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Motivation

A GNN = a machine learning model for classifying graphs/vertices

u Graph
neural
network

recommend
not recommend

labeled pointed graph
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Applications

Toxicity of a molecule [Reiser et al. 2022]

Drug discovery [Xiong et al., 2021]

Recommendation in social network [Salamat et al., 2021]

Voice segmentation in music scores
[Karystinaios et al., IJCAI 2023]

Link prediction etc. in knowledge graphs [Ye et al. 2022]

Heuristics in epistemic planning [Briglia et al. 2025]
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GNNs = Blackboxes

We need:

× Explanations on decisions made

� Make GNNs more interpretable

✓ Guarantees

⇝ research on the interaction logic↔GNNs
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Some references

GNNs and Weisfeiler-Leman tests: [Grohe LICS 2021]

GNNs and graded modal logic [Barceló et al. ICLR 2020]

Verification [Nunn et al. 2023] [Nunn et al. IJCAI 2024]
[Benedikt et al. ICALP 2024] [Sälzer et al. IJCAI 2025]

Explosion of connections logic↔GNNs:

mu-calculus and recurrent GNNs [Ahvonen et al. NeurIPS
2024]
standard modal logic and mean-GNNs [Schönherr et al. 2025]
datalog and max-GNNs [Cucala et al. KR 2024]

etc.
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Labelled graphs

Definition

A labelled graph is (V ,E , ℓ) where:

V is a set of vertices;

E is a set of edges;

ℓ : V → Qd is a labelling function.

Q = set of rational numbers
d = dimension of vectors

(
2
0

) (
1
1

) (
1
0

)
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Definition of a graph neural network

A GNN is an algorithm A of the form:

input: a labelled pointed graph (G , u, ℓ0)
output: yes/no
function A(G , u, ℓ0)

ℓ1 := layer1(G , ℓ0)
...
ℓL := layerL(G , ℓL−1)
return yes if w tℓL(u) + b ≥ 0 else no
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Example of a GNN layer

Previous labelling:

(
2
0

) (
1
1

) (
1
0

)

Multiply the current vector by 2(
4
0

) (
2
2

) (
2
0

)
Add −1× the sum of its neighbor vectors(

3
−1

) (
−1
2

) (
1
−1

)
Replace negative values by 0

New labelling:

(
3
0

) (
0
2

) (
1
0

)
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Each layer

u

aggregation combination

u

function layeri (V ,E , ℓ)
ℓ′ := new labelling V → Qd

for vertices u ∈ V do
aggregation :=

∑
{{ℓ[v ] | v ∈ E (u)}}

ℓ′[u] := σ⃗(Ai × ℓ[u] + Bi × aggregation + bi )
return ℓ′

where Ai ,Bi ∈ Qd×d and bi ∈ Qd .
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ReLU activation function

−3 −2 −1 1 2 3

1

2

3

x

ReLU(x)

ReLU(x) = max(0, x)
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Activation function
GNN as expressions

TruncReLU activation function

−3 −2 −1 1 2 3

1

2

3

x

truncReLU(x)

truncReLU(x) = max(0,min(1, x))
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Syntax and semantics

Syntax of GNN expressions [Sälzer et al., IJCAI 2025]

ϑ ::= c | xi | σ(ϑ) | agg(ϑ) | ϑ+ ϑ | c × ϑ

Semantics

[[c]]G ,u = c ,

[[xi ]]G ,u = ℓ(u)i ,

[[ϑ+ ϑ′]]G ,u = [[ϑ]]G ,u + [[ϑ′]]G ,u,

[[c × ϑ]]G ,u = c × [[ϑ]]G ,u,

[[σ(ϑ)]]G ,u = [[σ]]([[ϑ]]G ,u),

[[agg(ϑ)]]G ,u = Σv |uEv [[ϑ]]G ,v ,
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GNN expressions capture GNNs!

Proposition

Given a GNN A, there exists an expression ϑ such that

(G , u) ∈ [[A]] iff [[ϑ ≥ 1]]G ,u = true.

Example

A(0)(G , u) = ℓ0(G , u);

A(1)(G , u) = σ⃗

((
2 1
−1 4

)
× A(0)(G , u) +

(
5 3
2 6

)
×

∑
{{A(0)(G , v) | v ∈ E(u)}} +

(
1
−2

))
A(2)(G , u) = σ⃗

((
3 0
−2 0

)
× A(1)(G , u) +

(
−1 0
0 5

)
×

∑
{{A(1)(G , v) | v ∈ E(u)}} +

(
0
0

))

ψ1 = σ(2x1 + x2 + 5agg(x1) − 3agg(x2) + 1),

ψ2 := σ(−x1 + 4x2 + 2agg(x1) + 6agg(x2) − 2),

χ1 := σ(3ψ1 − agg(ψ1),

χ2 := σ(−2ψ1 + 5(agg(ψ2)),

φA := 2(χ1) − χ2 ≥ 1.
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Modal logic and Graded modal logic

Modal logic

♢φ: φ holds in at least one successor

Graded Modal logic

♢≥kφ: φ holds in at least k successors

G , u |= ♢≥kφ if there are v1, . . . , vk ∈ E (u) all distinct such that
G , vi |= φ for all i = 1..k .

♢≥2φ

φ

φ
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Definition of Colour refinement

Tool: https://holgerdell.github.io/color-refinement/

Definition (Morgan, 1965)

Initially, color(0)(G , u) = label at u in G ;

color(t+1)(G , u) =
(
color(t)(G , u), {{color(t)(G , v) | uEv}}

)
.

When it stabilizes, we get color(G , u) for all u ∈ V .

color(G , u) = the information used in the computation of a GNN.
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Link between GML, colour refinement and GNNs

Theorem

Let A be a GNN.
color(G , u) = color(G , v) implies A(G , u) = A(G , v).

Theorem (folklore, see Grohe LICS 2021)

color(G , u)=color(G , v) iff both u and v satisfy the same GML-formulas.
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Colour refinement: a partial test for isomorphism

Proposition

G ≡iso G ′ =⇒ {{color(G , u) | u∈V }} = {{color(G ′, u′) | u′∈V ′}}.

. The converse ⇐= fails e.g. on regular graphs:

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Decalin Bicyclopentyl

⇝ GNNs have been generalized to 2-WL, 3-WL, etc.
[Morris et al., AAAI 2019]
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Expressivity of GNNs

Theorem (Barcélo et al. 2020)

For all GML-formulas φ, there is a GNN A such that [[A]] = [[φ]].

Theorem (Barcélo et al. 2020)

For all

FO-expressible

GNNs A, there is a GML-formula φ such that [[A]] = [[φ]].

In the theorems, the activation function is TruncReLU.
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Verification problems

[[A]] := set of pointed graphs recommended by the GNN A

[[φ]] = set of pointed graphs satisfying the property φ
e.g. having a violinist friend

[[A]] ⊆ [[φ]]? [[φ]] ⊆ [[A]]? [[A]] ∩ [[φ]] ̸= ∅?
Do all recommended persons
have a violinist friend?

Are all persons having a vio-
linist friend recommended?

Is it possible to recommend
a person having a violinist
friend
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Example of a formula of K#

u

pianist ∧ (#violinist + 2×#pianist ≤ 3)

is pianist and

(
the number of ’s friends

that are violonist
+ 2× the number of ’s friends

that are pianist
≤ 3

)
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K# syntax

K#-formulas φ are Boolean combinations of atomic
propositions and inequalities.

Expressions ξ in inequalities are linear over:

1φ which 1 if φ holds, 0 otherwise;
#φ, equals to the number of φ-successors.

φ ::= p | ¬φ | φ ∨ φ | ξ ≥ 0

ξ ::= c | 1φ | #φ | ξ + ξ | c × ξ
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Correspondence
Satisfiability of K#

K# semantics

(G , u) |= p if ℓ(u)(p) = 1,
(G , u) |= ¬φ if it is not the case that (G , u) |= φ,
(G , u) |= φ ∧ ψ if (G , u) |= φ and (G , u) |= ψ,
(G , u) |= ξ ≥ 0 if [[ξ]]G ,u ≥ 0,

[[c]]G ,u = c ,
[[ξ1 + ξ2]]G ,u = [[ξ1]]G ,u + [[ξ2]]G ,u,
[[c × ξ]]G ,u = c × [[ξ]]G ,u,

[[1φ]]G ,u =

{
1 if (G , u) |= φ

0 else,

[[#φ]]G ,u = |{v ∈ V | (u, v) ∈ E and (G , v) |= φ}|.
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From K# to GNNs
Inspired from [Barcélo et al. 2020], [Nunn et al., 2023, IJCAI
2024], [Benedikt et al. ICALP 2024]

Theorem

For all K#-formulas φ, there is a GNN tr(φ) sth. [[tr(φ)]] = [[φ]].

tr(xi = 1) = xi provided xi takes its value in {0, 1}
tr(¬φ) = 1− truncReLU(tr(φ))

tr(φ ∧ ψ) = truncReLU(tr(φ) + tr(ψ)− 1)

tr(ϑ ≥ 1) = truncReLU(τ(ϑ))

τ(#φ) = agg(tr(φ))

τ(ϑ+ ϑ′) = τ(ϑ) + τ(ϑ′)

τ(1φ) = tr(φ)

τ(c) = c

τ(cϑ) = cτ(ϑ)
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From GNNs to K#

Theorem

For all GNNs A, there is a K#-formula tr ′(A) sth. [[tr ′(A)]] = [[φ]].

Proof idea for integer weights:

tr ′(xi ) = xi

tr ′(c) = c

tr ′(cϑ) = c × tr ′(ϑ)

tr ′(ϑ+ ϑ′) = tr ′(ϑ) + tr ′(ϑ′)

tr ′(truncReLU(ϑ)) = 1tr ′(ϑ)≥1

tr ′(agg(ϑ)) = #(tr ′(ϑ) ≥ 1) provided ϑ is of the form truncReLU(.)
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Satisfiability of K#

Theorem

Satisfiability of K# is decidable and is in PSPACE︸ ︷︷ ︸.
we have an algorithm using a
polynomial amount of space.
∼ ”implementable”

Alternative proofs:

[Nunn et al. 2024]
By poly-time reduction to a logic in [Demri and Lugiez 2010]

[Lecture notes]
Tableau method + oracle to QFBAPA-sat

(close to [Baader, 2017])
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Quantifier-free Boolean algebra and Presburger arithmetics

[Kuncak et al. 2007]

Example (of a QFBAPA formula)

|pianist ∩ student|+ x ≥ 5 ∧ (|pianist| ≤ 10 ∨ |student| ≤ 10)

Integer variables: x , etc.

Set variables: pianist, student, etc.

Cardinality of some sets expressed with Boolean algebras

Linear inequalities involving integer variables and cardinality
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Verification problems
Logic K#

Correspondence
Satisfiability of K#

Quantifier-free Boolean algebra and Presburger arithmetics

Theorem (Kuncak et al. 2007)

QFBAPA-satisfiability is in NP.

Proof.

p ✓
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Global readout

function layeri (V ,E , ℓ)
ℓ′ := new labelling V → Qd

for vertices u ∈ V do
aggregation :=

∑
{{ℓ[v ] | v ∈ E (u)}}

globalreadoutaggregation :=
∑

{{ℓ[v ] | v ∈ V }}

ℓ′[u] := σ⃗


Ai × ℓ[u]
+Bi × aggregation
+Ci × globalreadoutaggregation
+bi


return ℓ′
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Global readout

K#,#g
extends K# with global counting modality #gφ:

[[#gφ]]G ,u = number of φ-vertices in G .

Proposition

Globalreadout-truncReLU-GNNs and K#,#g
are equivalent.

Theorem

K#,#g
-satisfiability is:

NEXPTIME-complete for directed graphs;
[Chernobrovkin et al. 2025]

undecidable if undirected graphs. [Benedikt et al. 2024]
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ReLU GNNs

Theorem (Benedikt et al. 2024)

The satisfiability of ReLU-GNNs is:

NEXPTIME-complete for directed graphs;

undecidable if undirected graphs or global readout.
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Idealistic GNN vs Quantized GNN

Idealistic GNN

Arbitrary big integers

35467487612987698761230

Arbitrary large rationals

4238761289293/123876298375

Real numbers√
2

π e

Quantized GNN

0 0 1 0 1 1 0 1

32-bit floating-point
arithmetics

16-bit fixed-point
arithmetics

8-bit signed integers

[Gholami et al. 2021] [Zhu et al.
ICLR 2023]
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Verification of quantized GNNs

Theorem (Sälzer et al. IJCAI 2025)

The verification problems are in PSPACE.

⌣ in PSPACE for many activation and aggregation functions

⌣ We can check GML-formulas...

Ó ...for all modalities ♢≥kφ, number k should representable
with n bits
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Tableau method

(w φ ∨ ψ)
(∨)

(w φ) | (w ψ)

(w ¬(φ ∨ ψ))
(¬∨)

(w ¬φ), (w ¬ψ)

(w φ ∧ ψ)
(∧)

(w φ), (w ψ)

(w ¬(φ ∧ ψ))
(¬∧)

(w ¬φ) | (w ¬ψ)

(w ¬¬φ)
(¬¬)

(w φ)

(w ¬(ϑ ≥ k))
(¬ ≥)

(w ϑ = k ′) for some k ′ ∈ Kn with k ′ <Kn k

(w ϑ1 + ϑ2 = k)
(+)

(w ϑ1 = k1), (w ϑ2 = k2) for some k1, k2 ∈ Kn,
with k1 +Kn k2 = k

(w φ) and no term (w degree = ...)
(degree)

(w degree = δ′) for some δ′ ≤ δ

(w c = k) if c ̸= k
(clashc)

fail

(w xi = k), (w xi = k ′) if k ̸= k ′
(clash=)

fail

(w σ(ϑ) = k)
(σ)

(w ϑ = k ′) for some k ′ ∈ Kn with [[σ]](k ′) = k

(w ϑ ≥ k)
(≥)

(w ϑ = k ′) for some k ′ ∈ Kn with k ′ ≥Kn k

(w cϑ = k)
(×)

(w ϑ = k ′) for some k ′ ∈ Kn with c ×Kn k
′ = k

(w agg(ϑ) = k) (w degree = δ′)
(agg)

(w1 ϑ = k1), . . . , (wδ
′ ϑ = kδ′) for some

(ku)u=1..δ′ , with k1 +Kn · · ·+Kn kδ′ = k

where Kn is the set of quantized numbers over n bits
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Implementations for quantized GNNs

Tableau method:

https://github.com/francoisschwarzentruber/

ijcai2025-verifquantgnn

Bounded verification, also with global readout:

https://github.com/francoisschwarzentruber/gnn_

verification
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Perspectives

ã Other ML models: GNN with attention, etc.

­ Efficient implementation

Y Applications

✓ Define new verification tasks

j Design interpretable GNNs
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Lecture notes

https://arxiv.org/abs/2510.11617
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Advertisement for Tableaunoir (open-source online blackboard solution)

https://tableaunoir.github.io/
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