
Graph neural networks and logic

François Schwarzentruber
ENS de Lyon

September 29, 2025

2

Contents

1 Graph neural networks and Weisfeiler-Lehman tests 5
1.1 Motivation . 5
1.2 Graph neural networks . 5
1.3 GNN on graphs . 6
1.4 Graph isomorphism . 7
1.5 1-WL aka Color refinement . 7

1.5.1 Description . 7
1.5.2 Example . 8
1.5.3 Implementation . 8
1.5.4 Indistinguishability . 8
1.5.5 Link with isomorphism . 9
1.5.6 Analysis of failure . 9

1.6 Colour refinement and GNNs . 10
1.6.1 Colour refinement is self-contained 10
1.6.2 But GNNs are powerful . 11

1.7 Generalizations (*) . 11
1.7.1 k-FWL test (for k ≥ 2) . 11
1.7.2 k-OWL test (for k ≥ 2) . 11
1.7.3 Relations . 12
1.7.4 Higher-order GNNs . 12

2 ... and logic 15
2.1 First-order logic . 15
2.2 First-order logic with counting . 17
2.3 Modal logic . 18

2.3.1 Syntax . 18
2.3.2 Semantics . 18
2.3.3 Standard translation . 18

2.4 Graded Modal logic . 19
2.4.1 Definition . 19
2.4.2 Link with colour refinement . 19
2.4.3 Link with GNNs . 21

3 Verifying GNNs 23
3.1 Representing a GNN with a "logic" . 23

3.1.1 Syntax . 24
3.1.2 Semantics . 24

3

4 CONTENTS

3.1.3 Correspondence with GNNs . 24
3.2 Logic K# . 25

3.2.1 Syntax . 25
3.2.2 Semantics . 25

3.3 K# and truncReLU-GNNs . 25
3.3.1 From K# to truncReLU-GNNs . 26
3.3.2 From truncReLU-GNNs to K# . 27

3.4 Reduction to the satisfiability of K# . 28
3.5 Going further . 28

3.5.1 ReLU . 28
3.5.2 Quantized GNNs . 29

4 Satisfiability problem of K 31
4.1 Negative normal form . 31
4.2 Overview . 32
4.3 Tableau rules . 32
4.4 Example . 33
4.5 Tableau system as a labelled proof system 33
4.6 Soundness and completeness . 34

5 Satisfiability problem of K is PSPACE-complete 35
5.1 Algorithm . 35
5.2 Soundness and completeness . 35
5.3 PSPACE upper bound . 37
5.4 PSPACE lower bound . 37

6 Satisfiability problem of logic with counting 39
6.1 Difficulty to get a PSPACE Tableau Method for K# 39
6.2 Quantifier-free Fragment Boolean Algebra with Presburger Arithmetic 39
6.3 Fail for proving NP by naïve argument . 40
6.4 Venn diagrams . 41
6.5 Naïve reduction to QFPA . 42
6.6 Polynomial upper bound on the number of non-zero regions 43
6.7 QBFPAPA satisfiability in NP . 45
6.8 Application: PSPACE Tableau Method for K# 46

6.8.1 Description of the algorithm . 46
6.8.2 Soundness and completeness . 47

7 Going further 49
7.1 Verification . 49
7.2 Expressivity . 49
7.3 QFBAPA . 49

Chapter 1

Graph neural networks and
Weisfeiler-Lehman tests

Key reference: [Sat20], [Gro21]

1.1 Motivation
Graph neural networks are used in various applications:

• recommendation in social network [SLJ21],

• knowledge graphs [YKS+22],

• chemistry [RNE+22],

• drug discovery [XXC+21], etc.

They are used for classification (yes/no questions) or regression (guess a value) for a
given graph or a pointed graph (a vertex in some graph)1. The following table gives some
examples of informal questions:

classification regression
on graphs does the graph represent a

toxic molecule?
what is the temperature of
fusion of a given molecule
represented by a graph?

on pointed graphs do we recommend some per-
son?

what is the price of some
furniture?

1.2 Graph neural networks
We consider labelled directed graphs G = (V,E, ℓ) where V is a non-empty finite set of
vertices, E ⊆ V × V is a set of edges and ℓ : V → Rd is a labelling function, i.e. each
vertex u is labelled with a vector ℓ(u) containing d real numbers. We denote by E(u) the
set of successors of u. Formally, E(u) = {v ∈ V | (u, v) ∈ E}. We encode a standard Kripke
structure by a labelled graph G = (V,E, ℓ0) with ℓ0 : V → {0, 1}d.

1In the literature, they may say ‘on graph-nodes‘ or ‘on nodes‘.

5

6 CHAPTER 1. GRAPH NEURAL NETWORKS AND WEISFEILER-LEHMAN TESTS

A GNNN is usually defined as a tuple of parameters (see [BKM+20], [NSST24], [BLMT24]).
To make it more concrete, we present it as an algorithm (parametrized by the weights com-
puted during some learning process), see Figure 1.1. It takes as an input a pointed graph
made up of a labelled graph G = (V,E, ℓ0) and a vertex u. It outputs yes/no.

main function N((V,E, ℓ0), u)
ℓ1 := layer1(V,E, ℓ0)
ℓ2 := layer2(V,E, ℓ1)
...
ℓL := layerL(V,E, ℓL−1)
return yes if wtℓL(u) + b ≥ 0 else no

function layeri(V,E, ℓ)
ℓ′ := new labelling V → Rd

for vertices u ∈ V do
ℓ′[u] := α⃗(Ai × ℓ[u] +Bi ×

∑
{{ℓ[v] | v ∈ E(u)}}+ bi)

return ℓ′

Figure 1.1: A graph neural network N presented as an algorithm. The main function is N .
It computes a sequence of labellings ℓ1, ℓ2, . . . , ℓL via functions layeri. Learnt weights are
w, b, Ai, Bi, bi.

Definition 1 (graph neural network). A GNN is an algorithm as shown in Figure 1.1.

A GNN N computes a sequence of labellings ℓ1, ℓ2, . . . , ℓL via the application of so-called
layers. For avoiding cumbersome notations, we suppose that all these labellings assign a
vector of dimension d to each vertex (while in generality the dimension d may be different
for each layer). In each layer layeri, the function α⃗ : Rd → Rd is the point-wise application
of an activation function α : R → R. The activation function α could be for instance
ReLU : x 7→ max(0, x) or truncReLU : x 7→ max(0,min(x, 1)). Then Ai ∈ Rd×d and
Bi ∈ Rd×d are matrices of weights, × is the standard matrix-vector multiplication, bi ∈ Rd is
a bias vector, {{.}} is the multiset notation, and

∑
is the summation operation of all vectors

in the multiset.
The ending linear inequality wtℓL(u)+ b ≥ 0 where w ∈ Rd and b ∈ R are weights is used

to classify the vertex u. In the sequel, the set of pointed labelled graphs positively classified
by a GNN N is denoted by [[N]] := {(G, u) | N(G, u) returns yes} .

We can also present a GNN N that computes a sequence N (0), N (1), . . . of labellings:

• N (0)(G, u) = ℓ0(u);

• N (t+1)(G, u) = α⃗(At×N (t)(G, u) +Bt×
∑

{{N (t)(G, v) | v ∈ E(u)}}+ bt) for all u ∈ V .

1.3 GNN on graphs
For graph classification, the last operation could be:

return yes if w
∑

u∈V ℓL(u) + b ≥ 0 else no

The sum is taken over all vertices u in the graph. This kind of operation is global readout.

1.4. GRAPH ISOMORPHISM 7

1.4 Graph isomorphism
Two graphs are isomorphic if they are the same, up to vertex renaming. Here is a formal
definition.

Example 1. Here are two graphs that isomorphic:

A B

C

D

E

1 2

3

4
5

Definition 2. Two labelled graphs G = (V,E, ℓ) and G′ = (V ′, E ′, ℓ′) are isomorphic if there
exists a bijection π : V → V ′ such that:

1. for all vertices u ∈ V , ℓ[u] = ℓ[π(u)]

2. for all vertices u, v ∈ V , uEv iff π(u)E ′π(v).

Graph isomorphism is in NP, but likely to be NP-complete, because then the polynomial
hierarchy would collapse [Sch88]. Testing graph isomorphisms can be done in quasipolyno-
mial time [Bab16]: more precisely in time exp((log n)O(1)) where n is the number of vertices.
Weisfeiler-Lehman tests are procedures running in poly-time2 which do “almost" solve graph
isomorphism.

1.5 1-WL aka Color refinement

1.5.1 Description

There are different presentations of 1-WL (1-Weisfeiler-Lehman) aka color refinement aka
naive vertex refinement in the literature. Informally, it works as follows on a graph G =
(V,E, ℓ0).

• Initially, colour each vertex v with the colour ℓ0(v).

• Iteratively, recolour each vertex based on its current colour and the multiset of colours
of its neighbours.

• Repeat until the colouring stabilizes.

Formally, we define a sequence (cr(0)(G), cr(1)(G), . . .) of labellings as follows:

• cr(0)(G, u) = ℓ0(u) for all u ∈ V ;

• cr(t+1)(G, u) =
(
cr(t)(G, u), {{cr(t)(G, v) | uEv}}

)
.

2It is possible to implement it in O((|V |+ |E|) log |V |) [CC82].

8 CHAPTER 1. GRAPH NEURAL NETWORKS AND WEISFEILER-LEHMAN TESTS

main function cr(V,E, ℓ0)
t := 0
repeat

ℓt+1 := refine(V,E, ℓt)
t := t+ 1

until ℓt+1 and ℓt are equivalent
return ℓi

function refine(V,E, ℓ)
ℓ′ := new labelling
for vertices u ∈ V do

ℓ′[u] := (ℓ[u], {{ℓ[v] | v ∈ E(u)}})
return ℓ′

Figure 1.2: Colour refinement algorithm.

We wrote cr(0)(G, u) instead of the cumbersome cr(0)(G)(u). In each round, the labelling
gets finer: cr(t+1)(G) is finer than cr(t)(G). We use the notation ⊑ to say ‘finer than‘:

. . . ⊑ cr(2)(G) ⊑ cr(1)(G) ⊑ cr(0)(G)

For some tG < |V |, we have that cr(t+1)(G) and cr(t)(G) are equivalent in the following
sense.

Definition 3. Two labellings ℓ and ℓ′ are equivalent if
for all vertices u, v ∈ V , ℓ[u] = ℓ[v] iff ℓ′[u] = ℓ′[v].

Said differently, cr(tG+1)(G) and cr(tG)(G) induce the same partition. This is used as a
stopping condition in colour refinement. We write cr(G) instead of cr(tG+1)(G). This is the
output of colour refinement. Figure 1.2 gives the pseudo-code for colour refinement.

1.5.2 Example

Exercise 1. (from [Gro21]) Compute cr(G) and cr(G′) for the graphs G and G′ below:

1.5.3 Implementation

It is possible to compute the final partition corresponding to cr(G) in O((|V |+ |E|) log |V |).

�Read [CC82], also [PT87].

The interested reader may also look at [BBG17] for tight complexity.

1.5.4 Indistinguishability

G,G′ are cr-indistinguishable if cr(G) and cr(G′) have the same histogram of colors : the
number of vertices of a given color are the same via cr(G) and cr(G′). More formally, we
define:

{{cr(G)}} := {{cr(G, u) | u ∈ V }}

1.5. 1-WL AKA COLOR REFINEMENT 9

Definition 4. G,G′ are cr-indistinguishable if {{cr(G)}} = {{cr(G′)}}.

Definition 5. G, u and G′, u′ are cr-indistinguishable if cr(G, u) = cr(G′, u′).

1.5.5 Link with isomorphism

The following proposition says that the output of cr is the same for isomorphic graphs. We
say that cr is an equivariant.

Proposition 2. If G and G′ are isomorphic then G,G′ are cr-indistinguable.

Proof. Suppose thatG andG′ are isomorphic. Let ℓ0, ℓ1, . . . be the labellings of the execution
of cr(G). Let ℓ′0, ℓ′1, . . . be the labellings of the execution of cr(G′).

Let π an isomorphism from G into G′. Given t ∈ N, we consider the property P(t):

for all u ∈ V , ℓt(u) = ℓ′t(π(u)).

For t = 0, P(0) holds by definition of an isomorphism.
Suppose P(t) for some t.
The computation is:

ℓt+1[u] := (ℓt[u], {{ℓt[v] | v ∈ E(u)}})
= (ℓ′t[π(u)], {{ℓt[π(v)] | v ∈ E(u)}})
= (ℓ′t[π(u)], {{ℓt[π(v)] | π(v) ∈ E ′(π(u))}})
= (ℓ′t[π(u)], {{ℓt[v′] | v′ ∈ E ′(π(u))}})
= ℓ′t+1(π(u))

Hence P(t+ 1).
In particular:

• The condition of the repeat until loop is thus obtained for the same t in cr(G) and
cr(G′).

• {{cr(ℓt)}} = {{cr(ℓ′t)}}.

So {{cr(G)}} = {{cr(G′)}}.

The algorithm cr does not characterize isomorphism, as shown in Figure 1.3.

Proposition 3. [IL90] Let G and G′ be two trees.
G,G′ are isomorphic iff G,G′ are cr-indistinguable.

1.5.6 Analysis of failure

Proposition 4. If two graphs with n vertices with the same features are d-regular3 then they
are cr-indistinguishable.

Example 5. Figure 1.3 shows two non isomorphic 3-regular graphs with both 20 vertices.
They are not isomorphic because decaprismane has 4-cycles while dodecahedrane does not.

3A graph is d-regular if all vertices have the same degrees d.

10CHAPTER 1. GRAPH NEURAL NETWORKS AND WEISFEILER-LEHMAN TESTS

Figure 1.3: Decaprismane and dodecahedrane. Two non isomorphic graphs that are 1-WL-
indistinguishable [Sat20].

Interestingly the probability that cr fails on two graphs with n vertices taken uniformly
randomly goes to 0 when n goes to +∞.

Theorem 6 ([BES80], [AKRV15]). Let Gn, G
′
n be two independent uniformly random graphs

with n vertices. We have:

P(Gn, G
′
n are cr-indistinguable | Gn, G

′
n are isomorphism) −−−−→

n→+∞
1.

�Read [BES80], [AKRV15] and provide a proof of the above theorem

1.6 Colour refinement and GNNs

Intuitively, GNNs are weaker than cr: cr stores in the whole ‘colour’ which correspond to all
the arguments to compute the label of a vertex, while a GNN only stores the result.

This is stated in Theorem VIII.1 in [Gro21], as well as [XHLJ19] [MRF+19].

1.6.1 Colour refinement is self-contained

Theorem 7. Let N be a GNN with L layers. For all t ∈ {0, . . . , L}, for all pointed graphs
G, u and G′, u′, we have:

cr(t)(G, u) = cr(t)(G′, u′) then N (t)(G, u) = N (t)(G′, u′).

Proof. We prove it induction on t.

1.7. GENERALIZATIONS (*) 11

Said, differently, the partition of cr(L)(G) is finer than the one of N(G). We make an
abuse of notation and write N(G) or N (t)(G) to denote the corresponding partition.

cr(t)(G) ⊑ N (t)(G).

In particular, we have cr(G) ⊑ N (t)(G). So:

Corollary 8. cr(G) ⊑ N (L)(G).

1.6.2 But GNNs are powerful

Is there a GNN that computes the cr-partition? In Theorem VIII.4 of [Gro21] partially
answers the question. The answer is partial because the existence of a GNN is not uniform:
we have one GNN for each size of graphs. We reformulate this result here.

Theorem 9. For all integers n ∈ N, there is a GNN N such that for all graphs G with at
most n vertices and where the initial labellings of each vertex is in {0, 1}k, we have

N (n)(G) ⊑ cr(G).

�Read the proof of Theorem VIII.4 in [Gro21]

1.7 Generalizations (*)
Figure 1.3 shows two non-isomorphic regular graphs that cr is unable to distinguish. So
the natural idea is to generalize 1-WL to tuples of vertices instead of single vertices. We
introduce the two main generalizations with the notations of [MLM+23]: k-FWL = k-folkore
WL, and k-OWL = k-oblivious WL.

1.7.1 k-FWL test (for k ≥ 2)

The algorithm cr has been extended on k-tuples of vertices. Given a labelled graph G,
given a k-tuple v⃗ = (v1, . . . , vk) of vertices, we denote by G[v⃗] the subgraph of G induced
by {v1, . . . , vk}. More precisely, G[v⃗] = (V ′, E ′, ℓ′0) is the graph whose vertices are V ′ =
{1, . . . , k} and E ′ = {(i, j) | viEvj} and ℓ′0(i) := ℓ0(vi).

• Initialization: the colour of v⃗ is G[v⃗];

• Refinement step: look at k-tuples overlapping with a tuple in all but one component:

ℓ′[u⃗] := (ℓ[u⃗], {{(ℓ[u⃗[1:=w]], . . . , ℓ[u⃗[k:=w]] | w ∈ V)}})

where u⃗[i:=w] is the vector u⃗ in which the i-th coordinate has been replaced by vertex w.

1.7.2 k-OWL test (for k ≥ 2)

• Initialization: same as k-FWL;

• Refinement step: look at k-tuples overlapping with a tuple in all but one component:

ℓ′[u⃗] := (ℓ[u⃗], ({{ℓ[u⃗[1:=w]] | w ∈ V }}, . . . , {{ℓ[u⃗[k:=w]] | w ∈ V }}))

12CHAPTER 1. GRAPH NEURAL NETWORKS AND WEISFEILER-LEHMAN TESTS

1.7.3 Relations

Proposition 10. cr and 2-OWL are as powerful.

Proposition 11. k-FWL is as powerful as (k + 1)-OWL.

Proposition 12. k + 1-OWL is strictly more powerful than k-OWL.

�Prove the propositions

Further reading

1.7.4 Higher-order GNNs

Morris et al. [MRF+19] have proposed generalization GNNs that corresponds to k-OWL
for k > 2.

1.7. GENERALIZATIONS (*) 13

Exercises
Exercise 2. Consider these two molecules (from [Sat20]):

1. Are these two graphs isomorphic?

2. What is the output of color refinement?

Exercise 3. Consider the two graphs G and H (Figure 1 in [HV21]):

G H

1. Are G and H isomorphic?

2. Prove that color refinement does not distinguish G and H.

3. Prove that 2−OWL does not distinguish G and H.

4. Prove that 2− FWL does distinguish G and H.

Exercise 4. Play with https: // holgerdell. github. io/ color-refinement/

Exercise 5. Propose an efficient implementation of algorithm cr.

https://holgerdell.github.io/color-refinement/

14CHAPTER 1. GRAPH NEURAL NETWORKS AND WEISFEILER-LEHMAN TESTS

Chapter 2

... and logic

Key reference: [BKM+20]
In this chapter we review the basics in logic, the complexity of the satisfiability problem

and some connections with colour refinement and GNNs.

2.1 First-order logic
First-order logic (FO) validity problem is undecidable [Tur37]. A noticeable decidable frag-
ment is FO2, the fragment of FO of formulas only containing two variables.

Theorem 13. [GKV97] The satisfiability problem of FO2 is NEXPTIME-complete.

Proof. Upper bound Upper bound is obtained by small model property via Scott’s formula.
Scott’s reduction consists in defining tr such that for all FO2-formulas φ, tr(φ) is in the
Gödel class (∀∀∃∗-fragment), and φ and tr(φ) are equisatisfiable. To do we proceed as
follows:

1. First we get rid of predicates of arity > 2 as follows.

(a) Consider an atomic subformula R(v1, . . . , vn) where v1, . . . , vn ∈ {x, y}.
• If {v1, . . . , vn} = {x, y}, replaceR(v1, . . . , vn) byR(v1,...,vn)(x, y) whereR(v1,...,vn)

is a fresh binary predicate
• If {v1, . . . , vn} = {x}, replace R(x, . . . , x) by R(v1,...,vn)(x) where R(x,...,x) is a

fresh unary predicate
• same for y

(b) We finish by guaranteeing some equivalences. For instance, if R(x, y, x) and
R(y, x, y) both appears in φ we add:

∀x∀y(R(x,y,x)(x, y) ↔ R(y,x,y)(y, x)).

etc.

2. Now φ has only predicates of arity at most 2. We now perform a kind of Tseitin
transformation.

(a) Each subformula ψ is replaced by a predicate isTrueψ of arity 0, 1, 2 depending
on the number of free variables in ψ

15

16 CHAPTER 2. ... AND LOGIC

(b) The final formula is

tr(φ) := isTrueφ ∧
∧

ψ(v⃗) subformula

∀v⃗(isTrueψ(v⃗) ↔ meaningψ(v⃗))

where meaningψ is:

i. ψ if ψ is atomic;
ii. isTrueα(v⃗) ∧ isTrueβ(v⃗) if ψ = α(v⃗) ∧ β(v⃗)
iii. ¬isTrueα(v⃗) if ψ = ¬α(v⃗)
iv. ∀v isTrueα if ψ = ∀vα(v⃗)
Note that we get conjuncts with quantifiers ∀∀ for (i-iii). For (iv), because of the
↔ we get a ∀∀ and a ∀∃.

Now, we can group conjunct and rewrite tr(φ) as a formula of the form

∀x∀yα(x, y) ∧
∧

i=1..m

∀x∃yβi(x, y)

where α and βi are quantifier-free formulas.
W.l.o.g. we can suppose that βi(x, y) |= (x ̸= y). Indeed, if the model M has at least

two elements we have that

M |= (∀x∃yβi(x, y) ↔ ∀x∃y (x ̸= y ∧ (βi(x, x) ∨ βi(x, y))︸ ︷︷ ︸
the new βix, y

.

Now we define the notion of type. A type t(v⃗) is MCS over predicates in tr(φ) involving
only variables in v⃗. We say 1-type when v⃗ is variable and 2-type if v⃗ is (x, y) or (y, x).

Now, we consider a structure M that satisfies tr(φ). We will build a small model from
it. Given an element a in the domain of M the type ta of a is the unique 1-type satisfied by
a.

Same given elements a, b for 2-type.
An element a is a king if a is the only element in the structure to satisfy type ta. Let K

be the set of kings in M.
Let gi be Skolem function for ∀x∃yβi(x, y).
C := K ∪

⋃
i {gi(K)}

...
Lower bound
Lower bound can be obtained from the NEXPTIME-hardness, see [Für83] and [GKV97].

We reproduce here the lower bound proof to avoid the reader to navigate throw the different
papers. To this aim, we give a reduction from the tiling problem with Wang tiles of a
2n × 2n-torus where n is given in unary, and T is the set of tiles, and a give tile seed t0. We
construct a FO2-formula φ as follows. A variables (eg. x, y) denotes a position of a cell in
the torus. We introduce unary predicates Xi(x) for i = 0..n − 1 that says that the i-th bit
of the X-coordinate is 1. Same for Yi(y) for the Y -coordinate. We introduce also Tt(x) that
says that tile t is at x. Before defining φ we introduce the macros:

• Hsucc(x, y) := according to the Xi(.) and Yi(.), y is the next cell at right of x

• V succ(x, y) := according to the Xi(.) and Yi(.), y is the next cell at the top of x

2.2. FIRST-ORDER LOGIC WITH COUNTING 17

• eq(x, y) := Heq(x, y) ∧ V eq(x, y)

Now formula φ is the conjunction of the following formulas:

1. ∀x there is a unique t such that Tt(x)

2. same cell is really same cell: ∀x
∧
t∈T(Tt(x) → ∀y, eq(x, y) → Tt(y))

3. ∃x x coordinate is (0, 0)

4. ∀x∃yV succ(x, y)

5. ∀x∃yHsucc(x, y)

6. ∀x∀y(Hsucc(x, y) →
∨
t,t′horizontally compatible Tt(x) ∧ Tt′(y))

7. same vertically

Remark 14. Five year later, Etessami et al. [EVW02] have studed FO2 on finite words and
ω-words. The corresponding satisfiability problem is also NEXPTIME-complete.

More generally, FOk is the fragment of FO of formulas with at most k variables.

2.2 First-order logic with counting

First-order logic with counting (FOC) provides constructions with counting quantification:
∃≥kxφ (there are at least k elements x such that φ holds), ∃≤kx (there are at most k elements
x such that φ holds).

Proposition 15. FOC and FO (with equality) have the same expressivity.

Proof. ∃≥kxφ is rewritten in

∃x1 . . . ∃xk

(∧
i<j

xi ̸= xj ∧
∧
i

φ(xi)

)
.

However, FOC is interesting because it can lead to interesting fragments such as FOC2

which is the two-variable fragment of FOC.

Theorem 16. [Pra14] FOC2 is NEXPTIME-complete.

Proposition 17. [CFI92]We have:
cr(G, u) = cr(G, v) iff for all φ(x) ∈ FOC2, (G, u |= φ iff G, v |= φ).

18 CHAPTER 2. ... AND LOGIC

2.3 Modal logic

2.3.1 Syntax

Modal logic extends propositional logic with special operators □ and ♢ called modalities . In
the standard reading, the construction □φ is read as φ is necessarily true.

Definition 6 (language of basic modal logic). A modal formula is a construction generated
by the following rule:

φ ::= ⊥ | p | ¬φ | φ ∨ φ | ♢φ

where p ranges over the set of atomic propositions.

2.3.2 Semantics

Recall that a Kripke model is just a labelled graph. A pointed Kripke model is a pair G, u
where G = (V,E, ℓ0) is a Kripke model and v is a world in V .

Definition 7 (truth conditions). Given G = (V,E, ℓ0), u ∈ V , φ ∈ L we define G, u |= φ
by structural induction over φ:

• G, u ̸|= ⊥;

• G, u |= p iff ℓ0(p) = 1;

• G, u |= ¬φ iff G, u ̸|= φ;

• G, u |= φ ∨ ψ iff G, u |= φ or G, u |= ψ;

• G, u |= ♢φ iff there is a v ∈ E(u) we have G, v |= φ.

We also introduce the dual modal construction □φ which is equivalent to ¬□¬φ.

2.3.3 Standard translation

The standard translation consists in translating any modal formula φ into a first-order
formula φ′(x) with one single free variable.

trx(p) ::= p(x)

trx(♢φ) ::= ∃yxEy ∧ try(φ)

It is interesting to note that ML is a fragment of FO2.

2.4. GRADED MODAL LOGIC 19

2.4 Graded Modal logic

2.4.1 Definition

Graded modal logic is like modal logic but operator ♢≥kφ. Its semantics is:

G, u |= ♢≥kφ there are k distinct v1, . . . , vk such that for all i = 1..k uEvi and G, ui |= φ

In the same way, GML is a fragment of FOC2:

trx(p) ::= p(x)

trx(♢
≥kφ) ::= ∃≥kyxEy ∧ try(φ)

At the end, we will know how to solve the satisfiability problem of GML. But let us start
to tackle the satisfiability problem of K.

2.4.2 Link with colour refinement

Theorem 18. For all rounds t, for all colours c, there exists a GML formula φt,c of modal
depth t such that

cr(t)(G, u) = c iff G, u |= φt,c.

Proof. By induction on t.
Base case. We take φ0,c to be a Boolean formula that describes c.

Example 19. If c =
(

2
−6.5

)
, then we take φ0,c = (x1 = 2) ∧ (x2 = −6.5).

Inductive case Consider the color c = (c′,M) where c′ is a color of round r− 1, and M
is a multiset of colors of round r − 1 too. We set:

φt,c := φt−1,c′ ∧
∧
c′′∈M

♢=count(c′′,M)φt−1,c′′ ∧ □
∨
c′′∈M

φt−1,c′′ .

where count(c′′,M) is the number of occurrences of c′′ in M .

Now, we state that (G, u) and (G, u′) are cr-indistiguishable iff they satisfy the same
formulas of GML.

Theorem 20 ([Gro21], p. 6, Th. V.10). We have:

cr(G, u) = cr(G′, u′) iff for all φ ∈ GML, G, u |= φ iff G′, u′ |= φ.

Proof. (Proof given in Appendix in [Gro21])
We prove the following property P(t) by induction on t.

1. Color refinement gives the same results to G, u and G′, u′ after t rounds: cr(t)(G, u) =
cr(t)(G′, u′).

20 CHAPTER 2. ... AND LOGIC

2. G, u and G′, u′ satisfy the same formulas φ in GML of modal depth at most t.

Base case.

Color refinement gives the same results to G, u and G′, u′ after 0 rounds
iff

G, u and G′, u′ have the same labellings
iff

G, u and G′, u′ satisfy the same Boolean formulas
iff

G, u and G′, u′ satisfy the same formulas φ in GML of modal depth at most 0.

Inductive case Suppose P(t− 1) and prove P(t).

• (1 ⇒ 2) Suppose 1. Consider a GML-formula φ. The formula φ is a Boolean combi-
nation of atoms (xi = 1) or subformulas ♢≥Nψ. First, G, u and G′, u′ satisfy the same
atoms. By P(t− 1), for all colors c, either all successors of u coloured by c all satisfy
ψ or none of them. As both u and u′ have the same number of successors of a given
color, we have G, u |= ♢≥Nψ iff G′, u′ |= ♢≥Nψ. To conclude, G, u |= φ iff G′, u′ |= φ.

• (2 ⇒ 1) We prove not 1 ⇒ not 2. Suppose that the colors of u and u′ after t rounds
are different:

cr(t)(u) = (cr(t−1)(u), {{.}})
̸= cr(t)(u′) = (cr(t−1)(u′), {{.}})

Either the first coordinate is different: cr(t−1)(u) ̸= cr(t−1)(u′). So by P(r− 1), there is
some formula of modal depth at most r that is true in u and false in u.

Or the multisets are different. There is a color c such that

card(
{
v ∈ E(u) | cr(t)(v) = c

}
) ̸= card(

{
v ∈ E(u′) | cr(t)(v) = c

}
)

.

W.l.o.g.

α := card(
{
v ∈ E(u) | cr(t)(v) = c

}
) > card(

{
v ∈ E(u′) | cr(t)(v) = c

}
)

.

We set φ := ♢≥αφt−1,c where φt−1,c is given by Theorem 18. We have G, u |= φ but
G, u ̸|= φ.

Hence not 2.

2.4. GRADED MODAL LOGIC 21

2.4.3 Link with GNNs

Proposition 21 (Prop. 4.1 [BKM+20]). For all GML-formula φ, there is a GNN N such
that for all G, u we have:

G, u |= φ iff N(G, u) = ⊤.

Proof. We postpone the proof to the next chapter, in which we prove a stronger result.

Proposition 22 (Prop. 4.2 [BKM+20]). For all GNN N that is FO-expressible, then there
is a GML-formula φ such that

G, u |= φ iff N(G, u) = ⊤.

It is sad to restrict ourselves to GNN that ar FO-expressible.

Exercises
Exercise 6. Prove that there is a FOC2-formula φ(x) for which there is no AC-GNN N
such that G, u |= φ(x) iff N(G, u) = ⊤.

Exercise 7. Prove that ML has the expressivity than GNNs where the aggregation function
is MAX instead of SUM. See https: // arxiv. org/ abs/ 2507. 18145

Exercise 8. We define the relation ∼# "graded bisimilation" defined in https: // www2.
mathematik. tu-darmstadt. de/ ~otto/ papers/ cml19. pdf .

Show that G, u ∼# G′, u′ iff for all L, the unvarallings up to L of G, u and G′, u′ are
isomorphic.

Exercise 9. In this exercise, we will prove that any GNN that is FO-definable is captured
by a GML-formula.

1. Show that if for all L, the unravellings up to L, of G, u and G′, u′ are isomorphic, then
for all GNNs N , we have N(G, u) = N(G′, u′).

2. Read https: // www2. mathematik. tu-darmstadt. de/ ~otto/ papers/ cml19. pdf that
shows that the fragment of unary FO that only depend on the unravelling is GML.

3. Conclude.

https://arxiv.org/abs/2507.18145
https://www2.mathematik.tu-darmstadt.de/~otto/papers/cml19.pdf
https://www2.mathematik.tu-darmstadt.de/~otto/papers/cml19.pdf
https://www2.mathematik.tu-darmstadt.de/~otto/papers/cml19.pdf

22 CHAPTER 2. ... AND LOGIC

Chapter 3

Verifying GNNs

Key reference: [NSST24] and [BLMT24]

Our goal is to be able to verify GNNs as follows. We consider formulas in some logic
evaluated on pointed graphs (for instance, modal logic or graded modal logic). Given a
formula φ, we write [[φ]] for the set of pointed graphs (G, u) satisfying φ. Let us list some
verification tasks.

1. Satisfiability problem of a GNN: Given a GNN N , is there an input (G,E, ℓ) that is
positively classified by N? ([[N]] ̸= ∅)

2. Given a GNN N , given a specification formula φ, are the inputs positively classified
by N exactly the inputs satisfying φ? ([[N]] = [[φ]])

3. Given a GNN N , given a specification formula φ, are the inputs positively classified
by N satisfying φ? ([[N]] ⊆ [[φ]])

4. Given a GNN N , given a specification formula φ, are the inputs satisfying φ classified
positively by N? ([[φ]] ⊆ [[N]])

5. Given a GNN N , given a specification formula φ, does there exist an input satisfying
φ and classified positively by N? ([[φ]] ∩ [[N]] ̸= ∅)

Link with Hoare logic

Problem 4 corresponds to the following Hoare logic triplet:

{φ}N {output = true}

The methodology is to design a "superlogic" in which φ as well as the computation of
the GNN N can be described.

3.1 Representing a GNN with a "logic"

In this section, we introduce a lingua franca to describe GNNs. The language just mimics
the computation performed by a GNN. The language is inspired from the one in [SST25].

23

24 CHAPTER 3. VERIFYING GNNS

3.1.1 Syntax

We consider expressions generated by the following grammar:

ϑ ::= c | xi | α(ϑ) | agg(ϑ) | ϑ+ ϑ | c× ϑ

where c is any number, xi is any feature, α is any symbol to denote any activation
function, agg is a symbol to represent any aggregation function (but it will interpreted as
the sum in our case).

3.1.2 Semantics

The semantics mimics the computation performed by a GNN:

[[c]]G,u = c,

[[xi]]G,u = ℓ(u)i,

[[ϑ+ ϑ′]]G,u = [[ϑ]]G,u + [[ϑ′]]G,u,

[[c× ϑ]]G,u = c× [[ϑ]]G,u,

[[α(ϑ)]]G,u = [[α]]([[ϑ]]G,u),

[[agg(ϑ)]]G,u = Σv|uEv[[ϑ]]G,v,

We write [[ϑ ≥ 1]] = {G, u | [[ϑ]]G,u ≥ 1}.

3.1.3 Correspondence with GNNs

Proposition 23. Given a GNN N , there exists an expression ϑ such that
[[N]] = [[ϑ ≥ 1]].

See [SST25] for a formal proof. We explain this via example. Consider a two-layer GNN
A with input and output dimension 2, using summation for aggregation, activation via
α(x) := max(0,min(1, x))—the truncated ReLU—and a classification function 2x1−x2 ≥ 1.
The combination functions are:

comb1((x1, x2), (y1, y2)) :=

(
σ(2x1 + x2 + 5y1 − 3y2 + 1)
σ(−x1 + 4x2 + 2y1 + 6y2 − 2)

)
,

comb2((x1, x2), (y1, y2)) :=

(
σ(3x1 − y1)
σ(−2x1 + 5y2)

)
.

Then, the corresponding GNN-logic formula φA is given by:

ψ1 = α(2x1 + x2 + 5agg(x1)− 3agg(x2) + 1),

ψ2 := α(−x1 + 4x2 + 2agg(x1) + 6agg(x2)− 2),

χ1 := α(3ψ1 − agg(ψ1),

χ2 := α(−2ψ1 + 5(agg(ψ2)),

φA := 2(χ1)− χ2 ≥ 1.

3.2. LOGIC K# 25

Remark 24. Note that some expressions do not represent a GNN. For instance, agg(2×x)
does not syntactically correspond to a GNN. Indeed, aggregation is always computed on values
of the form α(...).

3.2 Logic K#

We now define logic K# defined in [NS23] and [NSST24]. A similar logic is defined in
[BLMT24] but it does not have the 1φ construction. It has the same expressivity but
probably not the same succinctness.

3.2.1 Syntax

Consider a countable set Ap of propositions. We define the language of logic K# as the set
of formulas generated by the following BNF:

φ ::= p | ¬φ | φ ∨ φ | ξ ≥ 0

ξ ::= c | 1φ | #φ | ξ + ξ | c× ξ

3.2.2 Semantics

As in modal logic, a formula φ is evaluated in a pointed graph (G, u) (also known as pointed
Kripke model). We define the truth conditions (G, u) |= φ (φ is true in u) by

(G, u) |= p if ℓ(u)(p) = 1,
(G, u) |= ¬φ if it is not the case that (G, u) |= φ,
(G, u) |= φ ∧ ψ if (G, u) |= φ and (G, u) |= ψ,
(G, u) |= ξ ≥ 0 if [[ξ]]G,u ≥ 0,

and the semantics [[ξ]]G,u (the value of ξ in u) of an expression ξ by mutual induction on φ
and ξ as follows.

[[c]]G,u = c,
[[ξ1 + ξ2]]G,u = [[ξ1]]G,u + [[ξ2]]G,u,
[[c× ξ]]G,u = c× [[ξ]]G,u,

[[1φ]]G,u =

{
1 if (G, u) |= φ

0 else,
[[#φ]]G,u = card({v ∈ V | (u, v) ∈ E and (G, v) |= φ}).

We illustrate it in the next example.

Example 25. Consider the pointed graph G, u shown in Figure 3.1. We have G, u |=
p ∧ (#¬p ≥ 2) ∧ #(#p ≥ 1) ≤ 1. Indeed, p holds in u, u has (at least) two successors
in which ¬p holds. Moreover, there is (at most) one successor which has at least one p-
successor.

3.3 K# and truncReLU-GNNs
In this section, we consider GNNs where the activation function α is truncReLU.

26 CHAPTER 3. VERIFYING GNNS

pu

q

p

Figure 3.1: Example of a pointed graph G, u. We indicate true propositional variables at
each vertex.

3.3.1 From K# to truncReLU-GNNs

tr(xi = 1) = xi provided xi takes its value in {0, 1}
tr(¬φ) = 1− truncReLU(tr(φ))

tr(φ ∧ ψ) = truncReLU(tr(φ) + tr(ψ)− 1)

tr(ϑ ≥ 1) = truncReLU(τ(ϑ))

τ(#φ) = agg(tr(φ))

τ(ϑ+ ϑ′) = τ(ϑ) + τ(ϑ′)

τ(1φ) = tr(φ)

τ(c) = c

τ(cϑ) = cτ(ϑ)

Note that if constants c are integers, the weights in the produced GNN tr(φ) are integers.

Proposition 26. For all K#-formulas φ, [[tr(φ)]]G,u ∈ {0, 1}.

Proof. By definition of tr.

Proposition 27. For all K#-formulas φ, [[φ]] = [[tr(φ) ≥ 1]].

Proof. We prove it by mutual induction on φ and on ϑ that:

1. G, u |= φ iff [[tr(φ)]]G,u = 1;

2. [[ϑ]]G,u = [[τ(ϑ)]]G,u.

• G, u |= xi = 1 iff [[xi]]G,u = 1;

•

G, u |= ¬φ iff G, u ̸|= φ

iff [[tr(φ)]]G,u ̸= 1

iff [[tr(φ)]]G,u = 0

iff [[truncReLU(tr(φ))]]G,u = 0

iff [[tr(¬φ)]]G,u = 1.

3.3. K# AND TRUNCRELU-GNNS 27

•

G, u |= ϑ ≥ 1 iff [[ϑ]]G,u ≥ 1

iff [[τ(ϑ)]]G,u ≥ 1

iff [[truncReLU(τ(ϑ))]]G,u = 1

iff [[tr(ϑ ≥ 1)]]G,u = 1

•

[[#φ]]G,u = card({v ∈ V | (u, v) ∈ E and (G, v) |= φ})
= card({v ∈ V | (u, v) ∈ E and [[tr(φ)]]G,v = 1})

=
∑
v|uEv

[[tr(φ)]]G,v

= [[agg(tr(φ))]]G,u

3.3.2 From truncReLU-GNNs to K#

We first suppose that weights are integers. The following translation function tr′ takes a
GNN described as an expression ϑ and gives an equivalent K#-expression.

tr′(xi) = xi

tr′(c) = c

tr′(cϑ) = c× tr′(ϑ)

tr′(ϑ+ ϑ′) = tr′(ϑ) + tr′(ϑ′)

tr′(truncReLU(ϑ)) = 1tr′(ϑ)≥1

tr′(agg(ϑ)) = #(tr′(ϑ) ≥ 1) provided ϑ is of the form truncReLU(.)

Proposition 28. For all GNNL-expressions ϑ, [[ϑ ≥ 1]] = [[tr′(ϑ) ≥ 1]].

Proof. We prove by induction on ϑ that [[ϑ]]G,u = [[tr′(ϑ)]]G,u.

Translating GNNs with rational weights. So far we handled GNNs with integer
weights. In order to handle weights that are rationals, we multiply all numbers by a constant
M so that we get integers.

The translation is then:

tr′(xi) =M × xi

tr′(c) =M × c

tr′(cϑ) =M × c× tr′(ϑ)

tr′(ϑ+ ϑ′) = tr′(ϑ) + tr′(ϑ′)

tr′(truncReLU(ϑ)) = 1tr′(ϑ)=1 + 2× 1tr′(ϑ)=2 + · · ·+M × 1tr′(ϑ)=M

tr′(agg(ϑ)) = #(tr′(ϑ) = 1) + 2×#(tr′(ϑ) = 2) + . . .M ×#(tr′(ϑ) =M)

provided ϑ is of the form truncReLU(.)

28 CHAPTER 3. VERIFYING GNNS

In the above translation, the activation function truncReLU is simulated by truncReLUM
defined by:

truncReLUM(x) := max(0,min(M,x)).

Proposition 29. For all GNNL-expressions ϑ, [[ϑ ≥ 1]] = [[tr′(ϑ) ≥M]].

In [BLMT24], the authors explain a methodology to capture any activation functions
that is piece-wise linear and eventually constant.

3.4 Reduction to the satisfiability of K#

We explain how to solve problem 4 ([[φ]] ⊆ [[N]]). First we suppose that φ is already in K#.
Then we use Proposition 28 to get τ ′(N). We then check that φ → τ ′(N) is K#-valid, i.e.
that ¬(φ→ τ ′(N)) is not K#-satisfiable.

3.5 Going further

3.5.1 ReLU

Handling ReLU is more involved, and we do not have a clear correspondence with modal logic
yet [BLMT24]. In [HZ19], they generalize existential Presburger arithmetics with Kleene star
as follows. The Kleene star of a set M ⊆ Zd of vectors is defined by:

M∗ :=
⋃
k≥0

{
k∑
i=1

vi | vi ∈M

}
.

The obtained logic is Existential Presburger arithmetic with star ∃PA∗. The syntax is:

φ, ψ, ... ::= a⃗ · z⃗ ≥ c | φ ∧ ψ | φ ∨ ψ | ∃yφ | φ∗

The semantics [[φ]] for φ is the set of vectors of values in Z such that φ is true when we
replace the free variables in φ by these values. By induction:

[[⃗a · z⃗ ≥ c]] = {x⃗ ∈ Zn | a⃗ · x⃗ ≥ c}
[[φ∗]] = [[φ]]∗

Theorem 30. (Th. III.1 in [HZ19]) The satisfiability problem of ∃PA∗ is NEXPTIME-
complete, and NP-complete if the number of nested star is bounded.

Corollary 31. (Th. 6.20 in [BLMT24]) The satisfiability problem of ReLU-GNNs is NEXPTIME-
complete, and NP-complete if the number of layers is bounded.

Proof. • Upper bound. (Th. 6.26 in [BLMT24]). We reduce to the satisfiability of ∃PA∗.
The Kleene-star is used to perform the aggregation over an unbounded number of
successors.

3.5. GOING FURTHER 29

• Lower bound. (Th. 6.28 in [BLMT24]) We reduce the ∃PA∗-satisfiability to the
satisfiability of a GNN with ReLU.

Our GNN-logic and ∃PA∗ are very similar, but they also differ. The semantics of a
qL-expression is a single real number, whereas the semantics of a ∃PA∗ formula is a list of
values (one for each free variable). Having a single real number requires to evaluate wrt to
a pointed graph G, u: we need to have the structure somewhere, to be sure that all agg(....),
the evaluation is according the same structure. In the semantics ∃PA∗ the structure is
implicit. If we have several formulas (..)∗, then the successors are different. That is why in
[BLMT24] they pack all the relevant values in the same list, to have a single formula (...)∗,
i.e. to have the a single set of successors for a given vertex.

3.5.2 Quantized GNNs

In [SST25], the authors prove that the satisfiability problem of GNN-logic when numbers are
quantized (e.g. 32-bit arithmetics) is in PSPACE-complete. The bitwidth n is the number
of bits used to represent the numbers.

Theorem 32. Verifying quantized GNNs where the bitwidth n is given in unary is PSPACE-
complete.

Open questions
• Parametrized complexity of ∃PA∗ wrt to the nested number of stars?

• Design a "neat" modal logic that is equivalent to GNN with ReLU?

• Parametrized complexity of verifying quantized GNNs wrt to the bitwidth

• Lower bounds for other activation functions than truncReLU for quantized GNNs

• Tableau method of a logic for GNNs with ReLU

30 CHAPTER 3. VERIFYING GNNS

Exercises
Exercise 10. Write a translation from GML into K# preserving the semantics.

Exercise 11. Prove that K# is more expressive than FO.
Hint: see Appendix in [NSST24]

Chapter 4

Satisfiability problem of K

Before tackling the satisfiability problem for K#, it is good to concentrate on a simple setting.
In this chapter, we tackle the satisfiability problem for basic modal logic K:

• input: a modal formula φ;

• output: yes if φ is satisfiable; no otherwise.

We will explain the tableau method, an algorithm for deciding satisfiability problem.

4.1 Negative normal form

In the tableau method we will propose, we need disjunction, conjunction, box and diamonds
are explicit, e.g. no disjunction is hidden like in ¬(φ ∧ ψ)! That is why we introduce the
notion of formula in negative normal form where negations only appear in front of atomic
propositions.

Definition 8 (negative normal form). A formula in negative normal form belongs to the
language defined by the rule

φ ::= p | ¬p | φ ∨ φ | φ ∧ φ | ♢φ | □φ

where p ranges over the set of atomic propositions.

We suppose that the formula φ (and all formulas) are in negative normal form. If φ is
not in negative normal form, apply these rewriting rules that pushes negations in front of
atomic propositions:

¬□φ becomes ♢¬φ
¬♢φ becomes □¬φ
¬(φ ∧ ψ) becomes (¬φ ∨ ¬ψ)
¬(φ ∨ ψ) becomes (¬φ ∧ ¬ψ)

31

32 CHAPTER 4. SATISFIABILITY PROBLEM OF K

4.2 Overview
In a nutshell, the tableau method is a proof system that constructs a Kripke structure. Each
time a formula is written, it means that the formula should hold at a given world. It can
be seen as a procedure that rewrites a labelled graph. The tableau method starts with an
initial graph made up of one node containing φ:

φ

4.3 Tableau rules
Tableau rules there are rewriting rules that make explicit the meaning of ‘a formula should
hold’. Let us start with the rule for ∧ (in red, we write what is added).

φ ∧ ψ
φ, ψ

The following rule for the ∨ connective is non-deterministic.

φ ∨ ψ

φ ψ

The clash rule for contradiction gives a clash.

p
¬p

clash

The rule for ♢ adds a successor containing φ if there is no successor.

♢φ

φ

The rule for □ adds φ in all successors.

□φ

φ

4.4. EXAMPLE 33

4.4 Example

We draw dashed arrow for non-determinism and plain arrow for the relation in the model
that is created.

♢(¬p ∧ ♢(p ∧ q)) ∧□(□¬q ∨ ♢p)
♢(¬p ∧ ♢(p ∧ q)
□(□¬q ∨ ¬p))

¬p ∧ ♢(p ∧ q)
□¬q ∨ ♢p

¬p
♢(p ∧ q)

□¬q

¬q
p ∧ q
p
q

clash

♢p

p p ∧ q

4.5 Tableau system as a labelled proof system

A tableau method works (and can be formalized) as a rewriting term system. At each time
of the algorithm we maintain a set of terms of the following form:

• (σ φ), where σ is a abstract symbol and φ is a formula. The term (σ φ) means that
‘φ should be true in the world denoted by σ’.

• (R σ σ′) where σ and σ′ are two symbols. The term (R σ σ′) means that ‘the world
denoted by σ is linked by relation R to the world denoted by σ′.

The tableau method starts with (σ φ) where σ is a fresh symbol and φ is the formula
we want to test. We then apply some rules. Let us start by defining the rules for Boolean
connectives:

(σ φ1 ∧ φ2)

(σ φ1)(σ φ2)
(Rule ∧)

(σ φ1 ∨ φ2)

(σ φ1) | (σ φ2)
(Rule ∨)

(σ p)(σ ¬p)
execution closed (Clash rule)

34 CHAPTER 4. SATISFIABILITY PROBLEM OF K

Now we define the rules for modal operators:

(σ ♢φ)
(R σ σnew)(σnew φ)

(Rule ♢)
(σ □φ)(R σ σ′)

(σ′ φ)
(Rule □)

where σnew is new fresh symbol.

4.6 Soundness and completeness
Theorem 33 (soundness). If there is an execution of the tableau method that is not clashing,
then the initial formula is satisfiable.

Theorem 34 (completeness). If the initial formula is satisfiable then there is an execution
of the tableau method that is not clashing.

We leave the proofs of these theorems to the next chapter.

Bibliographical notes
In [BdRV01] (p. 383), the definition of Hintikka set [Blackburn p. 357, Def 6.24] is given.
Their algorithm is cleaner in a sense, but not as easy to understand. The tableau method
presented here can be extended for graded modal logic [Tob99].

Concerning implementation issues and optimisation, the reader may have a look to
[HHSS07].

Exercices
1. Apply the tableau method to the modal formula of your choice.

2. Explain informally why any satisfiable modal formula is satisfiable in a tree. Can you
bound its arity? its depth?

3. How would you adapt the tableau method to know whether a given formula is true in
a reflexive model (uRu for all worlds u)?

Chapter 5

Satisfiability problem of K is
PSPACE-complete

Savitch theorem says that PSPACE = NPSPACE. It means that proving a PSPACE upper
bound can be proven by given a non-deterministic algorithm that requires a polynomial
amount of space. We now turn the tableau method of Chapter 4 we just saw into a non-
deterministic algorithm.

5.1 Algorithm
The design of our algorithm is as follows.

• Boolean rules are applied in a given node are performed in the same call;

• Rules for modal operators are simulated by recursive calls. The number of recursive
calls is thus bounded by the modal depth.

function satK(Γ)
choose outcomes of Boolean rules until Γ is saturated
if the clash rule can be applied on Γ then

reject
for all formulas of the form ♢ψ in Γ

satK(ψ ∪ {χ | □χ ∈ Γ})
accept

5.2 Soundness and completeness
We denote the modal depth of φ by md(φ). We define md(Γ) = maxψ∈Γmd(ψ).

Theorem 35 (completeness). If Γ is satisfiable, then there exists an accepting execution of
sat(Γ).

Proof. By induction on md(Γ). Let P (k) is

‘For all Γ such that md(Γ) ≤ k, if Γ is satisfiable, then there exists an accepting execution
of sat(Γ).’

35

36 CHAPTER 5. SATISFIABILITY PROBLEM OF K IS PSPACE-COMPLETE

md(Γ) = 0 There exists a model M = (W,R, V) and a world w such that M, w |= ψ

for all Γ. We prove the following invariant during one possible execution of the algorithm:

for all ψ ∈ Γ, M, w |= ψ.

Rule and: if ψ1 ∧ ψ2 ∈ Γ, then M, w |= ψ1 ∧ ψ2. The rule and adds ψ1, ψ2 ∈ Γ. By the
definition of the truth condition, M, w |= ψ1 and M, w |= ψ2.

Rule or: if ψ1∨ψ2 ∈ Γ, then M, w |= ψ1∨ψ2. Either M, w |= ψ1 or M, w |= ψ2. Suppose
that we are in the case where M, w |= ψ2. It is then sufficient to consider the execution
where ψ2 is added to Γ and the invariant remains true.

As M, w |= p and M, w |= ¬p is impossible, the execution is accepting.
recursive case
Suppose P (k) and let us prove P (k+1). Let Γ such that md(Γ) = k+1. There exists a

model M = (W,R, V) and a world w such that M, w |= ψ for all Γ. The beginning of the
proof is the same than for the basic case: we make the non-deterministic choices according
to the truth of formulas in w.

Now, for all formulas of the form ♢ψ in Γ, as M, w |= ♢ψ there exists u ∈ R(w) such
that M, u |= ♢ψ. More: we have M, u |= χ for all □χ ∈ Γ.

Thus, ψ∪{χ | □χ ∈ Γ} is satisfiable. By P (k), satK(ψ∪{χ | □χ ∈ Γ}) has an accepting
execution. We can thus construct an accepting execution of satK(Γ).

Theorem 36 (soundness). If sat(Γ) has an accepting execution, then Γ is satisfiable in a
tree of depth md(Γ) and of arity the number of ♢ that appears in Γ.

Proof. P (k) is defined as:

If sat(Γ) has an accepting execution, then Γ is satisfiable in a tree of depth md(Γ) and of
arity the number of ♢ that appears in Γ.

basic case
There is no modal operator. We define a model M made up of a unique world w and

the valuation V (w) = AP ∩ Γ when the saturation has been made.
We prove that by induction on φ ∈ Γ that M, w |= φ.
Propositions: ok
Negations of proposition: ok
Or: If φ ∨ ψ ∈ Γ, we have either φ or ψ ∈ Γ because all the Boolean rules has been

applied. Suppose it is ψ ∈ Γ. We have M, w |= ψ. Thus, M, w |= φ ∨ ψ.
And: idem.
recursive case Suppose P (k). Let us prove P (k + 1).
Let us take Γ of model depth k+1 such that sat(Γ) succeeds. Then satK(ψ∪{χ | □χ ∈ Γ})

succeeds for all ♢ψ ∈ Γ after Boolean saturation.
As shown in Figure 5.1, we construct M by gluing models obtained from the subcall. By

induction, for all ♢ψ ∈ Γ, we can find a tree Mψ of depth at most k and arity at most the
number of ♢ in ψ ∪ {χ | □χ ∈ Γ}... well Γ.

We then create a root w as in the basic case where V (w) = AP ∩ Γ. We prove that by
induction on φ ∈ Γ that M, w |= φ.

5.3. PSPACE UPPER BOUND 37

w

w1 w2 w3

Figure 5.1: Model constructed by gluing models obtained from the subcall when diamond
formulas are ♢ψ1,♢ψ2 and ♢ψ3.

5.3 PSPACE upper bound

Theorem 37. The satisfiability problem for K is in PSPACE.

Proof. The algorithm we saw is sound and complete. It runs in polynomial space and is non-
deterministic. So the satisfiability problem for K is in NPSPACE. By Savitch’s theorem,
NPSPACE = PSPACE.

5.4 PSPACE lower bound

Theorem 38. The satisfiability problem for K is in PSPACE-hard.

Proof. By reduction from TQBF. Let us take a quantified binary formula ∃p1∀p2 . . . ∃p2n−1∀p2nχ
where χ is propositional. The game behind TQBF can be represented by the binary tree in
which pi is chosen at the i-th level.

p1

p1p2

p1p2p3

p1p2p3p4 p1p2p3

p1p2

p1p2p4 p1p2

p1

p1p3

p1p3p4 p1p3

p1

p1p4 p1

p2

p2p3

p2p3p4 p2p3

p2

p2p4 p2

p3

p3p4 p3 p4

Modal logic can express that the Kripke model contains this tree. The following formula
explains how the i-th level should look like:

□i[♢pi ∧ ♢¬pi ∧
∧
j<i

(pj ↔ □pj)]

Let TREE be the conjunction for i = 1..2n that forces the Kripke model to contain the
binary tree up to level 2n. On the input ∃p1∀p2 . . . ∃p2n−1∀p2nχ, the reduction computes in
polynomial time the modal formula TREE ∧ ♢□...♢□χ. The former is true iff the latter is
satisfiable.

38 CHAPTER 5. SATISFIABILITY PROBLEM OF K IS PSPACE-COMPLETE

Exercices
1. Write a deterministic algorithm for deciding the satisfiability for K.

Hint: use backtracking.

2. S5 is the modal logic interpreted in Kripke models where the relation is universal.

(a) Prove that if φ is S5-satisfiable, then it is true in a model in which the number
of worlds is bounded by the number of modal operators in φ.

(b) Deduce that the satisfiability for S5 is in NP.

(c) Why is the satisfiability for S5 NP-hard?

3. Prove that K is PSPACE-hard even with 0 variables! See [CR02]

4. Adapt the algorithm for the satisfiability for S4, the modal logic interpreted in Kripke
models where the relation is reflexive and transitive. (difficult)

Chapter 6

Satisfiability problem of logic with
counting

In this chapter, we focus on the satisfiability problem of a K#-formula.

6.1 Difficulty to get a PSPACE Tableau Method for K#

As explained in [NS23], it is not sufficient, as for K, to prove consistency in successors. We
also have to take into account implicit counting relations. For instance, we always have:

#p + #¬p = #q + #¬q.

To take these constraints into account, we rely on QFBAPA (Quantifier-free Fragment
Boolean Algebra with Presburger Arithmetic) which combines Presburger arithmetic (rea-
soning about linear inequalities) and Boolean algebra (reasoning about p, ¬p, q, ¬q, and all
Boolean formulas).

6.2 Quantifier-free Fragment Boolean Algebra with Pres-
burger Arithmetic

A QFBAPA formula is propositional formula where each atom is either an inclusion of sets or
equality of sets or linear constraints [KR07]. Sets are denoted by Boolean algebra expression,
e.g., (S∪S ′)\S ′′, or U where U denotes the set of all points in some domain. Here S, S ′, etc.
are set variables. Linear constraints are over |S| denoting the cardinality of the set denoted
by the set expression S. Let us give a formal definition of the syntax and semantics.

Definition 9. (see Figure 1 in [KR07]) A QBFBAPA formula is generated by the axiom φ
in the following BNF grammar:

φ ::= A | φ1 ∨ φ2 | ¬φ
A ::= B1 = B2 | B1 ⊆ B2 | E1 = E2 | E1 ≤ E2

B ::= S | ∅ | U | B1 ∪B2 | B
E ::= x | k | E1 + E2 | k × E | |B|

39

40 CHAPTER 6. SATISFIABILITY PROBLEM OF LOGIC WITH COUNTING

where S ranges in a countable set of set variables, x ranges in a countable set of integer
variables, k ranges in Z.

The original QFBAPA [KR07] also contains the construction k divides E where k is an
integer and E an expression. We omit it here since we do not use it. They also have a
constant MAXC which is always equal to |U|.

Definition 10. A QBFBAPA model is a tuple M = (D, [[· · ·]]) where

• D is a (possible empty) finite set, called the domain;

• for all integer variables x, [[x]] ∈ Z;

• for all set variables S, [[S]] ⊆ D.

We naturally extends [[· · ·]] to integer expressions and set expressions as follows:

[[k]] := k

[[E1 + E2]] := [[E1]] + [[E2]]

[[k × E]] := k × [[E]]

[[|B|]] := |[[B]]|[[B1 ∪B2]] := [[B1]] ∪ [[B2]]

[[B]] := [[B]][[U]] := D

Definition 11. The truth conditions are given as follows:

M |= B1 = B2 iff [[B1]] = [[B2]]

M |= B1 ⊆ B2 iff [[B1]] ⊆ [[B2]]

M |= E1 = E2 iff [[E1]] = [[E2]]

M |= E1 ≤ E2 iff [[E1]] ≤ [[E2]]

We are going to prove:

Theorem 39. QFBAPA satisfiability problem is in NP.

6.3 Fail for proving NP by naïve argument

We first discuss the fact that knowing the size (written in binary) does not help much.
Consider the following formula.

|U| = n ∧
∧

0≤i<j≤m

|Si ∪ Sj| = 30 ∧
∧

0≤i≤m

|Si| = 20

A certificate would consist in telling for each set variable Si which elements are in [[Si]]. So
each set variable is represented by a word {0, 1}n while n is given in binary. The certificate
is of exponential size in the size of the formula. So it seems that the satisfiability problem
of QFBAPA is in NEXPTIME.

6.4. VENN DIAGRAMS 41

S1

S2

S3

Figure 6.1: A Venn diagram with 3 set variables is made up of 8 regions.

6.4 Venn diagrams
A Venn diagram is a picture that contains all the possible intersections called regions, see
Figure 6.1.

The idea is to reason about the size of each region obtained by intersection and intro-
ducing a variable ℓ01010110 to denote that size:

Regions Size of that region
S1 ∩ S2 ∩ · · · ∩ Sn ℓ000...0
S1 ∩ S2 ∩ · · · ∩ Sn ℓ000...1
...

...
S1 ∩ S2 ∩ · · · ∩ Sn ℓ111...0
S1 ∩ S2 ∩ · · · ∩ Sn ℓ111...1

Example 40. For instance for n = 3 we have:

Regions Size of that region
S1 ∩ S2 ∩ S3 ℓ000
S1 ∩ S2 ∩ S3 ℓ001
S1 ∩ S2 ∩ S3 ℓ010
S1 ∩ S2 ∩ S3 ℓ011
S1 ∩ S2 ∩ S3 ℓ100
S1 ∩ S2 ∩ S3 ℓ101
S1 ∩ S2 ∩ S3 ℓ110
S1 ∩ S2 ∩ S3 ℓ111

We could rewrite any QFBAPA-formula using variables ℓ0101010111 as follows. We replace
each cardinality expression with sums of the appropriate variables ℓ0101010111. For instance:

|S1 ∩ S2 ∩ S3| = ℓ110

|S1| = ℓ100 + ℓ101 + ℓ110 + ℓ111

But there are an exponential number of variables in the number of set variables that will
be used. So again: the satisfiability problem of QFBAPA is in NEXPTIME.

Later on we will see that a poly-number of non-empty regions is sufficient. From that,
we get NP membership.

42 CHAPTER 6. SATISFIABILITY PROBLEM OF LOGIC WITH COUNTING

6.5 Naïve reduction to QFPA

We first explain the naïve reduction to quantifier-free Presburger arithmetics. It is made of
several steps of rewriting.

Getting rid of inclusions and set equality. We rewrite b1 = b2 into b1 ⊆ b2 ∧ b2 ⊆ b1.
We rewrite b1 ⊆ b2 into |b1 ∩ b2| = 0.

Variables for cardinalities of Boolean expressions. Instead of writing |bi|, we intro-
duce a new integer variable ki that represent the cardinal of bi. Our QFBAPA-formula φ is
written into

φ[|bi| := ki]︸ ︷︷ ︸
PA formula

∧
d∧
i=1

|bi| = ki︸ ︷︷ ︸
ψ

.

Said otherwise, we replace |bi| by ki and enforce the equalities |bi| = ki in a separate
clause ψ.

W.l.o.g. we suppose that b1 = U .

Venn diagrams. Now, the main idea is to rewrite ψ. The goal is to get rid from ∩, ∪,
etc. and only have integer variables. To do that, we will introduce integer variables ℓ1010010
etc. to represent cardinals of regions. At the end ψ will be replaced by ψ′ which is a formula
free from Boolean algebra operators (∩, ∪, etc. are deleted).

Let S1, . . . , Se the set variables appearing in b1, . . . , bd.
Each Venn diagram region is represent by a string β ∈ {0, 1}e. We write, given taken ∈

{0, 1}:

Stakeni =

{
Si if taken = 1

Si if taken = 0.

The Venn diagram region corresponding to β is:

Rβ :=
e⋂
j=1

Sβii .

Example 41. R101001 = S1 ∩ S2 ∩ S3 ∩ S4 ∩ S5 ∩ S6.

Given an set expression b we can say whether a given sβ is included in b.

Example 42. R101001 is included in S1 ∩ S3.

To check that sβ is included in b, we can consider b as a propositional formula and β as
a valuation. If β satisfies b then sβ is included in b. In the sequel, we write β |= b.

Example 43. β = 101001 is the valuation

6.6. POLYNOMIAL UPPER BOUND ON THE NUMBER OF NON-ZERO REGIONS43



S1 := 1
S2 = 0
S3 = 1
S4 = 0
S5 = 0
S6 = 1


and it satisfies the formula S1 ∧ S3.

We introduce variable ℓβ to represent |Rβ|. We rewrite ψ into ψ′:

ψ′ :=
d∧
i=1

∑
β∈{0,1}e|β|=bi

ℓβ = ki.

Proposition 44. φ is QFBAPA-satisfiable iff φ[|bi| := ki] ∧ ψ′ is QFPA-satisfiable.

6.6 Polynomial upper bound on the number of non-zero
regions

We will show that only a polynomial number of ℓβ can be non-zero.

é Ë

To do that, we will apply a Carathéodory bound for integer cones, see Th. 1 (ii) in
[ES06], reformulated by the following lemma. Given X ⊆ Zd, we define the integer cone of
X by:

cone(X) := {λ1x1 + · · ·+ λtxt | t ≥ 0, x1, . . . , xt ∈ X,λ1, . . . , λt ∈ N} .

In the following lemma, for a d-dimensional vector x, we write ||x||∞ := maxi=1..d |xi|. It
stands for the magnitude of x. And then M is the magnitude of a subset X of vectors.

Lemma 45. [ES06] Let X ⊆ Zd be a finite subset. Let M = maxx∈X ||x||∞.
For all b ∈ cone(X) there exists X̃ ⊆ X such that |X̃| ≤ 2d log2(4dM) and b ∈ cone(X̃).

Proof. Suppose that |X| > 2d log2(4dM) (otherwise we are done). That is M < 2|X|/2d

4d
.

44 CHAPTER 6. SATISFIABILITY PROBLEM OF LOGIC WITH COUNTING

d log(2|X|M + 1) < d log

(
|X|
2d

2|X|/(2d) + 1

)
by assumption

≤ d log

(
2|X|/(2d)

(
|X|
2d

+ 1

))
=

|X|
2

+ d log

(
|X|
2d

+ 1

)
≤ |X|

2
+ d · |X|

2d
by concavity of log

= |X|.

Suppose that b =
∑

x∈X λxx with λx ∈ N∗ for all x ∈ X (all the λx are strictly positive,
otherwise we are done).

For X̃ ⊆ X, we have
∑

x∈X̃ x ∈ {−|X|M, . . . , |X|M}d. So

card(

∑
x∈X̃

x | X̃ ⊆ X

) ≤ (2|X|M + 1)d

< 2|X|.

So there are two sets A,B ⊆ X, A ̸= B such that∑
x∈A

x =
∑
x∈B

x.

We set:

A′ := A \B
B := B \ A

We have ∑
x∈A′

x =
∑
x∈A

x−
∑

x∈A∩B

x =
∑
x∈B

x−
∑

x∈A∩B

x =
∑
x∈B′

x.

W.l.o.g. we suppose that A′ ̸= ∅. We set λ := minx∈A′ λx. Then:

b =
∑
x∈X

λxx =
∑

x∈X\A′

λxx+
∑
x∈A′

λxx

=
∑

x∈X\A′

λxx+
∑
x∈A′

(λx − λ)x+ λ
∑
x∈A′

x

=
∑

x∈X\A′

λxx+
∑
x∈A′

(λx − λ)x+ λ
∑
x∈B′

x

=
∑
x∈A′

(λx − λ)x+
∑

x∈X\(A′∪B′)

λxx+
∑
x∈B′

(λx + λ)

6.7. QBFPAPA SATISFIABILITY IN NP 45

The last line is another linear combination for b, in which all coefficients are positive but
λx − λ = 0 for some x ∈ A′ by definition of λ. So we found X̃ ⊊ X such that b ∈ cone(X̃).
We can iterate and remove elements from X until |X| ≤ 2d log2(4dM).

To apply Lemma 45, we rewrite ψ′ as the following system with d equations:
∑

β∈{0,1}e ℓβ[[b1]]β = k1
...∑

β∈{0,1}e ℓβ[[bd]]β = kd

where

[[bi]]β =

{
1 if β |= bi

0 otherwise
.

In a vectorial form, we get:

∑
β

ℓβ

 [[b1]]β
...

[[bd]]β

 =

 k1
...
kd



Said differently, if we set X =


 [[b1]]β

...
[[bd]]β

 | β ∈ {0, 1}e

, we get:

 k1
...
kd

 ∈ cone(X).

By Lemma 45, there exists a subset B ⊆ {0, 1}e of size at most 2d log2(4d) such that

∑
β∈B

ℓβ

 [[b1]]β
...

[[bd]]β

 =

 k1
...
kd

 .

6.7 QBFPAPA satisfiability in NP

Here is an algorithm for testing the satisfiability problem of QFBAPA-formula φ.

input: a QFBAPA-formula φ
output: true iff φ is QFBAPA-satisfiable
function QFBAPAsat(φ)

d := number of Boolean set expressions
e := number of set variables
Guess a subset B ⊆ {0, 1}e of size 2d log2(4d)
Check whether the QFPAPA-formula φ[|bi| := ki] ∧

∧d
i=1

∑
β∈B|β|=bi ℓβ = ki is satisfiable

If yes, return true. Otherwise return false

46 CHAPTER 6. SATISFIABILITY PROBLEM OF LOGIC WITH COUNTING

Example 46. Consider the formula (|S∩T | ≤ 5)∧(|S| > |T |). We have e = 2 set variables:
S and T . We have d = 3 set expressions: S ∩ T , S and T .

Theorem 47. QFBAPA satisfiability problem is in NP.

Proof. We have to prove that QFBABAsat is sound and complete. We have φ QFBAPA-
satisfable iff φ[|bi := ki] ∧

∧d
i=1

∑
β∈{0,1}e|β|=bi ℓβ = ki is QFBAPA-satisfiable.

⇒ If φ has a model, then φ[|bi := ki]∧
∧d
i=1

∑
β∈{0,1}e|β|=bi ℓβ = ki has a model: interpret

ki as the cardinality of bi and ℓβ as the cardinality of the region Rβ.
⇐ If φ[|bi := ki] ∧

∧d
i=1

∑
β∈{0,1}e|β|=bi ℓβ = ki is satisfiable, construct regions Rβ with

ℓβ each. Interpret bi as the union of Rβ such that β |= bi.
Finally, QFBAPAsat is non-deterministic algorithm that runs in polynomial time in |φ|.

6.8 Application: PSPACE Tableau Method for K#

We write a non-deterministic procedure inspired from [NS23] (in which we forgot to use
QFBAPA) and [Baa17] (in which QFBAPA is used but for a description logic close to K#).

6.8.1 Description of the algorithm

input: Γ a set of K#-formulas
output: yes if Γ is K#-satisfiable
function satK#(Γ)

apply non-deterministically Boolean tableau rules to Γ
let S be the set of inequalities in Γ
let #ψ1, . . .#ψd be a list of all constructions of the form #ψ appearing in Γ
Guess B ⊆ {0, 1}d of size ≤ 2d log2(4d)
Replace in S each occurrence of #ψi by

∑
β∈B|βi=1 ℓβ

Add the constraint ℓβ ≥ 1 for all β ∈ B in S
Check that S is QFBAPA-satisfiable
for β ∈ B do

satK#(
∧
i|βi=0 ¬ψi ∧

∧
i|βi=1 ψi)

In the algorithm, at each step, we extract the set of inequalities in Γ. For instance, we
may get S to be {

#ψ1 + 3#ψ2 ≤ 5
2#ψ1 + 4#ψ3 ≤ 42

The use we make of QFBAPA is "trivial" since set expressions and set variables coincide:
they are ψ1, ψ2, The content of ψi may be Boolean (and also modal) but the Boolean
reasoning is directly handled by tableau rules. So the use of the QBFPAPA technique is for
d = e (we write B ⊆ {0, 1}e instead of B ⊆ {0, 1}d).

We then guess B which are the non-zero regions. For instance, having

B := {100, 101, 111}
mean that we are trying to create successors for the current vertex where

6.8. APPLICATION: PSPACE TABLEAU METHOD FOR K# 47

1. ψ1 ∧ ¬ψ2 ∧ ¬ψ3 holds in a subset of successors (ℓ100 is the cardinal);

2. ψ1 ∧ ¬ψ2 ∧ ψ3 holds in a subset of successors (ℓ101 is the cardinal);

3. ψ1 ∧ ψ2 ∧ ψ3 holds in a subset of successors (ℓ111 is the cardinal).

Other combinations (e.g. ¬ψ1 ∧ ψ2 ∧ ψ3) are not present in the model we construct.
We then replace #ψ1 by the sum of ℓ100 (if 100 in B), ℓ101 (if 101 in B), ℓ110 (if 110 in

B), ℓ111 (if 111 in B). Similarly for #ψ2 and #ψ3.
As we are going then to check for satisfiability of 1.-3. (for loop at the end of the

algorithm), we add that ℓβ ≥ 1 for all non-zero regions β.

6.8.2 Soundness and completeness

Proposition 48. If satK#(Γ) has an accepting execution then Γ is K#-satisfiable.

Proof. We glue together the set of successors etc. We obtain a tree whose root satisfy Γ.

Proposition 49. If Γ is K#-satisfiable, then satK#(Γ) has an accepting execution.

Proof. We apply the tableau rules accordingly.

Exercises
Exercise 12. Take a K#-formula of your choice and apply the algorithm satK#.

Exercise 13. Show that QFBAPA is NP-hard even if numbers that are written are in for-
mulas are 0 and 1.

Exercise 14. Prove formally the theorems of the chapter.

Exercise 15. Adapt the algorithm satK# when we are search for an undirected graph.

48 CHAPTER 6. SATISFIABILITY PROBLEM OF LOGIC WITH COUNTING

Chapter 7

Going further

This chapter gives pointers to articles that students may study and present.

7.1 Verification
Exact Verification of Graph Neural Networks with Incremental Constraint Solving: https:
//arxiv.org/pdf/2508.09320

Fundamental Limits in Formal Verification of Message-Passing Neural Networks: https:
//openreview.net/forum?id=WlbG820mRH-

7.2 Expressivity
Aggregate-Combine-Readout GNNs Are More Expressive Than Logic C2: https://arxiv.
org/pdf/2508.06091

7.3 QFBAPA
Lower bounds of Caratheodory for QBFPABA in [KR07].

49

https://arxiv.org/pdf/2508.09320
https://arxiv.org/pdf/2508.09320
https://openreview.net/forum?id=WlbG820mRH-
https://openreview.net/forum?id=WlbG820mRH-
https://arxiv.org/pdf/2508.06091
https://arxiv.org/pdf/2508.06091

50 CHAPTER 7. GOING FURTHER

Bibliography

[AKRV15] Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. On the
power of color refinement. In Adrian Kosowski and Igor Walukiewicz, editors,
Fundamentals of Computation Theory - 20th International Symposium, FCT
2015, Gdańsk, Poland, August 17-19, 2015, Proceedings, volume 9210 of Lecture
Notes in Computer Science, pages 339–350. Springer, 2015.

[Baa17] Franz Baader. A new description logic with set constraints and cardinality con-
straints on role successors. In Clare Dixon and Marcelo Finger, editors, Frontiers
of Combining Systems - 11th International Symposium, FroCoS 2017, Brasília,
Brazil, September 27-29, 2017, Proceedings, volume 10483 of Lecture Notes in
Computer Science, pages 43–59. Springer, 2017.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time [extended abstract].
In Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 684–697. ACM, 2016.

[BBG17] Christoph Berkholz, Paul S. Bonsma, and Martin Grohe. Tight lower and upper
bounds for the complexity of canonical colour refinement. Theory Comput. Syst.,
60(4):581–614, 2017.

[BdRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic, volume 53
of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2001.

[BES80] László Babai, Paul Erdös, and Stanley M. Selkow. Random graph isomorphism.
SIAM J. Comput., 9(3):628–635, 1980.

[BKM+20] Pablo Barceló, Egor V. Kostylev, Mikaël Monet, Jorge Pérez, Juan L. Reutter,
and Juan Pablo Silva. The logical expressiveness of graph neural networks. In
8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[BLMT24] Michael Benedikt, Chia-Hsuan Lu, Boris Motik, and Tony Tan. Decidability
of graph neural networks via logical characterizations. In Karl Bringmann,
Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International
Colloquium on Automata, Languages, and Programming, ICALP 2024, July 8-
12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 127:1–127:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

51

52 BIBLIOGRAPHY

[CC82] A. Cardon and Maxime Crochemore. Partitioning a graph in o(|a| log2 |v|).
Theor. Comput. Sci., 19:85–98, 1982.

[CFI92] Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the
number of variables for graph identification. Comb., 12(4):389–410, 1992.

[CR02] Alexander V. Chagrov and Mikhail N. Rybakov. How many variables does one
need to prove pspace-hardness of modal logics. In Philippe Balbiani, Nobu-Yuki
Suzuki, Frank Wolter, and Michael Zakharyaschev, editors, Advances in Modal
Logic 4, papers from the fourth conference on "Advances in Modal logic," held in
Toulouse, France, 30 September - 2 October 2002, pages 71–82. King’s College
Publications, 2002.

[ES06] Friedrich Eisenbrand and Gennady Shmonin. Carathéodory bounds for integer
cones. Oper. Res. Lett., 34(5):564–568, 2006.

[EVW02] Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with
two variables and unary temporal logic. Inf. Comput., 179(2):279–295, 2002.

[Für83] Martin Fürer. The computational complexity of the unconstrained limited
domino problem (with implications for logical decision problems). In Egon
Börger, Gisbert Hasenjaeger, and Dieter Rödding, editors, Logic and Machines:
Decision Problems and Complexity, Proceedings of the Symposium "Rekursive
Kombinatorik" held from May 23-28, 1983 at the Institut für Mathematische
Logik und Grundlagenforschung der Universität Münster/Westfalen, volume 171
of Lecture Notes in Computer Science, pages 312–319. Springer, 1983.

[GKV97] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem
for two-variable first-order logic. Bull. Symb. Log., 3(1):53–69, 1997.

[Gro21] Martin Grohe. The logic of graph neural networks. In 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 -
July 2, 2021, pages 1–17. IEEE, 2021.

[HHSS07] Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate A. Schmidt. Com-
putational modal logic. In Patrick Blackburn, J. F. A. K. van Benthem, and
Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in logic
and practical reasoning, pages 181–245. North-Holland, 2007.

[HV21] Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-
lehman test and its variants. In IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2021, Toronto, ON, Canada, June 6-11,
2021, pages 8533–8537. IEEE, 2021.

[HZ19] Christoph Haase and Georg Zetzsche. Presburger arithmetic with stars, rational
subsets of graph groups, and nested zero tests. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada,
June 24-27, 2019, pages 1–14. IEEE, 2019.

BIBLIOGRAPHY 53

[IL90] Neil Immerman and Eric Lander. Describing graphs: A first-order approach
to graph canonization. In Complexity Theory Retrospective: In Honor of Juris
Hartmanis on the Occasion of His Sixtieth Birthday, July 5, 1988, pages 59–81.
Springer, 1990.

[KR07] Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for
boolean algebra with presburger arithmetic. In Frank Pfenning, editor, Auto-
mated Deduction – CADE-21, pages 215–230, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg.

[MLM+23] Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M.
Kriege, Martin Grohe, Matthias Fey, and Karsten M. Borgwardt. Weisfeiler and
leman go machine learning: The story so far. J. Mach. Learn. Res., 24:333:1–
333:59, 2023.

[MRF+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric
Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural:
Higher-order graph neural networks. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pages 4602–4609. AAAI Press, 2019.

[NS23] Pierre Nunn and François Schwarzentruber. A modal logic for explaining some
graph neural networks. CoRR, abs/2307.05150, 2023.

[NSST24] Pierre Nunn, Marco Sälzer, François Schwarzentruber, and Nicolas Troquard. A
logic for reasoning about aggregate-combine graph neural networks. In Proceed-
ings of the Thirty-Third International Joint Conference on Artificial Intelligence,
IJCAI 2024, Jeju, South Korea, August 3-9, 2024, pages 3532–3540. ijcai.org,
2024.

[Pra14] Ian Pratt-Hartmann. Logics with counting and equivalence. In Thomas A.
Henzinger and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-
LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages 76:1–76:10. ACM, 2014.

[PT87] Robert Paige and Robert Endre Tarjan. Three partition refinement algorithms.
SIAM J. Comput., 16(6):973–989, 1987.

[RNE+22] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou,
Chen Shao, Houssam Metni, Clint van Hoesel, Henrik Schopmans, Timo Som-
mer, and Pascal Friederich. Graph neural networks for materials science and
chemistry. Communications Materials, 3(93), 2022.

[Sat20] Ryoma Sato. A survey on the expressive power of graph neural networks. CoRR,
abs/2003.04078, 2020.

[Sch88] Uwe Schöning. Graph isomorphism is in the low hierarchy. J. Comput. Syst.
Sci., 37(3):312–323, 1988.

54 BIBLIOGRAPHY

[SLJ21] Amirreza Salamat, Xiao Luo, and Ali Jafari. Heterographrec: A heterogeneous
graph-based neural networks for social recommendations. Knowl. Based Syst.,
217:106817, 2021.

[SST25] Marco Sälzer, François Schwarzentruber, and Nicolas Troquard. Verifying quan-
tized graph neural networks is pspace-complete. CoRR, abs/2502.16244, 2025.

[Tob99] Stephan Tobies. A pspace algorithm for graded modal logic. In Harald Ganzinger,
editor, Automated Deduction - CADE-16, 16th International Conference on Au-
tomated Deduction, Trento, Italy, July 7-10, 1999, Proceedings, volume 1632 of
Lecture Notes in Computer Science, pages 52–66. Springer, 1999.

[Tur37] Alan M. Turing. On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Soc., s2-42(1):230–265, 1937.

[XHLJ19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are
graph neural networks? In 7th International Conference on Learning Represen-
tations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[XXC+21] Jiacheng Xiong, Zhaoping Xiong, Kaixian Chen, Hualiang Jiang, and Mingyue
Zheng. Graph neural networks for automated de novo drug design. Drug Dis-
covery Today, 26(6):1382–1393, 2021.

[YKS+22] Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan Song, and Junsong Wang.
A comprehensive survey of graph neural networks for knowledge graphs. IEEE
Access, 10:75729–75741, 2022.

	Graph neural networks and Weisfeiler-Lehman tests
	Motivation
	Graph neural networks
	GNN on graphs
	Graph isomorphism
	1-WL aka Color refinement
	Description
	Example
	Implementation
	Indistinguishability
	Link with isomorphism
	Analysis of failure

	Colour refinement and GNNs
	Colour refinement is self-contained
	But GNNs are powerful

	Generalizations (*)
	k-FWL test (for k 2)
	k-OWL test (for k 2)
	Relations
	Higher-order GNNs

	... and logic
	First-order logic
	First-order logic with counting
	Modal logic
	Syntax
	Semantics
	Standard translation

	Graded Modal logic
	Definition
	Link with colour refinement
	Link with GNNs

	Verifying GNNs
	Representing a GNN with a "logic"
	Syntax
	Semantics
	Correspondence with GNNs

	Logic K#
	Syntax
	Semantics

	K# and truncReLU-GNNs
	From K# to truncReLU-GNNs
	From truncReLU-GNNs to K#

	Reduction to the satisfiability of K#
	Going further
	ReLU
	Quantized GNNs

	Satisfiability problem of K
	Negative normal form
	Overview
	Tableau rules
	Example
	Tableau system as a labelled proof system
	Soundness and completeness

	Satisfiability problem of K is PSPACE-complete
	Algorithm
	Soundness and completeness
	PSPACE upper bound
	PSPACE lower bound

	Satisfiability problem of logic with counting
	Difficulty to get a PSPACE Tableau Method for K#
	Quantiﬁer-free Fragment Boolean Algebra with Presburger Arithmetic
	Fail for proving NP by naïve argument
	Venn diagrams
	Naïve reduction to QFPA
	Polynomial upper bound on the number of non-zero regions
	QBFPAPA satisfiability in NP
	Application: PSPACE Tableau Method for K#
	Description of the algorithm
	Soundness and completeness

	Going further
	Verification
	Expressivity
	QFBAPA

