Exercice 1.

Building a PRF from a PRG

Let \(n \in \mathbb{N} \) be a security parameter. Let \(G : \{0,1\}^n \to \{0,1\}^{2^m} \) denote a length-doubling Pseudo-Random Generator (PRG). We define \(G_0 : \{0,1\}^n \to \{0,1\}^n \) and \(G_1 : \{0,1\}^n \to \{0,1\}^n \) as the functions that evaluate \(G \) and keep the \(n \) left-most bits and \(n \) right-most bits, respectively.

We consider the following keyed function

\[
F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n
\]

\[
k, x \mapsto G_x (G_{x-1} (\ldots (G_{x_1}(k)) \ldots)) ,
\]

where \(x = x_1 \ldots x_{n-1} x_n \). Our aim is to show that \(F \) is a Pseudo-Random Function (PRF).

1. Recall the security definition of a PRF and the advantage of a PRF adversary.

We now consider \(n+1 \) functions defined as follows, for \(i \in \{0, \ldots , n-1\} \):

\[
F_i : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n
\]

\[
k, x \mapsto G_x (G_{x-1} (\ldots (G_{x_{i+1}}(u_{x,x_{i-1} \ldots x_1})) \ldots)) ,
\]

where each \(u_{x,x_{i-1} \ldots x_1} \) is chosen uniformly and independently in \(\{0,1\}^n \), and fixed once and for all (it is hardwired in the definition of \(F_i \)). For \(i = 0 \), we define \(u_k = k \). For \(i = n-1 \), we let \(F^n : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n \) be a uniformly sampled function.

2. Show that if there is a PRF adversary \(\mathcal{A} \) against \(F \), then \(\mathcal{A} \) distinguishes between an oracle access to \(F_i \) and an oracle access to \(F_{i+1} \), for some \(i \in \{0, \ldots , n-1\} \).

For \(t \geq 1 \), we consider the function

\[
G^i : (\{0,1\}^n)^t \to (\{0,1\}^{2^n})^t
\]

\[
(k_1, \ldots , k_t) \mapsto (G(k_1), \ldots , G(k_t)).
\]

3. Show that any PRG adversary \(\mathcal{B}^t \) against \(G^i \) leads to a PRG adversary against \(G \).

Let \(i \) and \(\mathcal{A} \) be as above. Let \(t \) denote the run-time of \(\mathcal{A} \). We are going to show that \(\mathcal{A} \) may be used to mount an attack against \(G^i \). We consider the following algorithm \(\mathcal{B}^t \).

- It takes as input a string \((y_1,0, y_1,1, y_2,0, y_2,1, \ldots , y_t,0, y_t,1) \in (\{0,1\}^{2^n})^t \).
- It maintains a list \(L \) of triples that is initially empty.
- It interacts with Algorithm \(\mathcal{A} \).
- Each time \(\mathcal{A} \) makes a function query \(x_1 \ldots x_n \), it checks whether \(x_1 \ldots x_i = x'_1 \ldots x'_i \) for a previously queried input \(x'_1 \ldots x'_n \).
* If this is not the case, then it computes the length \(j \) of \(L \), and it adds \((x_1 \ldots x_i, y_{j+1}, 0, y_{j+1})\) to the list \(L \).
* Else, it finds the triple \((x_1 \ldots x_i, y_{j+1}, 0, y_{j+1})\) in \(L \).
* In both cases, it replies \(G_{x_n} \ldots G_{x_{i+2}}(y_{j+1}) \ldots \) if \(x_{i+1} = 0 \) and \(G_{x_n} \ldots G_{x_{i+2}}(y_{j+1}) \ldots \) if \(x_{i+1} = 1 \). If \(i = n - 1 \), it replies \(y_{j+1} \) if \(x_n = 0 \) and \(y_{j+1} \) if \(x_n = 1 \).
* Eventually, Algorithm \(\mathcal{A} \) outputs a bit \(b \in \{0, 1\} \), which \(B^\ell \) forwards as its own output.

4. Show that if the \(y_{j,0} \)'s are uniformly and independently random, then the view of \(\mathcal{A} \) is exactly the same as if it were given oracle access to \(F^{n+1} \).

5. Show that if the \(y_{j,0} \)'s are uniformly and independently random \(k_j \)'s, then the view of \(\mathcal{A} \) is exactly the same as if it were given oracle access to \(F^t \).

6. Conclude. In particular, give bounds on the run-time and advantage of the adversary against PRG \(G \) as functions of the run-time and advantage of the adversary against PRF \(F \).

Exercise 2. Pseudo-random synthesizers

Let \(n \in \mathbb{N} \) be a security parameter. Let \(\mathbb{G} \) be a cyclic group of prime order \(q > 2^n \) with a generator \(g \in \mathbb{G} \). Recall that the Decisional Diffie-Hellman (DDH) assumption says that the following distributions

\[
D_0 := \{(g^a, g^b, g^{ab}) \mid a, b \leftarrow U(\mathbb{Z}_q)\}, \quad D_1 := \{(g^a, g^b, g^c) \mid a, b, c \leftarrow U(\mathbb{Z}_q)\}
\]

are computationally indistinguishable.

A **synthesizer** \(G : \mathbb{Z}_q^n \times \mathbb{Z}_q^n \to \mathbb{G}^{n \times n} \) is a length-squaring function which takes as input a random seed made of \(2n \) scalars \(\vec{a} = (a_1, \ldots, a_n) \leftarrow U(\mathbb{Z}_q^n), \vec{b} = (b_1, \ldots, b_n) \leftarrow U(\mathbb{Z}_q^n) \) and outputs a \(n \times n \) matrix

\[
G((a_1, \ldots, a_n), (b_1, \ldots, b_n)) = \left(g^{a_i b_j} \right)_{i,j \in \{1, \ldots, n\}} = \begin{bmatrix} g^{a_1 b_1} & \ldots & g^{a_1 b_n} \\ g^{a_2 b_1} & \ldots & g^{a_2 b_n} \\ \vdots & \ddots & \vdots \\ g^{a_n b_1} & \ldots & g^{a_n b_n} \end{bmatrix}
\]

1. Show that an unbounded adversary (which can compute discrete logarithms in \(\mathbb{G} \)) can distinguish an output of \(G \) from a truly random matrix in \(\mathbb{G}^{n \times n} \).

2. Show that \(G : \mathbb{Z}_q^n \times \mathbb{Z}_q^n \to \mathbb{G}^{n \times n} \) is a pseudo-random generator under the DDH assumption in the group \(\mathbb{G} \).

Hint (but you may choose not to read it): Consider a sequence of \(n^2 \) hybrid experiments \(\text{Exp}_{k, \ell} \) for \(k, \ell \in \{1, \ldots, n\} \), where the output of \(G((a_1, \ldots, a_n), (b_1, \ldots, b_n)) \) is replaced by a matrix of the form

\[
G^{(k, \ell)}((a_1, \ldots, a_n), (b_1, \ldots, b_n)) = \left(g^{u_{ij}} \right)_{i,j \in \{1, \ldots, n\}}
\]

where \(u_{ij} = a_i b_j \) if \(i > k \) or \((i = k) \land (j > \ell) \) and \(u_{ij} \leftarrow U(\mathbb{Z}_q) \) otherwise. Define \(G^{(0,0)} \) to be actual function of \(1 \).
Exercice 3. Pseudo-random functions from the DDH assumption

Let \(n \in \mathbb{N} \) be a security parameter. Let \(\mathbb{G} \) be a cyclic group of prime order \(q > 2^n \) which is generated by \(g \in \mathbb{G} \) and for which DDH is presumably hard.

For a public \(g \in \mathbb{G} \), we define the function \(F_K : \{0, 1\}^n \rightarrow \mathbb{G} \) which is keyed by a random vector \(K = (a_0, a_1, \ldots, a_n) \in U(\mathbb{Z}_q^{n+1}) \) and takes as input a bitstring \(x = x_1 \ldots x_n \in \{0, 1\}^n \) to output

\[
F_K(x) = g^{a_0} \prod_{j=1}^n a_j^{x_j}.
\]

Our goal is to prove that the function \(F_K : \{0, 1\}^n \rightarrow \mathbb{G} \) is a pseudo-random function under the DDH assumption in \(\mathbb{G} \).

For an index \(i \in \{1, \ldots, n\} \), we consider an experiment where the adversary is given oracle access to a hybrid function \(F_K^{(i)} : \{0, 1\}^n \rightarrow \mathbb{G} \) defined as

\[
F_K^{(i)}(x) = g^R(x[1 \ldots i]) \prod_{j=i+1}^n a_j^{x_j},
\]

where \(R : \{0, 1\}^i \rightarrow \mathbb{Z}_q \) is a truly random function and \(x[1 \ldots i] = x_1 \ldots x_i \in \{0, 1\}^i \) denotes the \(i \)-th prefix of the input \(x \in \{0, 1\}^n \).

1. Prove that \(F_K^{(0)}(x) \) coincides with the function \(F_K(\cdot) \) of (2) if we define the length-0 prefix of \(x \in \{0, 1\}^n \) to be the empty string \(\epsilon \) and \(R(\epsilon) \) to be a non-zero constant. How does the function \(F_K^{(n)}(x) \) behave in the adversary’s view?

2. Let \((g^a, g^b, g^c)\) be a DDH instance, where \(a, b \leftarrow U(\mathbb{Z}_q) \), and we have to decide if \(c = ab \) or if \(c \leftarrow U(\mathbb{Z}_q) \). Describe a probabilistic polynomial-time algorithm that creates \(Q \) randomized DDH instances

\[
\{ (g^a, g^b, g^c_k) \}_{k=1}^Q,
\]

where \(\{b_k\}_{k=1}^Q \) are random and independent over \(\mathbb{Z}_q \), with the properties that

- If \(c = ab \) then \(c_k = ab_k \) for each \(k \in \{1, \ldots, Q\} \).
- If \(c \leftarrow U(\mathbb{Z}_q) \), then \(\{c_k\}_{k=1}^Q \) are independent and uniformly distributed over \(\mathbb{Z}_q \).

3. For each \(i \in \{0, \ldots, n\} \), we define the experiment \(\text{Exp}_i \) where the adversary \(\mathcal{A} \) is given oracle access to the function \(F_K^{(i)}(x) \) and eventually outputs a bit \(b' \in \{0, 1\} \) after \(Q \) evaluation queries. Prove that, for each \(i \in \{0, \ldots, n-1\} \), experiment \(\text{Exp}_i \) is computationally indistinguishable from \(\text{Exp}_{i+1} \) under the DDH assumption in \(\mathbb{G} \). Namely, prove that \(\mathcal{A} \) outputs \(b' = 1 \) with about the same probabilities in \(\text{Exp}_i \) and \(\text{Exp}_{i+1} \) unless the DDH assumption is false.

4. Give an upper bound on the advantage of a PRF distinguisher as a function of the maximal advantage of a DDH distinguisher.