
J Stat Phys (2013) 153:572–625
DOI 10.1007/s10955-013-0828-3

Kinetic Theory of Jet Dynamics in the Stochastic
Barotropic and 2D Navier-Stokes Equations

Freddy Bouchet · Cesare Nardini · Tomás Tangarife

Received: 2 May 2013 / Accepted: 8 August 2013 / Published online: 24 September 2013
© Springer Science+Business Media New York 2013

Abstract We discuss the dynamics of zonal (or unidirectional) jets for barotropic flows
forced by Gaussian stochastic fields with white in time correlation functions. This problem
contains the stochastic dynamics of 2D Navier-Stokes equation as a special case. We con-
sider the limit of weak forces and dissipation, when there is a time scale separation between
the inertial time scale (fast) and the spin-up or spin-down time (large) needed to reach an
average energy balance. In this limit, we show that an adiabatic reduction (or stochastic av-
eraging) of the dynamics can be performed. We then obtain a kinetic equation that describes
the slow evolution of zonal jets over a very long time scale, where the effect of non-zonal
turbulence has been integrated out. The main theoretical difficulty, achieved in this work, is
to analyze the stationary distribution of a Lyapunov equation that describes quasi-Gaussian
fluctuations around each zonal jet, in the inertial limit. This is necessary to prove that there
is no ultraviolet divergence at leading order, in such a way that the asymptotic expansion
is self-consistent. We obtain at leading order a Fokker–Planck equation, associated to a
stochastic kinetic equation, that describes the slow jet dynamics. Its deterministic part is re-
lated to well known phenomenological theories (for instance Stochastic Structural Stability
Theory) and to quasi-linear approximations, whereas the stochastic part allows to go beyond
the computation of the most probable zonal jet. We argue that the effect of the stochastic part
may be of huge importance when, as for instance in the proximity of phase transitions, more
than one attractor of the dynamics is present.
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1 Introduction

Turbulence in planetary atmospheres leads very often to self organization and to jet forma-
tion (please see for example the special issue of Journal of Atmospherical Science, named
“Jets and Annular Structures in Geophysical Fluids” that contains the paper [24]). Those jet
behaviors are at the basis of midlatitude atmosphere dynamics [75] and quantifying their
statistics is fundamental for understanding climate dynamics. A similar self-organization
into jets has also been observed in two-dimensional turbulence [8, 79].

In this paper, we study the jet formation problem in the simplest possible theoretical
framework: the two-dimensional equations for a barotropic flow with a beta effect β . These
equations, also called the barotropic quasi-geostrophic equations, are relevant for the under-
standing of large scale planetary flows [64]. When β = 0, they reduce to the two-dimensional
Euler or Navier-Stokes equations. All the formal theoretical framework developed in this
work could be easily extended to the equivalent barotropic quasi-geostrophic model (also
called the Charney–Hasegawa–Mima equation), to the multi-layer quasi-geostrophic mod-
els or to quasi-geostrophic models for continuously stratified fluids [64].

The aim of this work is to consider an approach based on statistical mechanics. The equi-
librium statistical mechanics of two-dimensional and quasi-two-dimensional turbulence is
now well understood [9, 48, 54, 67, 68]: it explains self-organization and why zonal jets
(east-west jets) are natural attractors of the dynamics. However, a drawback of the equilib-
rium approach is that the set of equilibrium states is huge, as it is parametrized by energy,
enstrophy and all other inertial invariant of the dynamics. Moreover, whereas many observed
jets are actually close to equilibrium states, some other jets, for instance Jupiter’s ones, seem
to be far from any equilibrium state. It is thus essential to consider a non-equilibrium statis-
tical mechanics approach, taking into account forces and dissipation, in order to understand
how real jets are actually selected by a non-equilibrium dynamics. In this work, we consider
the case when the equations are forced by a stochastic force. We then use classical tools of
statistical mechanics and field theory (stochastic averaging, projection techniques) in order
to develop the kinetic theory from the original dynamics.

Any known relevant kinetic approach is associated with an asymptotic expansion where
a small parameter is clearly identified. Our small parameter α [8, 9] is the ratio of an inertial
time scale (associated to the jet velocity and domain size) divided by the forcing time scale
or equivalently the dissipation time scale (the spin-up or spin-down time scale, needed to
reach a statistically stationary energy balance). As discussed below, when the force is a
white in time stochastic force, the average energy input rate is known a-priori, and the value
of α can actually be expressed in terms of the control parameters. We call the limit α � 1
the small force and dissipation limit.

For small α, the phenomenology is the following. At any times the velocity field is close
to a zonal jet v � U(y, t)ex . U(y, t)ex is a steady solution of the inertial dynamics. This
zonal jet then evolves extremely slowly under the effect of the stochastic forces, of the
turbulence (roughly speaking Reynolds stresses), and of the small dissipation. The non-zonal
degrees of freedom have a turbulent motion which is strongly affected by the dominant zonal
flow U(y). These turbulent fluctuations are effectively damped by the non-normal linear
dynamics close to the zonal jets. This inviscid damping of the fluctuations is accompanied
by a direct transfer of energy from the fluctuations to the zonal flow. The understanding
and the quantification of these processes is the aim of this work. The final result will be a
kinetic equation that describes the slow dynamics of the zonal jets, where the effects of the
non-zonal turbulence has been integrated out.

From a technical point of view, we start from the Fokker–Planck equation describing ex-
actly the evolution of the Probability Density Function (to be more precise, Functional)
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(PDF) of the potential vorticity field (or vorticity field for the two-dimensional Navier-
Stokes equations). We make an asymptotic expansion of this Fokker–Planck equation, by
carefully identifying the slow and fast processes and the order of magnitude of all fields. At
a formal level we follow an extremely classical route, described for instance in the theory
of adiabatic averaging of stochastic processes [33], also called stochastic reduction (see also
[11, 30, 39] for counterpart in mathematics). This leads to a new Fokker–Planck equation
that describes the slow evolution of the zonal jet U ; such formal computations are tedious
but involve no difficulties.

The main theoretical challenge is to check that the asymptotic expansion is self-
consistent. We have to prove that all quantities appearing in the kinetic theory remain finite,
keeping in such a way the order of magnitude initially assumed. In field problems, like this
one, this is not granted as ultraviolet divergences often occur. For example, the slow Fokker–
Planck equation involves a non-linear force that is computed from the Ornstein–Uhlenbeck
process, corresponding to the linearized dynamics close to U stochastically forced. This pro-
cess is characterized by the two-points correlation function dynamics, which is described by
a Lyapunov equation. We then need to prove that this Lyapunov equation has a stationary
solution for α = 0, in order for the theory to be self-consistent.

A large part of our work deals with the analysis of this Ornstein–Uhlenbeck process,
and the Lyapunov equation, in the limit α → 0. The fact that the Lyapunov equation has
a stationary solution in the limit α → 0 is striking, as this is the inertial limit in which the
equation for the non-zonal degrees of freedom contains a forcing term but no dissipation acts
to damp them. The issue is quite subtle, as we prove that the vorticity-vorticity correlation
function diverges point-wise, as expected based on enstrophy conservation. However we
also prove that any integrated quantity, for instance the velocity-velocity autocorrelation
function, reaches a stationary solution due to the effect of the zonal shear and a combination
of phase mixing and global effects related to the non-normality of the linearized operator. As
discussed thoroughly in the text, this allows to prove the convergence in the inertial limit of
key physical quantities such as the Reynolds stress. Most of this analysis strongly relies on
the asymptotic behavior of the linearized deterministic Euler equation, that we have studied
for that purpose in a previous paper [7].

The linearized equation close to a base flow U(y) has a family of trivial zero modes that
correspond to any function of y only. The main hypothesis of our work is that the base flows
U are linearly stable (they have no exponentially growing mode), but also that they have
no neutral modes besides the trivial zonal ones. A linear dynamics with no mode at all may
seem strange at first sight, but this is possible for an infinite dimensional non-normal linear
operator. Actually, the tendency of turbulent flows to produce jets that expel modes has been
recognized long ago [38]. Moreover, as discussed in [7], the absence of non-trivial modes is
a generic situation for zonal flows, even if it is certainly not always the case.

We now describe the physics corresponding to the Fokker–Planck equation for the slow
jets dynamics. It is equivalent to a stochastic dynamics for the velocity field that we call the
kinetic equation. The kinetic equation has a deterministic drift F(U) and a stochastic force
which is a Gaussian process with white in time correlation function. F(U) is the Reynolds
stress that corresponds to the linearized dynamics close to the base flow U . If we consider
the deterministic drift only, the equation is then related to Stochastic Structural Stability
Theory (SSST) first proposed on a phenomenological basis by Farrell, Ioannou [1, 26, 27],
for quasi-geostrophic turbulence. It is also related to a quasi-linear approximation plus an
hypothesis where zonal average and ensemble average are assumed to be the same, as dis-
cussed in details in Sect. 2.4. More recently, an interpretation in terms of a second order
closure (CE2) has also been given [50, 51, 74]. All these different forms of quasi-linear ap-
proximations have thoroughly been studied numerically, sometimes with stochastic forces
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and sometimes with deterministic ones [22]. Very interesting empirical studies (based on
numerical simulations) have been performed recently in order to study the validity of this
type of approximation [51, 52, 62, 74], for the barotropic equations or for more complex
dynamics. The SSST equations have also been used to compare theoretical prediction of
the transition from a turbulence without a coherent structure to a turbulence with zonal jets
[1, 63, 72]. Our first conclusion is that kinetic theory provides a strong support to quasi-
linear types of approximations, in the limit of weak forces and dissipation α � 1, in order
to compute the attractors for the slow jet dynamics.

Beside the deterministic drift F(U), the kinetic theory also predicts the existence of a
small noise. Moreover it predicts the Fokker–Planck equation describing the full Probabil-
ity Density Functional of the zonal jet U . This was not described, even phenomenologi-
cally, in any previous approach. This is an essential correction in many respects. First, it
allows to describe the Gaussian fluctuations of the zonal jet. We also note that the proba-
bility of arbitrarily large deviations from the deterministic attractors can be computed from
this Fokker–Planck equation. For instance, we may implement large deviations theory in the
small noise limit. This is typically the kind of result that cannot be obtained from a stan-
dard cumulant expansion or closure based on moments. The possibility to compute the full
PDF is extremely important especially in cases where the deterministic part of the dynamics
has more than one attractor. This case actually happens, as noticed by Ioannou and Farrell
(see Sect. 6). Then, our approach may predict the actual probability of each attractor and
the transition probabilities from one attractor to the other. We remark anyway that, from a
practical point of view, a further step forward should be done to obtain explicit results in this
direction.

Our work has been clearly inspired by the kinetic theory of systems with long range
interactions [3, 45, 61], described at first order by Vlasov equation and at next order by
Lenard–Balescu equation. We have proven in previous works that this kinetic theory leads
to algebraic relaxations and anomalous diffusion [6, 10, 13, 78]. The Euler equation is also
an example of system with long range interaction, and there is a strong analogy between
the 2D Euler and Vlasov equations. Quasilinear approximation for the relaxation towards
equilibria of either the 2D Euler equation [15] or the point vortex dynamics [16, 17, 25]
have actually been proposed and studied in the past.

All the above results started from deterministic dynamics, with no external forces. In or-
der to prepare this work, and to extend these kinetic theories to the case with non-equilibrium
stochastic forces, we have first considered the Vlasov equation with stochastic forces [56,
57]. A kinetic equation was then obtained, similar to the one in this paper, but with much
less technical difficulties. The reason is that the Landau damping, which is then responsi-
ble for the inviscid relaxation, can be studied analytically through explicit formulas at the
linear level [45, 61]. Non-linear Landau damping has also been recently established [55].
The kinetic equation for the stochastic dynamics [56] has the very interesting property to
exhibit phase transitions and multistability, leading to a dynamics with random transitions
from one attractor to the other [57]. We stress again that beside the formal structure, the
main theoretical difficulty is the analysis of the Lyapunov equation which is a central object
of these kinetic theories. In order to extend this approach to the barotropic equations, the
current work discusses the first study of the Lyapunov equations for either the 2D Euler, the
2D Navier–Stokes or the barotropic flow equations in the inertial limit.

The barotropic flow equations include the 2D Stochastic Navier-Stokes equations as a
special case. During last decade, a very interesting set of mathematical works have proved
results related to the existence and uniqueness of invariant measures, their inertial limit,
their ergodicity, the validity of the law of large number [12, 20, 28, 29, 35, 36, 40–42,



576 F. Bouchet et al.

53, 70, 77] and of large deviations principles [34, 37, 73]. Some of the results are summa-
rized in a recent book [44]. In order to be applied for real physical situations, these works
should be extended in order to deal with a large scale dissipation mechanism, for instance
large scale linear friction. We also note an interesting work considering the 2D Navier-
Stokes equations forced by random vorticity patches [49]. In the case when there exists a
scale separation between the forcing scales and the largest scale, our theory is probably
very close to approach through Rapid Distortion Theory, or WKB Rapid Distortion Theory
(see for instance [59, 60] for three dimensional flows and [58] for two dimensional near
wall turbulence). The mathematical literature also contains a lot of interesting studies about
stochastic averaging in partial differential equations [43], but we do not know any example
dealing with the 2D Navier-Stokes equations or the barotropic flow equations.

In Sect. 2, we discuss the model, the energy and enstrophy balances, non-dimensional pa-
rameters, the quasi-linear approximation and the Fokker–Planck equations for the potential
vorticity PDF. We develop the formal aspects of the kinetic theory, or stochastic averaging,
in Sect. 3. This section ends with the derivation of the kinetic equation: the Fokker–Planck
equations for the slow evolution of the jet (33), and its corresponding stochastic dynamics,
Eq. (34) or (35). Section 4 comes back on energy and enstrophy balances. The analysis of
the Lyapunov equation is performed in Sect. 5. We establish that it has a stationary solution
in the inertial limit, discuss the divergence of the vorticity-vorticity correlation function, the
nature of its singularity and how they are regularized in a universal way by a small linear
friction or by a small viscosity. Section 6 discusses the importance of the stochastic part
of the kinetic equation, explains how it predicts zonal jet PDF with jets arbitrarily far from
Gaussian fluctuations, and stress the existence of cases with multiple attractors, phase transi-
tions and bistability. We discuss open issues and perspectives in Sect. 7. The paper contains
also three appendices reporting the most technical details of Sects. 3 and 5.

2 Quasi-geostrophic Dynamics and Fokker–Planck Equation

2.1 2D Barotropic Flow upon a Topography

We are interested in the non-equilibrium dynamics associated to the 2D motion of a
barotropic flow, with topography h, on a periodic domain D = [0,2πlxL) × [0,2πL) with
aspect ratio 1/lx :

⎧
⎪⎨

⎪⎩

∂q

∂t
+ v · ∇q = −λω − νn,d(−	)nω + √

ση,

v = ez × ∇ψ, ω = 	ψ, q = ω + h(y),

(1)

where ω, q , v and ψ are respectively the vorticity, potential vorticity, the non-divergent ve-
locity, and the stream function. In the equations above, r = (x, y) are space vectors, x is
the zonal coordinate and y the meridional one, λ is a Rayleigh (or Ekman) friction coeffi-
cient and νn,d is the hyper-viscosity coefficient (or viscosity for n = 1). All these fields are
periodic f (x + 2πlxL,y) = f (x, y) and f (x, y + 2πL) = f (x, y). We have introduced a
forcing term η, assumed to be a white in time Gaussian noise with autocorrelation function
E[η(r1, t1)η(r2, t2)] = C(r1 − r2)δ(t1 − t2), where C is an even positive definite function,
periodic with respect to x and y. As discussed below, σ is the average energy input rate.
When h = 0, the 2D barotropic flow equations are the 2D-Navier-Stokes equations. Here
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we assume that the noise autocorrelation function C is translationally invariant in both di-
rection. The fact that C is zonally invariant is important for some of the computations in
this paper. However the hypothesis that C is meridionally invariant is not important and
generalization to non-meridionally invariant forcing would be straightforward.

Dynamical Invariants of Perfect Barotropic Flows Equations (1) with λ = σ = νn,d = 0
describe a perfect barotropic flow. The equations are then Hamiltonian and they conserve
the energy

E[q] = 1

2

∫

D
dr v2 = −1

2

∫

D
dr (q − h)ψ, (2)

and the Casimir functionals

Cs[q] =
∫

D
dr s(q), (3)

for any sufficiently regular function s. The potential enstrophy

C2[q] = 1

2

∫

D
dr q2

is one of the invariants. When h = 0, the perfect barotropic flow equations clearly reduce to
the 2D Euler equations.

Averaged Energy Input Rate and Non-dimensional Equations Because the force is a white
in time Gaussian process, we can compute a-priori the average, with respect to noise re-
alizations, of the input rate for quadratic invariants. Without loss of generality, we assume
that

−2π2lxL
2
(
	−1C

)
(0) = 1,

where 	−1 denotes the inverse Laplacian operator; indeed, multiplying C by an arbitrary
positive constant amounts at renormalizing σ . Then, with the above choice, the average
energy input rate is σ and the average energy input rate by unit of mass is ε = σ/4π2lxL

2.
Moreover, the average potential enstrophy input rate is given by

2π2lxL
2C(0)σ.

We consider the energy balance for Eq. (1), with E = E[E[q]]:
dE

dt
= −2λE − νn,dHn + σ, (4)

where Hn = −E[∫D ψ(−	)nω]. For most of the turbulent flows we are interested in, the
ratio 2λE/νn,dHn will be extremely large (viscosity is negligible for energy dissipation).
Then, in a statistically stationary regime, the approximate average energy is E � σ/2λ. We
perform a transformation to non-dimensional variables such that in the new units the domain
is D = [0,2πlx)×[0,2π) and the approximate average energy is 1. This is done introducing
a non-dimensional time t ′ = t/τ and a non-dimensional spatial variable r′ = r/L with τ =
L2√2λ/σ . The non-dimensional physical variables are q ′ = τq , v′ = τv/L, h′ = τh, and
the non-dimensional parameters are defined by

α = λτ = L2

√
2λ3

σ
= L

2π

√

2λ3

εlx
,
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νn = νn,dτ/L2n = νn,d

√
2λ/σ/L2n−2. We consider a rescaled stochastic Gaussian field η′

with E[η′(r′
1, t

′
1)η

′(r′
2, t

′
2)] = C ′(r′

1 − r′
2)δ(t

′
1 − t ′2) with C ′(r′) = L4C(r). Performing the

non-dimensionalization procedure explained above, the barotropic equations read

⎧
⎪⎨

⎪⎩

∂q

∂t
+ v · ∇q = −αω − νn(−	)nω + √

2αη,

v = ez × ∇ψ, ω = 	ψ, q = ω + h(y),

(5)

where, for easiness in the notations, we drop here and in the following the primes. We note
that in non-dimensional units, α represents an inverse Reynolds number based on the large
scale dissipation of energy and νn is an inverse Reynolds number based on the viscosity or
hyper-viscosity term that acts predominantly at small scales. The non dimensional energy
balance is

dE

dt
= −2αE − νnHn + 2α. (6)

2.2 2D Barotropic Flow with a Beta-Effect

For a 2D flow on a rotating sphere, the Coriolis parameter depends on the latitude. For
mid-latitudes, such a dependence can be approached by a linear function, the so-called beta
effect: this corresponds to consider a linear topography function h(y) = βdy. In a periodic
geometry, such a function is meaningless, and so is the associated potential vorticity q =
ω + h. However, consistent equations can be written for the vorticity ω and the velocity:

⎧
⎪⎨

⎪⎩

∂ω

∂t
+ v · ∇ω + βvy = −αω − νn(−	)nω + √

2αη,

v = ez × ∇ψ, ω = 	ψ

(7)

Observe that, in this case, we have directly written the equations in a non-dimensional form;
the parameter β as a function of dimensional quantities is given by

β = L3

√
2λ

σ
βd =

(
L

Lβ

)2

,

where βd is the dimensional beta effect, and we have defined a Rhines scale Lβ = √
L/τβd

based on the large scale velocity U = L/τ .
In the case of the barotropic model, we note that an alternative choice for the non-

dimensional parameters is often used (see for instance [21, 31]), based on a Rhines scales
built with an estimate of the RMS velocity Urms = √

ε/λ leading to LRhines = (ε/β2λ)1/4.
Such a choice, may be more relevant in regimes where the jet width is actually of the order
of magnitude of this Rhine scale. This choice formally leads to same non-dimensional equa-
tions, but the expression of the non-dimensional quantities as a function of the dimensional
ones are different. As far as the following theory is concerned, the best choice of time unit
is the relaxation time of non-zonal perturbations. This time scale may be regime dependent.

The perfect barotropic equations (α = νn = 0), in doubly periodic geometry, with beta
effect (β �= 0), conserve only two quantities: the kinetic energy

E[ω] = −1

2

∫

D
drωψ, (8)
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and the enstrophy

Z[ω] = 1

2

∫

D
drω2. (9)

For β = 0, the beta-plane equations reduce to the 2D-Navier Stokes equations discussed in
previous section.

For sake of simplicity, in the following, we consider the case of a viscous dissipation
n = 1, and we denote the viscosity ν = ν1. One of the consequences of our theoretical work
is that, in the limit α � 1 and νn � α, the results will be independent on νn for generic
cases, and at leading order in the small parameters.

2.3 Decomposition into Zonal and Non-zonal Flow

The physical phenomenon we are interested in is the formation of large scales structures
(jets and vortices). Such large scale features are slowly dissipated, mainly due to the fric-
tion α. This dissipation is balanced by Reynolds stresses due to the transfer of energy from
the forcing scale until the scale of these structures. This phenomenology is commonly ob-
served in planetary atmospheres (Earth, Jupiter, Saturn) and in numerical simulations. For
the barotropic equations (5) and (7), the regime corresponding to this phenomenology is ob-
served when α � 1 (time scale for forcing and dissipation 1/λ much larger than time scale
for the inertial dynamics τ ) and when 2λE/νn,dHn 	 1 (turbulent regime). For this reason,
we study in the following the limit νn → 0, α → 0 (α � 1 and νn � α).

For sake of simplicity, we consider below the case when the zonal symmetry (invariance
by translation along x) is not broken. Then the large scale structure will be a zonal jet char-
acterized by either a zonal velocity field vz = U(y)ex or its corresponding zonal potential
vorticity qz(y) = −U ′(y) + h(y). For reasons that will become clear in the following dis-
cussion (we will explain that this is a natural hypothesis and prove that it is self-consistent
in the limit α � 1), the perturbation to this zonal velocity field is of order

√
α.

Defining the zonal projection 〈.〉 as

〈f 〉(y) = 1

2πlx

∫ 2πlx

0
dx f (r),

the zonal part of the potential vorticity will be denoted by qz ≡ 〈q〉; the rescaled non-zonal
part of the flow qm = ωm is then defined through the decomposition

q(r) = qz(y) + √
αωm(r).

The zonal and non-zonal velocities are then defined through U ′(y) = −qz(y) + h(y), the
periodicity condition, and

v(r) = U(y)ex + √
αvm(r).

We now project the barotropic equation (5) into zonal

∂qz

∂t
= −α

∂

∂y

〈
v(y)

m ωm

〉 − αωz + ν
∂2ωz

∂y2
+ √

2αηz (10)

and non-zonal part

∂ωm

∂t
+ LU [ωm] = √

2ηm − √
αvm.∇ωm + √

α〈vm.∇ωm〉, (11)
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where ηz = 〈η〉 is a Gaussian field with correlation function E[ηz(y1, t1)ηz(y2, t2)] =
Cz(y1 − y2)δ(t1 − t2) with Cz = 〈C〉, ηm = η − 〈η〉 is a Gaussian field with correlation
function E[ηm(r1, t1)ηm(r2, t2)] = Cm(r1 − r2)δ(t1 − t2) with Cm = C − 〈C〉, and where

LU [ωm] = U(y)
∂ωm

∂x
+ q ′

z(y)
∂ψm

∂x
+ αωm − ν	ωm, ωm = 	ψm. (12)

Observe that the cross correlation between ηz and ηm is exactly zero, due to the trans-
lational invariance along the zonal direction of C. Moreover, in the previous equations,
∂ωm

∂t
+ LU [ωm] = 0 is the deterministic dynamics linearized close to the zonal base flow U ,

whose corresponding potential vorticity is qz. In the following we will also consider the
operator

L0
U [ωm] = U(y)

∂ωm

∂x
+ q ′

z(y)
∂ψm

∂x
, (13)

which is the operator for the linearized inertial dynamics (with no dissipation) close to the
base flow U . In all the following, we assume that the base flow U(y) is linearly stable (the
operator L0

U has no unstable mode). We remark that the action of L0
U on zonal functions

f (y) is trivial: any zonal function is a neutral mode of L0
U . We will thus consider the op-

erator L0
U acting on non-zonal functions only (functions which have a zero zonal average).

We assume that L0
U restricted to non-zonal functions has no normal mode at all (which is

possible as L0
U is a non-normal operator). This hypothesis will be important for the results

presented in Sect. 5. This hypothesis may seem restrictive, but as explained in [7] this is a
generic case, probably the most common one.

The equation for the zonal potential vorticity evolution (10) can readily be integrated in
order to get an equation for the zonal flow evolution

∂U

∂t
= α

〈
v(y)

m ωm

〉 − αU + ν
∂2U

∂y2
+ √

2αηU ,

where ηU is a Gaussian field with correlation function E[ηU(y1, t1)ηU (y2, t2)] = CU(y1 −
y2)δ(t1 − t2) with d2CU

dy2
1

(y1 − y2) = −Cz(y1 − y2).

We see that the zonal potential vorticity is coupled to the non-zonal one through the zonal
average of the advection term. If our rescaling of the equations is correct, we clearly see that
the natural time scale for the evolution of the zonal flow is 1/α. By contrast the natural
time scale for the evolution of the non-zonal perturbation is one. These remarks show that
in the limit α � 1, we have a time scale separation between the slow zonal evolution and
a rapid non-zonal evolution. Our aim is to use this remark in order to (i) describe precisely
the stochastic behavior of the Reynolds stress in this limit by integrating out the non-zonal
turbulence, (ii) prove that our rescaling of the equations and the time scale separation hy-
pothesis are self-consistent.

The term
√

αvm.∇ωm − √
α〈vm.∇ωm〉 describes the interactions between non-zonal de-

grees of freedom (sometimes called eddy-eddy interactions). If our rescaling is correct, these
terms should be negligible at leading order. Neglecting these terms leads to the so called
quasi-linear dynamics, which is described in next section.
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2.4 The Quasi-linear Dynamics

By neglecting the interactions between non-zonal degrees of freedom in (11), one obtains
the quasi-linear approximation of the barotropic equations:

⎧
⎪⎪⎨

⎪⎪⎩

∂qz

∂t
= −α

∂

∂y

〈
v(y)

m ωm

〉 − αωz + ν
∂2ωz

∂y2
+ √

2αηz,

∂ωm

∂t
+ LU [ωm] = √

2ηm

(14)

In two-dimensional and geostrophic turbulence, the fluctuations around a given mean flow
are often weak, so this approximation is natural in this context. If our rescaling is relevant,
this corresponds to the limit α � 1.

The approximation leading to the quasi-linear dynamics amounts at suppressing some of
the triads interactions. As a consequence, the inertial quasi-linear dynamics has the same
quadratic invariants as the initial barotropic equations: the energy and potential enstrophy.

As discussed in the previous paragraphs, and as can be seen in (14), in the regime α � 1,
it seems natural to assume that there is a separation between the time scale for the fluctuation
dynamics (second equation of (14)), which is of order 1, and the time scale for the zonal flow
(first equation of (14)), which is of order 1/α. At leading order, the evolution of ωm can be
considered with the zonal velocity profile held fixed. The second equation of (14), with a
fixed velocity profile, is then linear. Thus, denoting by E the average over the realization
of the noise ηm for fixed U , the distribution of ωm is completely characterized by the two-
points correlation function g(r1, r2, t) = E[ωm(r1, t)ωm(r2, t)]. The evolution of g is given
by the so-called Lyapunov equation, which is obtained by applying the Itō formula (with U

fixed):

∂g

∂t
+ L

(1)
U g + L

(2)
U g = 2Cm,

where L
(1)
U (resp. L

(2)
U ) is the linearized operator LU (12) acting on the variable r1 (resp. r2).

If we assume that this Gaussian process has a stationary distribution, then considering
again the time scale separation α � 1, one is led to the natural hypothesis that at leading
order

∂qz

∂t
= −α

∂

∂y
EU

〈
v(y)

m ωm

〉 − αωz + ν
∂2ωz

∂y2
+ √

2αηz, (15)

where EU 〈v(y)
m ωm〉 is the average over the stationary Gaussian process corresponding to

the dynamics given by the second equation of (14) at fixed U . In our problem, invariant
by translation along the zonal direction, we note that −EU 〈v(y)

m ωm〉 is the divergence of a
Reynolds stress [65]. We call this equation the kinetic equation, because it is the analogous
of the kinetic equation obtained in a deterministic context in the kinetic theory of plasma
physics [45, 61], systems with long-range interactions [5, 6, 10] and the 2D Euler equations
[15, 16]. The time scale separation hypothesis, leading to consider the asymptotic solution
of the Lyapunov equation is referred to as the Bogolyubov hypothesis in classical kinetic
theory [45, 61].
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Another model related to the quasi-linear dynamics is
⎧
⎪⎪⎨

⎪⎪⎩

∂qz

∂t
= −α

∂

∂y
Em

[〈
v(y)

m ωm

〉] − αωz + ν
∂2ωz

∂y2
+ √

2αηz

∂g

∂t
+ (

L
(1)
U + L

(2)
U

)
g = 2Cm,

(16)

where Em is the average corresponding to the Gaussian process with two-point correlation
function g(r1, r2, t) = Em[ωm(r1, t)ωm(r2, t)]. By contrast to the kinetic equation (15), in Eq.
(16) g and U (or qz) evolve simultaneously. The Reynolds stress divergence −Em[〈v(y)

m ωm〉],
or the gradient of Reynolds stress divergence − ∂

∂y
Em[〈v(y)

m ωm〉], can be computed as a linear
transform of g. This model, first proposed by Farrell and Ioannou [1, 26, 27], is referred to
as Structural Stochastic Stability Theory (SSST). Farrell and Ioannou have also used this
model in a deterministic context [22], where the correlation Cm is then added phenomeno-
logically in order to model the effect of small scale turbulence (the effect of the neglected
non linear terms in the quasi-linear dynamics). This model, or an analogous one in a deter-
ministic context, is also referred to as CE2 (Cumulant expansion of order 2) [50–52].

As previously observed, the second equation in (16) can be deduced from the second
equation of (14) as an average over the realizations of the non-zonal part of the noise ηm,
with U held fixed. It can be considered as an approximation of the quasilinear dynamics,
where the instantaneous value of the non-linear term 〈v(y)

m ωm〉 is replaced by its ensemble
average, with U held fixed. We see no way how this could be relevant without a good time
scale separation α � 1. With a good time scale separation, both the quasilinear dynamics
(14) and SSST-CE2 (16) are likely to be described at leading order by the kinetic equa-
tion (15). We see no reason how SSST dynamics could be relevant to describe the quasilinear
dynamics beyond the limit where it is an approximation of the kinetic equation. However,
from a practical point of view, SSST-CE2 is extremely interesting as it provides a closed
dynamical system which may be extremely easily computed numerically (by comparison to
both direct numerical simulations, the quasilinear dynamics or the kinetic equation) in order
to obtain the average zonal velocity and its Gaussian corrections. It is probably the best tool
to understand qualitatively the dynamics of barotropic flows in the limit of small forces and
dissipations.

2.5 Fokker–Planck Equation

We will use the remark that we have a time scale separation between zonal and non-zonal
degrees of freedom in order to average out the effect of the non-zonal turbulence. This
corresponds to treat the zonal degrees of freedom adiabatically. This kind of problems are
described in the theoretical physics literature as adiabatic elimination of fast variables [33]
or stochastic averaging in the mathematical literature. Our aim is to perform the stochastic
averaging of the barotropic flow equation and to find the equation that describes the slow
evolution of zonal flows.

There are several ways to perform this task, for instance using path integral formal-
ism, working directly with the stochastic equations, using Mori–Zwanzig or projection for-
malisms, and so on. A typical way in turbulence is to write the hierarchy of equations for the
moments of the hydrodynamic variables. As discussed in the introduction and in Sect. 6 this
approach may lead to interesting results sometimes, but it can sometimes be misleading, and
when it works it can describe quasi-Gaussian fluctuations at best. The formalism we find the
simplest, the more convenient, and the more amenable to a clear mathematical study is the
one based on the (functional) Fokker–Planck equations.
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At a formal level, we will perform adiabatic reduction of the Fokker–Planck equation
using the classical approach, as described for instance in Gardiner textbook [33]. Whereas
Gardiner treats examples with a finite number of degrees of freedom, we are concerned in
this paper with a field problem. At a formal level, this does not make much difference and
the formalism can be directly generalized to this case. At a deeper level this however hides
some mathematical difficulties, some of them being related to ultraviolet divergences. We
will show that such ultraviolet divergences do not occur, at least for the quantities arising at
leading order.

The starting point of our analysis is to write the Fokker–Planck equation associated
with Eqs. (10) and (11). We consider the time dependent probability distribution function
Pt [qz,ωm] for the potential vorticity field and, for easiness in the notations, we omit time
t in the following. The distribution P [qz,ωm] is a functional of the two fields qz and ωm

and is a formal generalization of the probability distribution function for variables in fi-
nite dimensional spaces. From the stochastic dynamics (10)–(11), using standard techniques
(functional Itō calculus), one can prove that P solves the Fokker–Planck equation

∂P

∂t
= L0P + √

αLnP + αLzP , (17)

where the leading order term is

L0P ≡
∫

dr1
δ

δωm(r1)

[

LU [ωm](r1)P +
∫

dr2 Cm(r1 − r2)
δP

δωm(r2)

]

, (18)

the zonal part of the perturbation is

LzP ≡
∫

dy1
δ

δqz(y1)

[(
∂

∂y

〈
v(y)

m ωm

〉
(y1) + ωz(y1) − ν

α
	ωz(y1)

)

P

+
∫

dy2 Cz(y1 − y2)
δP

δqz(y2)

]

, (19)

and the nonlinear part of the perturbation is

LnP ≡
∫

dr1
δ

δωm(r1)

[(
vm.∇ωm(r1) − 〈

vm.∇ωm(r1)
〉)
P

]
. (20)

In previous equations, δ
δq(y)

are functional derivatives with respect to the field q at point y.

We observe that Ln is a linear operator which describes the effect of the non-linear terms in
the fluid mechanics equations.

The operator L0 is the Fokker–Planck operator that corresponds to the linearized dynam-
ics close to the zonal flow U , forced by a Gaussian noise, white in time and with spatial cor-
relations Cm. This Fokker–Planck operator acts on the non-zonal variables only and depends
parametrically on U . This is in accordance with the fact that on time scales of order 1, the
zonal flow does not evolve and only the non-zonal degrees of freedom evolve significantly.
It should also be remarked that this term contains dissipation terms of order α and ν. These
dissipation terms could have equivalently been included in Lz, but we keep them on L0 for
later convenience. However it will be an important part of our work to prove that in the
limit ν � α � 1, at leading order, the operator L0 with or without these dissipation terms
will have the same stationary distributions. This is a crucial point that will be made clear in
Sect. 5.
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At order
√

α, the nonlinear part of the perturbation Ln contains the non-linear interactions
between non-zonal degrees of freedom. We will prove that at leading order Ln has no effect,
justifying the quasilinear approach. This is non-trivial as Ln formally arise at an order in√

α lower than Lz. At order α, the zonal part of the perturbation Lz contains the terms that
describe the coupling between the zonal and non-zonal flow, the dynamics due to friction
acting on zonal scales and the zonal part of the stochastic forces.

3 Stochastic Averaging and the Fokker–Planck Equation for the Slow Evolution
of Zonal Velocity Profiles

In this section, we formally perform the perturbative expansion in power of
√

α, for the
Fokker–Planck equation (17). The aim of the computation is to obtain a new equation de-
scribing the slow zonal part only. We will compute explicitly only the leading order relevant
terms. This formal computation will make sense only if the Gaussian process corresponding
to a stochastically forced linearized equation has a stationary solution. That last point is thus
the real physical issue and the most important mathematical one. We consider this question
in Sect. 5.

3.1 Stationary Distribution of the Fast Non-zonal Variables

At leading order when α is small, we have

∂P

∂t
= L0P. (21)

Let us first consider the special case when the zonal flow is a deterministic one:
P [q,ωm] = δ(q − qz)Q(ωm). Then, (21) is a Fokker–Planck equation corresponding to the
dynamics of the non-zonal degrees of freedom only. It is the Fokker–Planck equation asso-
ciated to the barotropic equations linearized around a fixed base flow with zonal velocity U

and forced by a Gaussian noise delta correlated in time and with spatial correlation function
Cm:

∂ωm

∂t
+ LU [ωm] = √

2ηm, E
[
ηm(r1, t1)ηm(r2, t2)

] = Cm(r1 − r2)δ(t1 − t2) (22)

When U is held fixed, this is a linear stochastic Gaussian process, or Ornstein-Uhlenbeck
process. Thus, it is completely characterized by the two-points correlation function
g(r1, r2, t) = E[ωm(r1, t)ωm(r2, t)] (the average E[ωm] is equal to zero, here the average
E refers to an average over the realization of the noise ηm, for fixed U ). The evolution of g

is given by the so-called Lyapunov equation, which is obtained by applying the Itō formula
to (22):

∂g

∂t
+ L

(1)
U g + L

(2)
U g = 2Cm, (23)

where L
(1)
U (resp. L

(2)
U ) is the linearized operator LU (12) acting on the variable r1 (resp. r2).

For fixed α and ν, the linear operator LU (12) is dissipative. If the linearized dynamics is
stable, then the Ornstein-Uhlenbeck will have a stationary distribution. However, as we are
computing an asymptotic expansion for small α and ν, we need to consider the limit ν → 0
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and α → 0 of this stationary distribution. In order to do that we will consider the Lyapunov
equation

∂g

∂t
+ L

0(1)
U g + L

0(2)
U g = 2Cm, (24)

where L0
U is the inertial linear dynamics (13). In this section, we assume that the corre-

sponding Gaussian process has a stationary distribution. This assumption may seem para-
doxical as there is no dissipation in L0

U ; however, it will be proved in Sect. 5 that this is cor-
rect. We denote by g∞[qz] the stationary two-points correlation function, g∞[qz](r1, r2) =
limt→∞ g(r1, r2, t), and by (g∞)−1[qz](r1, r2) its inverse.1 Then, the stationary distribution
of the linear equation (22) close to the base flow with potential vorticity qz is

G[qz,ωm] = 1√
det[qz] exp

(

−1

2

∫

dr1 dr2 ωm(r1)
(
g∞)−1[qz](r1, r2)ωm(r2)

)

, (25)

where the normalization constant depends on detqz, the determinant of 2πg∞[qz]. The sta-
tionary solution to (21) with any initial condition P [q,ωm] = δ(q − qz)Q(ωm) is thus given
by δ(q − qz)G[qz,ωm].

For any qz, the average of any observable A[ωm] over the stationary Gaussian distribution
will be denoted

EU [A] ≡
∫

D[ωm]A[ωm]G[qz,ωm]
and, for any two observables A[ωm] and B[ωm], the correlation of A at time t with B at time
zero will be denoted

EU

[
A(t)B(0)

] ≡
∫

D[ωm]A[ωm]etL0
[
B[ωm]G[qz,ωm]]. (26)

The covariance of A at time t with B at time zero is denoted by

EU

[[
A(t)B(0)

]] ≡ EU

[(
A(t) −EU [A])(B(0) −EU [B])]. (27)

As already pointed out, we assume that for all qz of interest the Gaussian process corre-
sponding to the inertial linear dynamics (13) has a stationary distribution. Then, the operator
exp(tL0) has a limit for time going to infinity. We can then define P the projector on the
asymptotic solutions of this equation

P[P ] = lim
t→∞ exp(tL0)P

for any P . We observe that, because L0 does not act on zonal degrees of freedom,
P[δ(qz − q)Q(ωm)] = δ(qz − q)G[qz,ωm] for any Q. Moreover, using the linearity of L0,
we conclude that for any P

P[P ] = G[qz,ωm]
∫

D[ωm]P [qz,ωm]. (28)

The above equation expresses that for any qz, the fastly evolving non-zonal degrees of free-
dom relax to the stationary distribution G. With this last relation, it is easily checked that P

1Here, inverse is understood in the linear operator sense:
∫

dr′ g∞[qz](r1, r′)(g∞)−1[qz](r′, r2) =
δ(r1 − r2).
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is a projector: P2 = P . Moreover, because P commutes with L0 and projects on its station-
ary distribution, we have

PL0 = L0P = 0.

3.2 Adiabatic Elimination of the Fast Variables

We decompose any PDF P into its slow and fast components:

P = Ps + Pf

with Ps ≡ PP and Pf ≡ (1 −P)P .
Using (28), we obtain

Ps[qz,ωm] = R[qz]G[qz,ωm],
with R[qz] = ∫

D[ωm]P [qz,ωm]. R is the marginal distribution of P on the zonal modes
and describes the statistics of the zonal flow; Ps describes the statistics of the zonal flow
assuming that for any qz, the fast non-zonal degrees of freedom instantaneously relax to
their stationary Gaussian distribution (25). We thus expect R and Ps to evolve slowly, and
Pf contains the small corrections to Ps . The goal of the stochastic reduction presented here
is to get a closed equation for the evolution of R, valid for small α.

Applying the projector operator P to Eq. (17) and using PL0 = 0, we get the evolution
equation for Ps

∂Ps

∂t
= P(αLz + √

αLn)(Ps + Pf ).

As expected, this equation evolves on a time scale much larger than 1, and this is due to the
relation PL0 = 0, which is essentially the definition of P .

Using (28) and (20) we remark that PLn involves the integral over D[ωm] of a divergence
with respect to ωm. As a consequence,

PLn = 0. (29)

An important consequence of this relation is that the first-order non-linear correction to the
quasi-linear dynamics is exactly zero:

∂Ps

∂t
= αPLz(Ps + Pf ). (30)

Applying now the operator (1 −P) to Eq. (17), using (1 −P)L0 = L0(1 −P) and (29), we
obtain

∂Pf

∂t
= L0Pf + (√

αLn + α(1 −P)Lz

)
(Ps + Pf ). (31)

Our goal is to solve (31) and to inject the solution into (30), which will become a closed
equation for the slowly evolving PDF Ps . We solve Eqs. (30, 31) using Laplace transform.
The Laplace transform of a function of time f is defined by

f̃ (s) =
∫ ∞

0
dt e−stf (t),



Kinetic Theory of Jet Dynamics in the Stochastic Barotropic 587

where the real part of s is sufficiently large for the integral to converge. Using ˜(∂tf )(s) =
sf̃ (s) − f (0) and the fact that the operators don’t depend explicitly on time, equations (30)
and (31) become

{
sP̃s(s) = αPLz(P̃s + P̃f ) + Ps(0)

sP̃f (s) = L0P̃f + (
α(1 −P)Lz + √

αLn

)
(P̃s + P̃f ) + Pf (0).

For simplicity, we assume that the initial condition satisfies Pf (0) = 0. In most classi-
cal cases, this assumption is not a restriction, as relaxation towards such a distribution is
exponential and fast. For our case, this may be trickier because as discussed in Sect. 5, the
relaxation will be algebraic for time scales much smaller than 1/α. However, we do not
discuss this point in detail before the conclusion (Sect. 7).

Denoting by 1
L the inverse of a generic operator L, the second equation can be solved as

P̃f (s) = √
α

1

s −L0 − √
αLn − α(1 −P)Lz

[√
α(1 −P)Lz +Ln

]
P̃s

and this solution can be injected into the first equation:

sP̃s(s) =
[

αPLz + α3/2PLz

1

s −L0 − √
αLn − α(1 −P)Lz

[√
α(1 −P)Lz +Ln

]
]

P̃s

+ Ps(0).

At this stage we made no approximation and this last result is exact.
We look at an expansion in powers of

√
α for the above equation. At order 4 in

√
α, we

get

sP̃s(s) =
{

αPLz + α3/2PLz

1

s −L0
Ln + α2PLz

[
1

s −L0
(1 −P)Lz +

(
1

s −L0
Ln

)2]}

P̃s

+ Ps(0) +O
(
α5/2

)
.

We use that 1
s−L0

is the Laplace transform of exp(tL0) and that the inverse Laplace transform
of a product is a convolution to conclude that

∂Ps

∂t
= αPLzPs + α3/2PLz

∫ ∞

0
dt ′

[
et ′L0LnPs

(
t − t ′

)]

+ α2PLz

∫ ∞

0
dt ′ et ′L0(1 −P)LzPs

(
t − t ′

)

+ α2PLz

∫ ∞

0
dt ′

∫ ∞

0
dt ′′ et ′L0Lnet ′′L0LnPs

(
t − t ′ − t ′′

) +O
(
α5/2

)
.

We observe now that the evolution equation for Ps contains memory terms. However, in
the limit α � 1, Ps evolves very slowly. Thus, if we make a Markovianization of the time
integrals replacing Ps(t − t ′) by Ps(t), we make an error of order ∂Ps

∂t
(t) which is of order α.

For example, the first integral in the last equation is

∫ ∞

0
dt ′

[
et ′L0LnPs

(
t − t ′

)] =
∫ ∞

0
dt ′ et ′L0LnPs(t) +O(α).
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The evolution equation for Ps is then

∂Ps

∂t
=

{

αPLz + α3/2PLz

∫ ∞

0
dt ′ et ′L0Ln

+ α2PLz

∫ ∞

0
dt ′ et ′L0

[

(1 −P)Lz +
∫ ∞

0
dt ′′ Lnet ′′L0Ln

]}

Ps +O
(
α5/2

)
. (32)

We now have a closed differential equation for the slow probability distribution function Ps .

3.3 The Fokker–Planck Equation for the Slow Evolution of the Zonal Flow

The explicit computation of each term involved in (32), which is reported in Appendix A,
leads to the final Fokker–Planck equation for the zonal jets:

∂R

∂τ
=

∫

dy1
δ

δqz(y1)

{[
∂F1[U ]

∂y1
+ ωz(y1) − ν

α

∂2ωz

∂y2
1

]

R[qz]

+
∫

dy2
δ

δqz(y2)

(
CR(y1, y2)[qz]R[qz]

)
}

, (33)

which evolves over the time scale τ = αt , with the drift term

F1[U ] = F [U ] + α

∫ ∞

0
dt ′

∫ ∞

0
dt ′′ EU

[〈
v(y)

m ωm

〉
(y1)M[qz,ωm](t ′, t ′′)],

with M given in Appendix A, with

F [U ] = EU

[〈
v(y)

m ωm

〉]
,

and with the diffusion coefficient

CR(y1, y2)[qz] = Cz(y1 − y2) + α

∫ ∞

0
dt ′

∂2

∂y2∂y1
EU

[[〈
v(y)

m ωm

〉(
y1, t

′)〈v(y)
m ωm

〉
(y2,0)

]]
.

From its definition, we see that F [U ] is the opposite of the Reynolds stress divergence
computed from the quasi-linear approximation.

The Fokker–Planck equation (33) is equivalent to a non-linear stochastic partial differen-
tial equation for the potential vorticity qz,

∂qz

∂τ
= −∂F1

∂y
[U ] − ωz + ν

α

∂2ωz

∂y2
+ ζ, (34)

where ζ is a white in time Gaussian noise with spatial correlation CR . As CR depends itself
on the velocity field U , this is a non-linear noise.

At first order in α, we recover the deterministic kinetic equation (15) discussed in
Sect. 2.4. The main result here is that the first contribution of the non-linear operator, the
order O(α3/2) in (32), is exactly zero. We could have applied the same stochastic reduction
techniques to the quasi-linear dynamics (14) and we would have then obtained the same
deterministic kinetic equation at leading order, as expected. We thus have shown that at or-
der 3 in

√
α, the quasi-linear approximation and the full non-linear dynamics give the same

results for the zonal flow statistics.
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At next order, we see a correction to the drift F [U ] due to the non-linear interactions.
At this order, the quasilinear dynamics and non-linear dynamics differ. We also see the
appearance of the noise term, which has a qualitatively different effect than the drift term.
We note that at this order, we would have obtained the same non-linear noise CR from the
quasilinear dynamics. Pushing our computations to next orders, we would obtain higher
order corrections to the drift and noise terms, for instance due to eddy-eddy (non-zonal)
non-linear interactions, but also corrections through fourth order operators.

We note that we can also write directly an equation equivalent to (34) for the velocity
profile

∂U

∂τ
= F1[U ] − U + ν

α

∂2U

∂y2
+ ξ, (35)

where ξ is a white in time Gaussian noise with spatial correlation

Eξ

[
ξ(y1, t1)ξ(y2, t2)

] =
(

CU(y1 − y2)

+ α

∫ ∞

0
dt ′ EU

[[〈
v(y)

m ωm

〉(
y1, t

′)〈v(y)
m ωm

〉
(y2,0)

]]
)

δ(t1 − t2).

(36)
Whereas at a formal level, correction to F and the noise term appear at the same order, their
qualitative effect is quite different. For instance if one is interested in large deviations from
the most probable states, correction of order α to F will still be vanishingly small, whereas
the effect of the noise will be essential. At leading order, the large fluctuations will be given
by

∂U

∂τ
= F [U ] − U + ν

α

∂2U

∂y2
+ ξ, (37)

Equation (37) then appears to be the minimal model in order to describe the evolution of
zonal jet in the limit of weak forcing and dissipation. We will comment further on this issue
in Sect. 6, dealing with bistability of zonal jets and phase transitions.

4 Energy and Enstrophy Balances

We discuss here the energy balance in the inertial limit α � 1 and the consistency of the
stochastic reduction at the level of the energy. It is thus essential to distinguish the different
ways to define the averages, for the original stochastic equation (5) or for the zonal Fokker–
Planck equation (33). We recall that E[·] = ∫

D[qz]D[ωm] · P [qz,ωm] denotes the average
with respect to the full PDF Pt whose evolution is given by the Fokker–Planck equation
(17), or equivalently, the average over realizations of the noise η in Eq. (10)–(11); EU [·] =∫
D[ωm] ·G[qz,ωm] denotes the average with respect to the stationary Gaussian distribution

of the non-zonal fluctuations G, defined in (25) and ER[·] = ∫
D[qz] · R[qz] denotes the

average with respect to the slowly evolving zonal PDF R whose evolution is given by the
zonal Fokker–Planck equation (33). ER is equivalently an average over the realizations of
the noise ζ in Eq. (34).

As discussed in the presentation of the barotropic equations, we are interested in the
regime where the dissipation of energy is dominated by the one due to the large-scale linear
friction: 2λE/νn,dHn 	 1 in Eq. (4). As a consequence, we will consider in this section only
the case of zero viscosity, ν = 0.
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4.1 Energy Balance for the Barotropic Equations

The total energy balance of the non-dimensional barotropic equations (5) given by Eq. (6)
is reported here for convenience:

dE

dt
= −2αE + 2α (38)

where we recall that E = E[E]. With the orthogonal decomposition into zonal and non-zonal
degrees of freedom, we have a natural decomposition of the energy contained in zonal and
non-zonal degrees of freedom: E = Ez +αEm, with Ez = E[ 1

2

∫

D U 2] and Em = E[ 1
2

∫

D v2
m].

Zonal Energy Balance From the definition of Ez, either by direct computation from the
Fokker–Planck equation (17) or from Eq. (10) applying the Itō formula, we have

dEz

dt
= α2πlx

∫

dyE
[〈
v(y)

m ωm

〉
(y)U(y)

] − 2αEz + 2ασz (39)

with σz = −2π2lx(	
−1Cz)(0) the rate of energy injected by the forcing directly into the

zonal degrees of freedom. In addition with the expected energy dissipation and direct energy
injection by σz, the first term on the right hand side describes the energy production due to
the non-zonal fluctuations.

Non-zonal Energy Balance Using E = Ez + αEm and Eqs. (38), (39), we obtain

dEm

dt
= −2πlx

∫

dy E
[〈
v(y)

m ωm

〉
(y)U(y)

] − 2αEm + 2σm, (40)

where σm = 1 − σz is the rate of energy injection by the forcing on non-zonal degrees of
freedom. Clearly, Eqs. (39) and (40) are exact and fully equivalent to the energy balance (38).

4.2 Energy and Enstrophy Balance for the Kinetic Equation

We now show that the energy balance of the kinetic equation (34) is consistent with the
exact energy balances written above, at leading order in α. We denote by Ẽz = ER[ 1

2

∫

D U 2]
the average zonal energy for the kinetic equation and by αẼm = αEU [ 1

2

∫

D v2
m] the energy

contained in non-zonal degrees of freedom. We start from the energy balance for zonal
degrees of freedom. Again, working at the level of the zonal Fokker–Planck (33) equation
or of the kinetic equation (34) give the same result:

dẼz

dτ
= 2πlxER

[∫

dy F1[U ](y)U(y)

]

− 2Ẽz − 2πlxER

[∫

dy
(
	−1CR

)
(0)

]

.

To approximate the above equation at leading order in α, we observe that F1[U ] = F [U ] +
O(α) = EU [〈v(y)

m ωm〉](y1) + O(α), and CR = Cz + O(α). Then, the stationary energy bal-
ance for zonal degrees of freedom reduces to

dẼz

dτ
= 2πlxER

[∫

dyEU

[〈
v(y)

m ωm

〉]
U

]

− 2Ẽz + 2σz + O(α). (41)
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In the limit α → 0, the full PDF P [qz,ωm] is given by the slowly evolving part Ps[qz,ωm] =
G[qz,ωm]R[qz]. Then, the rate of energy transferred from the fluctuations to the zonal flow
becomes

ER

[∫

dy EU

[〈
v(y)

m ωm

〉]
U

]

+ O(α) =
∫

dy E
[〈
v(y)

m ωm

〉
U

];

and Eq. (41) reduces to the energy balance for zonal degrees of freedom (39) at leading
order in α. This proves the consistency of the zonal energy balance for the kinetic equation
and the barotropic equations: Ez = Ẽz + O(α).

4.2.1 Non-zonal Energy Balance and Total Transfer of Energy to the Zonal Flow

Let us now consider the energy balance for αẼm. Applying Itō formula to (22), we get, in
the stationary state and for any U ,

0 = −2πlx

∫

dy EU

[〈
v(y)

m ωm

〉
(y)

]
U(y) − 2αẼm + 2σm, (42)

with σm = −2π2lx(	
−1Cm)(0). Equation (42) does not contain time evolution which is

consistent with the definition of Ẽm in the kinetic equation through a stationary average.
In the limit α � 1, in agreement with the scaling of the variables we expect the energy of
the non-zonal degrees of freedom to be of order α, or Ẽm = O(1). This is essential for the
consistency of the asymptotic expansion and will be proved in Sect. 5.

From Ẽm = O(1) and Eq. (42), the energy dissipated in the non-zonal fluctuations per
unit time is negligible, so the stationary energy balance for the non-zonal fluctuations gives

πlx

∫

dyE
[〈
v(y)

m ωm

〉
U

] = πlx

∫

dyEU

[〈
v(y)

m ωm

〉
(y)

]
U(y) + O(α) = σm + O(α).

Injecting this relation in the stationary energy balance for the zonal degrees of freedom (41)
gives

Ez = πlx

∫

dyER

[〈
v(y)

m ωm

〉
U

] + σz = σz + σm + O(α) = 1 + O(α).

The barotropic equations (5) are in units so that E = 1 in a stationary state: the above relation
expresses the fact that, in the limit α � 1, all the energy is concentrated in the zonal degrees
of freedom: Ez = E + O(α).

4.2.2 Enstrophy Balance for the Kinetic Equation

We conclude considering the enstrophy balance for the kinetic equation. As we will see
below, the concentration property found for the energy does not hold for the enstrophy. The
zonal and non-zonal enstrophy balances can be obtained with a very similar reasoning as the
one done for the energy and, at leading order in α, one can use the full Fokker–Planck (17)
or the approximated one (33), (22) and obtain consistent results. Denoting Zz = E[ 1

2

∫

D q2
z ]

the enstrophy of zonal degrees of freedom and αZm = αE[ 1
2

∫

D ω2
m] the non-zonal degrees

of freedom one, we have

0 = −2πlxE

[∫

dy U ′′(y)
〈
v(y)

m ωm

〉
(y)

]

− 2Zz + 4π2lxCz(0), (43)
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0 = 2πlxE

[∫

dy U ′′(y)
〈
v(y)

m ωm

〉
(y)

]

− 2αZm + 4π2lxCm(0), (44)

where the first equation is the stationary enstrophy balance for Zz and the second one for Zm.
The above equations refer explicitly to the case of the 2D Euler equations, but the general-
ization to the barotropic equations is straightforward.

As will be discussed in next section, the enstrophy in the non-zonal degrees of freedom
doesn’t converge in the inertial limit: more precisely, αZm = O(1). Then, the enstrophy in
the zonal degrees of freedom is

Zz = −αZm + 2π2lx
(
Cz(0) + Cm(0)

) = IZ − αZm,

with the total enstrophy injected by the forcing IZ . Then, by contrast with the zonal energy,
the zonal enstrophy is not equal to the enstrophy injected plus correction of order α. There
is no concentration of the enstrophy in the zonal degrees of freedom, and a non-vanishing
part of the enstrophy injected is dissipated in the non-zonal fluctuations.

Clearly there is no self-similar cascade in the problem considered here, energy goes di-
rectly from the fluctuations at any scales to the zonal flow through the effect of the advec-
tion by the zonal flow. These results are however in agreement with the phenomenology of
a transfer of the energy to the largest scales, while the excess enstrophy is transferred to
the smallest scales, however with dynamical processes that are non-local in Fourier space.
This non-equilibrium transfer of energy to the largest scales is also consistent with predic-
tions from equilibrium statistical mechanics which, roughly speaking, predicts that the most
probable flow concentrates its energy at the largest possible scales.

5 The Lyapunov Equation in the Inertial Limit

As discussed in Sect. 3, it is essential to make sure that the Gaussian process corresponding
to the inertial linearized evolution of non-zonal degrees of freedom close a base flow U ,
see Eqs. (13) and (24), has a stationary distribution. We discuss this issue in this section.
We consider the linear dynamics with stochastic forces (Eq. (22)), that we recall here for
convenience

∂ωm

∂t
+ L0

U [ωm] = √
2ηm, E

[
ηm(r1, t)ηm

(
r2, t

′)] = Cm(r1 − r2)δ
(
t − t ′

)
, (45)

where

L0
U [ωm] = U(y)

∂ωm

∂x
+ (−U ′′(y) + h′(y)

)∂ψm

∂x
(46)

is the linearized evolution operator close to the zonal flow U .
Equation (45) describes a linear stochastic Gaussian process, or Ornstein-Uhlenbeck

process. Thus, it is completely characterized by the two-points correlation function
g(r1, r2, t) = E[ωm(r1, t)ωm(r2, t)]. The evolution of g is given by the so-called Lyapunov
equation, which is obtained by applying the Itō formula to (45):

∂g

∂t
+ L

0(1)
U g + L

0(2)
U g = 2Cm. (47)

We will prove that Eq. (47) has a asymptotic limit g∞ for large time. This may seem
paradoxical as we deal with a linearized dynamics with a stochastic force and no dissi-
pation mechanism. We explain in this section that the Orr mechanism (the effect of the
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shear through a non-normal linearized dynamics) acts as an effective dissipation. How-
ever this effects is not uniform on all observables. We will prove that g has a limit g∞

in the sense of distribution, from which we will be able to prove that velocity-like observ-
ables have a limit. By contrast, observables involving the vorticity gradient will diverge.
Moreover, if the kinetic energy contained in the non-zonal degrees of freedom converges,
the enstrophy diverges. This non-uniformity for the convergence of the two-points cor-
relations functions is also related to the fact that the convergences will be algebraic in
time, rather than exponential. The statement that “the Gaussian process corresponding to
the inertial linearized evolution close to a base flow U has a stationary distribution” must
thus be understood with care: not all observable converge and the convergences are alge-
braic.

An observable like the Reynolds stress divergence involves both the velocity and the
vorticity gradient. It is thus not obvious that it has an asymptotic limit. We will also prove
that the long time limits of the Reynolds stress divergence −EU [〈v(y)

m ωm〉] and of its gra-
dient −EU [ ∂

∂y
〈v(y)

m ωm〉] are actually well defined. The results in this section ensure that the
asymptotic expansion performed in Sect. 3 is well posed, at leading order.

Because some quantities (such as the enstrophy) diverge in the inertial limit, it is of in-
terest to understand how the Gaussian process is regularized by a small viscosity or linear
friction. This corresponds to replace the operator L0

U in Eq. (47) with the operator LU de-
fined in Eq. (12). Moreover, to be able to separate the effect of the viscosity and of the
Rayleigh friction, we will introduce in the following the operators

Lν
U [ωm] = L0

U [ωm] − ν	ωm, (48)

and

Lα
U [ωm] = L0

U [ωm] + αωm, (49)

in which the superscript indicates which of the terms have been retained from the ordinal
operator LU .

For α = ν = 0, the two-point correlation function g converges as a distribution. g(r, r′, t)
diverges point-wise only for value of y and y ′ such that U(y) = U(y ′), for instance y = y ′.
We will prove that for small α this divergence is regularized in a universal way (independent
on U ) close to points (r, r′) such that U(y) = U(y ′), over a scale λα = 2α

kU ′(y)
, where k

is the wavenumber of the meridional perturbation. We stress that only the local behavior
close to the divergence point is universal. All quantities converge exponentially over a time
scale 1/α.

We will argue that a small viscosity ν �= 0 also leads to a universal regularization of
the divergence, over a scale λν = ( 2ν

kU ′(y)
)1/3. When both α and ν are not equal to zero, the

way the singularity is regularized depends on the ratio of the length scales λα and λν . More
detailed results are discussed in this section.

Our analysis is based on the evaluation of the long time asymptotics for the deterministic
inertial linearized dynamics [7]. As far as we know, such theoretical results are currently
available only for the linearized Euler equation [7], h = β = 0. We will discuss the Lyapunov
equation in the case β �= 0 in a forthcoming paper.
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5.1 General Discussion

5.1.1 Solution of the Lyapunov Equation from the Solution of the Deterministic Linear
Equation

In this first section, we show how to obtain a formal solution of the Lyapunov equation (47)
using the solution of the deterministic dynamics ∂

∂t
+L0

U with appropriate initial conditions.
This discussion can be trivially extended to the cases in which the operator appearing in
Eq. (45) is Lν

U , Lα
U or LU , by simply replacing the operator L0

U with the appropriate one
wherever it appears.

We expand the force correlation function Cm in Fourier series, we have

Cm(x, y) =
∑

k>0,l

ckl cos(kx + ly).

We note that because Cm is a correlation, it is a positive definite function. This explains
why sin contribution are zero in this expansion. Moreover for all k ∈N

∗ and l ∈ Z, we have
ckl ≥ 0. The expression ckl cos(kx + ly) + ck,−l cos(kx − ly) is the most general positive
definite function involving the Fourier components eikx and eikl or their complex conjugates.
Here we have assumed that the correlation function is homogeneous (it depends only on
x1 −x2 and on y1 −y2). Its generalization to the case of an inhomogeneous force, for instance
for the case of a channel would be straightforward.

Because the Lyapunov equation is linear, the contribution of the effect of all forcing terms
just add up

g =
∑

k>0,l

cklgkl, (50)

where gkl is the solution of the Lyapunov equation (47) with right hand side 2 cos(kx + ly).
By direct computation it is easy to check that

gkl(r1, r2, t) =
∫ t

0
e−t1L0

U [ekl](x1, y1)e
−t1L0

U

[
e∗
kl

]
(x2, y2)dt1 + C.C. (51)

with ekl(x, y) = ei(kx+ly), and where C.C. stands for the complex conjugate.2 We note that
e−t1L0

U [ekl] is the solution at time t1 of the deterministic linear dynamics ∂t +L0
U with initial

condition ekl .
Let us observe that from the solution of the Lyapunov equation, we can also easily obtain

the evolution of E[ωm(r1, t)(Sωm)(r2, t)] where S is a linear operator. We have

E
[
ωm(r1, t)(Sωm)(r2, t)

] = S(2)[g]

where S(2) is the linear operator S acting on the second variable. The typical operators S

that we will use in the following are those necessary to obtain the stream function and the
velocity from the vorticity.

2A similar formula can easily been deduced for any stochastic force of the form C(r1, r2) = f (r1)f (r2)

from the explicit solution of the Gaussian process from the stochastic integral
∫ t

0 e−t1L0
U [f ]dWt1 . Here the

key point is that the Fourier basis diagonalizes any translationally invariant correlation function.
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5.1.2 Two Explicitly Solvable Examples

Before discussing the long-time behavior of the Gaussian process in Eq. (45) for a general
zonal flow U , we discuss here two simple examples for which the deterministic linear dy-
namics ∂t +L0

U can be solved analytically. The two examples are the perfect and the viscous
advection by a linear shear. These two simple examples will put in evidence the mechanisms
that will ensure the convergence of the long-time limit of two-points correlations in the in-
ertial limit.

For a linear shear this mechanism is the Orr mechanism: the transport of the vorticity
along each streamline leads to a phase mixing in the computation of all integrated quantities,
for instance the velocity. Then the velocity or the stream function decay algebraically for
large times, the exponent for this decay being related to the singularity of the Laplacian
green function. For more general profile U for which U ′′(y) �= 0, this shear mechanism still
exists, but is also accompanied by global effects due to the fact that vorticity affects the
velocity field globally. In many cases, those global effects are the dominant one [7]. They
will be taken into account in Sect. 5.2.

Perfect Advection by a Linear Shear To treat an example that can be worked out explic-
itly, we consider the perturbation by a stochastic force of a linear shear U(y) = sy, which
corresponds to set in Eq. (45) L0

U = sy∂x . For sake of simplicity, we only treat here the case
s > 0, the corresponding generalization to s < 0 being trivial. The following discussion ap-
plies to flows that are periodic in the longitudinal direction x, with period 2πlx , either to the
case of the domain D = [0,2πlx) × (−∞,∞), or to flows in a zonal channel with walls at
y = ±L.

The Lyapunov equation we have to consider for this problem is

∂g

∂t
+ L

0(1)
U g + L

0(2)
U g = 2Cm,

for the vorticity-vorticity correlation function g(r1, r2, t) = E[ωm(r1, t)ωm(r2, t)]. For sake
of simplicity, we consider the case where the forcing acts on a single wave vector

Cm = ε(k2 + l2)

4

[
eik(x1−x2)+il(y1−y2) + C.C.

] = ε(k2 + l2)

2
cos

[
k(x1 − x2) + l(y1 − y1)

]
,

(52)
where C.C. stands for the complex conjugation of the first term. As explained in the previous
section, contributions to the Lyapunov equation from other forcing modes just add up (see
Eq. (50)). ε is the average energy input rate per unit of mass (unit m2 s−3) (in this section
and the following ones dealing with the case of a linear shear, ωm is the non-zonal vorticity
and has dimensions s−1, whereas in section dealing with the kinetic theory

√
αωm is the

non-zonal vorticity).
The deterministic evolution of the linearized dynamics L0

U with initial condition ei(kx+ly)

is

e−tL0
U

[
ei(kx+ly)

] = eikx+ily−iksyt , (53)

as can be easily checked. From (51), we have

g(r1, r2, t) = ε(k2 + l2)

4s

eik(x1−x2)+il(y1−y2)

−ik(y1 − y2)

[
e−iks(y1−y2)t − 1

] + C.C., (54)

for y1 �= y2 and g(x1, y, x2, y, t) = ε(k2+l2)

2 cos(k(x1 − x2))t .
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This result readily shows that the square of the perturbation vorticity g(r, r, t) diverges
proportionally to time t . This is expected as the average enstrophy input rate per unit of
area is ε(k2 + l2), and there is no dissipation mechanism. However, we also remark that for
y1 �= y2 the autocorrelation function is a fast oscillating function. As a consequence g will
have a well defined limit in the sense of distributions:

g∞(r1, r2) = lim
t→∞g(r1, r2, t)

= ε(k2 + l2)

4s
eik(x1−x2)+il(y1−y2) 1

k

[

πδ(y1 − y2) − iPV

(
1

y1 − y2

)]

+ C.C.,

(55)

where PV stands for the Cauchy Principal Value (we have used Plemelj formula, Eq. (93)).
Equivalently, we have

g∞(r1, r2) = ε(k2 + l2)

2s

[
cosk(x1 − x2)

k
πδ(y1 − y2)

+ sin[k(x1 − x2) + l(y1 − y2)]
k

PV

(
1

y1 − y2

)]

. (56)

The fact that the stationary vorticity-vorticity correlation function has a limit in the sense of
distributions is a very important result. It means that every observable that can be obtained by
integration of a smooth function over g∞ will have a well defined stationary limit. Actually
the formula above will be valid when integrated over any continuous function. For instance,
we can use it to compute the velocity-vorticity or velocity-velocity correlation functions.
Then all these quantities will have a definite stationary value. This is a remarkable fact, as
we force continuously the perfect flow and no dissipation is present. Looking at the prefactor
ε(k2+l2)

2s
, we remark that it is an injection rate ε(k2 + l2) (the injection rate of enstrophy

per unit of area) divided by twice the shear. By analogy with the equivalent formula in
classical Ornstein-Uhlenbeck process, we see that the shear s acts as an effective damping
mechanism. The effect of the shear, called Orr mechanism, leads to phase mixing which
acts as an effective dissipation for the physical quantities dominated by the large scales.

All integrated quantities, for instance the kinetic energy, are proportional to ε(k2+l2)

2s
and are

independent on the linear friction or viscosity at leading order. We also note that in the
statistically stationary state the enstrophy is infinite.

As an example, we compute the vorticity-stream function stationary correlation function

h∞(r1, r2) = lim
t→∞E

[
ω(r1, t)ψ(r2, t)

]
(57)

From Eq. (56) we obtain

h∞(r1, r2) = ε(k2 + l2)

2s

[
cos k(x1 − x2)

k
πHk(y1 − y2)

+ PV
∫

sin[k(x1 − x2) + l(y1 − y3)]
k

Hk(y2 − y3)

y1 − y3
dy3

]

, (58)

where Hk is the Green function for the Laplacian in the kth sector, with the appropriate
boundary conditions. From this last expression, and using v(x) = −∂ψ/∂y and v(y) = ∂ψ/∂x

it is easy to obtain the correlation function between the vorticity and the velocity field. We
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note that the Green function Hk(y1 − y2) is not a smooth function: its derivative has a jump
in y1 = y2. This implies that the correlation between the vorticity and the x component
of the velocity is defined point-wise only for y1 �= y2 or defined globally as a distribution.
With analogous computations one can deduce other stationary two-points correlations: for
example, the Reynolds stress divergence converges to a well defined function.

In this section, we have discussed how the vorticity-vorticity correlation function has a
stationary limit in the sense of distribution. When looking at this solution point-wise, it is
singular for y1 = y2. In the following section, we explain how this singularity is regularized
either by a linear friction or by viscosity. The discussion in this section was relying on the
analytic solution of the linear dynamics close to a linear shear (Eq. (53)). Such an analytical
solution is not known for generic base flows, so that we need more refined techniques, as
will be explained in Sect. 5.2. We will obtain the same conclusion: the vorticity-vorticity
correlation function converges as a distribution, and is regularized in a universal way.

Advection by a Linear Shear: Regularization by a Linear Friction We consider the same
problem as in the last paragraph, but adding a linear friction. We will see how the singularity
close to y1 = y2 is regularized by a linear friction. We solve

∂gα

∂t
+ L

α(1)
U gα + L

α(2)
U gα = 2Cm,

with Lα
U = sy∂x − α and Cm given by Eq. (52). It is straightforward to observe that the

evolution under the linearized dynamics Lα
U is given by

e−tLα
U

[
ei(kx+ly)

] = eikx+ily−iksyte−αt . (59)

With very similar computations to those of the last section, we can obtain the stationary
value of the vorticity-vorticity correlation function

g∞
α (r1, r2) = lim

t→∞gα(r1, r2, t) = ε(k2 + l2)

4s
eik(x1−x2)+il(y1−y2) 1

k
F 2α

ks
(y1 − y2) + C.C., (60)

where

Fλ(y) = −i

y − iλ
. (61)

We can thus observe that the function Fλ(y) is a regularization of the Plemelj formula
(Eq. (93)) on the length scale λ. Indeed we have

Fλ(y) = 1

λ
F1

(
y

λ

)

= λ

y2 + λ2
− i

y

y2 + λ2

where the real part of Fλ is even while the imaginary part is odd. Moreover the real part of
Fλ is a regularization of πδ(y),

lim
λ→0+ R

[
Fλ(y)

] = lim
λ→0+

λ

y2 + λ2
= πδ(y),

and the imaginary part of Fλ is a regularization of −PV(1/y),

lim
λ→0+ �[

Fλ(y)
] = − lim

α→0

y

y2 + λ2
= −PV

(
1

y

)
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where R and I stand, respectively, for the real and the imaginary parts. We note that for
y 	 λ, limλ→0+ �[Fλ(y)] = 0, and limλ→0+ �[Fλ(y)] = 1/y.

We thus finally obtain

g∞
α (r1, r2) ∼

α
ks

�1

ε(k2 + l2)

2s

{

cosk(x1 − x2)
1

k
R

[
F 2α

ks
(y1 − y2)

]

− sin
[
k(x1 − x2) + l(y1 − y2)

]1

k
I
[
F 2α

ks
(y1 − y2)

]
}

, (62)

where one should observe that, because R[Fα(ky)] decays sufficiently fast to zero for
y 	 α, the factor cos[k(x1 − x2) + l(y1 − y2)] has been replaced by cos[k(x1 − x2)]. Equa-
tion (62) is a regularization of the vorticity-vorticity correlation function found in (56), by
the effect of a small linear friction α > 0.

Quantities which were found to be divergent in the last section are now regularized by the
presence of a small Rayleigh friction. For example the point-wise rms. non zonal enstrophy
density

EU

[
ω2

m

] = g∞
α (0,0) = ε(k2 + l2)

4α
. (63)

Advection by a Linear Shear in a Viscous Fluid In this paragraph, we study the regular-
ization of the solution to the Lyapunov equation by a small viscosity considering the pertur-
bation by a stochastic force of a linear shear U(y) = sy in a viscous flow. We consider the
domain D = [0,2πlx) × (−∞,∞) and periodic boundary conditions in the x direction.

We solve the Lyapunov equation

∂g

∂t
+ L

ν(1)
U g + L

ν(2)
U g = 2Cm,

for the vorticity-vorticity correlation function g(r1, r2, t) = E[ωm(r1, t)ωm(r2, t)], where
Lν

U = sy∂x − ν	, Cm is given by Eq. (52) and ε the injection rate of energy per unit of mass
(ε has the dimensions m2 s−3).

The deterministic evolution of the linear dynamics ∂
∂t

+Lν
U = 0 with the initial condition

ei(kx+ly) is given by

e−tLν
U

[
ei(kx+ly)

] = eikxei(l−skt)y e−ν(k2+l2)t+νsklt2− 1
3 νs2k2t3

. (64)

This solution, first derived by Lord Kelvin, can be obtained by the method of characteristics.
Alternatively one can directly check a-posteriori that (64) is a solution to the deterministic
equation. We can see that the second exponential in (64) just gives the inertial evolution
of the perturbation and the third one describes the effect of the viscosity. We thus see that
the vorticity is damped to zero on the time-scale (1/s2k2ν)1/3. This time scale is the typical
time for an initial perturbation with longitudinal scale 1/k to be stretched by the shear until
it reaches a scale where it is damped by viscosity.

We can now calculate the asymptotic solution to the Lyapunov equation. It is given by

g∞
ν (r1, r2) = ε(k2 + l2)

4

∫ ∞

0
e−tL

ν(1)
U

[
eikx1 eily1

]
e−tL

ν(2)
U

[
e−ikx2 e−ily2

]
dt + C.C.

= ε(k2 + l2)

4s
eik(x1−x2)+il(y1−y2) 1

k
H( 2ν

ks
)1/3(y1 − y2) + C.C. (65)
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where we have used Eq. (64) and the change of variable t1 = (2νk2s2)1/3t to write the second
equality, and where

Hλ(y) = 1

λ

∫ ∞

0
e− iy

λ
t1−λ2(k2+l2)t1+λlt2

1 − 1
3 t3

1 dt1. (66)

In Appendix B we prove that Hλ(y) =
λ→0

Gλ(y) +O(λ) with

Gλ(y) = 1

λ

∫ ∞

0
e− iy

λ
t1− 1

3 t3
1 dt1. (67)

We note that Hi(Y ) = Gλ(iλY )/π is one of the two Scorer’s functions, that solve the dif-
ferential equation d2Hi/dY2 − YHi = 1/π , and is related to the family of Airy functions.
We stress that the asymptotic behavior for large y of the real parts of Gλ and Hλ are dif-
ferent �[Hλ(y)] ∼

y	
√

2
k2+l2

(k2 + l2) λ3

y2 whereas �[Gλ(y)] ∼
y	λ

2 λ3

y4 but in any cases those are

subdominant for small λ (please see Appendix B for more details).
As explained in Appendix B, Gλ is a regularization of the distributions in Plemelj formula

at the length scale λ and has the dimension of the inverse of a length. The integral over y

of the real part of Gλ is π , consistently with the fact that it is a regularization of πδ(y); the
imaginary part is a regularization of Cauchy Principal value of 1/y, with

�[
Gλ(y)

] ∼
y	λ

− 1

y
. (68)

We thus conclude that

g∞
ν (r1, r2) ∼

( 2ν
sk

)1/3l�1

ε(k2 + l2)

2s

{
cos[k(x1 − x2)]

k
�[

G( 2ν
ks

)1/3(y1 − y2)
]

− sin[k(x1 − x2) + l(y1 − y2)]
k

�[
G( 2ν

ks
)1/3(y1 − y2)

]
}

. (69)

Observe that, because �[G( 2ν
ks

)1/3(y)] decays sufficiently fast to zero for y 	 ( 2ν
ks

)1/3, the
factor cos[k(x1 − x2) + l(y1 − y2)] has been replaced by its value for y1 = y2. The first term
of Eq. (69) is a local contribution, for values of y1 − y2 of order ( 2ν

ks
)1/3, whereas the second

term is a global contribution. Whereas the local contribution is independent on l and depends
on y1 − y2 through the shape function G, the global contribution has a phase dependance
through l(y1 − y2).

By contrast, the point wise value of the two-point vorticity correlation function for
(y1 − y2) ∼ ( 2ν

ks
)1/3 diverges for large Reynolds number. For instance

EU

[
ω2

m

] = g∞
ν (0,0) ∼

( 2ν
sk

)1/3l�1

ε(k2 + l2)

2s

(
s

2k2ν

)1/3 ∫ ∞

0
e− 1

3 t3
1 dt1,

and one can note that s

2νk2 is a Reynolds number based on the local shear and the scale of
the non-zonal perturbation. We observe that the enstrophy density EU [ω2

m] is regularized by
viscosity but diverges for large Reynolds number to the power 1/3.

We conclude by stating that physical quantities involving higher order derivatives will
also be regularized by the viscosity and diverge with the Reynolds number. For instance the
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palinstrophy density will diverge as

EU

[
(∇ωm)2

] ∼
( 2ν

sk
)1/3l�1

CP

ε(k2 + l2)

2s

(
ks

2ν

)2/3(
s

2νk2

)1/3

,

where CP is a non-dimensional constant.
In this section, we have discussed the case of a force at a longitudinal scale 1/k and

transverse scale 1/l. The conclusion for any other forces can easily be obtained by super-
position of the contributions from all scales. The general conclusion is that in the limit of
large Reynolds number s

2νk2 	 1, the two-point correlation function converges as a distribu-
tion, and converges point-wise for values of y1 − y2 much larger than ( 2ν

kms
)1/3 where 1/km

is the maximal scale for the forcing. As a consequence, the velocity-velocity and velocity-
vorticity correlation functions have a limit independent on the Reynolds number, and the
kinetic energy density (m2 s−2) is roughly proportional to ε

2s
where ε is the average energy

input rate.
We have made explicit computations only in the case of a linear shear U(y) = sy, with

s > 0. Explicit computations are not easily done in more complex situations in the pres-
ence of viscosity. However we expect that for generic U , the singularities of the stationary
solutions to the Lyapunov equations are regularized in a universal way.

Advection by a Linear Shear in a Viscous Fluid with Linear Friction When both linear
friction and viscosity are present, the analysis above can be easily generalized. The way
the two points correlation function is regularized depends on the relative value of the two
length scales λα = 2α

ks
and λν = ( 2ν

ks
)1/3. When λα 	 λν , the regularization is of a friction

type and formula (62) will be correct. When λα � λν , the regularization is of a viscous type
and formula (69) will be correct.

We stress that, whatever the values of the length scales λα and λν , the real part of the
regularizing function always decays proportionally to 1/y4 for small enough values of y

and proportionally to 1/y2 for large enough values of y. The location of the crossover be-
tween these two behaviors depends on the values of the length scales λα and λν . A careful
discussion of this issue is addressed in Appendix B.

Here, we only point out that three cases are possible: (i) when λα 	 λν the regularization
is of friction type and the crossover happens for y ∼ λα ; (ii) when λα � λ3

ν(k
2 + l2) the

regularization is of viscous type and the crossover happens for y ∼ √
2/(k2 + l2); (iii) when

λα � λν but λα 	 λ3
ν(k

2 + l2) the singularity is also of viscous type, but in this case the
crossover happens for y ∼ √

2λ3
ν/λα . The emergence of this last length scale

√
2λ3

ν/λα is
due to the different multiplicative factors of the 1/y2 decay due to friction and in the 1/y4

decay due to viscosity (please see Appendix B).

5.2 Stationary Solutions to the Lyapunov Equation in the Inertial Limit

In the previous section, we have considered a base flow with constant shear, for which
analytical solution to the Lyapunov equation can be computed, and provides a qualitative
understanding of its solution. We have concluded that it has a stationary solution, in the sense
of distributions, even without dissipation. This solution diverges locally for y1 = y2, related
to an infinite enstrophy. We have explained how those local divergences are regularized by a
small linear friction or viscosity. The aim of this section is to prove that the same conclusions
remain valid for any generic shear flow U(y), which is assumed to be linearly stable. We also
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prove that the Reynolds stress divergence −EU [〈v(y)
m ωm〉] and its gradient −EU [ ∂

∂y
〈v(y)

m ωm〉]
have finite values. Convergence results for other two-point correlations are also discussed.

At a rough qualitative level, the reason why this is valid is the same as the one discussed
in the previous section: the effect of the shear (Orr-mechanism). However this explanation
can not be considered as satisfactory. The constant shear flow case has a zero gradient of
vorticity, that’s why the equation are so simple and can be solved analytically. Whenever
the vorticity gradient is non-zero, the hydrodynamic problem becomes drastically different,
coupling all fluctuations globally due to the long range interactions involved through the
computation of the velocity. Any explanation based on local shear only is then doubtful.
Moreover, most of jets in geophysical situations have points with zero shear U ′(y) = 0.
This is also a necessity for jets in doubly periodic geometries. Then the local shear effect
can not be advocated.

As already suggested, explicit analytical results are hopeless in this case. In order to
prove the result, we rely on two main ingredients. First we use the fact that the stationary
solution of the Lyapunov equation can be computed from solutions of the deterministic
linearized dynamics, as expressed by formulas (50) and (51). Second we prove that these
formulas have limits for large times based on results on the asymptotic behavior of the
linearized 2D Euler equations, discussed in the work [7]. At a qualitative level, the results of
this paper show that the flow can be divided into areas dominated by the shear for which the
Orr mechanism is responsible for a phase mixing leading to an effective dissipation. In other
flow regions, for instance close to jet extrema, where no shear is present, a global mechanism
called vorticity depletion at the stationary streamlines wipes out any fluctuations, extremely
rapidly.

We discuss in this section only the case with no beta effect β = 0, the case with beta
effect will be discussed in a forthcoming publication.

5.2.1 The Orr Mechanism and Vorticity Depletion at the Stationary Streamlines

In this section we summarize existing results on the large time asymptotics of the linearized
Euler equations [7]. We consider the linear deterministic advection with no dissipation. Be-
cause the corresponding linear operator L0

U is not normal, a set of eigenfunctions spanning
the whole Hilbert space on which L0

U acts does not necessarily exist. Because U is stable,
L0

U has no eigenmodes corresponding to exponential growth. Moreover it is a very com-
mon situation that the Euler operator L0

U has no modes at all (neither neutral nor stable
nor unstable). A simple example for which this can be easily checked is the case of the
linear shear treated in Sect. 5.1.2. We assume in the following that L0

U has no mode and
β = 0.

While the vorticity shows filaments at finer and finer scales when time increases, non-
local averages of the vorticity (such as the stream-function or the velocity) converge to zero
in the long-time limit. This relaxation mechanism with no dissipation is very general for
advection equations and it has an analog in plasma physics in the context of the Vlasov
equation, where it is called Landau damping [55]. This phenomenon was first studied in the
context of the Euler equations in the case of a linear profile U(y) = sy in [14]. The work [7]
was the first to study the resolvent and to establish results about the asymptotic behavior of
the linearized equations in the case in which the profile U(y) has stationary points yc such
that U ′(yc) = 0, which is actually the generic case.
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We consider the deterministic linear dynamics ∂t ω̃ + L0
U ω̃ = 0 with initial condition

eikxf (y). The solution is of the form ω̃(x, y, t) = eikxω̃k(y, t). From [7], we know that3

ω̃k(y, t) ∼
t→∞ ω̃∞

k (y)e−ikU(y)t . (70)

We thus see that the vorticity oscillates on a finer and finer scale as the time goes on. By
contrast to the behavior of the vorticity, any integral of the vorticity with a differentiable
kernel decays to zero. For instance, the results for the x and y components of the velocity
and for the stream function are:

ṽ
(x)
k (y, t) ∼

t→∞
ω̃∞

k (y)

ikU ′(y)

e−ikU(y)t

t
, (71)

ṽ
(y)

k (y, t) ∼
t→∞

ω̃∞
k (y)

ik(U ′(y))2

e−ikU(y)t

t2
, (72)

and

ψ̃k(y, t) ∼
t→∞

ω̃∞
k (y)

(ikU ′(y))2

e−ikU(y)t

t2
. (73)

In all the above formulas, higher order corrections are present and decay with higher powers
in 1/t . One should also observe that ω̃∞

k (y) depends on the initial condition f (y). The
asymptotic profile ω̃∞

k (y) could be computed numerically, for instance from the resolvent
of the operator L0

U . An essential point is that ω̃∞
k (y) has in general no local approximation,

it is not a simple function of the local shear but depends on the whole profile U .
These results have been proven for every shear flow U , also in the presence of stationary

points yc such that U ′(yc) = 0. Moreover, it has been proved in [7] that at the stationary
points ω̃∞

k (yc) = 0. This phenomenon has been called vorticity depletion at the station-
ary streamlines. It has been observed numerically that the extend of the area for which
ω̃∞

k (yc) � 0 can be very large, up to half of the total domain, meaning that in a large part
of the domain, the shear is not the explanation for the asymptotic decay. The formula for
the vorticity Eq. (70) is valid for any y. The formulas for the velocity and stream functions
are valid for any y �= yc . Exactly at the specific point y = yc , the damping is still algebraic
with preliminary explanation given in [7], but a complete theoretical prediction is not yet
available.

Using these results, we will study the stationary solutions of the Lyapunov equation with
no dissipation.

5.2.2 The Vorticity Auto-correlation Function Converges to a Distribution in the Perfect
Flow Limit

We prove now that the Lyapunov equation has a stationary solution, in the sense of distribu-
tions. The hypothesis are the same as in previous section: U is linearly stable, has no mode,
and β = 0.

In order to understand the long time behavior of the vorticity-vorticity correlation func-
tion, we consider Eq. (51). We consider Eq. (70), where ω̃k(y, t)eikx is the solution of the

3We prefer to use in this section the notation with a tilde to denote the solutions of the deterministic linear

dynamics ∂t + L0
U

.
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deterministic equation with initial condition eikx+ily (we note that ω̃k then depends on l

through the initial condition eily ). One can check that the integrand of the r.h.s. of this equa-
tion behaves for long time as

ω̃k(y1, t1)ω̃
∗
k (y2, t1) ∼

t1→∞ ω̃∞
k (y1)ω̃

∞∗
k (y2) e−ik[U(y1)−U(y2)]t1 . (74)

For y1 and y2 such that U(y1) �= U(y2) a computation analogous to the one in Sect. 5.1.2,
shows that gkl , and hence g∞ diverge proportionally to time t . This is related to an infinite
value of enstrophy.

In the following, we write formulas for the case when U is a monotonic profile. Then
each frequency correspond to a single streamline. In the opposite case, two streamlines may
have the same frequency, and resonances between streamlines should be considered. The
formula would then be more intricate, but the result can be easily obtained from (70) and
the conclusion that the limit exists is still true.4 From (74), we get

gkl(r1, r2, t) =
∫ t

0
ω̃k(y1, t1)e

ikx1 ω̃∗
k (y2, t1)e

−ikx2 dt1 + C.C.

=
{

ω̃∞
k (y1)ω̃

∞∗
k (y2)

−ik[U(y1) − U(y2)]
[
e−ik[U(y1)−U(y2)]t − 1

] + gr(y1, y2, t)

}

eik(x1−x2)

+ C.C., (75)

where gr is a function which remains continuous in the t → ∞ limit. We thus obtain, for
the stationary vorticity-vorticity correlation function

g∞
kl (r1, r2) =

{
π |ω̃∞

k (y1)|2
|kU ′(y1)| δ(y1 − y2) − iPV

(
ω̃∞

k (y1)ω̃
∞,∗
k (y2)

k(U(y1) − U(y2))

)

+ gr(y1, y2,∞)

}

eik(x1−x2) + C.C., (76)

and conclude that the Lyapunov equation has a stationary solution understood as a distribu-
tion.

Another quantity of interest is the velocity auto-correlation function and the kinetic en-
ergy density. We note that the velocity auto-correlation function is a quadratic quantity, that
can be obtained directly as a linear transform from the vorticity-vorticity correlation func-
tion g, or from the deterministic solution to the linearized operator. From (50), we see that
the contributions from each forcing modes add up. Then

EU

[
vm(r1, t) · vm(r2, t)

] =
∑

k>0,l

cklEkl(r1, r2),

with

Ekl(r1, r2) = eik(x1−x2)

∫ ∞

0
ṽk(y1, u).ṽ∗

k(y2, u)du + C.C., (77)

where ṽkeikx is the velocity of the deterministic solution to the linearized equations ∂t ω̃ +
L0

U ω̃ = 0, with initial condition eikx+ily , as in the previous section. Alternatively, Ekl =

4We note that the difficult theoretical result related to those resonances is to establish (70).
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V(1)V(2)∗g∞
kl , where V = −∇[	−1(.)] × ez is the linear operator giving the velocity from

the vorticity and V(1), resp. V(2) are the operator V acting on the first, or second variable
respectively. From (71, 72), it is clear that Ekl and thus the velocity autocorrelation functions
have finite values in the inertial limit, even if no dissipation is present in this limit.

We note that αEU [vm(r1, t) ·vm(r1, t)] is the non-zonal kinetic energy density (the kinetic
energy contained in the non-zonal degrees of freedom). We thus conclude that in the limit
of very small α, the non-zonal kinetic energy is proportional to α, and that its value can be
estimated from the Lyapunov equation with α = 0. Those results are extremely important,
as they prove that the scaling we have adopted all along this work in order to make an
asymptotic expansion is self-consistent.

5.2.3 Convergence of the Reynolds Stress Divergence and of Its Gradient

The stationary value of the Reynolds stress divergence −EU [〈v(y)
m ωm〉(y)] and its gradient

−EU [ ∂
∂y

〈v(y)
m ωm〉(y)] are central objects in the kinetic theory. Indeed, they enter in the final

kinetic equation when written, respectively, for the evolution of the zonal velocity (35) or
for the evolution of the zonal vorticity (34). We have thus to prove that they are finite.

We note that the Reynolds stress is a quadratic quantity that can be obtained directly as
a linear transform from the vorticity-vorticity correlation function g. From (50), we see that
the contributions from each forcing modes add up. Then

F(y) ≡ EU

[〈
v(y)

m ωm

〉
(y)

] =
∑

k>0,l

cklFkl(y),

with

Fkl(y) = lim
t→∞

∫ t

0
ω̃k(y,u)ṽ

(y)∗
k (y,u)du + C.C., (78)

where ω̃keikx and ṽ
(y)

k eikx are the deterministic solutions to the linearized equations ∂t ω̃ +
L0

U ω̃ = 0 with initial condition eikx+ily , as in previous section.
Proving that the long-time limit of the integral in Eq. (78) converges is straightforward.

Using Eqs. (70) and (72), one easily realizes that the integrands behaves as 1/u2 for large u

and thus the integral converges. One conclude that the Reynolds stress divergence is finite.
The computation needed to prove that also the gradient of the Reynolds stress divergence

∑
k>0,l ckl∂Fkl/∂y exists, has to be done with more care. Using (78), (70) and (72), one may

be led to the conclusion that a contribution proportional to 1/u exists, that would lead to a
logarithmic divergence once integrated over time. This is actually not the case because the
computation shows that the leading order contributions to the Reynolds stress cancels out
exactly, as can be checked easily. As a consequence, we conclude that also the divergence
of the Reynolds stress is finite.

In order to reach this conclusion, we have used (70) and (72), which have been estab-
lished for those values of y that are not stationary for the profile U(y). For a stationary
point y = yc no theoretical results are available for the asymptotic behavior of the velocity
field. However, based on numerical evidences reported in [7], we discuss in Appendix C that
the Reynolds stress divergence is finite also for y = yc . This will be also checked by direct
numerical computations of the Lyapunov equation discussed below.
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5.2.4 The Effect of the Small Rayleigh Friction and Viscosity on Stationary Solutions
of the Lyapunov Equation

We briefly comment on the effect of the small linear friction, or of a small viscosity. From
the discussions in Sects. 5.2.1 and 5.2.3, we have proved that the kinetic energy density
and Reynolds stress have limit values independent on α or the viscosity. By contrast, the
vorticity-vorticity correlation function g∞(r1, r2) diverges point-wise for y1 = y2 (more
generally for any two points for which the streamlines have the same frequency), and that it
has a well defined limit as a distribution. This also implies that the enstrophy contained in
non-zonal degrees of freedom is virtually infinite for α = 0. We address how this is regular-
ized for small values of α, or due to a small viscosity.

We have already discussed this issue for the particular case of a linear shear U(y) = sy,
in Sect. 5.1.2, both with and without viscosity. For the general case of any stable base flow
U and for a linear friction, we will conclude below that the same conclusion as for the
linear shear holds. More precisely, we can prove that in the vicinity of y1 = y2, the singular
behavior is regularized in a universal way (with shape functions independent on U ) over
a scale α/kU ′(y). Moreover we can prove that EU [ω2

m(r)] diverges proportionally to 1/α,
such that the non-zonal enstrophy density αEU [ω2

m(r)] has a finite limit (this could have
been expected in order to balance the finite enstrophy input rate provided by the stochastic
force).

When viscous dissipation is present, we think that it is still true that the divergence of g

has a universal regularization, and we think that the scaling for the divergence and enstrophy
found for the linear shear are also valid for a generic velocity profile U . We do not prove
this result, but discuss why this is plausible at the end of this section.

In order to prove those results, we need to consider the operator Lα
U = L0

U + α instead of
the inertial L0

U for the analysis of the Lyapunov equation. The effect of replacing L0
U by Lα

U

in Sect. 5.1.1 corresponds simply to add the exponential damping e−2αt1 to the integrands of
expressions like the one in Eq. (75). This observation gives us the possibility of understand-
ing how diverging quantities are actually regularized by the presence of a small friction for
any zonal flow U . Straightforward computation then leads to a regularization of the inertial
result (76) as

g∞
kl (r1, r2) =

{
ω̃∞

k (y1)ω̃
∞∗
k (y2)

ik(U(y1) − U(y2)) + 2α
+ gr

α(y1, y2,∞)

}

eik(x1−x2) + C.C. (79)

where, as before, gr
α has a finite limit when α → 0. In the small α limit and for y1 ∼ y2, we

have

g∞
kl (r1, r2) ∼

α
|kU ′(y1)| �1,y1∼y2

2

{

cos k(x1 − x2)
|ω̃∞

k (y1)|2
|kU ′(y1)| R

[
F 2α

|kU ′(y1)|
(y1 − y2)

]

+ I
[
ω̃∞

k (y1)ω̃
∞∗
k (y2)e

ik(x1−x2)
] 1

kU ′(y1)
I
[
F 2α

|kU ′(y1)|
(y1 − y2)

]
}

+ gr,2
α (r1, r2), (80)

where gr,2
α has a finite limit when α → 0. We also recall that if U ′(y) = 0, then ω̃∞

k (y) = 0.
Comparing (62) with (80), we conclude that the vorticity-vorticity correlation function is
regularized in a universal way close to y1 = y2.
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The fact that the EU [ω2
m(r)] diverges proportionally to 1/α, is obtained by observing that

Eq. (74) should be replaced by

ω̃k(y1, t1)ω̃
∗
k (y2, t1) ∼t1→∞ ω̃∞

k (y1)ω̃
∞∗
k (y2) e−ik[U(y1)−U(y2)]t1−2αt1 . (81)

We thus have

EU

[
ω2

m(r)
] =

∑

k>0,l

cklg
∞
kl (r, r) = |ω̃∞

k (y)|2
2α

+ gr
α(y, y,∞) (82)

We have not worked out the case with a small viscosity. This would require first to de-
scribe precisely the large time asymptotics of the linearized 2D Navier–Stokes equations.
Such results should involve the classical literature on the study of viscous critical layers
[23], through matched asymptotics expansions between what happens close to the critical
layers and away from it. Those classical results exhibit naturally the scale ( 2ν

ks
)1/3 and the

family of Airy functions. It should be possible to extent those classical deterministic results
to the Lyapunov equation, using the relation between the deterministic solutions and the so-
lutions to the Lyapunov equation discussed at the beginning of this section. For this reason,
we guess that the regularization obtained for the linear shear is universal and should explain
the regularization for generic velocity profile U . One important technical drawback is that
we guess that the classical results for the deterministic equation do not yet exist yet for the
case where U has stationary streamlines (U ′(yc) = 0) and when several streamlines have the
same frequency.

5.3 Numerical Solutions of the Lyapunov Equation

In the previous section we have proved that the Lyapunov equation for the linearized Euler
dynamics has a stationary solution. In this section we compute numerically this stationary
solution.

For the Lyapunov equation with viscosity, or hyperviscosity, assuming a stable base flow,
we expect the stationary solution to be well behaved. Then a natural way to solve the Lya-
punov equation would be to discretize the linear operator L

(1)
U + L

(2)
U and to directly solve

the approximate dynamics. This is the traditional way and such a technique has for instance
been used in most of previous works using SSST-CE2 [1, 26, 27, 52, 63, 72].

However, we are here specifically interested in the inertial limit. Then one could solve
the Lyapunov equation for finite values of α and ν and then study the asymptotic behavior of
the results when these parameters go to zero. While feasible, this route seems extremely dif-
ficult, as the numerical discretization would have to be increased as ν goes to zero. We have
then chosen to try another route in the following. We will make a direct numerical computa-
tion of F , the divergence of the Reynolds stress which appears in the kinetic equation (35),
which we have proved to be well behaved. In order to do that, we first establish an integral
equation verified by hkl , the vorticity-stream function stationary correlation function, which
will be precisely defined below. As we will show, this integral equation does not suffer from
the instability in the small viscosity limit that would hinder a partial differential equation
approach, and can be solved even if ν = 0.

Using this technique, we illustrate the theoretical results of last section: F has a finite
limit for the zero friction limit α → 0, the energy in the non-zonal degrees of freedom has
a finite limit, and the energy dissipation rate for the non-zonal degrees of freedom goes to
zero when α goes to zero. We also check the analyticity breaking, and its order, for the
correlation function hkl(y1, y2) at the points y1 = y2.
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5.3.1 Computing Stationary Solution of the Lyapunov Equation from an Integral Equation

By definition, the stationary vorticity autocorrelation function g∞
kl is the solution of the sta-

tionary Lyapunov equation (with linear friction and no viscosity)

L
α(1)
U g∞

kl + L
α(2)
U g∞

kl = 2 cos
(
k(x1 − x2) + l(y1 − y2)

)
.

Equivalently, we have g∞
kl (x1, x2, y1, y2) = eik(x1−x2)g̃kl(y1, y2) + C.C. with

L
α(1)
U,k g̃kl + L

α(2)
U,−kg̃kl = eil(y1−y2) (83)

where

Lα
U,k = ikU − ik

(
U ′′ − β

)
	−1

k + α.

We define hkl such that g̃kl = 	
(2)
k hkl , where 	

(2)
k is the Laplacian operator with respect to

the second variable. The drift term in Eq. (33) can be directly computed from hkl , with

F(y) ≡ EU

[〈
v(y)

m ωm

〉
(y)

] =
∑

k>0,l

cklFkl(y),

where

Fkl(y) = 2kI
[
hkl(y, y)

]
.

In terms of hkl , the stationary Lyapunov equation (83) becomes

	
(2)
k hkl(y1, y2) = ik(U ′′(y1) − β)h∗

kl(y2, y1) − ik(U ′′(y2) − β)hkl(y1, y2) + eil(y1−y2)

ik(U(y1) − U(y2)) + 2α
.

(84)
We note that this equation is not a differential equation for hkl(y1, y2) for each y1 fixed, as
it involves h∗

kl(y2, y1).
In the previous section, we have shown that g∞

kl , and thus g̃kl = 	
(2)
k hkl diverge point-

wise for y1 → y2 in the limit α → 0. This is related to the vanishing of the denominator
for α = 0 and y1 = y2 in Eq. (84). On the other hand, it can be proved, with a very similar
reasoning to the one used in Sect. 5.2.3 for Fkl , that hkl is well-defined as a function, even
in the limit α → 0. Thus, we chose to turn Eq. (84) to an integral equation. Inverting the
Laplacian operator using the Green function Hk (see Eq. (58)), we obtain

hkl(y1, y2) = − i

k

∫
Hk(y2, y

′
2)e

il(y1−y′
2)

U(y1) − U(y ′
2) − 2iα

k

dy ′
2

+
∫

Hk(y2, y
′
2)

U(y1) − U(y ′
2) − 2iα

k

[(
U ′′(y1) − β

)
h∗

kl

(
y ′

2, y1

)

− (
U ′′(y ′

2

) − β
)
hkl

(
y1, y

′
2

)]
dy ′

2. (85)

The generalization to the 2D barotropic equation upon a topography is straightforward,
replacing β by h′(y) in (85). The main advantage of this equation is that it involves only
well-behaved functions, even in the limit of no dissipation α → 0. Indeed, in this limit, the
integrals converge to their Cauchy principal values. Moreover, the fact that it doesn’t involve
any space derivative will make it easy to solve numerically, as discussed in next section.



608 F. Bouchet et al.

5.3.2 Numerical Implementation

In order to numerically compute solutions of Eq. (85), we chose an iterative scheme. We
compute the sequence {hN }N≥0 with

hN+1 = S + T [hN ],
where S is the first term in the right hand side of Eq. (85) and T is the integral operator of
the second term. If this sequence converges, then hkl = limN→∞ hN .

We note that we have not been able to establish conditions for which T is contracting.
As a consequence, the convergence of the algorithm is not guaranteed, and we will establish
the convergence empirically on a case by case basis. More precisely, the convergence of the
iterative algorithm is checked by plotting log‖hN − hN−1‖ as a function of the number of
iterations N , where ‖.‖ is the L2 norm.

The computation of integrals of the form
∫

fk(y,y′)
U(y)−U(y′)−2iα/k

dy ′ requires a particular at-
tention. Indeed, the singularity of the denominator at the points such that U(y ′) = U(y)

can be the source of important numerical errors, and we find that the result strongly de-
pends on the resolution if it is not precise enough. The resolution required to get robust
results is easily understood: in order to avoid numerical errors, the denominator must satisfy
|U(y)−U(y±	y)| � 2α

k
for a discretization step 	y. More precisely, for sufficiently small

	y, we have U(y) − U(y ± 	y) � ±U ′(y)	y, so that the condition becomes 	y � 2α
k|U ′ | .

The numerical results confirm this scaling, for base flows with no stationary points. This is
an important remark, because the iterative algorithm may converge and yet give a wrong
result if the condition 	y � 2α

k|U ′ | is not respected. For base flows with stationary points, the
iterative algorithm often gives problems of convergence in the small α limit.

We have recently devised a different algorithm that systematically converges and allows
to compute stationary solution of the Lyapunov equation for zero viscosity, with and without
stationary points. This much more robust and versatile algorithm will be presented in a
following paper.

5.3.3 Reynolds Stress and Stationary Correlation Functions

The properties of F and g∞
kl discussed at a theoretical level in Sects. 5.1 and 5.2 are now

illustrated in two examples.

Parabolic Profile We consider the case of the 2D Euler equations (β = h = 0) in the
channel (x, y) ∈ [0,2π) × [−1,1] with rigid boundary conditions ψm(x,±1) = 0, vm(x +
2π,y) = vm(x, y), and with a parabolic base flow U(y) = A(y + 2)2 − U0, where the con-
stants A and U0 are chosen so that the total energy is 1 and the total momentum is 0. This
flow has no inflection point, whence its linear stability by direct application of Rayleigh’s
inflection point theorem [23]. Moreover, this flow has no stationary points (y0 such that
U ′(y0) = 0). We will consider next the case of a cosine profile, which has stationary points.
We moreover chose here, for sake of simplicity, to force only one mode k = l = 1. This
corresponds to the forcing correlation function C(r) = c11 cos(x + y), with c11 = 4.72.

We have numerically computed the solution of (85) with the iterative scheme previously
explained. As mentioned above, the necessary resolution to use depends on the value of α;
in the present case, it ranges from 	y = 1/60 for the largest value α = 0.1 to 	y = 1/300
for the smallest one, α = 0.005. Figure 1 shows the Reynolds stress divergence F(y) =
2kckl I[hkl(y, y)] and it clearly illustrates the convergence of F for α → 0, as theoretically
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Fig. 1 The Reynolds stress
divergence F(y) =
EU [〈v(y)

m ωm〉] = 2kckl I×
[hkl(y, y)] in the case of a
parabolic base profile in a
channel geometry, with k = l = 1
and different values of the
friction coefficient α. We check
the convergence of F to a smooth
function in the inertial limit, as
theoretically predicted in Sect. 5

described in Sect. 5.2. We also note that the Reynolds stress divergence and the base flow
profile U have the same sign, except in a small region near y = 0. Looking at the evolution
equation for U (37)

∂tU = αF − 2αU + αξ, (86)

this observation implies that the Reynolds stress is actually forcing the zonal flow.
Others correlation functions can be very easily computed from hkl and the analyticity

properties that we have predicted can be directly checked. For instance, the vorticity auto-
correlation function g∞

kl (x1, x2, y1, y2) = eik(x1−x2)	
(2)
k hkl(y1, y2) + C.C. is represented in

Fig. 2. We clearly see the divergence at the point y1 = y2 = 0 when α → 0. Moreover,
we recover the universal shape of 	

(2)
k hkl(y1, y2) near this divergence, as expected from

Eq. (79): for 2α
ks0

� y � 1, where s0 = U ′(0) is the local shear at y = 0, we have

R
[
	

(2)
k hkl(y,0)

] ∼ 2α

k2(U(y) − U(0))2 + 4α2
,

I
[
	

(2)
k hkl(y,0)

] ∼ −k(U(y) − U(0))

k2(U(y) − U(0))2 + 4α2
.

(87)

The comparison between this theoretical prediction and the numerical results is shown in
Fig. 3.

Cosine Profile The second example we consider is the zonal base flow U(y) = cosy in the
domain (x, y) = [0,2πlx) × [−π,π) with periodic boundary conditions, which is usually
referred to as the Kolmogorov flow [7]. This flow is stable and the linearized operator asso-
ciated to this flow has no normal modes for aspect ratio lx < 1 [7]. We choose the parameters
lx = 0.5, k = 2, l = 0, corresponding to the forcing correlation function C(r) = c20 cos(2x),
with c20 = 1.29. The Reynolds stress divergence F is plotted in Fig. 4. It converges to a
smooth function in the inertial limit. For all points such that U ′(y) �= 0, this was expected
from the theoretical results of Sect. 5. We note that we have also a convergence of F(y) to
a finite limit at the stationary points y = 0, π , as discussed at the end of Sect. 5.2.3. We
observe that the Reynolds stress is forcing the flow except in some regions around the zeros
of U , like in the case of the parabolic zonal flow.
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Fig. 2 Real and imaginary parts of the k-th Fourier component of the stationary vorticity auto-correlation

function 	
(2)
k

hkl(y, y2)|y2=0 in the case of a parabolic base profile in a channel geometry, with k = l = 1
and different values of the friction coefficient α. The plots clearly show the expected divergence at y = 0

Fig. 3 Divergence of the stationary vorticity auto-correlation function 	
(2)
k

hkl(y, y2)|y2=0 near y = 0,
in the case of a parabolic base profile in a channel geometry, with k = l = 1 and α = 0.005. As ex-
pected, the comparison between the numerical result and the universal shape (87) is very good in the range
1 	 y 	 2α

ks0
� 0.006 (the area between the vertical lines)

5.3.4 Conservation Laws

In the channel geometry considered, the linear momentum is always zero, Px = ∫
dy vx = 0.

This implies the constraint
∫

dy U(y) = 0. At the level of the kinetic equation (86), this
implies that the integral of the divergence of the Reynolds stress is zero:

∫
dy I[hkl(y, y)] =

0, which is also a trivial consequence of the definition of hkl . This constraint is fulfilled by
the numerical results in Fig. 1 within an error of order 10−8.

We now discuss the energy and enstrophy balance derived in Sects. 4 and 5. The theoret-
ical results predict a vanishing of the non-zonal energy in the inertial limit, and a divergence
of the non-zonal enstrophy as 1/α. Figure 5 shows the three rates of energy involved in (42)
as a function of 1/α: the power injected by the forcing (by definition equal to 1)

σm = −2π2lx
(
	−1Cm

)
(0) = 1,
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Fig. 4 The Reynolds stress
divergence F(y) =
EU [〈v(y)

m ωm〉] = 2kckl I×
[hkl(y, y)] in the case of a cosine
base profile U(y) = cosy in a
periodic geometry, with k = 2,
l = 0 and different values of the
friction coefficient α. Again, we
observe the convergence of F

towards a smooth function when
α → 0, even at the stationary
points y = 0 and y = π where we
do not have full theoretical
predictions

Fig. 5 Stationary energy balance
for the fluctuations, in the case of
a parabolic base profile in a
channel geometry, with k = l = 1
and different values of the
friction coefficient α. We see that
in the inertial limit α � 1, all the
energy injected in the fluctuations
is transferred to the zonal flow,
while the energy dissipated in the
fluctuations vanishes

the power transferred to the zonal flow

Pt = πlx

∫

dy EU

[〈
v(y)

m ωm

〉
(y)

]
U(y) = πlx

∫

dy 2kckl I
[
hkl(y, y)

]
U(y),

and the rate of energy dissipated in the non-zonal degrees of freedom

Pdiss = αEm = −2α

∫

dyR
[
hkl(y, y)

]
.

It illustrates the fundamental property that in the inertial limit, all the energy injected in
the fluctuations is transferred to the zonal flow, as expected from the discussion in Sect. 4.
We note that the energy balance (42) is verified in our numerical solutions up to errors of
order 10−4.

Enstrophy has a very different behavior. From the general results of Sect. 5, we know
that the dissipated enstrophy is not expected to go to zero as α → 0, so the transferred
enstrophy is not expected to be close to the injection rate. In the case of a parabolic profile
U(y) = A(y + 2)2 − U0, this property is even more dramatic as the transferred enstrophy
vanishes, it is indeed

Zt = −πlxE

[∫

dy U ′′(y)
〈
v(y)

m ωm

〉
(y)

]

= −πlx

∫

dy 2A · 2kckl I
[
hkl(y, y)

] = 0
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which is zero because it is proportional to the conservation of the momentum. Whatever the
value of α, no enstrophy is transferred to the zonal flow and all the enstrophy injected by the
stochastic forcing is dissipated in the fluctuations. When it comes to the numerical results,
checking that the enstrophy balance is fulfilled amounts at checking the conservation of the
momentum

∫
dy I[hkl(y, y)] = 0, which has already been discussed.

6 Attractors of the Slow Dynamics and Multistability of Atmosphere Jets

In Sect. 3, we have obtained that the jet has a slow evolution whose dynamics is described
by Eq. (37), reported here for convenience:

∂U

∂τ
= F [U ] − U + ν

α

∂2U

∂y2
+ ξ, (88)

where ξ is Gaussian process with autocorrelations given by (36). In most known situations,
there is no noise acting on the largest scales. Then the correlation function of ξ , see Eq.
(36), is of an order α smaller than F [U ]. In the limit we consider, we thus expect the noise
to be small. Then one may wonder how important is its effect for practical purposes. We
discuss this issue here, with emphasis on the case where the deterministic equation ∂U

∂τ
=

F [U ] − U + ν/α∂2
yU has more than one attractor.

First it is useful to note that the deterministic equation ∂U
∂τ

= F [U ] − U + ν/α∂2
yU is un-

able to describe the statistics of the small fluctuations close to a an attractor U0. A first very
interesting result that can be derived from (88) is the statistics for the Gaussian fluctuations
of the jet close to its most probable value.

If we now assume that the deterministic equation ∂U
∂τ

= F [U ] − U + ν/α∂2
yU has more

than one attractor, for instance U0 and U1, the small noise ξ becomes essential in order to
describe the relative probability of the two attractors and the transition probabilities between
them. These can be computed numerically from (88) by means of large deviation theory or,
equivalently using a path integral representations of the stochastic process (88) and instanton
theory. One may wonder if such bistability or multistability situations actually exist.

Multistability and phase transitions are actually very common for turbulent flows (for in-
stance, paths of the Kuroshio current [69], atmospheric flows [76], Earth’s magnetic field re-
versal and MHD experiments [2], two-dimensional turbulence simulations and experiments
[8, 46, 47, 71], and three-dimensional flows [66] show this kind of behavior). Figure 6 shows
random transitions in the 2D Navier-Stokes equations [8]. These transitions may in princi-
ple be described in the kinetic approach developed in the present paper; however, this would
require an extension of the work to cases where non zonal attractors are also considered.
This is in principle possible, but the Lyapunov equation is then more tricky. We postpone
such an issue for future works.

Remaining in the zonal framework assumed in this paper, we refer to works by N. Bakas,
N. Constantinou, B. Farrell, and P. Ioannou [19, 26, 27] for existence of bistability. In those
three works the possibility for multiple attractors for SSST dynamics (the deterministic part
of Eq. (88)) is discussed. Figure 7, shows such a case, where the evolution of SSST dynam-
ics has been computed for some fixed parameters and fixed force spectrum. The two spa-
tiotemporal diagrams of the zonally averaged velocity profile U obtained from the barotropic
equations, and the two asymptotic profiles U obtained both from SSST dynamics and the
barotropic equations show that for this set of parameters the deterministic part of the dy-
namics has at least two attractors, and that these attractors are observed in the barotropic
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Fig. 7 Evolution of the zonally averaged velocity profile as obtained from non-linear simulations (left) and
comparison of the stationary velocity profile obtained from non-linear simulations and from the deterministic
part of the kinetic equation (88), or equivalently SSST [19, 26, 27]. The upper and lower pictures are obtained
for the same values of the physical parameters but with different initial conditions. The figure shows that for
a given set of parameters it can converge towards two attractors, U0 and U1. Courtesy N. Constantinou

equations. In order to compute the relative probability of the attractors and the transition
probabilities from one to the other, one can rely on the Fokker–Planck equation (33) or on
the stochastic dynamics (88). These transitions involve states that are arbitrarily far from the
attractors U0 and U1.

7 Conclusion

In this paper, we have considered the kinetic theory of the equations for a barotropic flow
with beta effect or topography and with stochastic forces, in the limit of weak forces and
dissipation α → 0. We have formally computed the leading order dynamics, using the frame-
work of stochastic averaging for this adiabatic process. At leading order, we have obtained
a Fokker–Planck equation, or equivalently a stochastic dynamics, that describes the slow
jet dynamics (37). We have discussed that, at leading order, the deterministic part of this
dynamics are the equations known as Stochastic Structural Stability Theory or, equivalently
what can be obtained from a second order closure theory. This provides a strong support for
those equations if one wants to compute the attractors for the jet dynamics, when α is suffi-
ciently small. This result also shows that those models do not describe completely Gaussian
fluctuations close to these attractors. Moreover, in phenomena for which large deviations
beyond Gaussian become essential, a kinetic approach is still relevant, and the full kinetic
equation (37) should be considered.
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We have also proven that at leading order, quasilinear dynamics will lead to the same
kinetic equation (37) in the limit of weak forces and dissipation. We stress however that this
will be wrong at next order.

Our main hypothesis is that the zonal jets with profile U(y) are stable and have no non-
zonal neutral modes. Whereas the stability is a crucial hypothesis, the non-neutral mode
hypothesis is in principle not essential. However, if this hypothesis would not be fulfilled, a
different kinetic equation would be obtained.

For the kinetic theory to be meaningful, the base flows have to be attractors of the inertial
dynamics. This is actually the case for some of zonal jets. However non-zonal attractors also
exist, for instance dipoles for the 2D Euler equations [8, 18]. The kinetic theory could be
extended in principle to non-zonal attractors. It would be easy to write phenomenologically
the kinetic equation, just as was done for zonal jets. We stress however that proving the
self-consistency of the theory, which is the key point from a theoretical point of view, would
be much more tricky. This requires the analysis of the asymptotic solutions of the Lyapunov
equation, which would be technically more difficult for non-zonal attractors than for zonal
jets.

We stress that we have proven the consistency of the kinetic theory only for the case of
the two-dimensional Navier-Stokes equations. With a beta effect or a topography, the formal
structure of the problem will be very similar, so that the formal generalization of the kinetic
theory is straightforward. However no theoretical results for the asymptotic decay of the
linearized equation are yet available in the literature. As a consequence we cannot draw,
for the moment, any conclusion about the convergence of the velocity-vorticity correlation
functions and of the Reynolds stress without dissipation in these cases.

A number of interesting issues have not been addressed in this work and should be con-
sidered in the future. Whereas the limit α → 0 is the appropriate one in order to set up a
clear theoretical framework, an essentially question arises from a practical point of view:
how small α should be? How does the answer depend on the force spectrum? These issues
could certainly be addressed both numerically and theoretically.

We believe that our theoretical approach is the correct way to describe the statistics of
the largest scale of the flow. However, for small but finite α, especially if the forcing has a
narrow band spectrum, it is likely that non-linear effects would become important. In some
regimes, we expect to see together with a quasi-linear dynamics at the largest scales, either
enstrophy cascade, or inverse energy cascade, or both, at scales much smaller than a typical
jet scale. Those are described by Kraichnan type cascades for the 2D-Navier-Stokes equa-
tions [4], or by zonostrophic turbulence if β �= 0 [31, 32]. Those nonlinear effects, basically
small scale turbulent mixing, would then be the correct mechanism that would regularize the
Lyapunov equations. They would also be responsible for the loss of information about the
initial condition, discussed in Sect. 3.2. In such a case, how would our large scale theory re-
late with smaller scale cascade pictures for finite α? What would be the crossover scale and
how should it depend on α? While answer using dimensional analysis can be given easily,
a more detailed theoretical study would be very interesting. Another related issue is the ef-
fects of the small scale part of the force spectrum. All over the paper, we have assumed that
the spatial correlation C is smooth and that its spectrum converges sufficiently fast for large
wave numbers |k|, in order to insure the convergence of the sum of the contributions of all
sectors k to the Lyapunov equation. Could the required hypothesis be made more explicit?

We have made explicit computations up to leading order only. It would however be ex-
tremely interesting to compute next order corrections. This may be important in order to
have very precise predictions for small but finite α and also to give a clear indication of
the order of magnitude of α required for the theory to be trusted. Undoubtedly the answer
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will depend much on the force spectrum. We stress that the next order corrections will be
different from an approach using a cumulant expansion and that it should not be hindered
with the usual inconsistency observed in cumulant expansions.

Another important issue is the validity of our approach for more complex dynamics,
for instance for the class of quasi-geostrophic dynamics. At a formal level, the same ap-
proach can be applied. However, the dynamics is expected to be quite different. For in-
stance, whereas the fact that there is no non-zonal neutral modes is probably generic for
barotropic flows, it is probably exceptional for equivalent barotropic quasi-geostrophic
dynamics as soon as the Rossby deformation radius is smaller than the domain size.
Also if one considers a deterministic force in addition to the stochastic one, which is
essential for instance for Earth jet dynamics, then the same formalism can be applied,
but the phenomenology is expected to be quite different. This calls for new specific
studies.
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Appendix A: Explicit Computation of the Operators in the Zonal Fokker–Planck
Equation

We compute here each term of the equation for the slowly varying part of the PDF (32),
which we report:

∂Ps

∂t
=

{

αPLz + α3/2PLz

∫ ∞

0
dt ′ et ′L0Ln

+ α2PLz

∫ ∞

0
dt ′ et ′L0

[

(1 −P)Lz +
∫ ∞

0
dt ′′ Lnet ′′L0Ln

]}

Ps +O
(
α5/2

)
. (89)

This will lead to the final reduced Fokker–Planck equation for the zonal flow PDF R, (33).

− The first term in Eq. (89) gives

PLzPs = G[qz,ωm]
∫

dy1
δ

δqz(y1)

[(
∂

∂y
EU

[〈
v(y)

m ωm

〉]
(y1) + ωz(y1) − ν

α
	ωz(y1)

)

R

+
∫

dy2 Cz(y1, y2)
δR

δqz(y2)

]

. (90)

− The next term is exactly zero: we have

LnPs =
∫

dr1
δ

δωm(r1)

[(
vm.∇ωm(r1) − 〈

vm.∇ωm(r1)
〉)
G[qz,ωm]R[qz]

]
.

We remark that the action of the functional derivative δ
δωm(r1)

will produce factors which
are either linear or cubic in the variable ωm. When applying Lz, those terms will be
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multiplied by constant or quadratic factors. The projection P will then lead to the com-
putation of odd moments of the centered Gaussian distribution G, which are all null. As
a consequence, we conclude that

PLze
t ′L0LnPs = 0. (91)

This is a very important result: at first-order, the corrections to the quasi-linear dynamics
due to the full nonlinearity exactly vanish. This is a partial explanation to the success of
the quasi-linear dynamics: the non-linear interactions between the non-zonal degrees of
freedom (eddy-eddy interaction) don’t have any influence on the statistics of the zonal
flow until the order α2.

− Terms of order O(α2) in Eq. (89) give non-trivial contributions. We write

et ′L0Lnet ′′L0LnPs = M[qz,ωm](t ′, t ′′)G[qz,ωm]R[qz].

Then,

PLze
t ′L0Lnet ′′L0LnPs

= G[qz,ωm]
∫

dy1
δ

δqz(y1)

[
∂

∂y1
EU

[〈
v(y)

m ωm

〉
(y1)M[qz,ωm](t ′, t ′′)]R[qz]

]

+ G[qz,ωm]
∫

dy1
δ

δqz(y1)

[(

ωz(y1) − ν

α
	ωz(y1)

)

EU

[
M[qz,ωm](t ′, t ′′)]R[qz]

]

+ G[qz,ωm]
∫

dy1dy2 Cz(y1, y2)
δ2

δqz(y1)δqz(y2)

[
EU

[
M[qz,ωm](t ′, t ′′)]R[qz]

]
.

We first consider the average value of M . As EU is an average over the stationary
measure G, we have

EU

[
M[qz,ωm](t ′, t ′′)] = EU

[
M1[qz,ωm](t ′ − t ′′

)]

with M1 defined by

Lnet ′−t ′′L0LnG[qz,ωm] = M1[qz,ωm](t ′ − t ′′
)
G[qz,ωm].

Using the expression of Ln as a functional derivative with respect to ωm (Eq. (20)), we
then easily show that EU [M[qz,ωm](t ′, t ′′)] = 0, so that the interesting quantity simpli-
fies to

PLze
t ′L0Lnet ′′L0LnPs

= G[qz,ωm]
∫

dy1
δ

δqz(y1)

(
∂

∂y1
EU

[〈
v(y)

m ωm

〉
(y1)M[qz,ωm](t ′, t ′′)]R[qz]

)

.

− In the last term, we have

(1 −P)LzPs = G[qz,ωm]
∫

dy1
δ

δqz(y1)

[
∂

∂y

(〈
v(y)

m ωm

〉 −EU

[〈
v(y)

m ωm

〉])
(y1)R

]

,

thus
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Lze
t ′L0(1 −P)LzPs

=
∫

dy2
δ

δqz(y2)

{(
∂

∂y2

〈
v(y)

m ωm

〉
(y2) + ωz(y2) − ν

α
	ωz(y2)

+
∫

dy3 Cz(y2, y3)
δ

δqz(y3)

)

. . .

× et ′L0

[

G[qz,ωm]
∫

dy1
δ

δqz(y1)

[
∂

∂y1

(〈
v(y)

m ωm

〉 −EU

[〈
v(y)

m ωm

〉])
(y1)R

]]}

.

Using the definition of the correlation and covariance (26) and (27) we conclude that

PLze
t ′L0(1 −P)LzPs = G[qz,ωm]

∫

dy2dy1
δ2

δqz(y1)δqz(y2)

∂2

∂y2∂y1

× {
EU

[[〈
v(y)

m ωm

〉(
y1, t

′)〈v(y)
m ωm

〉
(y2,0)

]]
R[qz]

}
. (92)

Appendix B: Linear Friction and Viscous Regularization of Sokhotskyi–Plemelj
Formula

The Sokhotskyi–Plemelj formula adapted to our notations is
∫ ∞

0
e−ity dt = lim

α→0+
−i

y − iα
= πδ(y) − iPV

(
1

y

)

. (93)

In this Appendix, we consider different regularizations of the above equation that correspond
to a viscous regularization or to the combination of the regularizations given by viscosity
and by linear friction. We thus deduce few useful technical results.

In the following, we have to deal with the large y behavior of oscillatory integrals of the
form

∫ ∞

0
e−iytf (t)dt. (94)

In this respect, we will use the well known result that

R

[∫ ∞

0
e−iytf (t)dt

]

=
N∑

n=1

f (2n−1)(0)

i2ny2n
+ O

(
1

y2N+2

)

(95)

and

I

[∫ ∞

0
e−iytf (t)dt

]

= −
N∑

n=0

f (2n)(0)

i2ny2n+1
+ O

(
1

y2N+3

)

. (96)

The above formula holds for any function f which is (2N + 1) times differentiable, such
that limt→∞[f (n)(t)] = 0 for any n ≤ 2N and such that

∫ ∞
0 dteiytf (n)(t) is finite for any

n ≤ 2N + 1. They can be found by successive part integrations.

Viscous Regularization We consider the regularization of Plemelj formula that correspond
to the effect of viscosity. We consider

Hλ(y) = 1

λ

∫ ∞

0
e−i

y
λ
u−λ2(k2+l2)u+λlu2− 1

3 u3
du. (97)
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We note that the real part of Hλ is an even function and the imaginary part of Hλ is an odd
function.

We can also compute the integral of Hλ using the fact that

∫ ∞

−∞
Hλ(y)dy = 1

2λ

∫ ∞

−∞
dy ′

∫ ∞

−∞
e−i

y′
λ

t−λ2(k2+l2)t+λlt2− 1
3 t3

dt, (98)

which can be proved by integrating Eq. (97) and with the two changes of variable y ′ = −y

and t = −u. Using in the last expression the integral representation of the Dirac delta, we
obtain the desired result

∫ +∞

−∞
Hλ(y)dy = π. (99)

We want now to prove that Hλ(y) =
λ→0

Gλ(y) + O(λ) for every value of y. Let us con-

sider H̃λ(Y ) = Hλ(λY ) and study the large Y asymptotic behavior of H̃λ. Supposing small
viscosity, λl � 1 and λ2(k2 + l2) � 1, and by applying Eqs. (95) and (96) to H̃λ, we obtain
for the real part

�[
H̃λ(Y )

] ∼
1�Y� 1

λ

√
2

k2+l2

− 2

λY 4
and �[

H̃λ(Y )
] ∼

Y	 1
λ

√
2

k2+l2

λ(k2 + l2)

Y 2
, (100)

while the behavior of the imaginary part is

�[
H̃λ(Y )

] ∼
Y	1

− 1

λY
. (101)

Observe that the crossover in the asymptotic behavior of �[H̃λ(Y )] happens for Y 	 1, so
that the asymptotic expansion performed is justified.

By performing the change of variables Y = y/λ, we thus obtain the asymptotic behavior
of Hλ

�[
Hλ(y)

] ∼
λ�y�

√
2

k2+l2

−2λ3

y4
and �[

Hλ(y)
] ∼

y	
√

2
k2+l2

λ3(k2 + l2)

y2
(102)

for the real part, and

�[
Hλ(y)

] ∼
y	λ

− 1

y
(103)

for the imaginary part.
A very similar reasoning applied to the function Gλ defined in Eq. (67) leads us to the

conclusion that

�[
Gλ(y)

] ∼
y	λ

−2λ3

y4
, (104)

while the leading order behavior of the imaginary part remains the one found for Hλ. We
can thus conclude that Hλ(y) =

λ→0
Gλ(y) +O(λ) for every value of y.
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Combination of a Viscous and a Linear Friction Regularization We can now also discuss
the regularization of Plemelj formula that corresponds to the combined effect of viscosity
and linear friction, by a simple generalization of the argument given above. We start observ-
ing that the stationary vorticity-vorticity correlations is

g∞(x1 − x2, y1 − y2) = ε
(
k2 + l2

)
eik(x1−x2)eil(y1−y2)

×
∫ ∞

0
e−iks(y1−y2)t e−2ν(k2+l2)t+2νsklt2− 2

3 νs2k2t3
e−2αt dt + C.C.;

(105)
we have thus to study the following oscillating integral (obtained from the one contained in
the above formula by a change of variable)

Hλν,λα (y) = 1

λν

∫ ∞

0
e

−i
y
λν

t1−[λ2
ν (k2+l2)+ λα

λν
]t1+λν lt2

1 − 1
3 t3

1 dt1, (106)

where λν = ( 2ν
ks

)1/3 is the length scale associated with the viscous regularization and λα = 2α
ks

is the length scale associated with the Rayleigh friction. The discussion in the following
restricts to the real part of Hλν,λα because the decay of the imaginary part is the same for all
the regularizations.

Introducing the function H̃λν ,λα (Y ) = Hλν,λα (λνY ) and performing a reasoning very sim-
ilar to the one of the previous section, we deduce that the real part of H̃λν ,λα (Y ) is given
by

�[
H̃λν ,λα (Y )

] = 1

λν

[
λ2

ν(k
2 + l2) + λα

λν

Y 2

− (λ2
ν(k

2 + l2) + λα

λν
)3 + 6λ3

ν l(k
2 + l2) + 6λαl + 2

Y 4
+ O

(
1

Y 6

)]

. (107)

We thus see that three different regimes are possible in the limit of small Rayleigh friction
(α/s � 1) and small viscosity (λνl � 1): (i) the viscosity is negligible compared to the
Rayleigh friction: λα/λν 	 1; (ii) the Rayleigh friction is negligible compared to the vis-
cosity λα/λν � λ2

ν(k
2 + l2) � 1 and (iii) and intermediate case 1 	 λα/λν 	 λ2

ν(k
2 + l2).

Case (i): λα/λν 	 1. We see that Eq. (107) reduces to

�[
H̃λν ,λα (Y )

] ∼
λα
λν

	1

1

λν

λα

λν

[
1

Y 2
−

(
λα

λν

)2 1

Y 4
+ O

(
1

Y 6

)]

, (108)

and thus

�[
Hλν,λα (y)

] ∼
λν�y�λα

−λ3
α

1

y4
and �[

Hλν,λα (y)
] ∼

y	λα

λα

1

y2
. (109)

We thus obtain that, even if the viscosity is negligible with respect to the Rayleigh friction,
the behavior 1/y2 is modified by the presence of a small viscosity in 1/y4 for a small
enough y, corresponding to λν � y � λα .

Case (ii): λα/λν � λ2
ν(k

2 + l2) � 1. We see that Eq. (107) reduces to the case we have
already discussed in the previous section where the Rayleigh friction was not present, see
Eq. (102). The only difference with respect to that case is that the crossover point between
the 1/y4 and 1/y2 behavior is slightly shifted by the presence of a small Rayleigh friction.
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Case (iii): λ2
ν(k

2 + l2) � λα/λν � 1. With a similar reasoning as before, we obtain

�[
Hλν,λα (y)

] ∼
λν�y�

√
2λ3

ν
λα

−2λ3
ν

y4
and �[

Hλν,λα (y)
] ∼

y	
√

2λ3
ν

λα

λα

1

y2
. (110)

We thus see in this case the appearance of the new length scale
√

2λ3
ν

λα
, corresponding to the

crossover between the 1/y4 decay given by the regularization due to the viscosity and the
1/y2 decay given by the Rayleigh friction.

Appendix C: Convergence of Reynolds Stress Divergence on Stationary Points

We prove in this Appendix that the divergence of the Reynolds stress −EU [〈v(y)
m ωm〉(y)]

converges even when evaluated at points y = yc , where yc are stationary for the zonal flow
U : U ′(yc) = 0. Even more generically, we prove that EU [〈ωm(r1, t)v

(y)
m (r2, t)〉] converges,

no matter for which values of r1 and r2.
In this case, to the best of our knowledge, no theoretical results are available in litera-

ture. However, strong numerical evidences are reported in [7] and permit to infer relations
analogous to Eqs. (70), (71), (72) and (73) for y = yc . The main differences in this case are:
(i) the algebraic decay of the velocity and of the stream-function depends on the parity of
the initial datum; (ii) the exponent of the algebraic decay for y = yc is different.

For initial conditions even with respect to y → −y, the numerical results in [7] can be
summarized by replacing Eqs. (70), (71), (72) and (73) by

∣
∣ω̃k(yc, t)

∣
∣ ∼

t→∞
1

t
(111)

∣
∣ṽ

(x)
k (yc, t)

∣
∣ ∼

t→∞
1

t
(112)

∣
∣ṽ

(y)

k (yc, t)
∣
∣ ∼

t→∞
1

t2
. (113)

Moreover, the asymptotic profile ω̃∞
k (y) appearing in Eqs. (70), (71), (72) and (73) is equiv-

alent to (y −yc)
2 in the vicinity of yc . We observe that these results are about the asymptotic

behavior of the modulus of vorticity and velocity and that the oscillating behavior of these
quantities is not known. This fact does not allow to obtain estimates for the asymptotic
behavior of derivatives of the vorticity and of the velocity.

For initial conditions odd with respect to y → −y,the numerical results in [7] can be
summarized by replacing Eqs. (70), (71), (72) and (73) by

∣
∣ω̃k(yc, t)

∣
∣ ∼

t→∞
1√
t

(114)

∣
∣ṽ

(x)
k (yc, t)

∣
∣ ∼

t→∞
1

t3/2
(115)

∣
∣ṽ

(y)

k (yc, t)
∣
∣ ∼

t→∞
1

t3/2
. (116)

Again, the asymptotic profile ω̃∞
k (y) appearing in Eqs. (70), (71), (72) and (73) vanishes as

(y − yc)
2 in the vicinity of yc .
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Using these results, we can prove that the divergence of Reynolds stress at y = yc con-
verges. It is useful here to consider g̃kl defined, as in Sect. 5.3, by gkl(x1, x2, y1, y2, t) =
eik(x1−x2)g̃kl(y1, y2, t) + C.C. with

∂g̃kl

∂t
+ L

α(1)
U,k g̃kl + L

α(2)
U,−kg̃kl = eil(y1−y2). (117)

Moreover, because the Orr mechanism works differently for initial conditions with different
parity, it is useful to decompose g̃kl as follow

g̃kl = g̃kl,cc − ig̃kl,cs + ig̃kl,sc + g̃kl,ss (118)

where gkl,cc solves the Lyapunov equation

∂g̃kl,cc

∂t
+ L

0(1)
U,k g̃kl,cc + L

0(2)
U,−kg̃kl,cc = cos(ly1) cos(ly2), (119)

and g̃kl,cs , g̃kl,sc , g̃kl,ss solve the same Lyapunov equation with the right hand side replaced,
respectively, by cos(ly1) sin(ly2), sin(ly1) cos(ly2) and sin(ly1) sin(ly2). The computation
needed to show the convergence of the divergence of the Reynolds stress obtained as linear
transforms of the four functions g̃kl,cc , g̃kl,cs , g̃kl,sc and g̃kl,ss are very similar. We thus report
in detail only the one corresponding to g̃kl,cc .

With the notation g̃kl,cc = 	
(2)
k hkl,cc and using Eq. (51), we can write

h∞
kl,cc(y1, y2) =

∫ ∞

0
dt1 ω̃k(y1, t1)ṽ

(y)

−k (y2, t1), (120)

where ω̃k is the solution to the deterministic evolution ∂t + L0
U,k and ω̃k(y1,0) = cos(ly1)

and ṽ
(y)

−k (y2,0) = cos(ly2). The convergence of the this integral has already been established
in the case y1 �= yc and y2 �= yc in Sect. 5.2.3.

For any value of y1 and y2, we see from Eqs. (70), (72), (111) and (113) that the absolute
value of the integrand of Eq. (120) decays to zero at least as fast as 1/t2. The convergence
of hkl,cc is thus ensured for all the values of y1 and y2.

We leave to the reader the very similar computation needed to show that also the
Reynolds stresses obtained from g̃kl,cs , g̃kl,sc and g̃kl,ss converge. The slowest decay of the
integrand of expressions like Eq. (120) which is encountered is 1/t3/2, still sufficient to
ensure the convergence of h∞

kl .
We conclude stressing that the results presented in this appendix rely on conclusions

drawn from numerical results reported in [7].
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