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The existence of a light-induced
mechanical force on an atom was first
demonstrated by Frisch in 1933 by
measuring the deflection of a sodium
beam by light from a sodium lamp.
See R. Frisch, Z. Phys. 86, 42 (1933).

2 t=0
3. . t=7
Fig. 113 An  absorption-emission

cycle. (1) A laser photon impinges on
the atom. (2) The atom absorbs the
photon and goes into an excited state.
(3) After an average time equal to the
radiative lifetime 7, the atom re-emits
a photon in a random direction by

spontaneous emission.
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The experimen!

Example 11.1 A collimated beam of sodium atoms is emitted i,
the +a-direction from an oven at 600 °C and interacts with a counter-
propagating laser beam tuned to near resonance with the Dy line at
589 nm, which has a radiative lifetime of 16 ns. Estimate:

(a) the r.m.s. velocity and most probable velocity of the atoms in the
beam as they leave the oven;
(b) the initial detuning required for efficient laser cooling;
(¢) the frictional force exerted on ¢
deceleration it produces;

(d) the mumber of absorption-
atoms to a near halt;

(e) the distance travelled duri

Solution
(&) The velocity distribution of the
the Maxwell-Boltzmann distribution
l\:locny is given by eqn 11.4 and ¢

o, - 20T
= Vo

However, the velocity distri !
o er, the velocity distribution within a

ifferent becayse the atomic fuy is

s, The r.m.s velocity in the bean, is given by:

pheam _ 4kpT
rms T T y

(11.17)
. most probable velocity is given by
vbcum s SkBT
S Y m (11.18)

r=873 K and m =23 my, we find vbeam — 1190 1 and

rms
detuning required to. cool an atom with velocity v, is given
1.7. To instigate efficient cooling we need to tune the laser
ppropriate frequency for the most probable velocity in the
. 970 ms~ ). This gives d = —1.6 GHz.

jonal force is given by eqn 11.9 and the deceleration by
0. With A=589 nm and 7=16 ns, we find F,~ — 35 x
N and 9~ — 9.1 x 10° ms~2.

umber of cycles is given by eqn 11.11 with u, set by the
 probable initial velocity within the beam, namely 970 ms~!
(a)). This gives Nyiop =3.3 x 107,

distance travelled is given by eqn 11.13. On setting
970 ms~?, we find dpiy ~ 51 cm.

Optical molasses

s derived in eqns 11.9-11.13 should be considered only as order
tude estimations because a number of important processes have
ected. In this subsection we shall reconsider the cooling process
re detail and derive a value for the limiting temperature that can

us first consider a laser beam of optical intensity / and detuning
4 in angular frequency units interacting with an atom of velocity
fith respect to the laser. As in eqn 11.9, the frictional force F; is
0 the momentum change per absorption-emission cycle multiplied
net rate of such cycles:

F, = —hk x R(I,A),

=21/ ) is the photon wave vector, and R(1,A) is the net absorp-
4 R(I,A) is equal to the absorption rate minus the stimulated
Tate, and is given by:

(11.19)

(11.20)

e L1 )
2\1+1/L+[2(A+ kvz)/7)?

T is the natural linewidth in angular frequeucy' 911115 (C»L.

L i the saturation intensity of the transition. It is

high intensities the net absorption rate l'm}ns at
explains the factor of two in the denominator

“aie LML COVKIY  L4L

The analysis of the cooling pr
cess given here roughly follows tl
paper entitled ‘Optical Molasses’ I
P. D. Lett et al in J. Opt. Soc. Ar
B 6, 2084 (1989). The derivation
eqn 11.20 may be found, for exampl
in Foot (2005) or Shen (1984).
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:ﬁe transition rates usifg the ingten cu‘eﬁmems quick]y eStazrll‘aly“i“ u; heating rate is given by (see eqn 11.34 1,
functional form of eqn “-20"(5(’9 Exercise 11.4.) lsh““h» 4 below):
‘The arrangement with a single laser beam shown i p; (d_E) _Db,
dt = (11.26)
heat m

well when the laser detuning 8 9 ml.mh larger than the lini\.avildlt.l ok
ever, as the atoms cool do@. it will eventually he the cag, h. y

\alue of A required for cooling hﬂ.‘)m.es comparable to (],a line. hat g,
In these conditions. the atoms moving in the —z-directioy, will o Widg

the momentum diffusion constant defined in eqn 11.33
the total change of energy equal to zero, we find: )

an accelerating force, and will reheat those moving in (e +;.?erief'“ —av?+ 22—, 11.97
by collisions. To achieve very low temperatures we therefore nlrmm" i ik
Jaser beams as shown in Fig. 11.4. In this situation, the atom exp:.d twg
separate forces from each laser, giving a net force of: e 3l

s = (11.28)

Fo=F,+F_,

(11_2” ture is then given by eqn 11.2 as:

where Fy refers to the force from the laser beam Propagating in e +
direction, respectively. When the laser is tuned to the cooling condino:
given in eqn 11.7, F_ > F, for atoms moving in the +z direction g
high temperatures where k|u.| 3> 7, and vice versa for those moving
in the opposite direction. The two-beam arrangement is therefore 4}
to cool atoms moving in both directions. However, when the atoms g
very cold, so that |v,| is small, we have to analyse the net force more
carefully. In the low-temperature limit where |kv,| < A, and |kv,| <1,
the resultant force is given by (see Exercise (11.5)):

d; 1 D,
§kBT = Emuf = ﬁ. (11.29)

T==L (11.30)

D, to a.

nentum diffusion introduced into eqn 11.26 is associated with
hat, even though the damping force reduces the average velocity
the mean squared velocity is not zero. During each absorption

8hk*A 1/1, ’
E(I.A)= —7' [T‘*'T/L%W Uz- (11.2] cycle, the atom absorbs and emits a photon with momentum hk.
5 U with zero mean velocity is equally likely to absorb a photon

positive or negative travelling laser beams, and also to emit
direction. The atom therefore performs a random walk in
n, jolting backwards and forwards each time a photon is
emitted. If the random walk has N steps, where N is a large
then the average value of the momentum will be zero, but the
square will be given by:

(p2) = 2N (k). (11.31)

Irrespective of the direction of v,, the

the form:

Fe (1.9

where ais the damping coefficient, |

e N
¥ i teractions with both laser beams, we then have N
hen A is negative, A
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in both directiops, R Positive, and the mo

: or this reason, the arran : |
F}r‘:p;gm?g e AL _ g2, (11.32)
Amping force jg largest when A = 1
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The momentum diffusion due to the
random walk is similar to the diffusion
of molecules in Brownian motion. The
linear increase of (p?) with the number
is reminiscent of a Poissonian

of steps
process: see eqn A.10 in Appendix A
The extra factor of two in eqn 11.31
arises from the one-dimensional nature
of the problem.
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)
We finally substitute eqns 11.24 and 11.35 into eqn 11.30 ¢, obtyj
ain:
(L4 1/ + 4A%/42) .
8kp Aly ; (1L,

In the low-intensity limit with I < I, the minimum temperyy
ure jg

Position

Sisyplius cooling for a J = 1/2 — 3/2 transition in an alkal; .
in the +z-direction, and interac in an alkali atom. The

with two counter-propagati 5
Fig. 11.4. The energies of the M, = +1/2 Sablevels ot Lrl..p-r.;)pdg%"ilwﬁ

saidally with position in the interference patiern of the lasers. T oo,
tuned so that the atom can only make a transition to the excited st “I
one of the potential hills. (Positions 2 and 4.) The atom in the excited
mit to the same sublevel, or to the lower one. (Positions 3 and 5 ) In
an atom following the path 1 — 2 — 3 — 4 — 5 — ... the difference
zy of the absorbed and emitted photons is taken from the total energy of
ing to a cooling effect.

given by:
hy h

Toin = 57— =

2kg ~ 2kpT’ (1037

at A = —7/2. The temperature limit given in eqn 11.37 is calleq e
Doppler limit. Through eqn 11.2, it corresponds to a minimum therny)
r.m.s. velocity of )

v= = /h/2m. (11%)

The Doppler temperature in eqn 11.37 puts a fundamental limit to the
temperature that can be achieved by the Doppler cooling process in its
simplest form.

er-propagating laser beams in an optical molasses experi-
fere with each other, and this leads to a new type of cooling

m called Sisyphus cooling.
detailed mechanism of Sisyphus cooling is too complicated for
of treatment, but the basic process can be understood with

to Fig. 11.5. We consider an alkali atom in the ‘.)Sl/g ground
oving in the +z-direction and making transitions to a 2P, /0
under the influence of two counter-propagating resonant

The minimum temperature for Doppler cooling is given by the s shown in Fig. 11.4. The interference pattern of the lasers
limit temperature given in eqn 11.37. With 7 = 16 ns, this gives Ta periodic modulation of the energies of the ground state
e T corresponding minimum thermal velocity from ¢4 AC Stark effect. The light-induced shifts of the M, =
¥ihot = Bowg 6020 e ‘ ablevels differ in phase by 1807 as shown in Fig. 11.5. As
: stays in the same magnetic sublevel, it moves up and
continually converting kinetic to potential energy
thout change of the total energy. (Route 1 — 2 —
laser, we can

Example 11.2  Calculate the lowest temperature that can be achieved
by the Doppler coaling method using the Dy line of sodium at 589 .
which has a radiative lifetime of 16 ns. Calculate also the average velocity
of the atoms at this temperature.

Solution

11.2.3 Sub-Do, 5
ppler cooling
) However, by careful tuning of the ]

atoms follow the route 1 =2 — 3—4—
c se, the atoms are constantly losing energy,

the top of the potential hill, and then
e Sisyphus.

ﬁg:mc:: :):37 appears to set a fundamental limit to the tem
carried out achieved by laser cooling. However, careful Xl
petatres ”m the 19805 Jed to the surprising conclusion that
limit. 1 ¢ 1t were being achieved could be lower than
ranspires that laser cooling is one of the rare exam)

5—
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Sisyphus cooling is named after the
character in Greek mythology who was
condemned to roll a stone up a hill for-
ever, only for it to roll down again every
time he got near the top. The mechan-
ism of Sisyphus cooling is explained in
more detail in Foot (2005). See also
Cohen-Tannoudji and Phillips (1990).
A brief discussion of the AC Stark effect
may be found in Section 9.5.3.




