
Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verifying Graph Neural Networks

François Schwarzentruber

LORI 2025 - Xi’an

1 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Lecture notes

https://arxiv.org/abs/2510.11617

2 / 69

https://arxiv.org/abs/2510.11617

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Motivation

A GNN = a machine learning model for classifying graphs/vertices

u Graph
neural
network

recommend
not recommend

labeled pointed graph

3 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Applications

Toxicity of a molecule [Reiser et al. 2022]

Drug discovery [Xiong et al., 2021]

Recommendation in social network [Salamat et al., 2021]

Voice segmentation in music scores
[Karystinaios et al., IJCAI 2023]

Link prediction etc. in knowledge graphs [Ye et al. 2022]

Heuristics in epistemic planning [Briglia et al. 2025]

4 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

GNNs = Blackboxes

We need:

× Explanations on decisions made

� Make GNNs more interpretable

✓ Guarantees

⇝ research on the interaction logic↔GNNs

5 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Some references

GNNs and Weisfeiler-Leman tests: [Grohe LICS 2021]

GNNs and graded modal logic [Barceló et al. ICLR 2020]

Verification [Nunn et al. 2023] [Nunn et al. IJCAI 2024]
[Benedikt et al. ICALP 2024] [Sälzer et al. IJCAI 2025]

Explosion of connections logic↔GNNs:

mu-calculus and recurrent GNNs [Ahvonen et al. NeurIPS
2024]
standard modal logic and mean-GNNs [Schönherr et al. 2025]
datalog and max-GNNs [Cucala et al. KR 2024]

etc.

6 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Outline

1 Graph neural networks
Definition
Activation function
GNN as expressions

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs

4 Discussions

5 Conclusion

7 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Outline

1 Graph neural networks
Definition
Activation function
GNN as expressions

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs

4 Discussions

5 Conclusion

8 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Labelled graphs

Definition

A labelled graph is (V ,E , ℓ) where:

V is a set of vertices;

E is a set of edges;

ℓ : V → Qd is a labelling function.

Q = set of rational numbers
d = dimension of vectors

(
2
0

) (
1
1

) (
1
0

)

9 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Definition of a graph neural network

A GNN is an algorithm A of the form:

input: a labelled pointed graph (G , u, ℓ0)
output: yes/no
function A(G , u, ℓ0)

ℓ1 := layer1(G , ℓ0)
...
ℓL := layerL(G , ℓL−1)
return yes if w tℓL(u) + b ≥ 0 else no

10 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling:

(
2
0

) (
1
1

) (
1
0

)

Multiply the current vector by 2(
4
0

) (
2
2

) (
2
0

)
Add −1× the sum of its neighbor vectors(

3
−1

) (
−1
2

) (
1
−1

)
Replace negative values by 0

New labelling:

(
3
0

) (
0
2

) (
1
0

)

11 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling:

(
2
0

) (
1
1

) (
1
0

)
Multiply the current vector by 2

(
4
0

) (
2
2

) (
2
0

)
Add −1× the sum of its neighbor vectors(

3
−1

) (
−1
2

) (
1
−1

)
Replace negative values by 0

New labelling:

(
3
0

) (
0
2

) (
1
0

)

12 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling:

(
2
0

) (
1
1

) (
1
0

)
Multiply the current vector by 2(

4
0

) (
2
2

) (
2
0

)

Add −1× the sum of its neighbor vectors(
3
−1

) (
−1
2

) (
1
−1

)
Replace negative values by 0

New labelling:

(
3
0

) (
0
2

) (
1
0

)

13 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling:

(
2
0

) (
1
1

) (
1
0

)
Multiply the current vector by 2(

4
0

) (
2
2

) (
2
0

)
Add −1× the sum of its neighbor vectors

(
3
−1

) (
−1
2

) (
1
−1

)
Replace negative values by 0

New labelling:

(
3
0

) (
0
2

) (
1
0

)

14 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling:

(
2
0

) (
1
1

) (
1
0

)
Multiply the current vector by 2(

4
0

) (
2
2

) (
2
0

)
Add −1× the sum of its neighbor vectors(

3
−1

) (
−1
2

) (
1
−1

)

Replace negative values by 0

New labelling:

(
3
0

) (
0
2

) (
1
0

)

15 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling:

(
2
0

) (
1
1

) (
1
0

)
Multiply the current vector by 2(

4
0

) (
2
2

) (
2
0

)
Add −1× the sum of its neighbor vectors(

3
−1

) (
−1
2

) (
1
−1

)
Replace negative values by 0

New labelling:

(
3
0

) (
0
2

) (
1
0

)

16 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling:

(
2
0

) (
1
1

) (
1
0

)
Multiply the current vector by 2(

4
0

) (
2
2

) (
2
0

)
Add −1× the sum of its neighbor vectors(

3
−1

) (
−1
2

) (
1
−1

)
Replace negative values by 0

New labelling:

(
3
0

) (
0
2

) (
1
0

)
17 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Each layer

u

aggregation combination

u

function layeri (V ,E , ℓ)
ℓ′ := new labelling V → Qd

for vertices u ∈ V do
aggregation :=

∑
{{ℓ[v] | v ∈ E (u)}}

ℓ′[u] := σ⃗(Ai × ℓ[u] + Bi × aggregation + bi)
return ℓ′

where Ai ,Bi ∈ Qd×d and bi ∈ Qd .
18 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Outline

1 Graph neural networks
Definition
Activation function
GNN as expressions

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs

4 Discussions

5 Conclusion

19 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

ReLU activation function

−3 −2 −1 1 2 3

1

2

3

x

ReLU(x)

ReLU(x) = max(0, x)

20 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

TruncReLU activation function

−3 −2 −1 1 2 3

1

2

3

x

truncReLU(x)

truncReLU(x) = max(0,min(1, x))

21 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Outline

1 Graph neural networks
Definition
Activation function
GNN as expressions

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs

4 Discussions

5 Conclusion

22 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

Syntax and semantics

Syntax of GNN expressions [Sälzer et al., IJCAI 2025]

ϑ ::= c | xi | σ(ϑ) | agg(ϑ) | ϑ+ ϑ | c × ϑ

Semantics

[[c]]G ,u = c ,

[[xi]]G ,u = ℓ(u)i ,

[[ϑ+ ϑ′]]G ,u = [[ϑ]]G ,u + [[ϑ′]]G ,u,

[[c × ϑ]]G ,u = c × [[ϑ]]G ,u,

[[σ(ϑ)]]G ,u = [[σ]]([[ϑ]]G ,u),

[[agg(ϑ)]]G ,u = Σv |uEv [[ϑ]]G ,v ,

23 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Definition
Activation function
GNN as expressions

GNN expressions capture GNNs!

Proposition

Given a GNN A, there exists an expression ϑ such that

(G , u) ∈ [[A]] iff [[ϑ ≥ 1]]G ,u = true.

Example

A(0)(G , u) = ℓ0(G , u);

A(1)(G , u) = σ⃗

((
2 1
−1 4

)
× A(0)(G , u) +

(
5 3
2 6

)
×

∑
{{A(0)(G , v) | v ∈ E(u)}} +

(
1
−2

))
A(2)(G , u) = σ⃗

((
3 0
−2 0

)
× A(1)(G , u) +

(
−1 0
0 5

)
×

∑
{{A(1)(G , v) | v ∈ E(u)}} +

(
0
0

))

ψ1 = σ(2x1 + x2 + 5agg(x1) − 3agg(x2) + 1),

ψ2 := σ(−x1 + 4x2 + 2agg(x1) + 6agg(x2) − 2),

χ1 := σ(3ψ1 − agg(ψ1),

χ2 := σ(−2ψ1 + 5(agg(ψ2)),

φA := 2(χ1) − χ2 ≥ 1.

24 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Outline

1 Graph neural networks

2 Link with graded modal logic
Modal logic and Graded modal logic
Via colour refinement
Via expressivity

3 Verification of Truncated-ReLU GNNs

4 Discussions

5 Conclusion

25 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Outline

1 Graph neural networks

2 Link with graded modal logic
Modal logic and Graded modal logic
Via colour refinement
Via expressivity

3 Verification of Truncated-ReLU GNNs

4 Discussions

5 Conclusion

26 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Modal logic and Graded modal logic

Modal logic

♢φ: φ holds in at least one successor

Graded Modal logic

♢≥kφ: φ holds in at least k successors

G , u |= ♢≥kφ if there are v1, . . . , vk ∈ E (u) all distinct such that
G , vi |= φ for all i = 1..k .

♢≥2φ

φ

φ

27 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Outline

1 Graph neural networks

2 Link with graded modal logic
Modal logic and Graded modal logic
Via colour refinement
Via expressivity

3 Verification of Truncated-ReLU GNNs

4 Discussions

5 Conclusion

28 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

29 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

30 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

31 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

32 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

33 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Definition of Colour refinement

Tool: https://holgerdell.github.io/color-refinement/

Definition (Morgan, 1965)

Initially, color(0)(G , u) = label at u in G ;

color(t+1)(G , u) =
(
color(t)(G , u), {{color(t)(G , v) | uEv}}

)
.

When it stabilizes, we get color(G , u) for all u ∈ V .

color(G , u) = the information used in the computation of a GNN.

34 / 69

https://holgerdell.github.io/color-refinement/

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Link between GML, colour refinement and GNNs

Theorem

Let A be a GNN.
color(G , u) = color(G , v) implies A(G , u) = A(G , v).

Theorem (folklore, see Grohe LICS 2021)

color(G , u)=color(G , v) iff both u and v satisfy the same GML-formulas.

35 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Colour refinement: a partial test for isomorphism

Proposition

G ≡iso G ′ =⇒ {{color(G , u) | u∈V }} = {{color(G ′, u′) | u′∈V ′}}.

. The converse ⇐= fails e.g. on regular graphs:

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Decalin Bicyclopentyl

⇝ GNNs have been generalized to 2-WL, 3-WL, etc.
[Morris et al., AAAI 2019]

36 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Outline

1 Graph neural networks

2 Link with graded modal logic
Modal logic and Graded modal logic
Via colour refinement
Via expressivity

3 Verification of Truncated-ReLU GNNs

4 Discussions

5 Conclusion

37 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Expressivity of GNNs

Theorem (Barcélo et al. 2020)

For all GML-formulas φ, there is a GNN A such that [[A]] = [[φ]].

Theorem (Barcélo et al. 2020)

For all

FO-expressible

GNNs A, there is a GML-formula φ such that [[A]] = [[φ]].

In the theorems, the activation function is TruncReLU.

38 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

Outline

1 Graph neural networks

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs
Verification problems
Logic K#

Correspondence
Satisfiability of K#

4 Discussions

5 Conclusion
39 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

Outline

1 Graph neural networks

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs
Verification problems
Logic K#

Correspondence
Satisfiability of K#

4 Discussions

5 Conclusion
40 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

Verification problems

[[A]] := set of pointed graphs recommended by the GNN A

[[φ]] = set of pointed graphs satisfying the property φ
e.g. having a violinist friend

[[A]] ⊆ [[φ]]? [[φ]] ⊆ [[A]]? [[A]] ∩ [[φ]] ̸= ∅?
Do all recommended persons
have a violinist friend?

Are all persons having a vio-
linist friend recommended?

Is it possible to recommend
a person having a violinist
friend

41 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

Outline

1 Graph neural networks

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs
Verification problems
Logic K#

Correspondence
Satisfiability of K#

4 Discussions

5 Conclusion
42 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

Example of a formula of K#

u

pianist ∧ (#violinist + 2×#pianist ≤ 3)

is pianist and

(
the number of ’s friends

that are violonist
+ 2× the number of ’s friends

that are pianist
≤ 3

)

43 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

K# syntax

K#-formulas φ are Boolean combinations of atomic
propositions and inequalities.

Expressions ξ in inequalities are linear over:

1φ which 1 if φ holds, 0 otherwise;
#φ, equals to the number of φ-successors.

φ ::= p | ¬φ | φ ∨ φ | ξ ≥ 0

ξ ::= c | 1φ | #φ | ξ + ξ | c × ξ

44 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

K# semantics

(G , u) |= p if ℓ(u)(p) = 1,
(G , u) |= ¬φ if it is not the case that (G , u) |= φ,
(G , u) |= φ ∧ ψ if (G , u) |= φ and (G , u) |= ψ,
(G , u) |= ξ ≥ 0 if [[ξ]]G ,u ≥ 0,

[[c]]G ,u = c ,
[[ξ1 + ξ2]]G ,u = [[ξ1]]G ,u + [[ξ2]]G ,u,
[[c × ξ]]G ,u = c × [[ξ]]G ,u,

[[1φ]]G ,u =

{
1 if (G , u) |= φ

0 else,

[[#φ]]G ,u = |{v ∈ V | (u, v) ∈ E and (G , v) |= φ}|.

45 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

Outline

1 Graph neural networks

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs
Verification problems
Logic K#

Correspondence
Satisfiability of K#

4 Discussions

5 Conclusion
46 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

From K# to GNNs
Inspired from [Barcélo et al. 2020], [Nunn et al., 2023, IJCAI
2024], [Benedikt et al. ICALP 2024]

Theorem

For all K#-formulas φ, there is a GNN tr(φ) sth. [[tr(φ)]] = [[φ]].

tr(xi = 1) = xi provided xi takes its value in {0, 1}
tr(¬φ) = 1− truncReLU(tr(φ))

tr(φ ∧ ψ) = truncReLU(tr(φ) + tr(ψ)− 1)

tr(ϑ ≥ 1) = truncReLU(τ(ϑ))

τ(#φ) = agg(tr(φ))

τ(ϑ+ ϑ′) = τ(ϑ) + τ(ϑ′)

τ(1φ) = tr(φ)

τ(c) = c

τ(cϑ) = cτ(ϑ)
47 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

From GNNs to K#

Theorem

For all GNNs A, there is a K#-formula tr ′(A) sth. [[tr ′(A)]] = [[φ]].

Proof idea for integer weights:

tr ′(xi) = xi

tr ′(c) = c

tr ′(cϑ) = c × tr ′(ϑ)

tr ′(ϑ+ ϑ′) = tr ′(ϑ) + tr ′(ϑ′)

tr ′(truncReLU(ϑ)) = 1tr ′(ϑ)≥1

tr ′(agg(ϑ)) = #(tr ′(ϑ) ≥ 1) provided ϑ is of the form truncReLU(.)

48 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

Outline

1 Graph neural networks

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs
Verification problems
Logic K#

Correspondence
Satisfiability of K#

4 Discussions

5 Conclusion
49 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

Satisfiability of K#

Theorem

Satisfiability of K# is decidable and is in PSPACE︸ ︷︷ ︸.
we have an algorithm using a
polynomial amount of space.
∼ ”implementable”

Alternative proofs:

[Nunn et al. 2024]
By poly-time reduction to a logic in [Demri and Lugiez 2010]

[Lecture notes]
Tableau method + oracle to QFBAPA-sat

(close to [Baader, 2017])

50 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

Quantifier-free Boolean algebra and Presburger arithmetics

[Kuncak et al. 2007]

Example (of a QFBAPA formula)

|pianist ∩ student|+ x ≥ 5 ∧ (|pianist| ≤ 10 ∨ |student| ≤ 10)

Integer variables: x , etc.

Set variables: pianist, student, etc.

Cardinality of some sets expressed with Boolean algebras

Linear inequalities involving integer variables and cardinality

51 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Verification problems
Logic K#

Correspondence
Satisfiability of K#

Quantifier-free Boolean algebra and Presburger arithmetics

Theorem (Kuncak et al. 2007)

QFBAPA-satisfiability is in NP.

Proof.

p ✓

52 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

Outline

1 Graph neural networks

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs

4 Discussions
Global readout
ReLU GNNs
Quantized GNNs

5 Conclusion

53 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

Outline

1 Graph neural networks

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs

4 Discussions
Global readout
ReLU GNNs
Quantized GNNs

5 Conclusion

54 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

Global readout

function layeri (V ,E , ℓ)
ℓ′ := new labelling V → Qd

for vertices u ∈ V do
aggregation :=

∑
{{ℓ[v] | v ∈ E (u)}}

globalreadoutaggregation :=
∑

{{ℓ[v] | v ∈ V }}

ℓ′[u] := σ⃗


Ai × ℓ[u]
+Bi × aggregation
+Ci × globalreadoutaggregation
+bi


return ℓ′

55 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

Global readout

K#,#g
extends K# with global counting modality #gφ:

[[#gφ]]G ,u = number of φ-vertices in G .

Proposition

Globalreadout-truncReLU-GNNs and K#,#g
are equivalent.

Theorem

K#,#g
-satisfiability is:

NEXPTIME-complete for directed graphs;
[Chernobrovkin et al. 2025]

undecidable if undirected graphs. [Benedikt et al. 2024]

56 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

Outline

1 Graph neural networks

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs

4 Discussions
Global readout
ReLU GNNs
Quantized GNNs

5 Conclusion

57 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

ReLU GNNs

Theorem (Benedikt et al. 2024)

The satisfiability of ReLU-GNNs is:

NEXPTIME-complete for directed graphs;

undecidable if undirected graphs or global readout.

58 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

Outline

1 Graph neural networks

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs

4 Discussions
Global readout
ReLU GNNs
Quantized GNNs

5 Conclusion

59 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

Idealistic GNN vs Quantized GNN

Idealistic GNN

Arbitrary big integers

35467487612987698761230

Arbitrary large rationals

4238761289293/123876298375

Real numbers√
2

π e

Quantized GNN

0 0 1 0 1 1 0 1

32-bit floating-point
arithmetics

16-bit fixed-point
arithmetics

8-bit signed integers

[Gholami et al. 2021] [Zhu et al.
ICLR 2023]

60 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

Verification of quantized GNNs

Theorem (Sälzer et al. IJCAI 2025)

The verification problems are in PSPACE.

⌣ in PSPACE for many activation and aggregation functions

⌣ We can check GML-formulas...

Ó ...for all modalities ♢≥kφ, number k should representable
with n bits

61 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

Tableau method

(w φ ∨ ψ)
(∨)

(w φ) | (w ψ)

(w ¬(φ ∨ ψ))
(¬∨)

(w ¬φ), (w ¬ψ)

(w φ ∧ ψ)
(∧)

(w φ), (w ψ)

(w ¬(φ ∧ ψ))
(¬∧)

(w ¬φ) | (w ¬ψ)

(w ¬¬φ)
(¬¬)

(w φ)

(w ¬(ϑ ≥ k))
(¬ ≥)

(w ϑ = k ′) for some k ′ ∈ Kn with k ′ <Kn k

(w ϑ1 + ϑ2 = k)
(+)

(w ϑ1 = k1), (w ϑ2 = k2) for some k1, k2 ∈ Kn,
with k1 +Kn k2 = k

(w φ) and no term (w degree = ...)
(degree)

(w degree = δ′) for some δ′ ≤ δ

(w c = k) if c ̸= k
(clashc)

fail

(w xi = k), (w xi = k ′) if k ̸= k ′
(clash=)

fail

(w σ(ϑ) = k)
(σ)

(w ϑ = k ′) for some k ′ ∈ Kn with [[σ]](k ′) = k

(w ϑ ≥ k)
(≥)

(w ϑ = k ′) for some k ′ ∈ Kn with k ′ ≥Kn k

(w cϑ = k)
(×)

(w ϑ = k ′) for some k ′ ∈ Kn with c ×Kn k
′ = k

(w agg(ϑ) = k) (w degree = δ′)
(agg)

(w1 ϑ = k1), . . . , (wδ
′ ϑ = kδ′) for some

(ku)u=1..δ′ , with k1 +Kn · · ·+Kn kδ′ = k

where Kn is the set of quantized numbers over n bits

62 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Global readout
ReLU GNNs
Quantized GNNs

Implementations for quantized GNNs

Tableau method:

https://github.com/francoisschwarzentruber/

ijcai2025-verifquantgnn

Bounded verification, also with global readout:

https://github.com/francoisschwarzentruber/gnn_

verification

63 / 69

https://github.com/francoisschwarzentruber/ijcai2025-verifquantgnn
https://github.com/francoisschwarzentruber/ijcai2025-verifquantgnn
https://github.com/francoisschwarzentruber/gnn_verification
https://github.com/francoisschwarzentruber/gnn_verification

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Outline

1 Graph neural networks

2 Link with graded modal logic

3 Verification of Truncated-ReLU GNNs

4 Discussions

5 Conclusion

64 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Perspectives

ã Other ML models: GNN with attention, etc.

­ Efficient implementation

Y Applications

✓ Define new verification tasks

j Design interpretable GNNs

65 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Thanks to:

the existence of M1 research project at ENS Rennes

Stéphane Demri

Artem Chernobrovkin, Pierre Nunn, Marco Sälzer, Nicolas Troquard

master (M2) students at ENS de Lyon

and

Thank you! 谢谢大家
66 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

LORI-II 2009 - Chongqing - October 8-11 2009

67 / 69

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Lecture notes

https://arxiv.org/abs/2510.11617

68 / 69

https://arxiv.org/abs/2510.11617

Graph neural networks
Link with graded modal logic

Verification of Truncated-ReLU GNNs
Discussions
Conclusion

Advertisement for Tableaunoir (open-source online blackboard solution)

https://tableaunoir.github.io/

69 / 69

https://tableaunoir.github.io/

	Graph neural networks
	Definition
	Activation function
	GNN as expressions

	Link with graded modal logic
	Modal logic and Graded modal logic
	Via colour refinement
	Via expressivity

	Verification of Truncated-ReLU GNNs
	Verification problems
	Logic K#
	Correspondence
	Satisfiability of K#

	Discussions
	Global readout
	ReLU GNNs
	Quantized GNNs

	Conclusion

