Verifying Graph Neural Networks

François Schwarzentruber

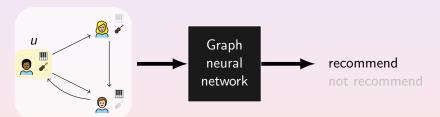
LORI 2025 - Xi'an

Lecture notes

https://arxiv.org/abs/2510.11617

Motivation

A GNN = a machine learning model for classifying graphs/vertices



labeled pointed graph

Applications

- Toxicity of a molecule [Reiser et al. 2022]
- Drug discovery [Xiong et al., 2021]
- Recommendation in social network [Salamat et al., 2021]
- Voice segmentation in music scores

[Karystinaios et al., IJCAI 2023]

- Link prediction etc. in knowledge graphs [Ye et al. 2022]
- Heuristics in epistemic planning [Briglia et al. 2025]

GNNs = Blackboxes

We need:

- Explanations on decisions made
- ¶ Make GNNs more interpretable
- Guarantees

→ research on the interaction logic ← GNNs

Some references

- GNNs and Weisfeiler-Leman tests: [Grohe LICS 2021]
- GNNs and graded modal logic [Barceló et al. ICLR 2020]
- Verification [Nunn et al. 2023] [Nunn et al. IJCAI 2024]
 [Benedikt et al. ICALP 2024] [Sälzer et al. IJCAI 2025]
- Explosion of connections logic ← GNNs:
 - mu-calculus and recurrent GNNs [Ahvonen et al. NeurIPS 2024]
 - standard modal logic and mean-GNNs [Schönherr et al. 2025]
 - datalog and max-GNNs [Cucala et al. KR 2024]

etc.

Outline

- Graph neural networks
 - Definition
 - Activation function
 - GNN as expressions
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
- Conclusion

Outline

- Graph neural networks
 - Definition
 - Activation function
 - GNN as expressions
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
- 6 Conclusion

Labelled graphs

Definition

A *labelled graph* is (V, E, ℓ) where:

- V is a set of vertices;
- E is a set of edges;
- $\ell: V \to \mathbb{Q}^d$ is a labelling function.

 $\mathbb{Q} = \text{set of rational numbers}$ d = dimension of vectors

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} - \dots - \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \dots - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Definition of a graph neural network

A GNN is an algorithm \mathcal{A} of the form:

```
input: a labelled pointed graph (G, u, \ell_0) output: yes/no function \mathcal{A}(G, u, \ell_0) \ell_1 := layer_1(G, \ell_0) \vdots \ell_L := layer_L(G, \ell_{L-1}) return yes if w^t\ell_L(u) + b \geq 0 else no
```

Multiply the current vector by 2

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} - \dots - \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \dots - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

→ Multiply the current vector by 2

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} - \dots - \begin{pmatrix} 2 \\ 2 \end{pmatrix} - \dots - \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} - \dots - \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \dots - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Multiply the current vector by 2

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} - \cdots - \begin{pmatrix} 2 \\ 2 \end{pmatrix} - \cdots - \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

lacktriangledown Add $-1\times$ the sum of its neighbor vectors

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} - - - - \begin{pmatrix} 1 \\ 1 \end{pmatrix} - - - - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Multiply the current vector by 2

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} - \dots - \begin{pmatrix} 2 \\ 2 \end{pmatrix} - \dots - \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

ightharpoonup Add -1 imes the sum of its neighbor vectors

$$\begin{pmatrix} 3 \\ -1 \end{pmatrix} - - - - \begin{pmatrix} -1 \\ 2 \end{pmatrix} - - - - \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} - \dots - \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \dots - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Multiply the current vector by 2

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} - \dots - \begin{pmatrix} 2 \\ 2 \end{pmatrix} - \dots - \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

lacktriangle Add -1 imes the sum of its neighbor vectors

$$\begin{pmatrix} 3 \\ -1 \end{pmatrix} - \dots - \begin{pmatrix} -1 \\ 2 \end{pmatrix} - \dots - \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Replace negative values by 0

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} - - - - \begin{pmatrix} 1 \\ 1 \end{pmatrix} - - - - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Multiply the current vector by 2

$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} - \dots - \begin{pmatrix} 2 \\ 2 \end{pmatrix} - \dots - \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

 $ightharpoonup \mathsf{Add}\ -1 imes$ the sum of its neighbor vectors

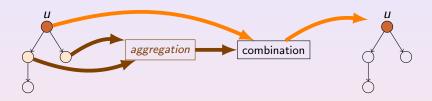
$$\begin{pmatrix} 3 \\ -1 \end{pmatrix} - - - \begin{pmatrix} -1 \\ 2 \end{pmatrix} - - - - \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Replace negative values by 0

New labelling:

$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} - - - - \begin{pmatrix} 0 \\ 2 \end{pmatrix} - - - - \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Each layer

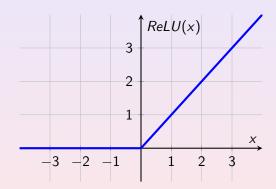


where $A_i, B_i \in \mathbb{Q}^{d \times d}$ and $b_i \in \mathbb{Q}^d$.

Outline

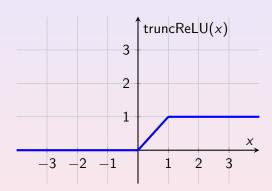
- Graph neural networks
 - Definition
 - Activation function
 - GNN as expressions
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
- 6 Conclusion

ReLU activation function



$$ReLU(x) = max(0, x)$$

TruncReLU activation function



$$truncReLU(x) = \max(0, \min(1, x))$$

Outline

- Graph neural networks
 - Definition
 - Activation function
 - GNN as expressions
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
- 6 Conclusion

Syntax and semantics

Syntax of GNN expressions [Sälzer et al., IJCAI 2025]

$$\vartheta ::= c \mid x_i \mid \sigma(\vartheta) \mid agg(\vartheta) \mid \vartheta + \vartheta \mid c \times \vartheta$$

Semantics

$$\begin{split} \llbracket c \rrbracket_{G,u} &= c, \\ \llbracket x_i \rrbracket_{G,u} &= \ell(u)_i, \\ \llbracket \vartheta + \vartheta' \rrbracket_{G,u} &= \llbracket \vartheta \rrbracket_{G,u} + \llbracket \vartheta' \rrbracket_{G,u}, \\ \llbracket c \times \vartheta \rrbracket_{G,u} &= c \times \llbracket \vartheta \rrbracket_{G,u}, \\ \llbracket \sigma(\vartheta) \rrbracket_{G,u} &= \llbracket \sigma \rrbracket (\llbracket \vartheta \rrbracket_{G,u}), \\ \llbracket agg(\vartheta) \rrbracket_{G,u} &= \Sigma_{v|uEv} \llbracket \vartheta \rrbracket_{G,v}, \end{split}$$

GNN expressions capture GNNs!

Proposition

Given a GNN A, there exists an expression ϑ such that

$$(G, u) \in \llbracket A \rrbracket$$
 iff $\llbracket \vartheta \geq 1 \rrbracket_{G,u} = true$.

Example

- $A^{(0)}(G, u) = \ell_0(G, u);$
- $\Phi \quad \mathcal{A}^{(1)}(G,u) = \vec{\sigma} \left(\begin{pmatrix} 2 & 1 \\ -1 & 4 \end{pmatrix} \times \mathcal{A}^{(0)}(G,u) + \begin{pmatrix} 5 & 3 \\ 2 & 6 \end{pmatrix} \times \sum \{\!\!\{ \mathcal{A}^{(0)}(G,v) \mid v \in E(u) \}\!\!\} + \begin{pmatrix} 1 \\ -2 \end{pmatrix} \right)$

$$\psi_1 = \sigma(2x_1 + x_2 + 5agg(x_1) - 3agg(x_2) + 1),$$

$$\psi_2 := \sigma(-x_1 + 4x_2 + 2agg(x_1) + 6agg(x_2) - 2),$$

$$\chi_1 := \sigma(3\psi_1 - agg(\psi_1),$$

$$\chi_2 := \sigma(-2\psi_1 + 5(agg(\psi_2)),$$

$$\varphi_A := 2(\chi_1) - \chi_2 > 1.$$

Outline

- Graph neural networks
- 2 Link with graded modal logic
 - Modal logic and Graded modal logic
 - Via colour refinement
 - Via expressivity
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
- 6 Conclusion

Outline

- 1 Graph neural networks
- 2 Link with graded modal logic
 - Modal logic and Graded modal logic
 - Via colour refinement
 - Via expressivity
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
- 6 Conclusion

Via colour refinement
Via expressivity

Modal logic and Graded modal logic

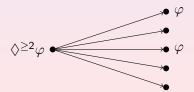
Modal logic

 $\Diamond \varphi \colon \varphi$ holds in at least one successor

Graded Modal logic

 $\lozenge^{\geq k}\varphi$: φ holds in at least k successors

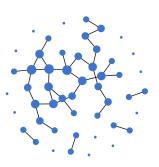
 $G, u \models \Diamond^{\geq k} \varphi$ if there are $v_1, \ldots, v_k \in E(u)$ all distinct such that $G, v_i \models \varphi$ for all i = 1..k.



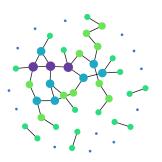
Outline

- 1 Graph neural networks
- 2 Link with graded modal logic
 - Modal logic and Graded modal logic
 - Via colour refinement
 - Via expressivity
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
- 5 Conclusion

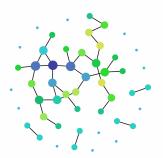
Round < 0 > of 4

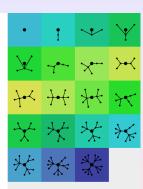


Round $\langle 1 \rangle$ of 4

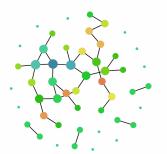


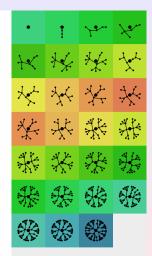
Round $\langle 2 \rangle$ of 4





Round $\langle 3 \rangle$ of 4

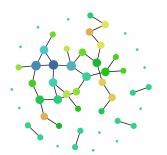


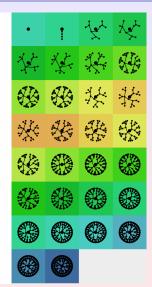


Modal logic and Graded modal logic Via colour refinement Via expressivity

Color Refinement

Round $\langle 4 \rangle$ of 4





by Holger Dell (2020). Source code on github.

Definition of Colour refinement

Tool: https://holgerdell.github.io/color-refinement/

Definition (Morgan, 1965)

- Initially, $color^{(0)}(G, u) = label at u in G;$
- $\operatorname{color}^{(t+1)}(G, u) = \left(\operatorname{color}^{(t)}(G, u), \left\{\left(\operatorname{color}^{(t)}(G, v) \mid uEv\right)\right\}\right).$

When it stabilizes, we get color(G, u) for all $u \in V$.

color(G, u) = the information used in the computation of a GNN.

Link between GML, colour refinement and GNNs

Theorem

Let A be a GNN.

$$color(G, u) = color(G, v)$$
 implies $A(G, u) = A(G, v)$.

Theorem (folklore, see Grohe LICS 2021)

color(G, u) = color(G, v) iff both u and v satisfy the same GML-formulas.

Colour refinement: a partial test for isomorphism

Proposition

$$G \equiv_{iso} G' \Longrightarrow \{ color(G, u) \mid u \in V \} = \{ color(G', u') \mid u' \in V' \} .$$

⚠ The converse ← fails e.g. on regular graphs:

Decalin Bicyclopentyl

→ GNNs have been generalized to 2-WL, 3-WL, etc.

[Morris et al., AAAI 2019]

- 1 Graph neural networks
- 2 Link with graded modal logic
 - Modal logic and Graded modal logic
 - Via colour refinement
 - Via expressivity
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
- Conclusion

Expressivity of GNNs

Theorem (Barcélo et al. 2020)

For all GML-formulas φ , there is a GNN \mathcal{A} such that $\llbracket \mathcal{A} \rrbracket = \llbracket \varphi \rrbracket$.

Theorem (Barcélo et al. 2020)

FO-expressible

For all \forall GNNs \mathcal{A} , there is a GML-formula φ such that $\llbracket \mathcal{A} \rrbracket = \llbracket \varphi \rrbracket$.

In the theorems, the activation function is TruncReLU.

- 1 Graph neural networks
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
 - Verification problems
 - Logic K#
 - Correspondence
 - Satisfiability of $K^{\#}$
- 4 Discussions
- Conclusion

- 1 Graph neural networks
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
 - Verification problems
 - Logic K#
 - Correspondence
 - Satisfiability of $K^{\#}$
- 4 Discussions
- Conclusion

Verification problems

 $[[\mathcal{A}]] := \mathsf{set} \ \mathsf{of} \ \mathsf{pointed} \ \mathsf{graphs} \ \mathsf{recommended} \ \mathsf{by} \ \mathsf{the} \ \mathsf{GNN} \ \mathcal{A}$

 $[[\varphi]] = \mathsf{set}$ of $\mathit{pointed\ graphs}$ satisfying the property φ e.g. having a violinist friend

$$[[\mathcal{A}]] \subseteq [[\varphi]]$$
?

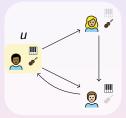
 $[[\varphi]] \subseteq [[\mathcal{A}]]$?

Do all recommended persons have a violinist friend?

Are all persons having a violinist friend recommended? $[[\mathcal{A}]] \cap [[\varphi]] \neq \emptyset$? Is it possible to recommend a person having a violinist friend

- 1 Graph neural networks
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
 - Verification problems
 - Logic $K^{\#}$
 - Correspondence
 - Satisfiability of K[#]
- 4 Discussions
- Conclusion

Example of a formula of $K^{\#}$



pianist
$$\land$$
 (#violinist + 2 × #pianist \le 3)

K[#] syntax

- $K^{\#}$ -formulas φ are Boolean combinations of atomic propositions and inequalities.
- Expressions ξ in inequalities are linear over:
 - 1_{φ} which 1 if φ holds, 0 otherwise;
 - $\# \varphi$, equals to the number of φ -successors.

$$\varphi ::= p \mid \neg \varphi \mid \varphi \lor \varphi \mid \xi \ge 0$$

$$\xi ::= c \mid 1_{\varphi} \mid \#\varphi \mid \xi + \xi \mid c \times \xi$$

K[#] semantics

$$\begin{array}{lll} (G,u) \models p & \text{if} & \ell(u)(p) = 1, \\ (G,u) \models \neg \varphi & \text{if} & \text{it is not the case that} & (G,u) \models \varphi, \\ (G,u) \models \varphi \wedge \psi & \text{if} & (G,u) \models \varphi \text{ and} & (G,u) \models \psi, \\ (G,u) \models \xi \geq 0 & \text{if} & [[\xi]]_{G,u} \geq 0, \end{array}$$

$$\begin{split} [[c]]_{G,u} &= c, \\ [[\xi_1 + \xi_2]]_{G,u} &= [[\xi_1]]_{G,u} + [[\xi_2]]_{G,u}, \\ [[c \times \xi]]_{G,u} &= c \times [[\xi]]_{G,u}, \\ [[1_{\varphi}]]_{G,u} &= \begin{cases} 1 & \text{if } (G,u) \models \varphi \\ 0 & \text{else}, \end{cases} \\ [[\#\varphi]]_{G,u} &= |\{v \in V \mid (u,v) \in E \text{ and } (G,v) \models \varphi\}|. \end{split}$$

- 1 Graph neural networks
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
 - Verification problems
 - Logic K#
 - Correspondence
 - Satisfiability of K[#]
- 4 Discussions
- Conclusion

From $K^{\#}$ to GNNs

Inspired from [Barcélo et al. 2020], [Nunn et al., 2023, IJCAI 2024], [Benedikt et al. ICALP 2024]

Theorem

For all $K^{\#}$ -formulas φ , there is a GNN $tr(\varphi)$ sth. $\llbracket tr(\varphi) \rrbracket = \llbracket \varphi \rrbracket$.

$$\begin{split} tr(x_i = 1) &= x_i \text{ provided } x_i \text{ takes its value in } \{0,1\} \\ tr(\neg\varphi) &= 1 - \text{truncReLU}(tr(\varphi)) \\ tr(\varphi \wedge \psi) &= \text{truncReLU}(tr(\varphi) + tr(\psi) - 1) \\ tr(\vartheta \geq 1) &= \text{truncReLU}(\tau(\vartheta)) \\ \tau(\#\varphi) &= agg(tr(\varphi)) \\ \tau(\vartheta + \vartheta') &= \tau(\vartheta) + \tau(\vartheta') \\ \tau(1_\varphi) &= tr(\varphi) \\ \tau(c) &= c \end{split}$$

From GNNs to K#

Theorem

For all GNNs \mathcal{A} , there is a $K^{\#}$ -formula $tr'(\mathcal{A})$ sth. $\llbracket tr'(\mathcal{A}) \rrbracket = \llbracket \varphi \rrbracket$.

Proof idea for integer weights:

$$tr'(c_i) = x_i$$

$$tr'(c) = c$$

$$tr'(c\vartheta) = c \times tr'(\vartheta)$$

$$tr'(\vartheta + \vartheta') = tr'(\vartheta) + tr'(\vartheta')$$

$$tr'(truncReLU(\vartheta)) = 1_{tr'(\vartheta) \ge 1}$$

$$tr'(agg(\vartheta)) = \#(tr'(\vartheta) \ge 1) \text{ provided } \vartheta \text{ is of the form truncReLU(.)}$$

- 1 Graph neural networks
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
 - Verification problems
 - Logic K[#]
 - Correspondence
 - Satisfiability of K[#]
- 4 Discussions
- Conclusion

Satisfiability of $K^{\#}$

Theorem

Satisfiability of $K^{\#}$ is decidable and is in PSPACE.

we have an algorithm using a polynomial amount of space. \sim "implementable"

Alternative proofs:

- [Nunn et al. 2024]

 By poly-time reduction to a logic in [Demri and Lugiez 2010]
- [Lecture notes]

Tableau method + oracle to QFBAPA-sat (close to [Baader, 2017])

Quantifier-free Boolean algebra and Presburger arithmetics

[Kuncak et al. 2007]

Example (of a QFBAPA formula)

$$|pianist \cap student| + x \ge 5 \land (|pianist| \le 10 \lor |student| \le 10)$$

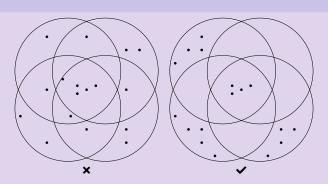
- Integer variables: x, etc.
- Set variables: pianist, student, etc.
- Cardinality of some sets expressed with Boolean algebras
- Linear inequalities involving integer variables and cardinality

Quantifier-free Boolean algebra and Presburger arithmetics

Theorem (Kuncak et al. 2007)

QFBAPA-satisfiability is in NP.

Proof.



- 1 Graph neural networks
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
 - Global readout
 - ReLU GNNs
 - Quantized GNNs
- Conclusion

- 1 Graph neural networks
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
 - Global readout
 - ReLU GNNs
 - Quantized GNNs
- Conclusion

Global readout

Global readout

 $K^{\#,\#^g}$ extends $K^{\#}$ with global counting modality $\#^g \varphi$:

$$\llbracket \#^g \varphi \rrbracket_{G,u} = \text{number of } \varphi\text{-vertices in } G.$$

Proposition

Globalreadout-truncReLU-GNNs and $K^{\#,\#^g}$ are equivalent.

Theorem

 $K^{\#,\#^g}$ -satisfiability is:

- NEXPTIME-complete for directed graphs;
 - [Chernobrovkin et al. 2025]
- undecidable if undirected graphs. [Benedikt et al. 2024]

- 1 Graph neural networks
- 2 Link with graded modal logic
- 3 Verification of Truncated-ReLU GNNs
- 4 Discussions
 - Global readout
 - ReLU GNNs
 - Quantized GNNs
- Conclusion

ReLU GNNs

Theorem (Benedikt et al. 2024)

The satisfiability of ReLU-GNNs is:

- NEXPTIME-complete for directed graphs;
- undecidable if undirected graphs or global readout.

- 1 Graph neural networks
- 2 Link with graded modal logic
- Verification of Truncated-ReLU GNNs
- 4 Discussions
 - Global readout
 - ReLU GNNs
 - Quantized GNNs
- Conclusion

Idealistic GNN vs Quantized GNN

Idealistic GNN

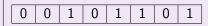
- Arbitrary big integers 35467487612987698761230
- Arbitrary large rationals
 4238761289293/123876298375
- Real numbers

$$\sqrt{2}$$

 π

е

Quantized GNN



- 32-bit floating-point arithmetics
- 16-bit fixed-point arithmetics
- 8-bit signed integers

[Gholami et al. 2021] [Zhu et al. ICLR 2023]

Verification of quantized GNNs

Theorem (Sälzer et al. IJCAI 2025)

The verification problems are in PSPACE.

- in PSPACE for many activation and aggregation functions
- We can check GML-formulas...
- \blacksquare ...for all modalities $\lozenge^{\geq k} \varphi$, number k should representable with n bits

Conclusion

Tableau method

$$(\vee) \frac{(w \varphi \vee \psi)}{(w \varphi) \mid (w \psi)}$$

$$(\neg \vee) \frac{(w \neg (\varphi \vee \psi))}{(w \neg \varphi), (w \neg \psi)}$$

$$(\wedge) \frac{(w \neg (\varphi \wedge \psi))}{(w \varphi), (w \psi)}$$

$$(\wedge) \frac{(w \varphi \wedge \psi)}{(w \varphi), (w \psi)}$$

$$(\neg \neg) \frac{(w \neg \neg \varphi)}{(w \varphi)}$$

$$(w \neg \varphi)$$

$$(w \varphi)$$

$$(w \neg \varphi)$$

$$(w \neg \varphi)$$

$$(w \varphi)$$

$$(w \neg \varphi)$$

$$(w \varphi)$$

$$(w \neg \varphi)$$

$$(clash_c) \frac{(w \ c = k) \text{ if } c \neq k}{\text{fail}}$$

$$(clash_e) \frac{(w \ x_i = k), (w \ x_i = k') \text{ if } k \neq k'}{\text{fail}}$$

$$(\sigma) \frac{(w \ \sigma(\vartheta) = k)}{(w \ \vartheta = k') \text{ for some } k' \in \mathbb{K}_n \text{ with } \llbracket \sigma \rrbracket(k') = k}$$

$$(\geq) \frac{(w \ \vartheta \geq k)}{(w \ \vartheta = k') \text{ for some } k' \in \mathbb{K}_n \text{ with } k' \geq_{\mathbb{K}_n} k}$$

$$(\times) \frac{(w \ c\vartheta = k)}{(w \ \vartheta = k') \text{ for some } k' \in \mathbb{K}_n \text{ with } c \times_{\mathbb{K}_n} k' = k}$$

$$(agg) \frac{(w \ agg(\vartheta) = k) \quad (w \ degree = \delta')}{(w1 \ \vartheta = k_1), \dots, (w\delta' \ \vartheta = k_{\delta'}) \text{ for some}}$$
$$(k_u)_{u=1..\delta'}, \text{ with } k_1 + \mathbb{K}_a \cdots + \mathbb{K}_a \ k_{\delta'} = k$$

where \mathbb{K}_n is the set of quantized numbers over n bits

Implementations for quantized GNNs

Tableau method:

```
https://github.com/francoisschwarzentruber/
ijcai2025-verifquantgnn
```

Bounded verification, also with global readout:

```
https://github.com/francoisschwarzentruber/gnn_verification
```

- Graph neural networks
- 2 Link with graded modal logic
- Verification of Truncated-ReLU GNNs
- 4 Discussions
- 6 Conclusion

Perspectives

- Other ML models: GNN with attention, etc.
- Efficient implementation
- Applications
- ✓ Define new verification tasks
- Design interpretable GNNs

Thanks to:

- the existence of M1 research project at ENS Rennes
- Stéphane Demri
- Artem Chernobrovkin, Pierre Nunn, Marco Sälzer, Nicolas Troquard

• master (M2) students at ENS de Lyon

and

Thank you! 谢谢大家

LORI-II 2009 - Chongqing - October 8-11 2009

Lecture notes

https://arxiv.org/abs/2510.11617

Advertisement for Tableaunoir (open-source online blackboard solution)

https://tableaunoir.github.io/