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Abstract. We describe the dynamical evolution of collisionless stellar systems on a coarse-grained scale. We first discuss the
statistical theory of violent relaxation, following the seminal paper of Lynden-Bell (1967). Consistently with this statistical
approach, we present kinetic equations for the coarse-grained distribution function f (r, u, t) based on a Maximum Entropy
Production Principle or on a quasi-linear theory of the Vlasov-Poisson system. Then, we develop a deterministic approach
where the coarse-grained distribution function is defined as a convolution of the fine-grained distribution function f (r, u, t) by a
Gaussian window. We derive the dynamical equation satisfied by f (r, u, t) and show that its stationary states are different from
those predicted by the statistical theory of violent relaxation. This implies that the notion of coarse-graining must be defined
with care. We apply these results to the HMF (Hamiltonian Mean Field) model and find that the spatial density is similar to a
Tsallis q-distribution where the q parameter is related to the resolution length.
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1. Introduction

For most stellar systems, including the important class of el-
liptical galaxies, the relaxation time due to close encounters
is larger than the Hubble time by several orders of magni-
tude (Binney & Tremaine 1987). Therefore, close encounters
are negligible and the fundamental dynamics is that of a colli-
sionless system in which the constituent particles (stars) move
under the influence of the mean potential generated by all the
other particles. Mathematically, the dynamics of stellar systems
is described by the self-consistent Vlasov-Poisson system. The
evolution of the Vlasov-Poisson system is extremely compli-
cated. Although the dynamics is collisionless, the fluctuations
of the gravitational potential are able to redistribute energy be-
tween stars and provide an effective relaxation mechanism on a
very short timescale (violent relaxation). This collisionless re-
laxation is able to account for the regularity of elliptical galax-
ies and other astrophysical bodies.

Starting from an unstable initial condition, the Vlasov-
Poisson system develops an intricate filamentation in phase
space (phase mixing). In physical space, this mixing process
is associated with the heavily damped oscillations of a galaxy
away from mechanical equilibrium. In a strict sense, the dis-
tribution function f (r, u, t) does not reach an equilibrium dis-
tribution but develops smaller and smaller filaments. However,

if we introduce a coarse-graining procedure and locally aver-
age over the filaments, the coarse-grained distribution function
f (r, u, t) is expected to reach a stationary state f (r, u) on a short
timescale of the order of the dynamical time. It is usually advo-
cated that this metaequilibrium state is a particular stationary
solution of the Vlasov equation.

A statistical theory appropriate for this process of vio-
lent relaxation has been developed by Lynden-Bell (1967). For
given initial condition, this theory predicts the most mixed
state consistent with the constraints imposed by the dynam-
ics (mass, energy and Casimirs integrals). Unfortunately, the
statistical prediction of Lynden-Bell is limited by the prob-
lem of incomplete relaxation. Real stellar systems tend towards
the equilibrium state during violent relaxation but cannot at-
tain it: the fluctuations of the gravitational potential die away
before the relaxation process is complete (Lynden-Bell 1967).
For that reason, Tremaine et al. (1987) introduce the notion
of H-functions in order to quantify the importance of mixing.
They show in particular that these functionals increase on the
coarse-grained scale while the coarse-grained energy is approx-
imately conserved. Therefore, the metaequilibrium state maxi-
mizes a certain H-function at fixed mass and energy. This is a
particular stationary solution of the Vlasov equation with non-
linear dynamical stability (Chavanis 2003a,b; Chavanis & Sire
2004).
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In this paper, we discuss the dynamical evolution of col-
lisionless stellar systems. Although the evolution of the fine-
grained distribution function f (r, u, t) is entirely determined by
the Vlasov-Poisson system, we are in general more interested
by the evolution of the coarse-grained distribution function
f (r, u, t). The problem thus consists of determining the dynam-
ical equation satisfied by f . In a previous paper, Chavanis et al.
(1996) have obtained such an equation by using a phenomeno-
logical Maximum Entropy Production Principle (MEPP). This
principle assumes that, during violent relaxation, the system
tends to maximize the rate of entropy production Ṡ while con-
serving all the constraints imposed by the dynamics. It leads
to a generalized Fokker-Planck equation involving a diffusion
in velocity space and friction. The friction is nonlinear so as
to account for the specific constraints associated with colli-
sionless evolution. On the other hand, the diffusion coefficient,
which is related to the fluctuations of the distribution func-
tion, can account for the process of incomplete relaxation. As
the fluctuations weaken when the system approaches equilib-
rium, the coarse-grained relaxation is stopped and the system
can remain frozen in a confined region of phase space. This
dynamical effect can physically solve the infinite mass prob-
lem associated with the maximization of the Boltzmann en-
tropy (in the sense of Lynden-Bell) in an unlimited domain.
Another approach consists of developing a quasilinear theory
of the Vlasov-Poisson system (Kadomtsev & Pogutse 1970;
Severne & Luwel 1980; Chavanis 2002a, 2004). This approach
is expected to describe a “gentle relaxation” valid close to the
equilibrium state when the fluctuations have weakened. It leads
to a generalized Landau equation respecting the specificities
of the collisionless relaxation. In the two-level approximation
of the theory of violent relaxation, this kinetic equation re-
laxes towards the Fermi-Dirac distribution function predicted
by Lynden-Bell (1967). The generalization to an arbitrary spec-
trum of phase levels is also possible.

In the quasilinear theory, the smooth distribution function f
results from two operations of averaging: a local average over
a macrocell of size ε3r ε

3
v and a statistical average over differ-

ent realizations of the flow. We shall refer to this situation as
the statistical approach. It is closely related to the statistical
theory of Lynden-Bell. In this paper, we shall consider a dif-
ferent approach. We define the coarse-grained distribution as
the convolution of f (r, u, t) by a Gaussian window of size ε3r ε

3
v .

We come back therefore to the original definition of “coarse-
graining”. As we shall see, this approach leads to a new type of
kinetic equation which differs from the one obtained with the
quasilinear theory or with the MEPP. We shall refer to this situ-
ation as the deterministic approach because it just exploits the
properties of the Gaussian window and it does not make any
assumption about stochastic fluctuations.

Our new treatment has been inspired by the work of
Bouchet (2004) in the context of two-dimensional turbulence.
As already observed in previous works, the 2D Euler-Poisson
system presents deep analogies to the Vlasov-Poisson system
(see Chavanis 2002b). Therefore, it is of interest to put the two
topics in parallel and investigate how the results obtained in
one domain can be extended to the other.

2. The statistical approach

2.1. The maximum entropy production principle

Basically, a collisionless stellar system is described by the
Vlasov-Poisson system

∂ f
∂t
+ u
∂ f
∂r
+ F
∂ f
∂u
= 0, (1)

∆Φ = 4πG
∫

f d3u, (2)

where F = −∇Φ is the gravitational force by unit of mass (ac-
celeration). We introduce the decomposition f = f + f̃ where
f is the coarse-grained distribution function and f̃ is the fluc-
tuation. We assume that f results from a statistical average so

that f = f . Taking the local average of the Vlasov equation, we
obtain an equation of the form

∂ f
∂t
+ u
∂ f
∂r
+ F
∂ f
∂u
= −∂J
∂u
, (3)

for the coarse-grained distribution function, with a diffusion

current J = f̃ F̃ related to the correlations of the fine-grained
fluctuations. There is no diffusion in position space since the
velocity u is a pure coordinate and therefore does not fluctuate.

The problem in hand consists of determining the cur-
rent J . One suggestion is to use a phenomenological Maximum
Entropy Production Principle (Chavanis et al. 1996). In the
simplest case where the fine-grained distribution function takes
only two values f = η0 and f = 0, it leads to an equation of the
form

∂ f
∂t
+ L f =

∂

∂u

{
D

[
∂ f
∂u
+ β(t) f (η0 − f )u

]}
, (4)

where L = u∂/∂r + F∂/∂u is the advection operator in phase
space and D the diffusion coefficient. The inverse temperature

β(t) = −
∫

D ∂ f
∂u ud

3r d3u∫
D f (η0 − f )v2d3r d3u

(5)

evolves in time so as to satisfy the conservation of energy
Ė = 0. Morphologically, this equation can be viewed as a
generalized Fokker-Planck equation (or Kramers equation) in-
volving a diffusion in velocity space and friction (Chavanis
2003b). We note that the friction is nonlinear due to the prod-
uct f × (η0 − f ) which guarantees that f ≤ η0, as imposed by
the Vlasov equation on the coarse-grained distribution func-
tion. Therefore, the relaxation Eq. (4) converges towards the
Lynden-Bell distribution

f =
η0

1 + λeβη0( v
2
2 +Φ)
, (6)

which coincides with the Fermi-Dirac distribution in the two-
level approximation (Chavanis & Sommeria 1998).

The relaxation Eq. (4) possesses several interesting proper-
ties. However, the MEPP approach is phenomenological and
does not provide the value of the diffusion coefficient D.
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Secondly, it leads to an equation which is not Galilean in-
variant. In particular, the friction depends on the velocity of
a stellar fluid particle, not on the relative velocity, as we could
expect. Finally, the conservation of energy is enforced by a for-
mal Lagrange multiplier β(t) whose physical interpretation is
not clear. Therefore, the status of the MEPP is not firmly estab-
lished. Yet, it can provide a useful parametrization of mixing
in the nonlinear regime of the violent relaxation where pertur-
bative methods such as the quasilinear theory of Sect. 2.2 fail.
In any case, the generalized relaxation equations obtained with
the MEPP can serve as numerical algorithms to compute the
statistical equilibrium state predicted by Lynden-Bell (1967)
(this can have interesting applications for other systems with
long-range interactions described by the Vlasov equation). To
improve the model, the relaxation equations can be extended so
as to satisfy the conservation, at the fine-grained scale, of all the
Casimirs (Chavanis et al. 1996). Moreover, the diffusion coeffi-
cient can be related to the fluctuations of the distribution func-
tion. In that case, it vanishes when the fluctuations die away
(Chavanis 1998). This effect should lead to a confinement of
the system in phase space and avoid the infinite mass problem.

It may also be of interest to introduce a relaxation
equation which monotonically increases a H-function S =

− ∫ C( f )d3rd3u, where C is convex, while conserving mass
and energy. This is associated with the phenomenology of vi-
olent relaxation where the H-functions are weak constraints
(i.e. affected by the coarse-graining) while the energy is a
robust constraint (i.e. approximately conserved at the coarse-
grained scale). Such a relaxation has the form of a generalized
Fokker-Planck equation (Chavanis 2003b):

∂ f
∂t
+ L f =

∂

∂u

{
D

[
∂ f
∂u
+
β(t)

C′′( f )
u

]}
· (7)

It satisfies Ṡ ≥ 0 and leads to a stationary state of the form

C′( f ) = −βε − α, (8)

which maximizes the H-function S at fixed M and E.
Therefore, the relaxation Eq. (7) can be used as a numeri-
cal algorithm to construct any nonlinearly dynamically sta-
ble stationary solution of the Vlasov equation of the form
f = F(βε + α) with F(x) = (C′)−1(−x) specified by the func-
tion C. We can thus obtain a larger class of stationary solutions
of the Vlasov equation that are not captured by the statistical
mechanics of violent relaxation due to incomplete relaxation.
Similar equations can be written in 2D turbulence (Robert &
Sommeria 1992; Chavanis 2003b) and for other systems with
long-range interactions described by the Vlasov equation.

2.2. The quasilinear theory

Another kinetic theory of violent relaxation was developed by
Kadomtsev & Pogutse (1970), Severne & Luwel (1980) and
Chavanis (2002a, 2004) by using a quasilinear theory of the
Vlasov-Poisson system. Subtracting Eqs. (1) and (3), we obtain
the following equation for the fluctuations

∂ f̃
∂t
+ u
∂ f̃
∂r
+ F
∂ f̃
∂u
= −F̃

∂ f
∂u
− F̃
∂ f̃
∂u
+ F̃
∂ f̃
∂u
· (9)

The essence of the quasilinear theory is to assume that the fluc-
tuations are weak and neglect the nonlinear terms in Eq. (9)
altogether. Thus, this theory can only describe the late stages
of the process of violent relaxation when the fluctuations have
weakened.

When this approximation is used, it is possible to solve
Eq. (9) formally in terms of Green functions to obtain the fluc-
tuating distribution function f̃ in term of the past evolution of
f . Substituting the resulting expression for f̃ in Eq. (3) and
implementing a Markovian approximation, a local approxima-
tion and a linear trajectory approximation, the current can be
explicitly evaluated. In the two-level approximation, this ap-
proach leads to a kinetic equation of the form

∂ f
∂t
+ L f =

∂

∂vµ

∫
d3u′Kµν

[
f
′
(η0 − f

′
)
∂ f
∂vν
− f (η0 − f )

∂ f
′

∂v′ν

]
, (10)

with

Kµν = 2πG2ε3r ε
3
v ln

(
R
εr

)
u2δµν − uµuν

u3
, (11)

where f
′
stands for f (r, u′, t) and u = u′−u is the relative veloc-

ity. Equation (10) can be viewed as a generalized Landau equa-
tion. As before, this equation involves a term f × (η0− f ), which
enforces the constraint f ≤ η0, and converges at equilibrium
towards the Lynden-Bell distribution function (6). Contrary to
the MEPP approach, this equation is self-consistent, Galilean
invariant, and the conservation of energy results from proper-
ties of symmetry and not from a formal Lagrange multiplier.
A connexion can be found between Eqs. (4) and (10) if we
replace f ′ in Eq. (10) by its equilibrium value (6). This may
be a reasonable approximation if we are close to equilibrium
(Chavanis 1998). Nevertheless, the degree of validity of this
approximation is difficult to estimate. A quasilinear theory of
the 2D Euler equation leading to a kinetic equation akin to
Eq. (10) has also been developed in the context of 2D turbu-
lence (Chavanis 2000).

We can also propose a generalization of Eq. (10) which in-
creases an arbitrary H-function (Chavanis 2004):

∂ f
∂t
+ L f =

∂

∂vµ

∫
d3u′Kµν

[
1

C′′( f
′
)

∂ f
∂vν
− 1

C′′( f )

∂ f
′

∂v
′ν

]
·

(12)

This can be viewed as a heuristic approach to go beyond the
two-level approximation while leaving the problem tractable.
A more rigorous approach would be to write down a set of
N coupled relaxation equations for each level η as sketched by
Severne & Luwel (1980).



774 P. H. Chavanis and F. Bouchet: On the coarse-grained evolution of collisionless stellar systems

3. The deterministic approach

3.1. The coarse-grained Vlasov equation

We shall now develop a completely different approach to the
process of coarse-grained relaxation. We define the local aver-
age h(r, u) of a quantity h(r, u) by the convolution

h(r, u) =
∫

h(r + s, u + w) G(s,w)d3s d3w (13)

where

G(s,w) =
1

(2πεrεv)3
e−s2/2ε2r e−w

2/2ε2v (14)

is a Gaussian window in phase space. If h(r, u) has a filamen-
tary structure at small scales, this operation smoothes out this
function on a phase space cell of size ε3r ε

3
v . We also define the

fluctuation as h̃ = h− h. Contrary to the statistical average con-
sidered in Sect. 2, the averaging operator (14) does not verify

the relation f = f . Therefore, new terms arise when we average
the Vlasov equation with Eq. (14).

We can write the locally averaged Vlasov equation in the
form

∂ f
∂t
+ L f = −∂Jdr

∂r
− ∂
∂u

(Jdv + Js). (15)

The current has been split in two parts. The terms Jdr = f u− f u

and Jdv = f F− f F which do not depend on the fluctuations of
the gravitational field form the deterministic component of the
current. These terms reduce to zero for a statistical average. In
the present context, they represent the dominant contribution to

the current. The term Js = f F̃ which depends on the fluctua-
tions of the gravitational field forms the stochastic component
of the current. It is similar to the term considered in Sect. 2.

We shall now express the deterministic component of the
current in terms of the coarse-grained distribution function in
order to obtain a closed kinetic equation. First of all, we note
that

Jdr =

∫
f (r + s, u + w, t) G(s,w) w d3s d3w. (16)

Using the property of the Gaussian window, this can be rewrit-
ten

Jdr = −ε2v
∫

f (r + s, u + w, t)
∂G
∂w

d3s d3w. (17)

Integrating by parts, we finally obtain

Jdr = ε
2
v

∂ f
∂u
· (18)

To simplify Jdv, we expand the smooth gravitational force F in
Taylor series around r. To leading order, we get

Ji
dv =
∂Fi

∂x j

∫
f (r + s, u + w, t) G(s,w) s j d3s d3w. (19)

Now, using a procedure similar to that leading to Eq. (18) we
obtain

Ji
dv = −ε2r

∂2Φ

∂xi∂x j

∂ f
∂x j
· (20)

Collecting the previous results, the equation for the coarse-
grained distribution function can be put in the form

∂ f
∂t
+ L f =

(
ε2r
∂2Φ

∂xi∂x j
− ε2v δi j

)
∂2 f
∂xi∂v j

· (21)

To obtain this equation, we have used an approximation and a
method similar to that developed by Bouchet (2004) in the case
of the 2D Euler equation. In this analogy, the term in paren-
thesis in Eq. (21) plays the same role as the strain tensor in
2D hydrodynamics.

3.2. The conservation laws

We shall now discuss the conservation laws associated with the
coarse-grained Vlasov equation. The coarse-grained energy is

E =
1
2

∫
f v2d3r d3u +

1
2

∫
ρΦd3r = K +W, (22)

where K is the kinetic energy and W the potential energy.
Expanding the expression

f v2 =
∫

f (r + s, u + w, t)(u + w)2G(s,w)d3s d3w, (23)

we find that

f v2 = f v2 + I1 + I2, (24)

where

I1 = 2u ·
∫

f (r + s, u + w, t)wG(s,w)d3s d3w, (25)

I2 =

∫
f (r + s, u + w, t)w2G(s,w)d3s d3w. (26)

The first integral is equal to

I1 = 2ε2v u ·
∂ f
∂u
· (27)

To compute the second integral, we use the fact that

w2G = ε4v∆uG + 3ε2vG. (28)

Substituting this identity in Eq. (26) and integrating by parts
twice, we finally obtain

I2 = ε
4
v∆u f + 3ε2v f . (29)

Regrouping these results, we find that the coarse-grained ki-
netic energy is

K =
∫

f
v2

2
d3u − 3

2
ε2v M, (30)

where M =
∫

f d3r d3u is the mass. For the potential energy, we
have

W =
1
2

∫
ρΦd3r +

1
2

∫
ρΦ̃d3r. (31)

The second term represents the energy of the stochastic fluc-
tuations Js (see Eq. (15)). Consistent with the neglect of Js,
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we will neglect this contribution to the energy. Since the coarse-
grained potential Φ is smooth, it can be expanded in a Taylor
series. Using a method similar to that of Sect. 3.1, we obtain to
leading order in εr,

W =
1
2
ε2r

∫
∇ρ · ∇Φd3r +

1
2

∫
ρ Φd3r. (32)

Now, integrating by parts and using the Poisson equation, the
first integral can be rewritten

∫
∇ρ · ∇Φd3r = −4πGM2, (33)

where

M2 =

∫
ρ2d3r. (34)

In conclusion, the coarse-grained energy is

E =
∫

f
v2

2
d3ud3r +

1
2

∫
ρ Φd3r − 3

2
ε2v M − 2πGε2r M2. (35)

The coarse-grained angular momentum is

L =
∫

f r × ud3r d3u. (36)

Using an adaptation of the preceding results, we find that

f xiv j = f xiv j + ε
2
r
∂ f
∂xi
v j + ε

2
v xi
∂ f
∂v j
+ ε2r ε

2
v

∂2 f
∂xi∂v j

· (37)

Since the derivatives vanish upon integration, we finally find
that the coarse-grained angular momentum is

L =
∫

f r × ud3r d3u. (38)

The coarse-grained impulse is

P =
∫

f ud3r d3u. (39)

Since

f u = f u + ε2v
∂ f
∂u
, (40)

we finally find that the coarse-grained impulse is

P =
∫

f ud3r d3u. (41)

Because the energy, the angular momentum and the impulse
are conserved by the Vlasov equation, the coarse-grained en-
ergy, angular momentum and impulse must be conserved by the
coarse-grained Vlasov Eq. (21). We directly verify this prop-
erty in Appendix A.

3.3. The H-functions

Following Tremaine et al. (1987), we introduce a family of
functionals, called H-functions, defined by

S = −
∫

C( f )d3r d3u, (42)

where C is convex. These functionals are particular Casimirs,
so they are conserved by the Vlasov equation. However,
Tremaine et al. (1987) show that they increase on the coarse-
grained scale in the sense that S [ f (t2)] ≥ S [ f (t1)], where
it is assumed that, at t = t1, the system is not mixed,
i.e. f (r, u, t1) = f (r, u, t1). Due to the resemblance with the
H-theorem in kinetic theory, S is sometimes called a gener-
alized entropy (Chavanis 2003b). However, we emphasize that
the H-functions do not have a statistical origin (they cannot be
obtained from a counting analysis), that they are not universal
(contrary to the Boltzmann entropy in statistical mechanics),
and that a monotonic increase of S (t) is not granted in general.

Using our approach, we can determine the evolution of S (t)
via the coarse-grained Vlasov Eq. (21). After straightforward
integration by parts, we obtain

Ṡ = −
∫

C′′( f )
∂ f
∂xi

(
ε2r
∂2Φ

∂xi∂x j
− ε2v δi j

)
∂ f
∂v j

d3r d3u. (43)

We note that the coarse-graining operation (13) is compatible
with the symmetry t → −t, u → −u. As a consequence, the
coarse-grained Vlasov Eq. (21) remains reversible. Therefore,
no Lyapunov functional exists and the H-functions cannot
monotonically increase for every initial conditions. This is at
variance with the kinetic equations introduced in the statistical
approach of Sect. 2 which admit a Lyapunov functional.

3.4. The stationary distribution

The stationary solutions of Eq. (21) satisfy the differential
equation

u
∂ f
∂r
+ F
∂ f
∂u
=

(
ε2r
∂2Φ

∂xi∂x j
− ε2v δi j

)
∂2 f
∂xi∂v j

· (44)

This is an integro-differential equation since Φ depends on f
through the Poisson Eq. (2). We look for a particular stationary
solution of the coarse-grained Vlasov equation in the form

f = e−β(
v2

2 +Φ(r))h(r). (45)

If the function h satisfies the equation

∂h
∂x j
= −β

(
ε2r
∂2Φ

∂xi∂x j
− ε2v δi j

)[
∂h
∂xi
− βh∂Φ
∂xi

]
, (46)

then Eq. (45) is a solution of Eq. (44). We shall solve this equa-
tion perturbatively for εr , εv → 0. We thus consider the expan-
sion

h = A + ε2r hr + ε
2
v hv + ... (47)

Φ = Φ0 + ε
2
rΦr + ε

2
vΦv + ... (48)
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To zeroth order, we have

f = Ae−β(
v2

2 +Φ0(r)). (49)

To the next order, the functions hr and hv are determined by the
differential equations

∂hr

∂x j
= Aβ2 ∂

2Φ0

∂xi∂x j

∂Φ0

∂xi
, (50)

∂hv
∂x j
= −Aβ2 ∂Φ0

∂x j
· (51)

These equations are easily integrated and we obtain

f (r, u) = Ae−β(
v2

2 +Φ(r))

{
1 +

1
2
ε2r β

2(∇Φ)2 − ε2v β2Φ

}
· (52)

This result is valid up to order ε2. The function Φ (which has
to be computed to first order in the exponential) is determined
by the Poisson Eq. (2) with f given by Eq. (52).

We note that the distribution function (52) is not a function
of the energy ε = v2

2 + Φ alone. This is at variance with the
statistical prediction of Lynden-Bell (1967) that leads to

f (r, u) =

∫
χ(η)e−(βε+α)ηηdη∫
χ(η)e−(βε+α)ηdη

= f (ε), (53)

where χ(η) is a function determined by the initial conditions
(see, e.g., Chavanis 2003a). This shows that the definition of
the coarse-grained distribution function is of crucial impor-
tance as it determines the form of the stationary state. We em-
phasize that Eq. (52) is not neither a stationary solution of
the Vlasov equation since the smooth advective part L f =
u∂ f /∂r + F∂ f /∂u is counter-balanced by an effective “colli-
sion” term arising from coarse-graining. This differs from the
MEPP and from the quasilinear theory described in Sect. 2
where both the advective term and the collision term cancel
out individually at equilibrium.

Another difference between the two approaches is that
Eq. (21) is reversible while Eqs. (4) and (10) are not. Therefore,
Eqs. (4) and (10) are robust against small perturbations and
converge towards a unique stationary distribution since a
Lyapunov functional (entropy) exists. In contrast, the coarse-
grained Vlasov Eq. (21) is smooth but keeps the deterministic
aspect of the Vlasov equation. As such, it can converge towards
a large class of stationary solutions (recall that Eq. (52) is just
a particular solution of Eq. (21)) since there is no associated
Lyapunov functional.

4. The HMF model

The results presented previously are relatively general. They
apply to other systems described by the Vlasov equation, for
different types of potential of interaction. Thus, it can be of in-
terest to test these ideas on simpler systems. The Hamiltonian
Mean Field (HMF) model has recently received growing atten-
tion in statistical mechanics as it exhibits features similar to
gravitational systems while being more easily tractable analyt-
ically and numerically (see, e.g., Dauxois et al. 2002; Chavanis
et al. 2004).

The HMF model describes the motion of particles on a
circle interacting via a cosine binary potential u(x − x′) =
k

2π cos (x − x′) where k is the coupling constant (x denotes here
the angular position of a particle on the circle). This is proba-
bly the simplest model with long-range interactions. It is one-
dimensional and corresponds to the truncation to one mode of
the Fourier expansion of a potential u(x − x′). Mathematically,
the HMF model is defined by the Hamilton equations

dxi

dt
=
∂H
∂vi
,

dvi
dt
= −∂H
∂xi
, (54)

where H is the Hamiltonian

H =
N∑

i=1

1
2
v2i −

k
4π

∑
i� j

cos (xi − x j). (55)

For fixed t and N → +∞, it can be shown that the evolution of
the system is described by the Vlasov equation

∂ f
∂t
+ v
∂ f
∂x
+ F
∂ f
∂v
= 0, (56)

where F = −Φ′ with

Φ(x, t) = − k
2π

∫ 2π

0
cos (x − x′)ρ(x′, t)dx′. (57)

In one dimension, the coarse-grained Vlasov Eq. (21) becomes

∂ f
∂t
+ v
∂ f
∂x
+ F
∂ f
∂v
=

(
ε2r
∂2Φ

∂x2
− ε2v
)
∂2 f
∂x∂v

· (58)

Looking for stationary solutions in the form f = g(v)h(x), we
find that

g(v) = e−β
v2

2 , (59)

while h(x) satisfies a differential equation of the form

dh
dx
+

Φ
′

1
β
− ε2v + ε2rΦ

′′ h = 0. (60)

This equation is easily integrated and we finally obtain

f = Ae−β
v2

2 exp

{
−β
∫

Φ
′
dx

1 − β(ε2v − ε2rΦ
′′

)

}
· (61)

This result is valid for an arbitrary potential of the form u(x −
x′). More explicit results can be obtained for the HMF model
with cosine interactions. From Eq. (57), we have Φ′′ = −Φ.
Thus, the distribution function (61) becomes

f = Ae−β
v2

2 exp

{
−β
∫

Φ
′
dx

1 − β(ε2v + ε2rΦ)

}
· (62)

The integral can be performed explicitly and we get

f = Ae−β
v2

2

[
1 − β(ε2v + ε2rΦ)

]1/ε2r
. (63)

Considering the limit ε → 0, one recovers the perturbative re-
sult (52). On the other hand, integrating on the velocity, we find
that the density is related to the potential by

ρ = A′
[
1 − β(ε2v + ε2rΦ)

]1/ε2r
. (64)
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This can be viewed as a q-distribution of the form

ρ =

[
λ − q − 1

Tq
Φ

] 1
q−1

(65)

where q = 1 + ε2r ≥ 1 is related to the resolution length. These
distributions have been recently investigated in connexion with
Tsallis (1988) generalized thermodynamics. In the present con-
text, this is just a coincidence because there is no direct relation
to thermodynamics. This shows that the q-distributions arise in
different domains of physics for reasons that do not necessarily
have a link to statistical mechanics and thermodynamics. We
already reached this conclusion in other occasions (Chavanis
2003b, 2004; Chavanis & Sire 2004). Restricting ourselves to
symmetric solutions, we have Φ = B cos x so that

ρ(x) = A′
[
1 − β(ε2v + ε2r B cos x)

]1/ε2r
. (66)

5. Conclusion

In this paper, we have discussed the coarse-grained evolution
of collisionless stellar systems described by the Vlasov equa-
tion. The main conclusion of our work is that the concepts
of coarse-graining and violent relaxation are complicated and
subtle. We have presented two types of approaches which lead
to very different results. In the statistical approach, we ob-
tain kinetic equations similar to generalized Fokker-Planck and
Landau equations. These equations monotonically increase a
mixing entropy and relax towards the statistical equilibrium
state predicted by Lynden-Bell’s theory of violent relaxation.
The effect of incomplete relaxation appears in the diffusion
coefficient, related to the fluctuations of the distribution func-
tion, that can freeze the evolution of the system towards the
maximum entropy state. This can solve the infinite mass prob-
lem. In the deterministic approach, the coarse-grained distri-
bution function is defined as a local average (in phase space)
of the fine-grained distribution function by a Gaussian win-
dow. This leads to a new type of kinetic equation, Eq. (21).
This equation respects the conservation of energy, angular mo-
mentum and impulse on the coarse-grained scale but does not
admit any Lyapunov functional. Furthermore, the stationary
states of this equation differ from the statistical prediction of
Lynden-Bell. They are not neither stationary solutions of the
Vlasov equation because the advective term is precisely bal-
anced by the “effective” collision term arising from coarse-
graining. This approach is purely determinisitic and should
describe short time-scale complex evolution of a given initial
condition. Presumably, a more relevant model should also take
into account the stochastic character of the evolution of an as-
sembly of initial conditions. The ideas presented in this paper
can have applications for other systems with long-range inter-
actions such as two-dimensional vortices and the HMF model.
The dynamical stability of collisionless stellar systems de-
scribed by the coarse-grained Vlasov equation will be studied
in a forthcoming paper (in preparation).

Appendix A: Conservation of the coarse-grained
constraints

Let us verify explicitly that the coarse-grained energy (35), an-
gular momentum (38) and impulse (41) are conserved by the
coarse-grained Vlasov Eq. (21). We have

Ė =
∫
∂ f
∂t
v2

2
d3ud3r +

∫
∂ f
∂t
Φd3ud3r − 2πGε2r Ṁ2. (A.1)

Using Eq. (21) and integrating by parts, we get

Ė = ε2r

∫
∂∆Φ

∂x j
v j f d3rd3u − 2πGε2r Ṁ2. (A.2)

Using the Poisson equation and integrating by parts one more
time, we obtain

Ė = −4πGε2r

∫
ρ ∇(ρu)d3r − 2πGε2r Ṁ2, (A.3)

where the local velocity u(r, t) is defined by

ρu(r, t) =
∫

f ud3u. (A.4)

Integrating the coarse-grained Vlasov Eq. (21) over velocity
leads to the continuity equation

∂ρ

∂t
+ ∇(ρu) = 0. (A.5)

Inserting this result in Eq. (A.3), we obtain

Ė = 4πGε2r

∫
ρ
∂ρ

∂t
d3r − 2πGε2r Ṁ2 = 0. (A.6)

For the coarse-grained angular momentum, we have

L̇k =

∫
εi jk
∂ f
∂t

xiv jd3r d3u. (A.7)

Using Eq. (21) and integrating by parts, we get

L̇k = −
∫
εi jkχm j

∂ f
∂xm

xid3r d3u, (A.8)

where we have defined

χi j = ε
2
r
∂2Φ

∂xi∂x j
− ε2v δi j. (A.9)

Integrating by parts one more time, we obtain

L̇k =

∫
εi jk f

(
χi j + ε

2
r xi
∂∆Φ

∂x j

)
d3r d3u. (A.10)

Using the Poisson equation, the foregoing expression is equiv-
alent to

L̇k =

∫
εi jkρχi jd3r + 2πGε2r

∫
εi jk xi

∂ρ2

∂x j
d3r. (A.11)

Integrating the second term by parts and using εiik = 0, we are
left with

L̇k = ε
2
r

∫
εi jkρ

∂2Φ

∂xi∂x j
d3r. (A.12)
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Therefore,

L̇ = ε2r

∫
ρ∇ × (∇Φ)d3r = 0. (A.13)

Finally, for the coarse-grained impulse, we have

Ṗk =

∫
∂ f
∂t
vkd3r d3u. (A.14)

Using Eq. (21) and integrating by parts, we get

Ṗk = −
∫
χik
∂ f
∂xi

d3r d3u = ε2r

∫
ρ
∂∆Φ

∂xk
d3r. (A.15)

Using the Poisson equation, we obtain

Ṗ = 2πGε2r

∫
∇(ρ2)d3r = 0. (A.16)
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