Exercise 1.
Let us define BPL as $\text{BPSPACE}(\log(n))$, and $\text{RL} = \text{RSPACE}(\log(n))$.

1. Show that $\text{RL} \subseteq \text{BPL}$.
2. Show that $\text{BPL} \subseteq \text{P}$. (*Hint: Consider the ‘adjacency matrix’ of the configuration graph.*)
3. Show that $\text{BPL} \subseteq \text{SPACE}(O(\log^2 n))$.

Exercise 2.

Definition. A problem with promise Π is two disjoint sets Π_Y and Π_N. On input x, where its belonging to $\Pi_Y \cup \Pi_N$, the problem is to decide whether $x \in \Pi_Y$ or $x \in \Pi_N$.

$\Pi \in \text{PromiseBPP}$ if there exists a PPT Turing machine M such that if $\Pr[M(x) = 1 \mid x \in \Pi_Y] \geq 2/3$ and $\Pr[M(x) = 1 \mid x \in \Pi_N] \leq 1/3$.

Let AEA (Additive Error Acceptance) be the problem defined by $\text{AEA}_Y = \{C \mid \Pr_r[C(r) = 1] \geq 2/3\}$ and $\text{AEA}_N = \{C \mid \Pr_r[C(r) = 1] \leq 1/3\}$.

1. Show that $\text{BPP} \subseteq \text{PromiseBPP}$.
2. Show that AEA is PromiseBPP-complete (under Karp-reduction).

Let $\epsilon \leq 1/6$, an ϵ-PCA is the problem with promise given by ϵ-PCA$_Y = \{(C, p) \mid \Pr_r[C(r) = 1] \geq p + \epsilon\}$ and ϵ-PCA$_N = \{(C, p) \mid \Pr_r[C(r) = 1] \leq p\}$.

1. Show that ϵ-PCA is PromiseBPP-complete.

PromiseBQP is defined as the class of problems (Π_Y, Π_N) that can be decided by a uniform family of quantum circuits: a uniform family of circuits Y, acting on $\text{poly}(n)$ qubits, decides if a string x of length n is a YES-instance or NO-instance with probability at least 2/3.

4. Show that $q\text{AEA}_Y = \{C \mid C|x, 0\rangle = a_{x,0} |0\rangle \otimes |\Psi_X, 0\rangle + a_{x,1} |1\rangle \otimes |\Psi_X, 1\rangle \text{ with } |a_{x,1}|^2 \geq 2/3\}$

 $q\text{AEA}_N = \{C \mid C|x, 0\rangle = a_{x,0} |0\rangle \otimes |\Psi_X, 0\rangle + a_{x,1} |1\rangle \otimes |\Psi_X, 1\rangle \text{ with } |a_{x,1}|^2 \leq 1/3\}$

is a PromiseBQP-complete problem.

Exercise 3.

Logarithmic advice.

Recall that P/\log refers to the class of languages decided by a polynomial time Turing machine with an advice string of length $O(\log n)$.

1. Write the mathematic definition of P/\log.
2. Show that P/\log contains undecidable languages.
3. Show that if $\text{NP} \subseteq P/\log$, then $P = \text{NP}$.

Exercise 4.

You saw during the course that P/poly (and P/\log) contains undecidable languages.

Show that there exists decidable languages outside P/poly.

Hint: Use a diagonalization argument over circuits of size $n^{\log n}$.