible values (〈σ〉 = 0 and
〈σ〉 ≈ ±.479). The fact that there is
a solution of the self-consistency equa-
tions with non-zero magnetization tells
us that the system is ferromagnetic
(the zero magnetization solution is non-
physical, see Exercise 22.2).

We then choose a value of the parameter βJz/2. Let us start by
choosing a value βJz/2 = 1, which is somewhat small value, i.e., a high
temperature. Then, in the top of Fig. 22.1 we plot both the right-hand
side of Eq. 22.5 and the left-hand side of Eq. 22.5 both as a function of
〈σ〉. Note that the left-hand side is 〈σ〉 so we are just plotting the straight
line y = x. We see that there is only a single point where the two curves
meet, i.e., where the left side equals the right side. This point, in this
case is 〈σ〉 = 0. From this we conclude that for this value temperature,
within mean field approximation, there is no magnetization in zero field.

Let us now reduce the temperature substantially to βJz/2 = 4. Anal-
ogously, in the bottom of Fig. 22.1 we plot both the right-hand side of
Eq. 22.5 as a function of 〈σ〉 and the left-hand side of Eq. 22.5 (again
the straight line is just y = x). Here, however, we see there are three
possible self-consistent solutions to the equations. There is the solution
at 〈σ〉 = 0 as well as two solutions marked with arrows in the figure at
〈σ〉 ≈ ±.479. The two non-zero solutions tell us that at low tempera-
ture this system can have non-zero magnetization even in the absence
of applied field—i.e., it is ferromagnetic.
The fact that we have possible solutions with the magnetization point-

ing in both directions is quite natural. The Ising ferromagnet can be
polarized either spin-up or spin-down. However, the fact that there is
also a self-consistent solution with zero magnetization at the same tem-
perature seems a bit puzzling. We will see in Exercise 22.2 that when
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there are three solutions, the zero magnetization solution is actually a
solution of maximal free energy not minimal free energy, and therefore
should be discarded.4

4In particular we show that our self-
consistency equations are analogous to
when we find the minimum of a func-
tion by differentiation—we may also
find maxima as well.

0 0.2 0.4 0.6 0.8 1
T/Tc

0

0.1

0.2

0.3

0.4

0.5

〈σ
〉

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

Fig. 22.2 Magnetization as a function
of temperature. The plot shows the
magnitude of the moment per site in
units of gµB as a function of temper-
ature in the mean field approximation
of the spin-1/2 Ising model, with zero
external magnetic field applied.

Thus the picture that arises is that at high temperature the system
has zero magnetization (and we will see in the next subsection that it is
paramagnetic) whereas at low temperature a non-zero magnetization de-
velops and the system becomes ferromagnetic.5 The transition between

5It is quite typical that at high tem-
peratures a ferromagnet will turn into a
paramagnet, unless something else hap-
pens first—like the crystal melts.

these two behaviors occurs at a temperature known as Tc, which stands
for critical temperature6 or Curie temperature.7 It is clear from Fig. 22.1

6Strictly speaking it should only be
called a critical temperature if the tran-
sition is second order, i.e., if the mag-
netization turns on continuously at this
transition. For the Ising model, this is
in fact true, but for some magnetic sys-
tems it is not true.
7Named for Pierre again.

that the behavior changes from one solution to three solutions precisely
when the straight line is tangent to the tanh curve, i.e., when the slope
of the tanh is unity. This tangency condition thus determines the criti-
cal temperature. Expanding the tanh for small argument, we obtain the
tangency condition

1 =
1

2

(
βcJz

2

)

or equivalently the critical temperature is

kBTc =
Jz

4 .

Using the graphical technique described in this section, one can in
principle solve the self-consistency equations (Eq. 22.5) at any temper-
ature (although there is no nice analytic expression, it can always be
solved numerically). The results are shown in Fig. 22.2. Note that at
low enough temperature, all of the spins are fully aligned (〈σ〉 = 1/2
which is the maximum possible for a spin-1/2). In Fig. 22.3 we show
a comparison of the prediction of mean field theory to real experimen-
tal measurement of magnetization as a function of temperature. The
agreement is typically quite good (although not exact). One can also,
in principle, solve the self-consistency equation (Eq. 22.3) with finite
magnetic field B as well.

22.2.1 Paramagnetic Susceptibility

At high temperature there will be zero magentization in zero externally
applied field. However, at finite field, we will have a finite magnetiza-
tion. Let us apply a small magnetic field and solve the self-consistency
equations Eq. 22.3. Since the applied field is small, we can assume that
the induced 〈σ〉 is also small. Thus we can expand the tanh in Eq.22.3
to obtain

〈σ〉 =
1

2
(β [Jz〈σ〉 − gµBB] /2).

Rearranging this then gives

〈σ〉 = −
1
4 (βgµB)B

1− 1
4βJz

= −
1
4 (gµB)B

kB(T − Tc)

which is valid only so long as 〈σ〉 remains small. The moment per site
is then given by (see Eq. 22.4) m = −gµB〈σ〉, which divided by the
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volume of a unit cell gives the magnetization M . Thus we find that the
susceptibility is

χ = µ0
∂M

∂B
=

1
4ρ(gµB)2µ0

kB(T − Tc)
=

χCurie

1− Tc/T
(22.6)

M
/M

(0
)

T/Tc

Fig. 22.3 Comparison of mean field
prediction to experimental measure-
ment of magnetization as a function
of temperature. The heavy line is the
mean field prediction for spin-1/2 Ising
model (exactly the same as Fig. 22.2).
The dotted line is experimentally mea-
sured magnetization of nickel, and the
small points are a nickel–copper alloy.
The vertical axis is the magentization
divided by magentization at zero
temperature. Data from Sucksmith et
al., Rev. Mod. Phys., 25, 34 (1953);
http://rmp.aps.org/abstract/RMP/
v25/i1/p34 1 Copyright American
Physical Society. Reprinted by
permission.

where ρ is the number of spins per unit volume and χCurie is the pure
Curie susceptibility of a system of (non-interacting) spin-1/2 particles
(compare Eq. 19.9). Eq. 22.6 is known as the Curie–Weiss law. Thus,
we see that a ferromagnet above its critical temperature is roughly a
paramagnet with an enhanced susceptibility. Note that the suscepti-
bility diverges at the transition temperature when the system becomes
ferromagnetic.8

8This divergence is in fact physical. As
the temperature is reduced towards Tc,
the divergence tells us that it takes
a smaller and smaller applied B field
to create some fixed magnetization M .
This actually makes sense since once
the temperature is below Tc, the mag-
netization will be non-zero even in the
absence of any applied B.

22.2.2 Further Thoughts

In Exercise 22.5 we will also study the antiferromagnet. In this case,
we divide the system into two sublattices—representing the two sites
in a unit cell. In that example we will want to treat one spin of each
sublattice exactly, but as in the ferromagnetic case each spin sees only
the average field from its neighbors. One can generalize even further to
consider very complicated unit cells.

Aside: It is worth noting that the result of solving the antiferromagnetic Ising
model gives

χ =
χCurie

1 + Tc/T
compared to Eq. 22.6. It is this difference in susceptibility that pointed the way

to the discovery of anitferromagnets (see Section 20.1.2).

We see that in both the ferromagnetic and antiferromagnetic case, at
temperatures much larger than the critical temperature (much larger
than the exchange energy scale J), the system behaves like a pure free
spin Curie paramagnet. In Section 19.6.3 we asked where we might find
free spins so that a Curie paramagnet might be realized. In fact, now
we discover that any ferromagnet or antiferromagnet (or ferrimagnet for
that matter) will appear to be free spins at temperatures high enough
compared to the exchange energy. Indeed, it is almost always the case
that when one thinks that one is observing free spins, at low enough
energy scales one discovers that in fact the spins are coupled to each
other!
The principle of mean field theory is quite general and can be applied

to a vast variety of difficult problems in physics. No matter what the
problem, the principle remains the same—isolate some small part of the
system to treat exactly, average everything outside of that small system,
then demand self-consistency: the average of the small system should
look like the average of the rest of the system.
While the mean field approach is merely an approximation, it is fre-

quently a very good approximation for capturing a variety of physical
phenomena. Furthermore, many of its shortcomings can be systemati-
cally improved by considering successively more corrections to the initial
mean field approach.9

9The motivated student might want to
think about various ways to improve
mean field theory systematically. One
approach is discussed in Exercise 22.6.
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Chapter Summary

• Understand the mean field theory calculation for ferromagnets.
Understand how you would generalize this to any model of an-
tiferromagnets, ferrimagnets, different spins, anisotropic models,
etc., etc.

• For the ferromagnet the important results of mean field theory
include:

– a finite-temperature phase transition from a low-temperature
ferromagnetic phase to a high-temperature paramagnetic
phase at a transition temperature known as the Curie tem-
perature.

– Above the Curie temperature the paramagnetic susceptibility
is χ = χCurie/(1 − Tc/T ), where χCurie is the susceptibility
of the corresponding model where the ferromagnetic coupling
between sites is turned off.

– Below Tc the magnetic moment turns on, and increases to
saturation at the lowest temperature.

References on Mean Field Theory

• Ibach and Luth, chapter 8 (particularly 8.6, 8.7)
• Hook and Hall, chapter 8 (particularly 8.3, 8.4)
• Kittel, beginning of chapter 12
• Burns, section 15.5
• Ashcroft and Mermin, chapter 33
• Blundell, chapter 5

Exercises

(22.1) ‡ Weiss Mean Field Theory of a Ferromagnet

Consider the spin-1/2 ferromagnetic Heisenberg
Hamiltonian on the cubic lattice:

H = −J
2

∑

〈i,j〉

Si · Sj + gµBB
∑

i

Si (22.7)

Here, J > 0, with the sum indicated with 〈i, j〉
means summing over i and j being neighboring sites
of the cubic lattice, and B is the externally applied
magnetic field, which we will assume is in the ẑ di-
rection for simplicity. The factor of 1/2 out front is
included so that each pair of spins is counted only
once. Each site i is assumed to have a spin Si of
spin S = 1/2. Here µB is the conventional Bohr

magneton defined to be positive. The fact that the
final term has a + sign out front is from the fact
that the electron charge is negative, therefore the
magnetic moment opposes the spin direction. If one
were to assume that these were nuclear spins the
sign would be reversed (and the magnitude would
be much smaller due to the larger nuclear mass).

(a) Focus your attention on one particular spin Si,
and write down an effective Hamiltonian for this
spin, treating all other variables Sj with j &= i as
expectations 〈Sj〉 rather than operators.

(b) Calculate 〈Si〉 in terms of the temperature
and the fixed variables 〈Sj〉 to obtain a mean-field
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self-consistency equation. Write the magnetization
M = |M| in terms of 〈S〉 and the density of spins.

(c) At high temperature, find the susceptibility
χ = dM/dH = µ0dM/dB in this approximation.

(d) Find the critical temperature in this approxi-
mation.

! Write the susceptibility in terms of this critical
temperature.

(e) Show graphically that in zero external field
(B = 0), below the critical temperature, there
are solutions of the self-consistency equation with
M &= 0.

(f) Repeat parts (a)–(d) but now assuming there is
an S = 1 spin on each site (meaning that Sz takes
the values −1, 0,+1).

(22.2) Bragg-Williams Approximation

This exercise provides a different approach to ob-
taining the Weiss mean-field equations. For sim-
plicity we will again assume spin 1/2 variables on
each site.

Assume there are N lattice sites in the system. Let
the average spin value be 〈Sz

i 〉 = s. Thus the prob-
ability of a spin being an up spin is P↑ = 1/2 + s
whereas the probability of a spin being a down spin
is P↓ = 1/2 − s. The total number of up spins
or down spins is then NP↑ and NP↓ respectively
where there are N total lattice sites in the system.

(a) Consider first a case where sites do not inter-
act with each other. In the micro-canonical en-
semble, we can count the number of configura-
tions (microstates) which have the given number of
spin-ups and spin-downs (determined by s). Using
S = kB lnΩ, calculate the entropy of the system in
the large N limit.

(b) Assuming all sites have independent probabil-
ities P↑ and P↓ of pointing up and down respec-
tively, calculate the probability that two neighbor-
ing sites will point in the same direction and the
probability that two neighboring sites will point in
opposite directions.

! Use this result to calculate an approximation to
the expectation of the Hamiltonian. Note: This is
not an exact result, as in reality, sites that are next
to each other will have a tendency to have the same
spin because that will lower their energies, but we
have ignored this effect here.

(c) Putting together the results of (a) and (b)

above, derive the approximation to the free energy

F = E − TS

= NkBT

[
(
1
2
+ s) log(

1
2
+ s)

+ (
1
2
− s) log(

1
2
− s)

]

+gµBBzNs− JNzs2/2

where z is the number of neighbors each spin has,
and we have assumed the external field B to be in
the ẑ direction. (Again we assume the spin is elec-
tron spin so that the energy of a spin interacting
with the external field is +gµbB · S.)
(d) Extremize this expression with respect to the
variable s to obtain the Weiss mean field equations.

! Below the critical temperature note that there
are three solutions of the mean field equations.

! By examining the second derivative of F with
respect to s, show that the s = 0 solution is actu-
ally a maximum of the free energy rather than a
minimum.

! Sketch F (s) both above and below the critical
temperature for B = 0. At non-zero B?

(22.3) Spin S Mean Field Theory

Using the result of Exercise 19.7 use mean field the-
ory to calculate the critical temperature for a spin
S ferromagnet with a given g-factor g, having coor-
dination number z and nearest-neighbor exchange
coupling Jex. (It may be useful to re-solve Exercise
19.7 if you don’t remember how this is done.)

(22.4) Low-Temperature Mean Field Theory

Consider the S = 1/2 ferromagnet mean field cal-
culation from Exercise 22.1. At zero temperature,
the magnet is fully polarized.

(a) Calculate the magnetization in the very low
temperature limit. Show that the deviation from
fully polarized becomes exponentially small as T
goes to zero.

(b)* Now consider a spin S ferromagnet. Deter-
mine the magnetization in the low T limit. You
can express your result conveniently in terms of the
result of Exercise 22.3.

(c)* In fact this exponential behavior is not ob-
served experimentally! The reason for this has to
do with spinwaves, which are explored in Exer-
cise 20.3, but are not included in mean field the-
ory. Using some results from that exercise, deter-
mine (roughly) the low-temperature behavior of the
magnetization of a ferromagnet.
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(22.5) Mean Field Theory for the Antiferromagnet

For this Exercise we use the molecular field (Weiss
mean field) approximation for the spin-1/2 anti-
ferromagnetic model on a three-dimensional cu-
bic lattice. The full Hamiltonian is exactly that
of Eq. 22.7, except that now we have J < 0, so
neighboring spins want to point in opposite direc-
tions (compared to a ferromagnet where J > 0 and
neighboring spins want to point in the same direc-
tion). For simplicity let us assume that the external
field points in the ẑ direction.

At mean field level, the ordered ground state of this
Hamiltonian will have alternating spins pointing up
and down respectively. Let us call the sublattices
of alternating sites, sublattice A and sublattice B
respectively (i.e, A sites have lattice coordinates
(i, j, k) with i + j + k odd whereas B sites have
lattice coordinates with i+ j + k even).

In mean field theory the interaction between neigh-
boring spins is replaced by an interaction with an
average spin. Let sA = 〈Sz〉A be the average value
of the spins on sublattice A, and sB = 〈Sz〉B be
the average value of the spins on sublattice B (we
assume that these are also oriented in the ±ẑ di-
rection).

(a) Write the mean field Hamiltonian for a single
site on sublattice A and the mean field Hamiltonian
for a single site on sublattice B.

(b) Derive the mean-field self-consistency equations

sA =
1
2
tanh(β[JZsB − gµBB]/2)

sB =
1
2
tanh(β[JZsA − gµBB]/2)

with β = 1/(kBT ). Recall that J < 0.

(c) Let B = 0. Reduce the two self-consistency
equations to a single self-consistency equation.
(Hint: Use symmetry to simplify! Try plotting sA
versus sB .)

(d) Assume sA,B are small near the critical point
and expand the self-consistency equations. Derive
the critical temperature Tc below which the system
is antiferromagnetic (i.e., sA,B become non-zero).

(e) How does one detect antiferromagnetism exper-
imentally?

(f) In this mean-field approximation, the magnetic
susceptibility can be written as

χ = −(N/2)gµ0µB lim
B→0

∂(sA + sB)
∂B

(why the factor of 1/2 out front?).

! Derive this susceptibility for T > Tc and write
it in terms of Tc.

! Compare your result with the analogous result
for a ferromagnet (Exercise 22.1). In fact, it was
this type of measurement that first suggested the
existence of antiferromagnets!

(g)* For T < Tc show that

χ =
(N/4)µ0(gµb)

2(1− (2s)2)
kBT + kBTc(1− (2s)2)

with s the staggered moment (ie, s(T ) = |sA(T )| =
|sB(T )|).
! Compare this low T result with that of part f.

! Give a sketch of the susceptibility at all T .

(22.6) Correction to Mean Field*

Consider the spin-1/2 Ising ferromagnet on a cubic
lattice in d dimensions. When we consider mean
field theory, we treat exactly a single spin σi and
the z = 2d neighbors on each side will be considered
to have an average spin 〈σ〉. The critical tempera-
ture you calculate should be kBTc = Jz/4.

To improve on mean field theory, we can instead
treat a block of two connected spins σi and σi′

where the neighbors outside of this block are as-
sumed to have the average spin 〈σ〉. Each of the
spins in the block has 2d − 1 such averaged neigh-
bors. Use this improved mean field theory to write
a new equation for the critical temperature (it will
be a transcendental equation). Is this improved es-
timate of the critical temperature higher or lower
than that calculated in the more simple mean-field
model?



Magnetism from
Interactions: The Hubbard
Model 23
So far we have only discussed ferromagnetism in the context of iso-
lated spins on a lattice that align due to their interactions with each
other. However, in fact many materials have magnetism where the mag-
netic moments, the aligned spins, are not pinned down, but rather can
wander through the system. This phenomenon is known as itinerant
ferromagnetism.1 For example, it is easy to imagine a free electron gas

1Itinerant means traveling from place
to place without a home (from Latin
iter, or itiner, meaning journey or
road—in case anyone cares). Most of
the ferromagnets that we are familiar
with, such as iron, are itinerant.

where the number of up spins is different from the number of down
spins. However, for completely free electrons it is always lower energy
to have the same number of up and down spins than to have the num-
bers differ.2 So how does it happen that electrons can decide, even in

2The total energy of having N electrons
spin-up in a system is proportional to
NEF ∼ N(N/V )2/d, where d is the di-
mensionality of the system (you should
be able to prove this easily). We can
write E = CN1+a with a > 0 and C
some constant. For N↑ up-spins and
N↓ down-spins, we have a total energy
E = CN1+a

↑ + CN1+a
↓ = C(N1+a

↑ +

(N−N↑)1+a) where N is the total num-
ber of electrons. Setting dE/dN↑ = 0
immediately gives N↑ = N/2 as the
minimum energy configuration.

absence of external magnetic field, to polarize their spins? The cul-
prit is the strong Coulomb interaction between electrons. On the other
hand, we will see that antiferromagentism can also be caused by strong
interaction between electrons as well!
The Hubbard model3 is an attempt to understand the magnetism

that arises from interactions between electrons. It is certainly the most
important model of interacting electrons in modern condensed matter
physics. Using this model we will see how interactions can produce both
ferro- and antiferromagnetism (this was alluded to in Section 19.2.1).
The model is relatively simple to describe.4 First we write a tight

4The reason most introductory books
do not cover the Hubbard model is
that the model is conventionally in-
troduced using so-called “second quan-
tized” notation—that is, using field-
theoretic methods. We will avoid this
approach, but as a result, we cannot
delve too deeply into the physics of the
model. Even so, this chapter should
probably be considered to be more ad-
vanced material than the rest of the
book.

binding model for a band of electrons as we did in Chapter 11 with
hopping parameter t. (We can choose to do this in one, two, or three
dimensions as we see fit5). We will call this Hamiltonian H0. As we

5In one dimension, the Hubbard model
is exactly solvable.

derived in Chapter 11 (and should be easy to derive in two and three
dimensions now) the full bandwidth of the band is 4dt in d dimensions.
We can add as many electrons as we like to this band. Let us define the
number of electrons in the band per site to be called the doping, x (so

3John Hubbard, a British physicist, wrote down this model in 1963, and it quickly became an extremely important example in
the attempt to understand interacting electrons. Despite the success of the model, Hubbard, who died relatively young in 1980,
did not live to see how important his model became. In 1986, when the phenomenon of “high-temperature superconductivity”
was discovered by Bednorz and Müller (resulting in a Nobel Prize the following year), the community quickly came to believe
that an understanding of this phenomenon would only come from studying the Hubbard model. (It is a shame that we do
not have space to discuss superconductivity in this book.) Over the next two decades the Hubbard model took on the status
of being the most important question in condensed matter physics. Its complete solution remains elusive despite the tens of
thousands of papers written on the subject.
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that x/2 is the fraction of k-states in the band which are filled being that
there are two spin states). As long as we do not fill all of the states in
the band (x < 2), in the absence of interactions, this partially filled tight
binding band is a metal. Finally we include the Hubbard interaction

Hinteraction =
∑

i

U ni↑ ni↓ (23.1)

where here ni↑ is the number of electrons with spin-up on site i, and ni↓

is the number of electrons on site i with spin-down, and U > 0 is an
energy known as the repulsive Hubbard interaction energy. This term
gives an energy penalty of U whenever two electrons sit on the same
site of the lattice. This short-ranged interaction term is an approximate
representation of the Coulomb interaction between electrons. The full
Hubbard model Hamiltonian is given by the sum of the kinetic and
interaction pieces

H = H0 +Hinteraction .

23.1 Itinerant Ferromagnetism

Why should this on-site interaction create magnetism? Imagine for a
moment that all of the electrons in the system had the same spin state (a
so-called “spin-polarized” configuration). If this were true, by the Pauli
exclusion principle, no two electrons could ever sit on the same site. In
this case, the expectation of the Hubbard interaction term would be zero

〈Polarized Spins|Hinteraction|Polarized Spins〉 = 0

which is the lowest possible energy that this interaction term could have.
On the other hand, if we filled the band with only one spin species, then
the Fermi energy (and hence the kinetic energy of the system) would be
much higher than if the electrons could be distributed between the two
possible spin states. Thus, it appears that there will be some competition
between the potential and kinetic energy that decides whether the spins
align or not.

23.1.1 Hubbard Ferromagnetism Mean Field
Theory

6This is a slightly different type of
mean field theory from that encoun-
tered in Chapter 22. Previously we con-
sidered some local degree of freedom
(some local spin) which we treated ex-
actly, and replaced all other spins by
their average. Here, we are going to
treat the kinetic energy as if the elec-
trons were non-interacting, and we re-
place the operators in the potential en-
ergy term by their averages.

To try to decide quantitatively whether spins will align or not we start
by writing

U ni↑ ni↓ =
U

4
(ni↑ + ni↓)

2 −
U

4
(ni↑ − ni↓)

2
.

Now we make the approximation of treating all operators ni,↑ and ni,↓

as their expectations.

U ni↑ ni↓ ≈
U

4
〈ni↑ + ni↓〉2 −

U

4
〈ni↑ − ni↓〉2 .
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This approximation is a type of mean-field theory,6 similar to that we
encountered in the previous Chapter 22: we replace operators by their
expectations. The expectation 〈ni↑ + ni,↓〉 in the first term is just the
average number of electrons on site i which is just the average number of
particles per site,7 which is equal to the doping x, which we keep fixed. 7This assumes that the system remains

homogeneous—that is, that all sites
have the same average number of elec-
trons.

Correspondingly, the second expectation, 〈ni↑−ni↓〉, is related to the
magnetization of the system. In particular, since each electron carries8

8We have assumed an electron g-factor
of g = 2 and an electron spin of 1/2.
Everywhere else in this chapter the
symbol g will only be used for density
of states.

a magnetic moment of µB, the magnetization9 is

9Recall that magnetization is moment
per unit volume.

M = (µB/v)〈ni↓ − ni↑〉

with v the volume of the unit cell. Thus, within this approximation the
expectation of the energy of the Hubbard interaction is given by

〈Hinteraction〉 ≈ (V/v)(U/4)
(
x2 − (Mv/µB)

2
)

(23.2)

where V/v is the number of sites in the system. Thus, as expected,
increasing the magnetization M decreases the expectation of the inter-
action energy. To determine if the spins actually polarize we need to
weigh this potential energy gain against the kinetic energy cost.

23.1.2 Stoner Criterion10
10This has nothing to do with the
length of your dreadlocks or the number
of Grateful Dead shows you have been
to (I’ve been to six shows . . . I think).

Here we calculate the kinetic energy cost of polarizing the spins in our
model and we balance this against the potential energy gain. We will
recognize this calculation as being almost identical to the calculation we
did way back in Section 4.3 when we studied Pauli paramagnetism (but
we repeat it here for clarity).
Consider a system (at zero temperature for simplicity) with the same

number of spin-up and spin-down electrons. Let g(EF ) be the total
density of states at the Fermi surface per unit volume (for both spins
put together). Now, let us flip over a small number of spins so that the
spin-up and spin-down Fermi surfaces have slightly different energies11 11If we were being very careful we

would adjust EF to keep the overall
electron density ρ↑ + ρ↓ fixed as we
change δε. For small δε we find that
EF remains unchanged as we change δε,
but this is not true for larger δε.

EF,↑ = EF + δε/2

EF,↓ = EF − δε/2.

The difference in the number density of up and down electrons is then

ρ↑ − ρ↓ =

∫ EF+δε/2

0
dE

g(E)

2
−

∫ EF−δε/2

0
dE

g(E)

2

where we have used the fact that the density of states per unit volume
for either the spin-up or spin-down species is g(E)

2 .
Although we could carry forward at this point and try to perform the

integrals generally for arbitrary δε (see Exercise 23.1) it is enough for
our present discussion to consider the simpler case of very small δε. In
this case, we have

ρ↑ − ρ↓ = δε
g(EF )

2 .
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The difference in the number of up and down electrons is related to the
magnetization of the system by8

M = µB(ρ↓ − ρ↑) = −µBδε
g(EF )

2 .

The kinetic energy per unit volume is a bit more tricky. We write

K =

∫ EF+δε/2

0
dE E

g(E)

2
+

∫ EF−δε/2

0
dE E

g(E)

2

= 2

∫ EF

0
dE E

g(E)

2
+

∫ EF+δε/2

EF

dE E
g(E)

2
−
∫ EF

EF−δε/2
dE E

g(E)

2

≈ KM=0 +
g(EF )

2

[(
(EF + δε/2)2

2
−

E2
F

2

)
−
(
E2

F

2
−

(EF − δε/2)2

2

)]

= KM=0 +
g(EF )

2
(δε/2)2

= KM=0 +
g(EF )

2

(
M

µBg(EF )

)2

(23.4)

where KM=0 is the kinetic energy per unit volume for a system with no
net magentization (equal numbers of spin-up and spin-down electrons).
We can now add this result to Eq. 23.2 to give the total energy of the

system per unit volume

Etot = EM=0 +

(
M

µB

)2 [ 1

2g(EF )
−

vU

4

]

with v the volume of the unit cell. We thus see that for

U >
2

g(EF )v

the energy of the system is lowered by increasing the magnetization from
zero. This condition for itinerant ferromagnetism is known as the Stoner
criterion.12,13

12Edmund Stoner was a British physi-
cist who, among other things, figured
out the Pauli exclusion principle in
1924 a year before Pauli. However,
Stoner’s work focused on the spectra,
and behavior, of atoms, and he was not
bold enough to declare that exclusion
was a fundamental property of elec-
trons. Stoner was diagnosed with di-
abetes in 1919 at 20 years of age and
grew progressively weaker for the next
eight years. In 1927, insulin treatment
became available, saving his life. He
died in 1969.
13Although this type of calculation of
the Stoner criterion has been gospel for
half a century, like many things, the
truth can be somewhat more compli-
cated. For example, recent numerical
work has shown that ferromagnetism
never occurs at low electron density in
the Hubbard model! However, numer-
ics on repulsive fermions not confined
to hop on a lattice do show ferromag-
netism.

Aside: We did a lot of work to arrive at Eq. 23.4. In fact, we could have
almost written it down with no work at all based on the calculation of the Pauli
susceptibility we did back in Section 4.3. Recall first that when an external mag-
netic field is applied in the up direction to a system, there is an energy induced
from the coupling of the spins to the field which is given by µB(ρ↑−ρ↓)B = −MB
(with positive M being defined in the same direction as positive B so that having
the two aligned is low energy). Also recall in Section 4.3 that we derived the
(Pauli) susceptibility of an electron system is

χPauli = µ0µ
2
Bg(EF )

which means that when a magnetic field B is applied, a magnetization χPauliB/µ0

is induced. Thus we can immediately conclude that the energy of such a system
in an external field must be of the form

E(M) =
M2µ0

2χPauli
−MB +Constant.
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To see that this is correct, we minimize the energy with respect to M at a given
B, and we discover that this properly gives us M = χPauliB/µ0. Thus, at zero
applied B, the energy should be

E(M)− Constant =
M2µ0

2χPauli
=

M2

2µ2
Bg(EF )

exactly as we found in Eq. 23.4!

23.2 Mott Antiferromagnetism

In fact, the Hubbard model is far more complex than the above mean-
field calculation would lead one to believe. Let us now consider the case
where the doping is such that there is exactly one electron per site of the
lattice. For non-interacting electrons, this would be a half-filled band,
and hence a conductor. However, if we turn on the Hubbard interaction
with a large U , the system becomes an insulator. To see this, imagine
one electron sitting on every site. In order for an electron to move, it
must hop to a neighboring site which is already occupied. This process
therefore costs energy U , and if U is large enough, the hopping cannot
happen. This is precisely the physics of the Mott insulator which we
discussed in Section 16.4.

Fig. 23.1 Spin configurations of the
half-filled Hubbard model. Left: The
proposed antiferromagnetic ground
state in the limit that t is very small.
Right: A higher-energy state in the
limit of small t which can occur by an
electron from one site hopping onto a
neighboring site. The energy penalty
for double occupancy is U .

With one immobile electron on each site we can now ask which way
the spins align (in the absence of external field). For a square or cu-
bic lattice, there are two obvious options: either the spins want to be
aligned with their neighbors or they want to be antialigned with their
neighbors (ferromagnetism or antiferromagnetism). It turns out that an-
tiferromagnetism is favored! To see this, consider the antiferromagnetic
state |GS0〉 shown on the left of Fig. 23.1. In the absence of hopping
this state is an eigenstate with zero energy (as is any other state where
there is precisely one electron on each site). We then consider adding
the hopping perturbatively. Because the hopping Hamiltonian allows
an electron to hop from site to site (with hopping amplitude −t), the
electron can make a “virtual” hop to a neighboring site, as shown in the
right of Fig. 23.1. The state on the right |X〉 is of higher energy (in the
absence of hopping it has energy U because of the double occupancy).
Using second-order perturbation theory we obtain

E = E(|GS0〉) +
∑

X

|〈X |Hhop|GS0〉|2

EGS0 − EX
= E(|GS0〉)−

Nz|t|2

U

In the first line the sum is over all |X〉 states that can be reached in
a single hop from the state |GS0〉. In the second line we have counted
the number of such terms to be Nz, where z is the coordination number
(number of nearest neighbors) and N is the number of sites. Further,
we have inserted −t for the amplitude of hopping from one site to the
next. Note that if the spins were all aligned, no virtual intermediate
state |X〉 could exist, since it would violate the Pauli exclusion principle
(hopping of electrons conserves spin state, so spins cannot flip over dur-
ing a hop, so there is strictly no double occupancy). Thus we conclude
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that the antiferromagnetic state has its energy lowered compared to the
ferromagnetic state in the limit of large U in a Mott insulating phase.
Admittedly this argument appears a bit handwaving (it is correct

though!). To make the argument more precise, one should be much more
careful about how one represents states with multiple electrons. This
typically requires field theoretic techniques. A very simple example of
how this is done (without more advanced techniques) is presented in the
appendix to this chapter.
Nonetheless, the general physics of why the antiferromagnetic Mott

insulator state should be lower energy than its ferromagnetic counterpart
can be understood qualitatively without resorting to the more precise
arguments. On each site one can think of an electron as being confined
by the interaction with its neighbors. In the ferromagnetic case, the
electron cannot make any excursions to neighboring sites because of the
Pauli exclusion principle (these states are occupied). However, in the an-
tiferromagnetic case the electron can make excursions, and even though
when the electron wanders onto neighboring sites the energy is higher,
there is nonetheless some amplitude for this to happen.14 Allowing the

14Similar to when a particle is in a po-
tential well V (x), there is some ampli-
tude to find the electron at a position
such that V (x) is very large. electron wavefunction to spread out always lowers its energy.15

15By increasing ∆x we can decrease ∆p
and thus lower the kinetic energy of the
particle, as per the Heisenberg uncer-
tainty principle.

Indeed, in general a Mott insulator (on a square or cubic lattice) is
typically an antiferromagnet (unless some other interesting physics over-
whelms this tendency). It is generally believed that there is a substantial
range of t, U , and doping x where the ground state is antiferromagnetic.
Indeed, many real materials are thought to be examples of antiferromag-
netic Mott insulators. Interestingly, it turns out that in the limit of very
very strong on-site interaction U → ∞, adding even a single additional
hole to the half-filled Mott insulator will turn the Mott antiferromagnet
into a ferromagnet! This rather surprising result, due to Nagaoka and
Thouless16 (one of the few key results about the Hubbard model which

16David Thouless, born in Scotland, is
one of the most important names in
modern condensed matter physics. He
has not yet won a Nobel Prize, but he
is frequently mentioned as a likely con-
tender. Yosuki Nagaoka was a promi-
nent Japanese theorist.

is rigorously proven), shows the complexity of this model.

Chapter Summary

• Hubbard model includes tight-binding hopping t and on-site “Hub-
bard” interaction U

• For partially filled band, the repulsive interaction (if strong
enough) makes the system an (itinerant) ferromagnet: aligned
spins can have lower energy because they do not double occupy
sites, and therefore are lower energy with respect to U although it
costs higher kinetic energy to align all the spins.

• For a half-filled band, the repulsive interaction makes the Mott
insulator antiferromagnetic: virtual hopping lowers the energy of
antialigned neighboring spins.

References on Hubbard Model

Unfortunately there are essentially no references that I know of that are
readable without background in field theory and second quantization.
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23.3 Appendix: Hubbard Model for the
Hydrogen Molecule

Since the perturbative calculation showing antiferromagnetism is very
hand-waving, I thought it useful to do a real (but very simple) calculation
showing how, in principle, these calculations are done more properly.
Again, please consider this material to be more advanced, but if you are
confused about the discussion of antiferromagnetism in the Hubbard
model, this appendix might be enlightening to read.
The calculation given here will address the Hubbard model for the

hydrogen molecule. Here we consider two nuclei A and B near each other,
with a total of two electrons—and we consider only the lowest spatial
orbital (the s-orbital) for each atom.17 There are then four possible states 17This technique can in principle be

used for any number of electrons
in any number of orbitals, although
exact solution becomes difficult as
the Schroedinger matrix becomes very
high-dimensional and hard to diagonal-
ize exactly, necessitating sophisticated
approximation methods.

which an electron can be in:

A ↑ A ↓ B ↑ B ↓.
To indicate that we have put electron 1 in, say the A ↑ state, we write
the wavefunction

|A ↑〉 ←→ ϕA↑(1)

where ϕ is the wavefunction, and (1) is shorthand for the position r1 as
well as the spin σ1 coordinate.
For a two-electron state we are only allowed to write wavefunctions

that are overall antisymmetric. So given two single electron orbitals α
and β (α and β take values in the four possible orbitals A ↑,A ↓,B ↑,B ↓)
we write so-called Slater determinants to describe the antisymmetric
two-particle wavefunctions

|α;β〉 =
1√
2
det

∣∣∣∣
α(1) β(1)
α(2) β(2)

∣∣∣∣ = (α(1)β(2)− β(1)α(2))/
√
2 = −|β;α〉.

Note that this Slater determinant can be generalized to write a fully
antisymmetric wavefunction for any number of electrons. If the two
orbitals are the same, then the wavefunction vanishes (as it must by
Pauli exclusion).
For our proposed model of the Hydrogen molecule, we thus have six

possible states for the two electrons

|A ↑;A ↓〉 = −|A ↓;A ↑〉
|A ↑;B ↑〉 = −|B ↑;A ↑〉
|A ↑;B ↓〉 = −|B ↓;A ↑〉
|A ↓ B ↑〉 = −|B ↑;A ↓〉
|A ↓;B ↓〉 = −|B ↓;A ↓〉
|B ↑;B ↓〉 = −|B ↓;B ↑〉

The Hubbard interaction energy (Eq. 23.1) is diagonal in this basis—it
simply gives an energy penalty U when there are two electrons on the
same site. We thus have

〈A ↑;A ↓ |Hinteraction|A ↑;A ↓〉 = 〈B ↑;B ↓ |Hinteraction|B ↑;B ↓〉 = U
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and all other matrix elements are zero.
To evaluate the hopping term we refer back to where we introduced

tight binding in Section 6.2.2 and Chapter 11. Analogous to that dis-
cussion, we see that the hopping term with amplitude −t turns an A ↑
orbital into a B ↑ orbital or vice versa, and similarly turns a A ↓ into a
B ↓ and vice versa (the hopping does not change the spin). Thus, for
example, we have

〈A ↓;B ↑ |Hhop|A ↓;A ↑〉 = −t

where here the hopping term turned the B into an A. Note that this
implies similarly that

〈A ↓;B ↑ |Hhop|A ↑;A ↓〉 = t

since |A ↓;A ↑〉 = −|A ↑;A ↓〉.
Since there are six possible basis states, our Hamiltonian can be ex-

pressed as a six by six matrix. We thus write our Schroedinger equation
as





U 0 −t t 0 0
0 0 0 0 0 0
−t 0 0 0 0 −t
t 0 0 0 0 t
0 0 0 0 0 0
0 0 −t t 0 U









ψA↑A↓

ψA↑B↑

ψA↑B↓

ψA↓B↑

ψA↓B↓

ψB↑B↓




= E





ψA↑A↓

ψA↑B↑

ψA↑B↓

ψA↓B↑

ψA↓B↓

ψB↑B↓





where here we mean that the full wavefunction is the sum

|Ψ〉 = ψA↑A↓|A ↑;A ↓〉+ ψA↑B↑|A ↑;B ↑〉+ ψA↑B↓|A ↑;B ↓〉
+ ψA↓B↑|A ↓;B ↑〉+ ψA↓B↓|A ↓;B ↓〉+ ψB↑B↓|B ↑;B ↓〉.

We note immediately that the Hamiltonian is block diagonal. We have
eigenstates

|A ↑;B ↑〉 |A ↓;B ↓〉
both with energy E = 0 (hopping is not allowed and there is no double
occupancy, so no Hubbard interaction either). The remaining four by
four Schroedinger equation is then





U t −t 0
t 0 0 t
−t 0 0 −t
0 t −t U









ψA↑A↓

ψA↑B↓

ψA↓B↑

ψB↑B↓



 = E





ψA↑A↓

ψA↑B↓

ψA↓B↑

ψB↑;B↓





We find one more eigenvector ∝ (0, 1, 1, 0) with energy E = 0 corre-
sponding to the state1818The three states with E = 0 are in

fact the Sz = −1, 0, 1 states of S = 1.
Since the Hamiltonian is rotationally
invariant, these all have the same en-
ergy.

1√
2
(|A ↑;B ↓〉+ |A ↓;B ↑〉).

A second eigenstate has energy U and has a wavefunction

1√
2
(|A ↑;A ↓〉 − |B ↑;B ↓〉).
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The remaining two eigenstates are more complicated, and have energies
1
2

(
U ±

√
U2 + 16t2

)
. The ground state, always has energy

Eground =
1

2

(
U −

√
U2 + 16t2

)

.

In the limit of t/U becoming zero, the ground-state wavefunction be-
comes very close to

1√
2
(|A ↑;B ↓〉 − |A ↓;B ↑〉) +O(t/U) (23.5)

with amplitudes of order t/U for the two electrons to be on the same
site. In this limit the energy goes to

Eground = −4t2/U

which is almost in agreement with our perturbative calculation—the
prefactor differs from that mentioned in the above calculation by a factor
of 2. The reason for this discrepancy is that the ground state is not just
↑ on one site and ↓ on the other, but rather a superposition between
the two. This superposition can be thought of as a (covalent) chemical
bond (containing two electrons) between the two atoms.
In the opposite limit, U/t → 0 the ground-state wavefunction for

a single electron is the symmetric superposition (|A〉 + |B〉)/
√
2 (see

Section 6.2.2) assuming t > 0. This is the so-called “bonding” orbital.
So the ground state for two electrons is just the filling of this bonding
orbital with both spins—resulting in

|A ↑〉+ |B ↑〉√
2

⊗
|A ↓〉+ |B ↓〉√

2

=
1

2
(|A ↑;A ↓〉+ |A ↑;B ↓〉+ |B ↑;A ↓〉+ |B ↑;B ↓〉)

=
1

2
(|A ↑;A ↓〉+ |A ↑;B ↓〉 − |A ↓;B ↑〉+ |B ↑;B ↓〉).

Note that eliminating the double occupancy states (simply crossing them
out)19 yields precisely the same result as Eq. 23.5. Thus, as the interac-

19Eliminating doubly occupied orbitals
by hand is known as Gutzwiller projec-
tion (after Martin Gutzwiller) and is an
extremely powerful approximation tool
for strongly interacting systems.tion is turned on it simply suppresses the double occupancy in this case.

Exercises

(23.1) Itinerant Ferromagnetism

(a.i) Review 1: For a three-dimensional tight bind-
ing model on a cubic lattice, calculate the effective
mass in terms of the hopping matrix element t be-

tween nearest neighbors and the lattice constant a.

(a.ii) Review 2: Assuming the density n of elec-
trons in this tight binding band is very low, one
can view the electrons as being free electrons with
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this effective mass m∗. For a system of spinless
electrons show that the total energy per unit vol-
ume (at zero temperature) is given by

E/V = nEmin + Cn5/3

where Emin is the energy of the bottom of the band.

! Calculate the constant C.

(b) Let the density of spin-up electrons be n↑ and
the density of spin-down electrons be n↓. We can
write these as

n↑ = (n/2)(1 + α) (23.6)

n↓ = (n/2)(1− α) (23.7)

where the total net magnetization of the system is
given by

M = −µbnα.

Using the result of part (a), fixing the total density
of electrons in the system n,

! calculate the total energy of the system per unit
volume as a function of α.

! Expand your result to fourth order in α.

! Show that α = 0 gives the lowest possible en-
ergy.

! Argue that this remains true to all orders in α

(c) Now consider adding a Hubbard interaction
term

HHubbard = U
∑

i

N i
↑N

i
↓

with U ! 0 where N i
σ is the number of electrons of

spin σ on site i.

Calculate the expectation value of this interaction
term given that the up and down electrons form
Fermi seas with densities n↑ and n↓ as given by
Eqns. 23.6 and 23.7.

! Write this energy in terms of α.

(d) Adding together the kinetic energy calculated
in part b with the interaction energy calculated in
part c, determine the value of U for which it is
favorable for α to become non-zero.

! For values of U not too much bigger than this
value, calculate the magnetization as a function of
U .

! Explain why this calculation is only an approx-
imation.

(e) Consider now a two-dimensional tight binding
model on a square lattice with a Hubbard interac-
tion. How does this alter the result of part (d)?

(23.2) Antiferromagnetism in the Hubbard Model

Consider a tight binding model with hopping t and
a strong Hubbard interaction

HHubbard = U
∑

i

N i
↑N

i
↓ .

(a) If there is one electron per site, if the inter-
action term U is very strong, explain qualitatively
why the system must be an insulator.

(b) On a square lattice, with one electron per site,
and large U , use second-order perturbation theory
to determine the energy difference between the fer-
romagnetic state and the antiferromagnetic state.
Which one is lower energy?



Sample Exam and
Solutions A
The current Oxford syllabus covers this entire book with the exception
of the chapter on device physics and the final chapter on interactions
and magnetism.
Numbers in brackets [ ] indicate the number of points (or “marks”,

as is said in the UK) expected to be allocated for the given part of the
question. Give yourself three hours to do all four questions (or give
yourself 90 minutes to do any two, as is done in Oxford).

EXAM

Question 1. Write down a formula for the structure factor S(hkl),
and find the condition for reflections to be missing in the diffraction
pattern from any crystal whose lattice is all-face-centered. [5]

Silicon crystallizes in a cubic structure whose lattice is face-centered
with a basis [000] and [ 14

1
4
1
4 ].

(1) Write out the fractional coordinates of all the atoms in the con-
ventional unit cell of silicon.

(2) Sketch a plan diagram of the silicon structure viewed down the
[001] axis, taking care to mark the axes and heights of the atoms
within the unit cell.

(3) Write down the fractional coordinates of a center of inversion sym-
metry in the structure. [Center of inversion symmetry is when for
every atom at x, y, z there is an equivalent atom at −x,−y,−z.]

(4) Show that reflections for which h + k + l = 4n + 2 have zero
intensity in a diffraction pattern. Careful measurements of the
(222) reflection nevertheless do show a small peak in intensity:
suggest a possible explanation for this. [11]

How many acoustic and optic branches are to be found in the phonon
dispersion diagram of silicon? How many distinct branches would you
expect along a (100) direction? [4]
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Question 2. Explain what is meant by the Brillouin zone and
Wigner–Seitz construction. [4]

Consider a body-centered cubic crystal. Taking into account any miss-
ing reciprocal lattice points, draw a diagram of the hk0 section of the
reciprocal lattice, marking (hkl)-indices for each lattice point. Use the
Wigner–Seitz construction to draw the first Brillouin zone on your dia-
gram. [7]

Consider a linear chain of atoms with only nearest-neighbour interac-
tions with alternating force constants C1 and C2 between atoms of mass
M . Let a be the repeat distance in this chain. Let the displacement
of atoms be denoted by us and vs, where s is an index for each pair of
atoms. Show that the equations of motion are given by

M
d2us

dt2
= C1 (vs − us) + C2 (vs−1 − us) ,

M
d2vs
dt2

= C2 (us+1 − vs) + C1 (us − vs) .

Show that

ω2 = α±
√
α2 − β sin2

ka

2

where ω is the frequency of vibration for a wave-vector k. Hence find
expressions for α and β in terms of C1, C2 and M . What is ω at the
Brillouin zone boundary? [9]

Question 3. Describe which types of material are likely to show
diamagnetism and paramagnetism. [3]

An insulating material containsN ions per unit volume where each ion
has spin S = 1/2 and Landé g-factor g (the orbital angular momentum
L = 0). Obtain an expression for the magnetisation of the system as a
function of temperature T and applied magnetic field B. Under what
conditions does your expression lead to Curie’s law, which is given by
χ = αN/T, where χ is the magnetic susceptibility, T is the temperature,
and α is a constant of proportionality? Express α in terms of physical
constants and g. [5]

Calculate the entropy of the system as a function of temperature and
magnetic field. [Entropy S is related to the Helmholtz free energy F by
S = −

(
∂F
∂T

)
V
.] Evaluate the high temperature limit and explain what

you expect the low temperature limit to be. A crystal of this material
is cooled to a temperature Ti in a magnetic field Bi. The magnetic field
is then altered to a new value Bf under adiabatic conditions. What is
the final value of the temperature? [9]

The process described above can be used as a method to cool down the
material and is known as adiabatic demagnetisation. Discuss the factors
which will limit the minimum temperature which might be achieved in
such a process. [3]
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Question 4. Show that the density of states per unit volume in
the conduction band of a semiconductor is given by g(E) = α

√
E − Ec,

where E is the electron energy, Ec is the energy at the bottom of the
conduction band. Express α in terms of the electron effective mass m∗e
and !. [4]

Show that the density of electrons n in the conduction band of the
semiconductor at temperature T is given by

n = AT 3/2 exp

(
µ− Ec

kBT

)
,

where µ is the chemical potential. Express A in terms ofm∗e and physical
constants. Write down a similar expression for the density of holes p in
the valence band and hence derive an expression for the number density
ni of electrons in an intrinsic semiconductor. [10][

You may need:

∫ ∞

0
x1/2e−xdx =

√
π

2

]

The density of minority carriers (holes) in a sample of n-type germa-
nium is found to be 2 × 1014m−3 at room temperature (T = 300K).
Calculate the density of donor ions in this sample. Briefly explain how
the band-gaps of germanium could be measured. [6]
[The (indirect) band-gap of germanium is 0.661eV at T = 300K. Assume
that the electron and hole effective masses in germanium are m∗e =
0.22me and m∗h = 0.34me respectively.]
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SOLUTIONS

Question 1

The structure factor is

S(hkl) =
∑

d

fd(Ghkl)e
iGhkl·xd

where the sum is over atom positions xd within the unit cell. Here we
assume a conventional unit cell, and the sum is over all d within the
conventional cell.
The form factor f is given by

fd(Ghkl) ∼
∫

drV (r)eiGhkl·r

with V the scattering potential. Note that the integral is over all space.
Note that the question asked about any face-centered crystal. So

most generally we have the lattice times an arbitrary basis. We write
the position of any atom as xd = R + yd with R the lattice point and
yd the displacement. Then we obtain

S(hkl) =
∑

d

∑

R

fd(Ghkl)e
iGhkl·(R+yd)

where here the sum over d is a sum over the atoms in a primitive unit
cell and the sum over R is the sum over all lattice points within the
conventional unit cell. This can then be factorized as

S(hkl) =

[
∑

R

eiGhkl·R

][
∑

d

fd(Ghkl)e
iGhkl·yd

]

= Slattice(hkl)× Sbasis(hkl)

Thus if Slattice vanishes for some (hkl) then the full S does too.
Now since the question asks about any face-centered crystal, it could

be referring to a general orthorhombic crystal! So let us define orthog-
onal primitive lattice vectors a1, a2, a3 not necessarily the same length
(resulting in orthogonal reciprocal primitive lattice vectors b1,b2,b3).
The coordinates of the lattice points within a conventional unit cell can
be written as

R1 = [0, 0, 0]

R2 = [0, 1/2, 1/2]

R3 = [1/2, 0, 1/2]

R4 = [1/2, 1/2, 0]

where the fractional coordinates refer to fractions of the primitive lattice
vectors. We also have

Ghkl = hb1 + kb2 + lb3
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Thus giving

Slattice(hkl) =
∑

R

eiGhkl·R = 1 + eiπ(k+l) + eiπ(h+l) + eiπ(k+l)

where we used here that ai · bj = 2πδij . It is easy to see that this is
non-zero only when all three (hkl) are even or all are odd.
(1) The coordinates are:

[0, 0, 0] [0, 1/2, 1/2] [1/2, 0, 1/2] [1/2, 1/2, 0]

[1/4, 1/4, 1/4] [1/4, 3/4, 3/4] [3/4, 1/4, 3/4] [3/4, 3/4, 1/4]

(2) Plan view. Heights are marked in units of a. Unmarked points
are at height 0 and a.

x

y

3
4

1
4

1
4

3
4

1
2

1
2

1
2

1
2a

a

(3) If the center of inversion has position [UVW ] for each atom at
position [uvw] there must also be an atom at the inverted position
[2U −u, 2V − v, 2W −w]. We have an inversion center at [1/8, 1/8, 1/8].
Inversion maps

[0, 0, 0]↔ [1/4, 1/4, 1/4] (A.1)

[0, 1/2, 1/2]↔ [1/4,−1/4,−1/4] = [1/4, 3/4, 3/4] (A.2)

[1/2, 0, 1/2]↔ [−1/4, 1/4,−1/4] = [3/4, 1/4, 3/4] (A.3)

[1/2, 1/2, 0]↔ [−1/4,−1/4, 1/4] = [3/4, 3/4, 1/4] (A.4)

(4) The basis is [000] and [1/4, 1/4, 1/4] so

Sbasis = fSi(1 + ei(π/2)(h+k+l))

Thus for h+ k + l = 4n+ 2 this vanishes.
This final piece of part (4) is rather obscure (and is not expected

to be solved by many students). There are two possible reasons for
observing a (222) reflection peak. Reason (1) is multiple scattering. In
a single scatter the probe particle can scatter by (111), and with a second
scattering by (111) one observes a resulting (222) reflection. A second
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possible reason for observing a (222) peak is the realization that the
two silicon atoms at [000] and [1/4,1/4,1/4] are actually inequivalent,
in that they experience precisely inverted environments. As a result
of being inequivalent, they have slightly different form factors. So we
should really write

Sbasis = fSi[000] + fSi[1/4,1/4/1/4]e
i(π/2)(h+k+l)

and there will not be precise destructive interference.
Students are likely to say that there may be some deviation of the

basis atom [1/4,1/4,1/4] from that precise position, and this may result
in observing a (222) peak as well. While this should be worth partial
credit, the issue with this solution is that it is hard to come up with a
mechanism for such deviation. For example, uniaxial pressure, or even
shear stress, does not generally change the position of this basis atom in
terms of the primitive lattice vectors.
Since there are two atoms in the basis, there should be six phonon

modes. Three of these are optical, and three are acoustic (one longitudi-
nal, and two transverse). Along the (100) direction, the two transverse
modes have the same energy though (presumably this is what the ques-
tion means by asking if the modes are “distinct”). This final part is
difficult. To see that that these modes have to be degenerate, note that
under a 90-degree rotation around the (100) axis is identical to a trans-
lation by [1/4,1/4,1/4]. So there is one longitudinal optical mode, two
(degenerate) transverse optical modes, one longitudinal acoustic mode,
and two (degenerate) transverse acoustic modes. Another way to see
this is to realize that a wave traveling in the (100) direction should have
the same energy as a wave traveling in the opposite direction—and this
inversion of direction is also equivalent to a 90-degree rotation.

Question 2

A Brillouin zone is a unit cell of the reciprocal lattice.
A Wigner–Seitz Cell of a point R0 of a lattice is the set of all points that
are closer toR0 than to any other lattice point. (Note: the Wigner–Seitz
cell is primitive and has the same symmetries as the lattice.)
The Wigner–Seitz construction is a method of finding the Wigner–

Seitz cell. To do this, one finds the perpendicular bisectors between R0

and each nearby lattice point. The area around R0 bounded by these
perpendicular bisectors is the Wigner–Seitz cell.
Note that we will work with the conventional unit cell to define the

Miller indices. So for the conventional cell,

(hkl) = (2π/a)(hx̂+ kŷ + lẑ)

The short way to find the reciprocal lattice points is just to remember
that, due to the selection rules, the missing Miller indices are those for
which h+k+ l is odd. The (hk0) cut through the reciprocal lattice then
looks as follows:



Sample Exam and Solutions 267

(000)

BZ1

(1̄10) (110)

(1̄1̄0) (11̄0)

(020)

(02̄0)

(2̄00) (200)

One can also solve this problem a harder way. The bcc lattice has
primitive lattice vectors

a1 = a[100]

a2 = a[010]

a3 = a[1/2, 1/2, 1/2].

The reciprocal lattice has primitive lattice vectors

b1 = (2π/a)(1, 0,−1)
b2 = (2π/a)(0, 1,−1)
b3 = (2π/a)(0, 0, 2).

We can check that this is correct, either by using the formula

bi =
aj × ak

a1 · (a2 × a3)

with i, j, k cyclic. Or (easier) we can just confirm that

ai · bj = 2πδij .

We can take linear combinations of these primitive lattice vectors to
get the more usual primitive lattice vectors of an fcc lattice.

b1
′ = b1 + b3 = (4π/a)(1/2, 0, 1/2)

b2
′ = b2 + b3 = (4π/a)(0, 1/2, 1/2)

b3
′ = b1 + b2 + b3 = (4π/a)(1/2, 1/2, 0).
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Note that the lattice constant here is 4π/a. The previous picture is
precisely a cut through such an fcc lattice. It is potentially more obvious
to use another set of primitive lattice vectors

b1
′′ = b1 − b2 = (2π/a)(1, 1, 0)

b2
′′ = b1 + b2 + b3 = (2π/a)(1,−1, 0)

b3
′′ = (2π/a)(0, 0, 2).

The equations of motion

M
d2us

dt2
= C1 (vs − us) + C2 (vs−1 − us)

M
d2vs
dt2

= C2 (us+1 − vs) + C1 (us − vs)

are nothing more than F = ma. (Not sure what is expected to “show”
this: perhaps one writes down a Lagrangian, and writes Euler-Lagrange
equations, or differentiates the energies to get a force.)
We propose a wave ansatz

us = Aeiksa−iωt

vs = Beiksa−iωt
.

Plugging into our equations of motion and doing some cancellation we
get

M(−iω)2A = C1(B −A) + C2(e
−ikaB −A)

M(−iω)2B = C2(e
ikaA−B) + C1(A−B)

This can be rewritten as a matrix equation

Mω2

(
A
B

)
=

(
C1 + C2 −C1 − C2e−ika

−C1− C2eika C1 + C2

)(
A
B

)

which has the secular determinant equation

(C1 + C2 −Mω2)2 − |C1 + C2e
ika|2 = 0.

This can be rewritten as

Mω2 = C1 + C2 ± |C1 + C2e
ika|

= C1 + C2 ±
√
C2

1 + C2
2 + 2C1C2 cos(ka)

= C1 + C2 ±
√
(C1 + C2)2 + 2C1C2(cos(ka)− 1)

= C1 + C2 ±
√
(C1 + C2)2 − 4C1C2 sin

2(ka/2)

so

ω2 = α±
√
α2 − β sin2

ka

2
where

α =
C1 + C2

M
β = 4C1C2/M

2
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At the Brillouin zone boundary, k = π/a and sin(ka/2) = 1. Thus we
obtain

Mω2 = C1 + C2 ±
√
(C1 + C2)2 − 4C1C2

= C1 + C2 ±
√
(C1 − C2)2

= 2C1 or 2C2

Thus we have

ω =
√
2C1/M or

√
2C2/M

Question 3

Paramagnetism is typical of:

• The canonical example of a paramagnet is a systems of non-interacting
spins (Curie law). This is typical of atoms with localized moments,
which arises from non-filled shells such that J 0= 0. Rare earth ions
are a good example of this. (Mott insulator physics can localize
the electrons on individual sites.)

• Ferromagnets and antiferromagnets above their critical tempera-
tures are typically paramagnets.

• Free-electron gas and free-electron-like metals (like group I metals,
sodium and potassium) have much weaker (Pauli) paramagnetism.
Note that this Pauli paramagnetism can be outweighed by other
diamagnetic contributions, particularly when one counts the Lar-
mor diamagnetism of the core electrons.

• Van Vleck paramagnets (advanced material) have localized mo-
ment J = 0 but have low-energy excitations with J 0= 0 such that
at second order in perturbation theory there is weak paramag-
netism.

Diamagnetism is typical of:

• Atoms with J = 0 and no conduction electrons that can cause
Pauli paramagnetism and no low-energy excitations that can cause
Van Vleck paramagnetism. This is typical of filled-shell configura-
tions where J = L = S = 0, such as noble gases.

• Inert molecules with filled shells of molecular orbitals (again with
J = L = S = 0). For example, N2.

• Metals can be diamagnets if the Larmor (and Landau, advanced
material) diamagnetism is stronger than the Pauli paramagnetism
(copper is an example of this).

• Superconductors are perfect diamagnets (not covered in this book).

For a single isolated spin 1/2 we can calculate the partition function

Z = eβgµBB/2 + e−βgµBB/2
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with µB the Bohr magneton. The expectation of the moment (per spin)
is then

m = −d logZ/d(Bβ) = (gµB/2) tanh(βgµBB/2).

For small B this is
m = (gµB/2)

2(B/kBT )

Assuming the solid is made of independent non-interacting spins, the
total magnetization is

M = N(gµB/2)
2(B/kBT )

for N spins per unit volume. Thus the susceptibility is

χ = dM/dH = µ0dM/dB = Nµ0(gµB/2)
2(1/kBT ),

thus giving the constant

α = µ0(gµB/2)
2/kB

To determine the entropy,

Z = [2 cosh(βgµBB/2)]N

so
F = −kBTN ln [2 cosh(βgµBB/2)]

and

S = −∂F/∂T
= kBN ln [2 cosh(βgµBB/2)]− kBN(βgµBB/2) tanh(βgµBB/2).

In the high-temperature limit β is small, so the second term vanishes
and the cosh goes to 1. We thus obtain

S = kBN ln 2.

This is expected, being that we have two states per spin which are
equally likely at high temperature.
At low temperature the system freezes into a single configuration,

hence we expect zero entropy in agreement with the third law. We can
check this with a real calculation. At low temperature β is large. Using
2 cosh(βgµB/2) → exp(βgµB/2), and the tanh goes to unity, we then
have

S = kBN ln exp(βgµBB/2)− kBN(βgµBB/2) = 0

Note that S is a function of B/T only (not a function of B and T
separately. Thus if we are to make any adiabatic changes, in order to
keep S fixed we must keep the ratio of B/T fixed. So

Tf = Ti(Bf/Bi)
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Two key considerations in performing adiabatic demagnetization in
practice:
(1) Adiabatic demagnetization works only as well as the system is iso-

lated from the environment. In truth the system will have some weak
coupling to an environment, so that heat can leak into the system (lim-
iting how cold the system can get). This is essentially an issue of how
well you can insulate your system.
(2) At low enough temperature, the system will not be an ideal system

of non-interacting spins. (In fact, in order that the system forms an
ensemble at a real temperature there must be some mechanism by which
the spins interact to exchange energy and to allow individual spins to
flip over!) For interacting spins, the entropy is certainly not purely a
function of B/T . This does not mean that adiabatic demagnetization
does not work at all; it just works less well once the spins begin to order.
Suppose at some T < Tc the spins are ordered even at B = 0 and one
therefore has a very small entropy S0. This S0 may be exponentially
small if T is much less than Tc. Now unless you begin the experiment in
a huge B field so that the initial entropy is smaller than S0, you cannot
cool past this temperature (and it requires a huge initial B field in order
to obtain an initial entropy which is exponentially small).

Question 4

The energy of an electron in the conduction band is (assuming we are
at energies that are not too much higher than the bottom of the band)

E = Ec +
!2(k− k0)2

2m∗e

where k0 is the location of the minimum of the conduction band in
the Brillouin zone. We are assuming that there is a single “valley”
being considered (i.e., there is only a single k0 where the band energy
is minimum), and we assume the effective mass is isotropic.
Let us imagine we fill up a ball of radius q around the point k0, we

have
E − Ec = !

2q2/(2m∗e)

or
q =

√
2m∗e(E − Ec)/!.

The number of states per unit volume in k-space is 2V/(2π)3, where
the factor 2 out front is for spins. So given that we are filling a ball of
radius q, we have

n =
[
(4/3)πq3

]
(2/(2π)3) = q3/(3π2).

The density of states per unit volume is

g(E) = (dn/dq)(dq/dE) = (q2/π2)/(!2q/m∗e)

= qm∗e/(!
2π2) = α

√
E − Ec
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where

α =

√
2(m∗e)

3/2

!3π2 .

Again assuming no valley degeneracy and isotropic effective mass. The
density of electrons in the conduction band is

n =

∫ ∞

Ec

dEg(E)nF (β(E − µ)).

One must further assume that the chemical potential is not too close to
the bottom of the conduction band so that the Fermi function may be
replaced by a Boltzmann factor.

n =

∫ ∞

Ec

dEg(E)e−β(E−µ)

= αe−β(Ec−µ)

∫ ∞

Ec

dE(E − Ec)
1/2e−β(E−Ec)

= αe−β(Ec−µ)β−3/2

∫ ∞

0
dxx1/2 e−x

= αe−β(Ec−µ)(kBT )
3/2

√
π

2

so

n = AT 3/2 exp

(
µ− Ec

kBT

)
,

with

A = k3/2B α

√
π

2
=

(
kBm∗e
π!2

)3/2 1√
2 .

For density of holes in the valence band, one can really write down
the result by symmetry (just turning the energy upside-down at the
chemical potential) that we should have

p = AT 3/2 exp

(
Ev − µ

kBT

)
,

where Ev is the top of the valence band and

A =

(
kBm∗h
π!2

)3/2 1√
2

with m∗h is the hole effective mass.
To fill out a few of the details of this calculation, the density of states

per unit volume near the top of the valence band is given by

g(E) = αv

√
Ev − E

with Ev the top of the valence band and

αv =

√
2(m∗h)

3/2

!3π2
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with m∗h the hole effective mass. The density of holes in the valence
band is then

p =

∫ Ev

−∞
dEg(E) [1− nF (β(E − µ))].

We replace 1− nF by a Boltzmann factor to obtain

p =

∫ Ev

−∞
dEg(E)eβ(E−µ)

very similar manipulation now obtains the result.
Multiplying n by p, we obtain the law of mass action

np =
1

2

(
kBT

π!2

)3

(m∗em
∗
h)

3/2e−βEgap

where Egap = Ec − Ev is the band gap. For an intrinsic semiconductor
n = p, so we obtain

ni =
√
np =

1√
2

(
kBT

π!2

)3/2

(m∗em
∗
h)

3/4e−βEgap/2

A direct application of the law of mass action just derived. With
T = 300 K, Egap = .661 eV, m∗h = .34me, and m∗e = .22me we obtain.

np = 1× 1038m−6

with p = 2× 1014m−3 we then obtain

n = 5× 1023m−3

Since

n− p = density of donors ions− density of acceptors ions

and with p very small, assuming there are no acceptor ions in the sample,
we conclude that n is very close to the density of donor ions.
Measuring the band gap. For an intrinsic sample, probably the easiest

way to measure the gap is by measuring the density of carriers (by mea-
suring Hall coefficient) as a function of temperature. This will change
roughly as e−βEgap/2. If the sample is extrinsic (such as the doped sam-
ple mentioned here) then there are two approaches. One can raise the
temperature of the sample until it becomes intrinsic (i.e., the intrin-
sic densities are greater than the dopant densities) and then follow the
same scheme as for the intrinsic case (for the sample in this question this
would be above about 800 K). Or at any temperature one could look at
the optical absorbtion spectrum. Even though the gap is indirect, there
should still be a small step in the absorbtion at the indirect gap energy.
Note that throughout this problem we have assumed the temperature

is high enough so that we are above the freeze-out temperature for any
impurities. This is a reasonable assumption at room temperature.
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List of Other Good Books B
The following are general purpose references that cover a broad range
of the topics found in this book.

• Solid State Physics, 2nd ed
J. R. Hook and H. E. Hall, Wiley
This is frequently the book that students like the most. It is a first
introduction to the subject and is much more introductory than
Ashcroft and Mermin.

• States of Matter
D. L. Goodstein, Dover
Chapter 3 of this book is a very brief but well written and easy
to read overview of much of what is covered in my book (not all,
certainly). The book is also published by Dover, which means it is
super-cheap in paperback. Warning: It uses cgs units rather than
SI units, which is a bit annoying.

• Solid State Physics
N. W. Ashcroft and N. D. Mermin, Holt-Sanders
This is the standard complete introduction to solid state physics.
It has many many chapters on topics not covered here, and goes
into great depth on almost everything. It may be overwhelming
to read this because of information overload, but it has good ex-
planations of almost everything. Warning: Uses cgs units.

• The Solid State, 3ed
H. M. Rosenberg, Oxford University Press
This slightly more advanced book was written a few decades ago
to cover what was the solid state course at Oxford at that time.
Some parts of the course have since changed, but other parts are
well covered in this book.

• Solid-State Physics, 4ed
H. Ibach and H. Luth, Springer-Verlag
Another very popular book. It is more advanced than Ashcroft
and Mermin (much more than Hook and Hall) and has quite a bit
of information in it. Some modern topics are covered well.

• Introduction to Solid State Physics, 8ed
C. Kittel,1 Wiley 1Kittel happens to be my dissertation-

supervisor’s dissertation-supervisor’s
dissertation-supervisor’s dissertation-
supervisor, for whatever that is
worth.

This is a classic text. It gets mixed reviews by being unclear on
some matters. It is somewhat more complete than Hooke and
Hall, less so than Ashcroft and Mermin. Its selection of topics and
organization may seem a bit strange in the modern era.
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• Solid State Physics
G. Burns, Academic
Another more advanced book. Some of its descriptions are short
but very good. The typesetting is neolithic.

• Fundamentals of Solid State Physics
J. R. Christman, Wiley
Slightly more advanced book, with many many good problems in
it (some with solutions). The ordering of topics is not to my liking,
but otherwise it is very useful.

The following are good references for specific topics (but should not be
considered general references for solid state physics):

• The Structure of Crystals
M. A. Glazer, Bristol
This is a very nice, very very short book that tells you almost
everything you would want to know about crystal structure. It
only does a little bit on reciprocal space and diffraction, but gets
the most important pieces.

• The Basics of Crystallography and Diffraction, 3ed
C. Hammond, Oxford University Press
This book has historically been part of the Oxford syllabus, par-
ticularly for scattering theory and crystal structure. I don’t like
it much, but it would probably be very useful if you were actually
doing diffraction experiments.

• Structure and Dynamics
M. T. Dove, Oxford University Press
This is a more advanced book that covers scattering and crystal
structure in particular. It is used in the Oxford condensed matter
fourth year masters option.

• Magnetism in Condensed Matter
S. Blundell, Oxford University Press
Well written advanced material on magnetism. It is used in the
Oxford condensed matter fourth year masters option.

• Band Theory and Electronic Properties of Solids
J. Singleton, Oxford University Press
More advanced material on electrons in solids and band structure.
Also used in the Oxford condensed matter fourth-year masters
option.

• Semiconductor Devices: Physics and Technology
S. M. Sze, Wiley
This is an excellent first text for those who want to know some
more details of semiconductor device physics.

• Principles of Condensed Matter Physics
P. M. Chaikin and T. C. Lubensky, Cambridge
A book that covers condensed matter physics much more broadly
than solid state. Some of it is fairly advanced.
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• The Chemical Bond, 2ed
J. N. Murrell, S. F. A. Kettle, and J. M. Tedder, Wiley
If you feel you need more basic information about chemical bond-
ing, this is a good place to start. It is probably designed for
chemists, but it should be easily readable by physicists.

• The Nature of the Chemical Bond and the Structure of
Molecules and Crystals
L. Pauling, Cornell
If you want to really learn about chemistry, this is a classic written
by the master. The first few chapters are very readable and are
still of interest to physicists.
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Indices

This book has two indices.2 2Making it a tensor. har har.

In the index of people, Nobel laureates are marked with *. There are
well over fifty of them. To be fair, a few of the Nobel laureates we have
mentioned here (such as Fredrick Sanger) are mentioned offhandedly in
these notes, but have little to do with the content of this book. On the
other hand, there many more Nobel laureates who won their prizes for
work in condensed matter physics who we simply did not have space to
mention! At any rate, the total count of Nobel laureates is easily over
fifty (and quite a few random people got into the index as well).
A few people whose names are mentioned did not end up in the in-

dex because the use of their name is so common that it is not worth
indexing them as people. A few examples are Coulomb’s law, Fourier
transform, Taylor expansion, Hamiltonian, Jacobian, and so forth. But
then again, I did index Schroedinger equation and Fermi statistics under
Schroedinger and Fermi respectively. So I’m not completely consistent.
So sue me.
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Néel, Louis*, 226–227, 235–236
Nagaoka, Yosuki, 256
Newton, Isaac, 33, 45, 68, 78,

185, 186
Newton-John, Irene Born, 54
Newton-John, Olivia, 54
Noether, Emmy, 85
Novoselov, Konstantin*, 199
Noyce, Robert, 204

Onsager, Lars*, 229
Oppenheimer, J. Robert, 54

Pauli, Wolfgang*, 23, 27, 32–34,
36, 186, 212, 213, 217,
219–220, 229, 252, 254,
256, 257

Pauling, Linus**, 27, 43, 51, 67,
277

Peierls, Rudolf, 110
Peltier, Jean Charles, 23–25
Penney, Lord BaronWilliam, 172
Penrose, Roger, 67
Perutz, Max*, 156
Petit, Alexis, 7–9, 13
Planck, Max*, 10–13, 15, 141
Poission, Siméon, 129
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