Tutorial 9: Random Oracle

Exercise 1.

In this exercise we show a scheme that can be proven secure in the random oracle model, but is insecure when the random oracle model is instantiated with SHA-1 (or any fixed hash function). Let Π be a signature scheme that is secure in the standard model.

Construct a signature scheme Π_y where signing is carried out as follows: if $H(0) = y$ then output the secret key, if $H(0) \neq y$ then return a signature computed using Π.

1. Prove that for any value y, the scheme Π_y is secure in the random oracle model.

2. Show that there exists a particular y for which Π_y is insecure when the random oracle model is instantiated with SHA-1.

Exercise 2.

We define a new signature scheme which uses an encoding function $F : M \to \mathbb{Z}_N^*$ (where M is the set of messages). The key generation is the same as in the naive RSA signature scheme: let $N = pq$ with p and q primes of identical bit-length, and ϕ be the Euler function. We recall that $\phi(N) = (p-1)(q-1)$.

The integers e and d are chosen as in the RSA scheme such that $e \cdot d \equiv 1 \mod \phi(N)$.

The public key of the signature scheme is (N,e) and the secret key is d.

- To sign $m \in M$, compute $\sigma = F(m)^d \mod N$.
- To verify $(m,\sigma) \in M \times \mathbb{Z}_N^*$, accept if and only if $\sigma^e = F(m) \mod N$.

This exercise studies the properties of the function F needed to guarantee the security of this scheme.

1. Assume that F is a hash function which is not pre-image resistant. Give a key only attack against existential unforgeability.

2. Assume that F is a hash function which is not collision resistant. Give an adaptive chosen message attack against existential unforgeability.

Remark: If the function F is a hash function in \mathbb{Z}_N^* which is indistinguishable from a random function, then this scheme is existentially unforgeable under an adaptive chosen-message attack in the random oracle model.

Instead of using a hash function for F, we now consider that F is a linear redundancy function. A linear redundancy function is an invertible function which takes as input a message m and outputs a bit string. Let $\omega \in \mathbb{Z}_N^*$ be fixed, we define F as follows: $m \mapsto \omega \cdot m$.

3. Assume that we use this function F. Give an adaptive chosen message attack against existential unforgeability.

Exercise 3.

Let $H : \{0,1\}^{2n} \to \{0,1\}^n$ be a random oracle. For $x \in \{0,1\}^n$ and $k \in \{0,1\}^n$, we define F_k as follows:

$$F_k(x) = H(k\|x).$$

The security of a PRF F_k is defined by the following game:

- A random function H, a random $k \in \{0,1\}^n$ and a uniform bit b are chosen.
• If \(b = 0 \), the adversary \(\mathcal{A} \) is given access to an oracle for evaluating \(F_k(\cdot) \). If \(b = 1 \) then \(\mathcal{A} \) is given access an oracle for evaluating a random function mapping \(n \)-bit inputs to \(n \)-bit outputs (which is independent of \(H \)).

• \(\mathcal{A} \) outputs a bit \(b' \), and succeeds if \(b = b' \).

Note that during the second step, \(\mathcal{A} \) can access \(H \) in addition to the function oracle provided by the experiment.

The function \(F_k \) is a PRF if for any polynomial-time adversary \(\mathcal{A} \), the success probability of \(\mathcal{A} \) in the preceding experiment is at most negligibly greater than \(1/2 \).

1. Show that \(F_k \) is a PRF.

Exercise 4. Security of the CTR encryption scheme

Let \(F : \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n \) be a PRF. To encrypt a message \(M \in \{0,1\}^d \) under the key \(k \in \{0,1\}^n \), CTR proceeds as follows:

- Write \(M = M_0 \parallel M_1 \parallel \ldots \parallel M_{d-1} \) with each \(M_i \in \{0,1\}^n \);
- Sample \(IV \) uniformly in \(\{0,1\}^n \);
- Return \(IV \parallel C_0 \parallel C_1 \parallel \ldots \parallel C_{d-1} \) with \(C_i = M_i \oplus F(k, IV + i \mod 2^n) \) for all \(i \).

The goal of this exercise is to prove the security of CTR encryption mode against chosen ciphertext attacks, when the PRF \(F \) is secure.

1. Assume an attacker makes \(q \) encryption queries. Let \(IV_1, \ldots, IV_q \) be the corresponding \(IV \)'s. Let \(\text{Twice} \) denote the event “there exist \(i, j \leq q \) such that \(IV_i + k_i = IV_j + k_j \mod 2^n \).” Show that the probability of \(\text{Twice} \) is upper bounded by \(q^2 d / 2^{n-1} \).

2. Assume the PRF \(F \) is replaced by an uniformly chosen function \(f : \{0,1\}^n \rightarrow \{0,1\}^n \). Bound the distinguishing advantage of an adversary \(\mathcal{A} \) against this idealized version of CTR, as a function of \(d \) and the number of encryption queries \(q \).

3. Show that there exists a probabilistic polynomial-time adversary \(\mathcal{A} \) against CTR based on PRF \(F \), then there exists a probabilistic polynomial time adversary \(\mathcal{B} \) against the PRF \(F \). Give a lower bound on the advantage degradation incurred by the reduction.