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Lecture notes

https://arxiv.org/abs/2510.11617
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https://arxiv.org/abs/2510.11617

Motivation

A GNN = a machine learning model for classifying graphs/vertices

@ «
u / Graph
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x‘ network
m
o}

labeled pointed graph
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Applications

‘T‘l'

fe);y');“d,:: 2+

g ® b+ )‘3:;)-4
e Toxicity of a molecule [Reiser et al. 2022]
@ Drug discovery [Xiong et al., 2021]
@ Recommendation in social network [Salamat et al., 2021]
@ Voice segmentation in music scores

[Karystinaios et al., IJCAI 2023]

@ Link prediction etc. in knowledge graphs [Ye et al. 2022]
@ Heuristics in epistemic planning [Briglia et al. 2025]
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Graph neural

GNNs = Blackboxes

We need:
o M Explanations on decisions made
o @ Make GNNs more interpretable

e v Guarantees

~ research on the interaction logic<>GNNs
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Verificatio

Some references

@ GNNs and Weisfeiler-Leman tests: [Grohe LICS 2021]

@ GNNs and graded modal logic [Barcelé et al. ICLR 2020]

@ Verification [Nunn et al. 2023] [Nunn et al. 1JCAI 2024]
[Benedikt et al. ICALP 2024] [Salzer et al. 1JCAI 2025]

@ Explosion of connections logic<>GNNs:

o mu-calculus and recurrent GNNs [Ahvonen et al. NeurlPS
2024]

o standard modal logic and mean-GNNs [Schénherr et al. 2025]

o datalog and max-GNNs [Cucala et al. KR 2024]

etc.
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Definition
Activation function
GNN as expressions

Outline

@ Graph neural networks
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Definition
Activation function
GNN as expressions

Outline

@ Graph neural networks
@ Definition

8/69



Graph neural networks
Link with graded m ric Definition
cation of Tru U GNNs Activation function
i i GNN as expressions

Labelled graphs

Definition
A labelled graph is (V, E, ¢) where:
@ V is a set of vertices;
@ E is a set of edges;
o /:V — Q% is a labelling function.

Q = set of rational numbers
d = dimension of vectors

— ()
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Definition
Activation function
GNN as expressions

Definition of a graph neural network

A GNN is an algorithm A of the form:

function A(G, u, (o)
41 = layer1 (G, £p)

£y = layer; (G, ;1)
return yes if w'/; (u) + b > 0 else no
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Graph neural networks

Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling:
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Graph neural networks

with graded g Definition
f Tru U G Activation function
GNN as expressions

Example of a GNN layer

Previous labelling: <§)

)

*Multiply the current vector by 2
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Graph neural networks

Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling: <§)

)

*Multiply the current vector by 2

)

()
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Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling: <§)

)

*Multiply the current vector by 2

) ()

*Add —1x the sum of its neighbor vectors

()
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raph neural networks
graded modal logic Definition
Verificati c Activation function
GNN as expressions

Example of a GNN layer

Previous labelling: <§)

)

*Multiply the current vector by 2

) ()

4
0
*Add —1x the sum of its neighbor vectors

) —G)—0)

15 /69



Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling: <§)

)

*Multiply the current vector by 2

) ()

4
0
*Add —1x the sum of its neighbor vectors

) —G)—0)

*Replace negative values by 0
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raph neural networks

h graded modal logic Definition
Activation function
GNN as expressions

Example of a GNN layer

Previous labelling: <§)

)

*Multiply the current vector by 2

) ()

4
0
*Add —1x the sum of its neighbor vectors

) —G)—0)

*Replace negative values by 0

)

New labelling: (3)

17/69



raph neural networks

Definition
Activation function
GNN as expressions

Each layer

u

u

O

function /ayer;(V, E, )
¢ := new labelling V — Q9

for vertices u € V d

aggregation := Z{{Z[v] |veEw}

U'[u] := &(A; x l[u] + B; x aggregation + b;)
return ¢

where A;, B € Q9*9 and b; € Q.
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Graph neural networks

Definition
Activation function
GNN as expressions

Outline

@ Graph neural networks

@ Activation function
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Graph neural networks

Definition
Activation function
GNN as expressions

RelLU activation function

ReLU(x)
3
2
1
X
-3 -2 -1 1 2 3

ReLU(x) = max(0, x)
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Definition
Activation function
GNN as expressions

TruncRelLU activation function

truncReLU(x)
3
2
1
X
-3 -2 -1 1 2 3

truncReLU(x) = max(0, min(1, x))
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Graph neural networks

Definition
Activation function
GNN as expressions

Outline

@ Graph neural networks

@ GNN as expressions
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Graph neural networks

Definition
Activation function
GNN as expressions

Syntax and semantics
Syntax of GNN expressions [Salzer et al., IJCAI 2025]

9u=c| x| o(9) ] agg(¥) |9 +9|cxD

Semantics

[cleu=c,
[xilG,u = €(u)i,
[0+ 976w = 6w+ [9]6.u
[c xNgu=cx[Ie¢,u,
[e(Nle,u = [el([¥]6,u),
[agg(]c,u = v [Vl6,v,
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Graph neural networks

Definition
Activation function
GNN as expressions

GNN expressions capture GNNs!
Proposition

Given a GNN A, there exists an expression v} such that
(G,u) e [A] iff [9¥>1]cu = true.

Example
@ AO(G, u) = £4(G, u);
@ AW(G,u) = (( 2 1) x A(G, u) + (g g) X SHLAOG, v) | v e E(u)} + (f2)>
(

32 8) % AD(G, u) + (Bl g) x SEADG, v) | v e E(u)} + (8))

Y1 = o(2x1 + x2 + 5agg(x1) — 3agg(x2) + 1),

g = o(—x1 + 4xp + 2agg(x1) + 6agg(x2) — 2),
X1 = o391 — agg(¥1),
X2 = o(—=2¢1 + 5(agg(+2)),

pa=2(x1) —x2 = 1.
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aph neural ne

Link with graded modal logic Modal logic and Graded modal logic
Truncated U Via colour refinement
Via expressivity

Outline

© Link with graded modal logic
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Graph neural networks

Link with graded modal logic Modal logic and Graded modal logic
on of Truncated-ReLU GNNs Via colour refinement
Di Via expressivity

Outline

© Link with graded modal logic
@ Modal logic and Graded modal logic
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Link with grade: Modal logic and Graded modal logic
Verification of Trunca U GNNs Via colour refinement
Via expressivity

Modal logic and Graded modal logic

Modal logic
Qw: ¢ holds in at least one successor

Graded Modal logic

OZkp: o holds in at least k successors

G,u = 0Ky if there are vy,. .., vk € E(u) all distinct such that
G,viE ¢ forall i=1.k.

¥

0=2¢p ° ¥
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aph neural s

Link with graded modal logic Modal logic and Graded modal logic
Truncated-ReLU GNNs Via colour refinement
D i Via expressivity

Outline

© Link with graded modal logic

@ Via colour refinement
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Link with graded modal logic Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Color Refinement .
Round < 0 > of4
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Link with graded modal logic Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Color Refinement
Round < 1 > of4
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Link with graded modal logic Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Color Refinement
Round < 2 » of4
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Link with graded modal logic odal logic and Graded modal logic
ia colo f nement

ressivity

Color Refinement
Round < 3 > of4

N
\\.f ~e
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Link with graded modal logic odal logic and Graded modal logic
ia colo ment

Color Refinement
Round < 4 > of 4

>
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I el
N
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/
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Graph neura

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Definition of Colour refinement

Tool: https://holgerdell.github.io/color-refinement/

Definition (Morgan, 1965)

o Initially, color®(G, u) = label at v in G;

o color™™)(G,u) = <co|or(t)(G, u), fcolor(G, v) | uEv}}).
When it stabilizes, we get color(G, u) for all u € V.

color(G, u) = the information used in the computation of a GNN.
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https://holgerdell.github.io/color-refinement/

Graph neura

k with gra Modal logic and Graded modal logic
i G Via colour refinement
Via expressivity

Link between GML, colour refinement and GNNs

Theorem

Let A be a GNN.
color(G, u) = color(G, v) implies A(G, u) = A(G, v).

Theorem (folklore, see Grohe LICS 2021)
color(G, u)=color(G, v) iff both u and v satisfy the same GML-formulas.
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Graph neura

Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Colour refinement: a partial test for isomorphism
Proposition

G =jso G' = {color(G,u) | ueV} = {color(G', ) | 'eV'}.

A The converse < fails e.g. on regular graphs:

R

Decalin Bicyclopentyl

~> GNNs have been generalized to 2-WL, 3-WL, etc.
[Morris et al., AAAI 2019]
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aph neural n

Link with graded modal Iog Modal logic and Graded modal logic
Via colour refinement
Via expressivity

Outline

© Link with graded modal logic

@ Via expressivity
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Graph neura

k with gra Modal logic and Graded modal logic
f G Via colour refinement
Via expressivity

Expressivity of GNNs

Theorem (Barcélo et al. 2020)
For all GML-formulas ¢, there is a GNN A such that [A] = [¢].

Theorem (Barcélo et al. 2020)
FO-expressible
For all Y GNNs A, there is a GML-formula ¢ such that [A] = [¢].

In the theorems, the activation function is TruncRelU.
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Link h Verification problems

n of Trun"catedeeLU GNNs

Logic K"
Di Correspondence
Satisfiability of K7

Outline

© Verification of Truncated-ReLU GNNs
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Link with grade I log Verification problems
Verification of Truncated-ReLU GNNs

Logic K"
Correspondence
Satisfiability of K7

Outline

© Verification of Truncated-ReLU GNNs
@ Verification problems
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Verification problems
Logic K"
Correspondence
Satisfiability of K7

Verification problems

[[A]] := set of pointed graphs recommended by the GNN A

[[¢]] = set of pointed graphs satisfying the property ¢
e.g. having a violinist friend

([T € [[e])? A S LAl (Al %07

a person having a violinist
friend

Do all recommended persons  Are all persons having a vio-
have a violinist friend? linist friend recommended?
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Link v aded modal logic Verification problems
' i Logic K
Correspondence
Satisfiability of K7

Verification of

Outline

© Verification of Truncated-ReLU GNNs

e Logic K
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Lin h - - Verification problems
i . Logic K
Correspondence
Satisfiability of K7

Verification of Truncate

‘/
AN

pianist A (#violinist + 2 x #pianist < 3)

0 i pianist and the number of 9% s friends 12 x the number of fio% ’_s friends <3
that are violonist that are pianist
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Verification problems
Logic K
Correspondence
Satisfiability of K7

K7 syntax

o K#-formulas ¢ are Boolean combinations of atomic
propositions and inequalities.

@ Expressions £ in inequalities are linear over:

o 1, which 1 if ¢ holds, 0 otherwise;
e #, equals to the number of y-successors.

pu=plpleVel{=0
Ei=c|ly|#p|E+E]cx
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Verification problems
Logic K
Correspondence
Satisfiability of K7

K# semantics

(G,u)=p it L(u)(p) =1,

(G,u) E - if it is not the case that (G, u) |= ¢,
(Gu)EeAy if (G,u)Eyand(G,u) =9,
(G,u)EE=0 if [[flleu=0,

[[c]le.u =c

6+ &llew = [eallew + [E]60,
lcx&lon  =cx[Elleuw

Molles  ={o 5197
felles = Hve V] (wv) € Eand (6,1) o)l
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Link with ) I Verification problems

Verification of Trun’cate;ifReLU GNNs

Logic K"
Correspondence
Satisfiability of K7

Outline

© Verification of Truncated-ReLU GNNs

@ Correspondence
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Verification problems
Logic K"
Correspondence
Satisfiability of K7

Verification of Truncated

From K# to GNNs

Inspired from [Barcélo et al. 2020], [Nunn et al., 2023, [JCAI
2024], [Benedikt et al. ICALP 2024]

Theorem

For all K#-formulas ¢, there is a GNN tr(y) sth. [tr(¢)] = [#].

tr(x; = 1) = x; provided x; takes its value in {0, 1}
( ) = 1 — truncReLU(tr(¢))
tr(o A ) = truncReLU(tr(p) + tr(y) — 1)
tr(¥ > 1) = truncReLU(7(9))
T(#p) = agg(tr(y))
(O + ) = 7(8) + 7(9)
(1) = tr(y)
T(c)=c¢
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. Verification problems
Link w odal logic . L
e e N Logic K
Verification of
Correspondence
Satisfiability of K7

From GNNs to K#

Theorem
For all GNNs A, there is a K% -formula tr'(A) sth. [tr'(A)] = [¢].

Proof idea for integer weights:

tr'(x;) = x;
tr'(c) =c
tr'(cd) = ¢ x tr' (V)
tr'(9 + ') = tr'(9) + tr' (V)
(truncReLU(19)) Lir(9)>1
tr'(agg(V)) = #(tr'(9) > 1) provided ¥ is of the form truncReLU(.)
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Verification problems
Logic K"
Correspondence
Satisfiability of K7

Link with g e I log
Verification of Truncated-ReLU GNNs

Outline

© Verification of Truncated-ReLU GNNs

e Satisfiability of K#
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Verification problems
Logic K"
Correspondence
Satisfiability of K7

Link with
Verification of Trun

Satisfiability of K#

Theorem
Satisfiability of K is decidable and is in PSPACE.
———

we have an algorithm using a
polynomial amount of space.
~ "implementable”

Alternative proofs:

@ [Nunn et al. 2024]
By poly-time reduction to a logic in [Demri and Lugiez 2010]

o [Lecture notes]
Tableau method + oracle to QFBAPA-sat
(close to [Baader, 2017])
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Verification problems
Logic K"

Link with
Verification of Trun

Correspondence
Satisfiability of K7

Quantifier-free Boolean algebra and Presburger arithmetics

[Kuncak et al. 2007]

Example (of a QFBAPA formula)
|pianist N student| +x >5 A (|pianist| < 10V |student| < 10)

Integer variables: x, etc.
Set variables: pianist, student, etc.

Cardinality of some sets expressed with Boolean algebras

e 6 o6 o

Linear inequalities involving integer variables and cardinality
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Verification problems
Logic K"
Correspondence
Satisfiability of K7

Quantifier-free Boolean algebra and Presburger arithmetics

Theorem (Kuncak et al. 2007)
QFBAPA-satisfiability is in NP.

/N
2

Proof.

N

s
I

v
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aph neural ne

Global readout
U GNNs RelLU GNNs
Discussions Quantized GNNs

Conclusion

Outline

@ Discussions
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h neural n

Global readout
RelLU GNNs
Discussions Quantized GNNs

lusion

Outline

@ Discussions
@ Global readout
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Global readout
RelLU GNNs
Discussions Quantized GNNs

Conclusion

Global readout

function /ayer;(V, E, ()

¢ := new labelling V — Q9

for vertices u e V d

aggregation := Z{{E[v] |veE(w}
globalreadoutaggregation :== > {{[v] | v € V}
A,’ X ﬁ[u]

+B; x aggregation

+C; x globalreadoutaggregation
+b;

Uu] =7

return ¢
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Global readout
RelLU GNNs
Discussions Quantized GNNs

Conclusion

Global readout
K##% extends K# with global counting modality #8:

[#€¢lG.u = number of p-vertices in G.

Proposition
Globalreadout-truncReL U-GNNs and K##° are equivalent.

Theorem
K#:#¢ _satisfiability is:
o NEXPTIME-complete for directed graphs;
[Chernobrovkin et al. 2025]
e undecidable if undirected graphs. [Benedikt et al. 2024]
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h neural n

Global readout
RelLU GNNs
Discussions Quantized GNNs

lusion

Outline

@ Discussions

@ ReLU GNNs
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a E Global readout
Verification of Trunc U RelLU GNNs
Quantized GNNs

Conclusion

ReLU GNNs

Theorem (Benedikt et al. 2024)
The satisfiability of ReLU-GNNs is:
o NEXPTIME-complete for directed graphs;

@ undecidable if undirected graphs or global readout.
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h neural n

Global readout
ReLU GNNs
Discussions Quantized GNNs

lusion

Outline

@ Discussions

@ Quantized GNNs
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Global readout
ReLU GNNs
Discussions Quantized GNNs

Conclusion

Idealistic GNN vs Quantized GNN

Quantized GNN

Idealistic GNN

[oJof1fof1]1]0f1]

@ Arbitrary big integers

35467487612987698761230 - 205 festing pei

@ Arbitrary large rationals arithmetics
4238761289293/123876298375 | o 16.bit fixed-point
@ Real numbers arithmetics
V2 @ 8-bit signed integers
@ e [Gholami et al. 2021] [Zhu et al.
ICLR 2023]
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v a Global readout
Verificati c U GNNs ReLU GNNs
Quantized GNNs

Verification of quantized GNNs

Theorem (Salzer et al. 1JCAI 2025)
The verification problems are in PSPACE.

o @ in PSPACE for many activation and aggregation functions
o ® We can check GML-formulas...

o @ .. for all modalities Ozkgo, number k should representable
with n bits

61/69



h neural n

Global readout
ReLU GNNs
Quantized GNNs

(we=k)ifc#k

(clashc) il
w x;i = k), (w x; = k') if k # K
(clash-) ( ). = )
(won) o) » (w o) = 4
" (w ), (w ¥) (w ¥ = K’) for some Kk’ € K, with [o](k") = k
> (w =(9 > k)) ) (w9 > k)
=2) (w 9 = K) for some K’ € K, with k' <x, k 7 (w9 = K') for some k' € K, with k' >k, k
() (w V1 + V2 = k) (x) (w ¢ = k)
(wh = ki), (w2 = k) for some ky, ko € K, (w 0 = K') for some k' € K, with ¢ xg, k' = k

with ky +x, ko = k
1 TK, <2 (w agg(d) = k) (w degree = ¢§')

(w ¢) and no term (w degree = ...) (wl 9 = k),..., (wé" ¥ = kg) for some
(w degree = ) for some ¢’ < § (ku)u=1.5, with ki +i, -~ +x, ks = k

(degree)

where K, is the set of quantized numbers over n bits
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Global readout
ReLU GNNs
Quantized GNNs

Implementations for quantized GNNs

@ Tableau method:

https://github.com/francoisschwarzentruber/
ijcai2025-verifquantgnn

@ Bounded verification, also with global readout:

https://github.com/francoisschwarzentruber/gnn_
verification
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https://github.com/francoisschwarzentruber/ijcai2025-verifquantgnn
https://github.com/francoisschwarzentruber/gnn_verification
https://github.com/francoisschwarzentruber/gnn_verification

aph neural ne

U GNNs
Dis ons
Conclusion

Outline

© Conclusion
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Verificati

Perspectives

& Other ML models: GNN with attention, etc.
{2 Efficient implementation

J3 Applications

v/ Define new verification tasks

&b Design interpretable GNNs
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Conclusion

Thanks to:
@ the existence of M1 research project at ENS Rennes
@ Stéphane Demri

@ Artem Chernobrovkin, Pierre Nunn, Marco Salzer, Nicolas Troquard

@ master (M2) students at ENS de Lyon

Thank you! HfiHif A2
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Conclusion

LORI-II 2009 - Chonggqing - October 8-11 2009
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ons
Conclusion

Lecture notes

https://arxiv.org/abs/2510.11617
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Verification of Tr

https://tableaunoir.github.io/
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