Signature Schemes with Efficient Protocols and Dynamic Group Signatures from Lattice Assumptions

Benoît Libert1,2 San Ling3 Fabrice Mouhartem1
Khoa Nguyen3 Huaxiong Wang3

1É.N.S. de Lyon, France
2CNRS, France
3Nanyang Technological University, Singapore

Caen, 30/11/2016
Privacy-Preserving Cryptography

Important Goal: Anonymous authentication.
Privacy-Preserving Cryptography

Important Goal: Anonymous authentication.

e.g., e-voting, e-cash, group signatures, anonymous credentials...
Privacy-Preserving Cryptography

Important Goal: Anonymous authentication.

e.g., e-voting, e-cash, group signatures, anonymous credentials.

Ingredients

- A signature scheme
- Zero-knowledge (ZK) proofs
Privacy-Preserving Cryptography

Important Goal: Anonymous authentication.

e.g., e-voting, e-cash, group signatures, anonymous credentials...

Ingredients

- A signature scheme
- Zero-knowledge (ZK) proofs compatible with this signature (no hash functions)
Privacy-Preserving Cryptography

Important Goal: Anonymous authentication.

e.g., e-voting, e-cash, group signatures, anonymous credentials...

Ingredients

- A signature scheme
- Zero-knowledge (ZK) proofs compatible with this signature (no hash functions)
Digital Signatures

Signature Schemes

Signer

 Verify

Message

Signature

Veriﬁer

Sign
Digital Signatures

Guarantees *authenticity* and *integrity*.
Group Signatures

A user wants to take public transportations.
Group Signatures

A user wants to take public transportations.

timestamp
Group Signatures

A user wants to take public transportations.

- Authenticity & Integrity
Group Signatures

A user wants to take public transportations.

- Authenticity & Integrity
- Anonymity
Group Signatures

A user wants to take public transportations.

- Authenticity & Integrity
- Anonymity
- Dynamicity

Join

signature
Group Signatures

A user wants to take public transportations.

- Authenticity & Integrity
- Anonymity
- Dynamicity
- Traceability
Why dynamic group signature?

Dynamic group signatures

In *dynamic* group signatures, new group members can be introduced *at any time*.

Applications: access control in public transportation, smart cars communications, anonymous access control (e.g., in buildings)…
Why dynamic group signature?

Dynamic group signatures

In *dynamic* group signatures, new group members can be introduced *at any time*.

Applications: access control in public transportation, smart cars communications, anonymous access control (e.g., in buildings)...

Main Differences

<table>
<thead>
<tr>
<th>Static Group</th>
<th>Dynamic Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM distributes keys</td>
<td>\mathcal{U}_i makes his secret certified</td>
</tr>
<tr>
<td>Cannot add new users</td>
<td>Even colluding GM/OA cannot sign on behalf of a honest group member</td>
</tr>
</tbody>
</table>
Motivation

Advantages of the *dynamic* group setting:

- Add users without re-running the *Setup* phase;
Motivation

Advantages of the dynamic group setting:

► Add users without re-running the Setup phase;

► Even if everyone, including authorities, is dishonest, no one can sign in your name;
Motivation

Advantages of the \textit{dynamic} group setting:

- Add users without re-running the \texttt{Setup} phase;
- Even if everyone, including authorities, is dishonest, no one can sign in your name;
- Most use cases inherently require dynamic groups (e.g., building’s access control)
Commitments

Digital equivalent of a sealed box.

e.g., Pedersen Commitment

\[pk = (g, h) \leftarrow \mathbb{G}^2 \]

\[com = g^m \cdot h^r \]

\[open = (m, r) \]
Commitments

Digital equivalent of a sealed box.

e.g., Pedersen Commitment

\[pk = (g, h) \leftarrow \mathbb{G}^2 \]

\[com = g^m \cdot h^r \]

\[open = (m, r) \]

Properties

Commitments provide

- **Binding** property: once sealed, a value cannot be changed
- **Hiding** property: nobody is able tell what is inside the box without the key
Anonymous Credentials (Chaum'85, Camenisch-Lysyanskya'01)

Principle (e.g., U-Prove, Idemix)

Involves three parties: **Issuers, Users and Verifiers.**

- User dynamically obtains credentials from an issuer under a (pseudonym = commitment to a digital identity)
- ...and can dynamically prove possession of credentials using different *(unlinkable)* pseudonyms

Different flavors: one-show/multi-show credentials, attribute-based access control, ...
Anonymous Credentials (Chaum'85, Camenisch-Lysyanskya’01)

Principle (e.g., U-Prove, Idemix)

Involves three parties: **Issuers, Users and Verifiers**.

- User dynamically obtains credentials from an issuer under a (pseudonym = commitment to a digital identity)
- ...and can dynamically prove possession of credentials using different *(unlinkable)* pseudonyms

Different flavors: one-show/multi-show credentials, attribute-based access control,...

General construction from signature with efficient protocols:

- Issuer gives a user a signature on a committed message;
- User proves that same secret underlies different pseudonyms;
- User proves that he possesses a message-signature pair.
Signature with Efficient Protocols

Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN’02)

Signer

Verifier

Sign

Verify

Message

Signature

Message
Signature with Efficient Protocols

Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN’02)

- Sign committed values

Flowchart showing the interaction between Signer and Verifier:
- Signer
 - Sign
 - Message
- Verifier
 - Verify
 - Message
 - Open
 - Signature
Signature with Efficient Protocols

Signature Scheme with Efficient Protocols (Camenisch-Lysyanskya, SCN’02)

Signer

Message

Verifier

Verify

Message

Open

Signature

PoK

ZKPoK

- Sign committed values
- Proof of Knowledge (PoK) of (Message; Signature)
Lattice

A lattice is a discrete subgroup of \mathbb{R}^n. Can be seen as integer linear combinations of a finite set of vectors.
Lattice-Based Cryptography

Lattice

A lattice is a discrete subgroup of \mathbb{R}^n. Can be seen as integer linear combinations of a finite set of vectors.

Why?

- Simple and efficient;
- **Still** conjectured quantum-resistant;
- Connection between average-case and worst-case problems;
- Powerful functionalities (e.g., FHE).

→ Finding a non-zero short vector in a lattice is hard.
Hardness Assumptions: SIS and LWE
Parameters: n dimension, $m \geq n$, q modulus.
For $A \leftarrow \mathcal{U}(\mathbb{Z}_q^{m \times n})$:

Small Integer Solution

<table>
<thead>
<tr>
<th>x</th>
<th>A</th>
</tr>
</thead>
</table>

$A = 0 \mod q$

Learning With Errors

\[
\begin{pmatrix}
A \\
m \\
n
\end{pmatrix},
\begin{pmatrix}
s \\
e
\end{pmatrix}
\]

$s \leftarrow \mathbb{Z}_q^n$,
e a small error.

Goal: Given $A \leftarrow \mathbb{Z}_q^{m \times n}$, find $x \in \mathbb{Z}^m \setminus \{0\}$ small.

Goal: Given $(A, A s + e)$, find $s \in \mathbb{Z}_q^n$.
Provable Security

Lattice hard problems
find a short vector in a lattice.
Worst-case

Hardness assumptions
LWE, SIS.
Average-case

Security properties
anonymity, traceability, non-frameability.
Group Signatures: History

1991 Chaum and Van Heyst: introduction

2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution

2003 Bellare, Micciancio and Warinschi: model for static groups
Group Signatures: History

1991 Chaum and Van Heyst: introduction

2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution

2003 Bellare, Micciancio and Warinschi: model for static groups

2004 Kiayias and Yung: model for dynamic groups

2004 Bellare, Shi and Zhang: model for dynamic groups
1991 Chaum and Van Heyst: introduction
2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution
2003 Bellare, Micciancio and Warinschi: model for static groups
2004 Kiayias and Yung: model for dynamic groups
2004 Bellare, Shi and Zhang: model for dynamic groups
2010 Gordon, Katz and Vaikuntanathan: first lattice-based scheme
2013 Laguillaumie, Langlois, Libert and Stehlé: sub-linear signatures
Group Signatures: History

1991 Chaum and Van Heyst: introduction

2000 Ateniese, Camenisch, Joye and Tsudik: first scalable solution

2003 Bellare, Micciancio and Warinschi: model for static groups

2004 Kiayias and Yung: model for dynamic groups

2004 Bellare, Shi and Zhang: model for dynamic groups

2010 Gordon, Katz and Vaikuntanathan: first lattice-based scheme

2013 Laguillaumie, Langlois, Libert and Stehlé: sub-linear signatures

No dynamic group signature scheme based on lattices
Outline

Introduction

Definition

Presentation of the Scheme

Conclusion
Signature with Efficient Protocols (CL'02)

A signature scheme \((\text{Keygen}, \text{Sign}_{sk}, \text{Verif}_{vk})\) with companion protocols:

- Sign a committed value;
- Prove possession of a signature.
Signature with Efficient Protocols (CL’02)

A signature scheme \((\text{Keygen}, \text{Sign}_{sk}, \text{Verif}_{vk})\) with companion protocols:

- Sign a committed value;
- Prove possession of a signature.

Security

- Unforgeability;
Signature with Efficient Protocols (CL'02)

A signature scheme \((\text{Keygen}, \text{Sign}_{sk}, \text{Verif}_{vk})\) with companion protocols:

- Sign a committed value;
- Prove possession of a signature.

Security

- Unforgeability;
- Security of the two protocols;
- Anonymity.
Signature with Efficient Protocols (CL'02)

A signature scheme \((\text{Keygen}, \text{Sign}_{sk}, \text{Verif}_{vk})\) with companion protocols:

- Sign a committed value;
- Prove possession of a signature.

Security

- Unforgeability;
- Security of the two protocols;
- Anonymity.

→ many applications for privacy-based protocols
Signature with Efficient Protocols (CL'02)

A signature scheme \((\text{Keygen}, \text{Sign}_{sk}, \text{Verif}_{vk})\) with companion protocols:

- Sign a committed value;
- Prove possession of a signature.

Security

- Unforgeability;
- Security of the two protocols;
- Anonymity.

→ many applications for privacy-based protocols

Existing constructions rely on Strong RSA assumption or bilinear maps.
Dynamic Group Signature

Keygen

Join \((\text{sec}_i, \text{cert}_i)\)

ok

\(Y\)
Dynamic Group Signature

Sign

\text{gsk}[d]

\text{Verify}

M, \Sigma

\gamma
Dynamic Group Signature

M, Σ
Dynamic Group Signature

\[M, \Sigma \]

Open

\[\text{ok} \]

\[i \]
Dynamic Group Signature

Dynamic Group Signature

It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.
Dynamic Group Signature

It is a tuple of algorithms \((\text{Setup, Join, Sign, Verify, Open})\) acting according to their names.

- **Setup:**
 - Input: security parameter \(\lambda\), bound on group size \(N\)
 - Output: public parameters \(\mathcal{Y}\), group manager’s secret key \(S_{GM}\), the opening authority’s secret key \(S_{OA}\);
Dynamic Group Signature

It is a tuple of algorithms \((\text{Setup}, \text{Join}, \text{Sign}, \text{Verify}, \text{Open})\) acting according to their names.

- **Join**: interactive protocols between \(U_i \leftrightarrow GM\). Provide \((\text{cert}_i, \text{sec}_i)\) to \(U_i\). Where \(\text{cert}_i\) attests the secret \(\text{sec}_i\). Update the user list along with the certificates;
Dynamic Group Signature

It is a tuple of algorithms (**Setup**, **Join**, **Sign**, **Verify**, **Open**) acting according to their names.

- **Sign** and **Verify** proceed in the obvious way;
- **Open**:
 - Input: OA’s secret S_{OA}, M and Σ
 - Output: i.

<table>
<thead>
<tr>
<th>Dynamic Group Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is a tuple of algorithms (Setup, Join, Sign, Verify, Open) acting according to their names.</td>
</tr>
<tr>
<td>▶ Sign and Verify proceed in the obvious way;</td>
</tr>
<tr>
<td>▶ Open:</td>
</tr>
<tr>
<td>- Input: OA’s secret S_{OA}, M and Σ</td>
</tr>
<tr>
<td>- Output: i.</td>
</tr>
</tbody>
</table>
Security

Three security notions

- **Anonymity**: only OA can open a signature;
Three security notions

- **Anonymity**: only OA can open a signature;

- **Traceability** (= security of honest GM against users):
 no coalition of malicious users can create a signature that cannot be traced to one of them;
Three security notions

- **Anonymity**: only OA can open a signature;

- **Traceability** (= security of honest GM against users): no coalition of malicious users can create a signature that cannot be traced to one of them;

- **Non-frameability** (= security of honest members): colluding GM and OA cannot frame honest users.
Outline

Introduction

Definition

Presentation of the Scheme

Conclusion
Based on a variant of Boyen’s signature (PKC'10)

Given \(A \in \mathbb{Z}_q^{n \times m} \) and \(\{ A_i \}_{i=0}^\ell \in \mathbb{Z}_q^{n \times m} \), the signature is a small \(d \in \mathbb{Z}^{2m} \) s.t.

\[
A_0 + \sum_{j=1}^{\ell} m_j A_j \cdot d = 0 \ [q].
\]

The private key is a short \(T_A \in \mathbb{Z}_q^{m \times m} \) s.t.

\[
A \cdot T_A = 0 \ [q].
\]
Signature with Efficient Protocols

Based on a variant of Boyen’s signature (PKC’10)

Given \(A \in \mathbb{Z}_q^{n \times m} \) and \(\{ A_i \}_{i=0}^\ell \in \mathbb{Z}_q^{n \times m} \), the signature is a small

\[
d \in \mathbb{Z}^{2m} \quad \text{s.t.} \quad A A_0 + \sum_{j=1}^\ell m_j A_j \cdot d = 0 \ [q].
\]

The private key is a short \(T_A \in \mathbb{Z}_q^{m \times m} \) such that

\[
A \cdot T_A = 0 \ [q].
\]

(A modification of) Böhl et al.’s variant (Eurocrypt’13)

\(\tau \leftarrow \mathcal{U}(\{0, 1\}^\ell) \), \(D \) and \(u \) are public, \(m \in \{0, 1\}^{2m} \) encodes \(\text{Msg} \).

\[
A A_0 + \sum_{j=1}^\ell \tau_j A_j \cdot d = u + D \cdot m \ [q].
\]

\(\rightarrow \quad \sigma = (\tau, d) \)
Our Signature with Efficient Protocols

To sign $M \in \{0, 1\}^{2m}$

- Sample random $\tau \in \{0, 1\}^\ell$, random $s \in D_{\mathbb{Z}^{2m}}$
- Compute $C_M = D_0 \cdot s + D_1 \cdot M \in \mathbb{Z}_q^{2n}$
Our Signature with Efficient Protocols

To sign $M \in \{0, 1\}^{2m}$

- Sample random $\tau \in \{0, 1\}^\ell$, random $s \in D_{\mathbb{Z}^{2m}, \bar{\sigma}}$
- Compute $C_M = D_0 \cdot s + D_1 \cdot M \in \mathbb{Z}^{2n}$
- Using T_A, sample a short d s.t.

$$A = A_0 + \sum_{j=1}^\ell \tau_j \cdot A_j$$

$$\Sigma = (\tau, d, s) \in \{0, 1\}^\ell \times \mathbb{Z}^{2m} \times \mathbb{Z}^{2m}$$

$$\text{bin}(C_M) \quad (*)$$
Our Signature with Efficient Protocols

To sign $M \in \{0, 1\}^{2m}$

- Sample random $\tau \in \{0, 1\}^\ell$, random $s \in D_{\mathbb{Z}^{2m}, \bar{\sigma}}$
- Compute $C_M = D_0 \cdot s + D_1 \cdot M \in \mathbb{Z}^{2n}_q$
- Using T_A, sample a short d s.t.

$$n \quad A_0 + \sum_{j=1}^{\ell} \tau_j \cdot A_j$$

$$2m \quad u + D$$

$$\bin(C_M) \quad (\ast)$$

$$\Sigma = (\tau, d, s) \in \{0, 1\}^\ell \times \mathbb{Z}^{2m} \times \mathbb{Z}^{2m}$$

To verify: check that d is short and that Σ satisfies (\ast).
Our Signature **with Efficient Protocols**

Kawachi *et al.* (Asiacrypt’08) commitment:

\[C_M = D_0 \cdot s + D_1 \cdot M \]

Is already embedded in Böhl *et al.* signature.
Our Signature with Efficient Protocols

Kawachi et al. (Asiacrypt’08) commitment:

\[C_M = D_0 \cdot s + D_1 \cdot M \]

Is already embedded in Böhl et al. signature.

Difficulty: In the proof, for one of the message, the signature has a different distribution.
Our Signature **with Efficient Protocols**

Kawachi *et al.* (Asiacrypt’08) commitment:

\[C_M = D_0 \cdot s + D_1 \cdot M \]

Is already embedded in Böhl *et al.* signature.

Difficulty: In the proof, for one of the message, the signature has a different distribution.

Solution: Use Rényi divergence instead of statistical distance to bound adversary’s advantage [BLLSS15].
Rényi Divergence

Presentation

\[R_a(P\|Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}} \right)^{1/(a-1)} \]
Rényi Divergence

Measurement of the distance between two distributions

\[R_a(P \parallel Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}} \right)^{1/(a-1)} \]
Rényi Divergence

Presentation

\[R_a(P \parallel Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}} \right)^{1/(a-1)} \]

- Measurement of the distance between two distributions
- Multiplicative instead of additive
 - Only use it once in the proof
Rényi Divergence

Presentation

\[R_a(P\|Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}} \right)^{1/(a-1)} \]

- Measurement of the distance between two distributions
- Multiplicative instead of additive
 - Only use it once in the proof
- **Probability preservation:**

\[Q(A) \geq P(A)^{\frac{a}{a-1}} / R_a(P\|Q) \]
Our Signature with efficient protocols

Kawachi et al. (Asiacrypt’08) commitment:

For \(D_0, D_1 \in \mathbb{Z}_q^{2n \times 2m} \), \(s \leftarrow D_{\mathbb{Z}_q^{2m}, \sigma}, M \in \{0, 1\}^{2m} \)

\[
C_M = D_0 \cdot s + D_1 \cdot M \ [q]
\]

Compatible with Stern’s protocol (Crypto’93, [LNSW; PKC’13])

\(\implies \) ZK proof compatible with the signature
Stern’s Protocol (Crypto’93)

Stern’s protocol is a ZK proof for Syndrome Decoding Problem.
Stern’s Protocol (Crypto’93)

Stern’s protocol is a ZK proof for Syndrome Decoding Problem.

Syndrome Decoding Problem

Given \(P \in \mathbb{Z}_2^{n \times m} \) and \(v \in \mathbb{Z}_2^n \), find \(x \) s.t. \(w(x) = w \) and \(Pm^n x = v \mod 2 \)
Stern’s Protocol (Crypto’93)

Stern’s protocol is a ZK proof for Syndrome Decoding Problem.

Syndrome Decoding Problem

Given \(P \in \mathbb{Z}_2^{n \times m} \) and \(v \in \mathbb{Z}_2^n \), find \(x \) s.t. \(w(x) = w \) and

\[
P \begin{bmatrix} n \\ m \end{bmatrix} \begin{bmatrix} P \\ x \end{bmatrix} = v \quad \text{mod} \; 2
\]

[KTX08]: mod 2 → mod q

[LNSW13]: Extend Stern’s protocol for SIS and LWE statements

Recent uses of Stern-like protocols in lattice-based crypto:

[LNW15], **[LLNW16]**, **[LLN MW16]**
Unified Framework using Stern’s Protocol

Problem: protocols using Stern’s proofs build them “from scratch”.

[LNW15, LLNW16]
Unified Framework using Stern’s Protocol

Problem: protocols using Stern’s proofs build them “from scratch”.

[LNW15, LLNW16]

Provide a framework to construct ZKAoK:

- to prove knowledge of an \(\mathbf{x} \in \{ -1, 0, 1 \}^n \) of a special form verifying \(\mathbf{P} \cdot \mathbf{x} = \mathbf{v} \mod q \)
 - many lattice statements reduce to this
 - this captures various and complex statements
Unified Framework using Stern’s Protocol

Problem: protocols using Stern’s proofs build them “from scratch”. [LNW15, LLNW16]

Provide a framework to construct ZK AoK:

- to prove knowledge of an $x \in \{-1, 0, 1\}^n$ of a special form verifying $P \cdot x = v \mod q$
 - many lattice statements reduce to this
 - this captures various and complex statements

- that uses [LNSW13]’s decomposition-extension framework and is combinatoric in Stern’s protocol manner
From Static to Dynamic

- Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15];
From Static to Dynamic

- Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15];

- **Non-frameability** requires to introduce **non-homogeneous terms** in the SIS-based relations satisfied by membership certificates;
From Static to Dynamic

- Designed from a recent static group signature proposed by Ling, Nguyen and Wang [LNW15];

- Non-frameability requires to introduce non-homogeneous terms in the SIS-based relations satisfied by membership certificates;

- Other solutions [LLLS13, NZZ15] use membership certificates made of a complete basis. . .

 . . . which is problematic with non-homogeneous terms.
From Static to Dynamic

Difficulties

- Separate the secrets between OA and GM;
From Static to Dynamic

Difficulties

- Separate the secrets between OA and GM;

- Bind the user’s secret z_i to a unique public syndrome $v_i = F \cdot z_i \in \mathbb{Z}_q^{4n}$ for some matrix $F \in \mathbb{Z}_q^{4n \times 4m}$;
From Static to Dynamic

Difficulties

- Separate the secrets between OA and GM;

- Bind the user’s secret z_i to a unique public syndrome $v_i = F \cdot z_i \in \mathbb{Z}_q^{4n}$ for some matrix $F \in \mathbb{Z}_q^{4n \times 4m}$;

Use our signature scheme with efficient protocol:
From Static to Dynamic

Difficulties

- **Difficulty**: achieving security against *framing attacks*:
From Static to Dynamic

Difficulties

- **Difficulty**: achieving security against **framing attacks**:
 - i.e., even a dishonest **GM** cannot create signatures that open to honest users;
 - Users need a membership secret with a corresponding secret key;
 - GM must certify that public key.
From Static to Dynamic

Difficulties

- **Difficulty**: achieving security against framing attacks:
 - i.e., even a dishonest GM cannot create signatures that open to honest users;
 - Users need a membership secret with a corresponding secret key;
 - GM must certify that public key.

- Be secure against framing attacks without compromising previous security properties;
From Static to Dynamic Our solution

Setup:

\[\mathcal{Y} = (A, \{A_i\}_{i=0}^\ell, B, D, D_0, D_1, F, u) \]

\[\ell = \log(N) \text{ (e.g. } \ell = 30) \]
From Static to Dynamic Our solution

Setup:

group public key \(\mathcal{V} = (A, \{A_i\}_{i=0}^\ell, B, D, D_0, D_1, F, u) \)

\(\ell = \log(N) \) (e.g. \(\ell = 30 \))

Join algorithm:

\(\mathcal{U}_i \) \hspace{2cm} \text{GM}
From Static to Dynamic Our solution

Setup:

group public key \(\mathcal{Y} = (A, \{A_i\}_{i=0}^{\ell}, B, D, D_0, D_1, F, u) \)

\(\ell = \log(N) \) (e.g. \(\ell = 30 \))

Join algorithm:

\[\mathcal{U}_i \quad \text{GM} \]

\[z_i \leftarrow \text{short vector in } \mathbb{Z}^{4m} \]

\[v_i = F \cdot z_i \]
From Static to Dynamic Our solution

Setup:

\[Y = (A, \{A_i\}_{i=0}^\ell, B, D, D_0, D_1, F, u) \]

\[\ell = \log(N) \text{ (e.g. } \ell = 30) \]

Join algorithm:

\[\mathcal{U}_i \]

\[z_i \leftarrow \text{short vector in } \mathbb{Z}^{4m} \]

\[v_i = F \cdot z_i \]

\[v_i \leftarrow \text{GM} \]

\[\text{id}_i \leftarrow \text{identity } \in \{0, 1\}^\ell \]

\[(d_i, s_i) \text{ is a signature under tag } \text{id}_i \]
From Static to Dynamic Our solution

Setup:

\[\mathcal{Y} = (A, \{A_i\}_{i=0}^\ell, B, D, D_0, D_1, F, u) \]

\[\ell = \log(N) \text{ (e.g. } \ell = 30) \]

Join algorithm:

\[U_i \]

\[z_i \leftarrow \text{short vector in } \mathbb{Z}^{4m} \]

\[v_i = F \cdot z_i \]

\[\text{If } (id_i, d_i, s_i) \text{ does not verify, abort} \]

\[(sec_i; cert_i) = (z_i; (id_i, d_i, s_i)) \]
From Static to Dynamic Our solution — further steps

<table>
<thead>
<tr>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCA-Anonymity: anonymity under opening oracle.</td>
</tr>
</tbody>
</table>
Goal

<table>
<thead>
<tr>
<th>CCA-Anonymity: anonymity under opening oracle.</th>
</tr>
</thead>
</table>

↑

<table>
<thead>
<tr>
<th>Canetti-Halevi-Katz transformation (Eurocrypt’04)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Any IBE implies \textit{IND-CCA}–secure public key encryption.</th>
</tr>
</thead>
</table>
From Static to Dynamic Our solution — further steps

<table>
<thead>
<tr>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCA-Anonymity: anonymity under opening oracle.</td>
</tr>
</tbody>
</table>

Canetti-Halevi-Katz transformation (Eurocrypt’04)

Any IBE implies *IND-CCA*-secure public key encryption.

<table>
<thead>
<tr>
<th>Identity Based Encryption (Shamir’84, Boneh-Franklin’01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption computes (C \leftarrow \text{Enc}(MPK, ID, M))</td>
</tr>
<tr>
<td>Decryption computes (M \leftarrow \text{Dec}(MPK, C, d_{ID})) where (d_{ID} \leftarrow \text{Keygen}(MSK, ID))</td>
</tr>
</tbody>
</table>
From Static to Dynamic Our solution

Sign algorithm:
$c := \text{Enc}(v_i)$
From Static to Dynamic Our solution

Sign algorithm:

\[c := \text{Enc}(v_i) \quad \pi_K := \text{proof that } c \text{ is correct and that} \]

\[A_0 + \sum_{j=1}^{\ell} \text{id}_j \cdot A_j = u + D \]

\[\text{bin}(C_{v_i}) \]
From Static to Dynamic

Our solution

Sign algorithm:

\[c := \text{Enc}(v_i) \quad \pi_K := \text{proof that } c \text{ is correct and that} \]

\[
\begin{align*}
A & \quad A_0 + \sum_{j=1}^{\ell} \text{id}_j \cdot A_j \\
\text{d} & \quad = \\
\text{u} & \quad + \\
\text{D} & \quad \text{bin}(C_{v_i})
\end{align*}
\]

Where is the message? [BSZ04]

Inside \(\pi_K \), encoded in the Fiat-Shamir transformation from ZK-proofs to NIZK-proofs.
From Static to Dynamic Our solution

Verify algorithm:

- A user verifies if π_K is correct.
From Static to Dynamic: Our solution

Verify algorithm:

- A user verifies if π_K is correct.

Open algorithm:

- \textbf{OA} decrypts c to get v_i;
- \textbf{OA} searches for the associated i in the Join transcripts, and if so, returns i, otherwise abort.
Group Signatures: Comparative Table

<table>
<thead>
<tr>
<th>Scheme</th>
<th>LLLS</th>
<th>NZZ</th>
<th>LNW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group PK</td>
<td>$\tilde{O}(\lambda^2) \cdot \log N_{gs}$</td>
<td>$\tilde{O}(\lambda^2)$</td>
<td>$\tilde{O}(\lambda^2) \cdot \log N_{gs}$</td>
</tr>
<tr>
<td>User’s SK</td>
<td>$\tilde{O}(\lambda^2)$</td>
<td>$\tilde{O}(\lambda^2)$</td>
<td>$\tilde{O}(\lambda)$</td>
</tr>
<tr>
<td>Signature</td>
<td>$\tilde{O}(\lambda) \cdot \log N_{gs}$</td>
<td>$\tilde{O}(\lambda + \log^2 N_{gs})$</td>
<td>$\tilde{O}(\lambda) \cdot \log N_{gs}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheme</th>
<th>LLNW</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group PK</td>
<td>$\tilde{O}(\lambda^2)$</td>
<td>$\tilde{O}(\lambda^2) \cdot \log N_{gs}$</td>
</tr>
<tr>
<td>User’s SK</td>
<td>$\tilde{O}(\lambda) \cdot \log N_{gs}$</td>
<td>$\tilde{O}(\lambda)$</td>
</tr>
<tr>
<td>Signature</td>
<td>$\tilde{O}(\lambda) \cdot \log N_{gs}$</td>
<td>$\tilde{O}(\lambda) \cdot \log N_{gs}$</td>
</tr>
</tbody>
</table>
Outline

Introduction

Definition

Presentation of the Scheme

Conclusion
Conclusion

Main Contributions:

- Lattice-based signature with efficient protocols;
 - for obtaining signatures on committed message
 - for proving possession of a message-signature pair
- First dynamic group signature based on lattice assumptions;
- Unified framework for proving modular linear equations using Stern’s technique.

Technical contributions:

- Combine Böhl et al. signature + Ling et al. ZK proofs
 \(\Rightarrow\) signature with efficient protocols;
- A method of signing public keys so that knowledge of the secret key can be efficiently proved.
Thank you all for your attention!
One-Time Signature

Definition

A one-time signature scheme consists of a triple of algorithms $\Pi^{\text{ots}} = (G, S, V)$. Behaves like a digital signature scheme.

Strong unforgeability: impossible to forge a valid signature even for a previously signed message.

Usage

We use one-time signature to provide CCA anonymity using Canetti-Halevi-Katz methodology.
CCA anonymity

Definition

No PPT adversary \mathcal{A} can win the following game with non-negligible probability:

- \mathcal{A} makes open queries.
- \mathcal{A} chooses M^* and two different $(\text{cert}_i^*, \text{sec}_i^*)_{i \in \{0,1\}}$
- \mathcal{A} receives $\sigma^* = \text{Sign}_{\text{cert}_b^*, \text{sec}_b^*}(M^*)$ for some $b \in \{0,1\}$
- \mathcal{A} makes other open queries
- \mathcal{A} returns b', and wins if $b = b'$
ZK Proofs

Σ-protocol [Dam10]

3-move scheme: \((\text{Commit}, \text{Challenge}, \text{Answer})\) between 2 users.

Fiat-Shamir Heuristic

Make the Σ-protocol **non-interactive** by setting the challenge to be \(H(\text{Commit}, \text{Public})\)
From Static to Dynamic Our solution – Ingredients

Security proof of the Boyen signature

Lattice algorithms use short basis as *trapdoor* information.

SampleUp \[A' = \begin{bmatrix} A \\ B \cdot A + C \end{bmatrix} \in \mathbb{Z}_q^{2m \times n}, A \in \mathbb{Z}_q^{m \times n}, T_A \in \mathbb{Z}_q^{m \times m}, \sigma \mapsto \text{gaussian } v \in \mathbb{Z}_q^n, \text{ s.t. } v^T A' = 0[q] \]

SampleDown \[A' = \begin{bmatrix} A \\ B \cdot A + C \end{bmatrix} \in \mathbb{Z}_q^{2m \times n}, C \in \mathbb{Z}_q^{m \times n}, T_C \in \mathbb{Z}_q^{m \times m}, \sigma \mapsto \text{gaussian } v \in \mathbb{Z}_q^n, \text{ s.t. } v^T A' = 0[q] \]
From Static to Dynamic Our solution – Ingredients

Security proof of the Boyen signature

Boyen’s signature

\[d^T \begin{bmatrix} \frac{A}{A_0 + \sum_{i=1}^{\ell} m_i A_i} \end{bmatrix} = 0[q] \]

Idea. Set \(A_i = Q_i A + h_i C \)

\[\rightarrow \begin{bmatrix} \frac{A}{A_0 + \sum_{i=1}^{\ell} m_i A_i} \end{bmatrix} = \begin{bmatrix} \frac{A}{(Q_0 + \sum_{i=1}^{\ell} m_i Q_i) A + h_M C} \end{bmatrix} \]

⇒ We can use SampleUp in the real setup and SampleDown in the reduction whenever \(h_M \neq 0 \).
From Static to Dynamic Our solution – Ingredients

Security proof of the Boyen signature

Recall

$$A' := \left[\begin{array}{c} A \\ A_0 + \sum_{i=1}^{\ell} m_i A_i \end{array} \right] = \left[\begin{array}{c} A \\ (Q_0 + \sum_{i=1}^{\ell} m_i Q_i)A + h_M C \end{array} \right]$$

Forgery. A outputs $d^* = [d_1^* T | d_2^* T]^T$ and $M^* = m_1^* \ldots m_\ell^*$ such that $d^*^T A' = 0$.

If $h_{M^*} = 0$, then

$$\left(d_1^* T + d_2^* T \left(Q_0 + \sum_{i=1}^{\ell} m_i^* Q_i \right) \right) A = 0[q]$$

valid SIS solution
Remark

Boyen’s signature: the reduction aborts if C vanishes.
Böhl et al.: answer the request by “programming” the vector

$$u^T = d^T \left[\frac{A}{(Q_0 + \sum_{i=1}^{\ell} m_i^T Q_i)A} \right] - z_i^T D.$$

Problem

In this request, a sum of two discrete gaussian is generated differently from the real Join protocol.
\Rightarrow Not the same standard deviation.
From Static to Dynamic

Our solution

Problem

\[z_{i,0}, z_{i,1}, z_i \in \mathbb{Z}^m \]

Consequence.

\[
\{(z_i, z_{i,0}, z_{i,1}) | z_{i,0} \leftarrow D_{\sigma_0}, z_{i,1} \leftarrow D_{\sigma_1}, z_i = z_{i,0} + z_{i,1}\} \\
\sim \Delta \\
\{(z_i, z_{i,0}, z_{i,1}) | z_i \leftarrow D_{\sigma}, z_{i,0} \leftarrow D_{\sigma_0}, z_{i,1} = z_i - z_{i,0}\}
\]
Rényi Divergence

Presentation

\[R_a(P \Vert Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}} \right)^{1/(a-1)} \]
Rényi Divergence

Presentation

\[R_a(P \parallel Q) = \left(\sum_{x \in \text{Supp}(P)} \frac{P(x)^a}{Q(x)^{a-1}} \right)^{1/(a-1)} \]

- Measurement of the distance between two distributions
Rényi Divergence

Measurement of the distance between two distributions

- Multiplicative instead of additive
- Probability preservation:

\[Q(A) \geq P(A)^{\frac{a}{a-1}} / R_a(P \parallel Q) \]
Rényi Divergence

Hybrid argument:

Real game \rightarrow Game 1 \rightarrow Game 2 \rightarrow Hard Game

- Hardness assumptions -

Bound winning probability.
Can be done through probability preservation!

Recall

$$Q(A) \geq P(A) \frac{a}{a-1} / R_a(P \parallel Q)$$

$$\Pr[W_2] \geq \Pr[W_1] \frac{a}{a-1} / R_a(Game_1 \parallel Game_2)$$

For instance: $$\Pr[W_2] \geq \Pr[W_1]^2 / R_2(Game_1 \parallel Game_2)$$
Rényi Divergence
In Crypto

Consequence

Usually use *statistical distance* to measure distance between probabilities.

- In our setting, implies $q \sim \exp(\lambda)$ (**smudging**)

- Higher cost compared to usual lattice-based crypto parameters