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Abstract. The 2D Euler equations are basic examples of fluid models for which
a microcanonical measure can be constructed from first principles. This measure
is defined through finite-dimensional approximations and a limiting procedure.
Creutz’s algorithm is a microcanonical generalization of the Metropolis–Hastings
algorithm (to sample Gibbs measures, in the canonical ensemble). We prove
that Creutz’s algorithm can sample finite-dimensional approximations of the 2D
Euler microcanonical measures (incorporating fixed energy and other invariants).
This is essential as microcanonical and canonical measures are known to
be inequivalent at some values of energy and vorticity distribution. Creutz’s
algorithm is used to check predictions from the mean-field statistical mechanics
theory of the 2D Euler equations (the Robert–Sommeria–Miller theory). We find
full agreement with theory. Three different ways to compute the temperature
give consistent results. Using Creutz’s algorithm, a first-order phase transition
never observed previously and a situation of statistical ensemble inequivalence are
found and studied. Strikingly, and in contrast to the usual statistical mechanics
interpretations, this phase transition appears from a disordered phase to an
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ordered phase (with fewer symmetries) when the energy is increased. We explain
this paradox.

Keywords: classical Monte Carlo simulations, classical phase transitions
(theory), turbulence, large deviations in non-equilibrium systems
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1. Introduction

Two-dimensional and geophysical flows are highly turbulent, yet embody large-scale
coherent structures such as ocean rings, jets, and large-scale vortices. Understanding how
these structures appear and predicting their shape is a major theoretical challenge. The
statistical mechanics approach to geophysical flows is a powerful complement to more
conventional theoretical and numerical methods (see [1] for a recent review, or [2]–[4] for
related approaches). In the inertial limit statistical equilibria describe, with only a few
thermodynamical parameters, the main natural attractors of the dynamics.

Recent studies in quasi-geostrophic models provide encouraging results: a model of
the Great Red Spot of Jupiter [5], and explanations of several different phenomena: the
drift properties of ocean rings [6], the inertial structure of mid-basin eastward jets [6],
bistability in complex turbulent flows [7], and so on.

Generalization to more comprehensive hydrodynamical models, which can simulate
gravity-wave dynamics and enable energy transfer through wave motion, would be
interesting. Both of the aforementioned processes are essential in understanding the
geophysical flow energy balance. However, due to difficulties in essential theoretical parts
of the statistical mechanics approach, previous methods describing statistical equilibria
have been up to now limited to the use of quasi-geostrophic, or simpler, models. In order
to study the statistical mechanics of these models, it would be useful to be able to rely
on numerical sampling of their microcanonical measures.

The 2D Euler equations can be formulated in terms of the vorticity field. Points in the
vorticity field are coupled through a long-range interaction. In contrast with traditional
systems, long-range interaction systems are well known to show generic inequivalence
between microcanonical and canonical ensembles ([8]–[12], see [8] for a classification). The
microcanonical ensemble is richer than the canonical one, as the canonical equilibrium
states form a subset of the microcanonical equilibrium states [12, 13]. For these systems it
is thus essential to be able to sample microcanonical measures instead of canonical ones.

Creutz’s algorithm [14] is a Monte Carlo approach used to sample microcanonical
measures of discrete spin systems [15, 16]. Whereas the Metropolis–Hastings algorithm
samples Gibbs measures (canonical ensemble), the Creutz algorithm imposes an energy
constraint and thus samples the microcanonical measure (microcanonical ensemble).
Section 3 gives a proof of detailed balance and convergence to the microcanonical measure
for Creutz’s algorithm. Appendix A defines the classical concepts useful for the discussion
of detailed balance. Appendix B also describes some improper interpretation of the
algorithm that may lead to wrong results.

The main aim of this paper is to discuss the first generalization of Creutz’s algorithm
to hydrodynamical systems. The main novelty is the ability to deal with the statistical
mechanics of fields rather than discrete variables. For this first work, we consider the
2D Euler equations and precisely define the microcanonical measures through finite-
dimensional approximations and a limiting procedure. The generalization to the quasi-
geostrophic model or the Vlasov equation, the microcanonical measure definition and
their sampling through Creutz’s algorithm would be straightforward. The method is
extremely robust and could also be easily generalized to more complex models like the 3D
axisymmetric Euler equations or the shallow water model.
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The 2D Euler equations and related models have an infinite number of conserved
quantities, called Casimirs. Michel and Robert [17] first discussed the use of large-deviation
theory as a justification of mean-field variational problems for the microcanonical measure.
Later on, Ellis and collaborators [18] defined approximations of equilibrium measures,
through a description of the fields over a lattice, where N2 is the number of degrees of
freedom (lattice site). In this work, Ellis and Turkington treated the energy constraint
microcanonically and the Casimir constraints canonically. They proved that these
approximate measures verify a large-deviation principle, where N2 is the large-deviation
rate. In this paper, we study an N2-degrees-of-freedom discretized approximation of
equilibrium measures (following Ellis and collaborators), but treating all constraints
microcanonically (as did Robert and Michel). This slightly different presentation is an
improvement, as proceeding through discretization provides a clear and straightforward
definition of the microcanonical measures, and the set of microcanonical equilibrium states
includes the set of canonical equilibrium states (see the beginning of section 1). The limit
is then an invariant measure of the 2D Euler equations [19].

As was already clear in previous works [17, 18] (please see the detailed discussion
in [1]), the 2D Euler equations show mean-field behavior. It is therefore natural to
define macrostates through coarse graining of microstates. The most probable macrostate
maximizes an entropy functional with energy constraints. The mean-field entropy for the
macrostate is justified as being the opposite of a large-deviation rate function, where N2

is the large-deviation rate. We explain these theoretical results and their justification at
a heuristic level in this paper.

These theoretical results (the concentration of most microstates on a single predicted
macrostate maximizing a mean-field variational problem) provide a very interesting case
for testing Creutz’s algorithm with numerical results. This test possibility was our main
motivation for devising this algorithm for the 2D Euler equations, before generalizing
to more complex models for which mean-field type large-deviation results are not yet
available.

We have checked that the numerical results are in full agreement with the theoretical
predictions from the mean-field variational problem. Independently of the mean-field
variational problem, Creutz’s algorithm provides a very simple and robust way to sample
microcanonical measures. For instance, we have used it to describe previously unknown
first-order phase transitions between dipole and parallel flows in a doubly periodic domain.

Previous works considered Monte Carlo simulations for the 2D Euler equations
or related models (see, for instance, a very interesting application to oceans in [20]
and references therein, or [2]). However, these works always sampled the canonical
energy–enstrophy measures (using the Metropolis–Hastings algorithm and not considering
other invariants). These methods thus provide only a very small subset of the equilibrium
measures of these models.

Dubinkina and Frank [21] recently proposed a very nice particle-mesh algorithm for
the 2D Euler equations that conserves the vorticity distribution. This algorithm is also
a way to sample microcanonical measures, as was shown in their paper. As a positive
point, the dynamics of the particle-mesh method is a good approximation of the 2D
Euler dynamics for finite times (whereas the Creutz algorithm is just a sampling of the
microcanonical measure). One drawback of the particle-mesh algorithm is that ergodicity
has to be assumed. Moreover, it seems that this particle-mesh approach with potential
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vorticity conservation has so far not been proven to be generalizable to more complex
models (for instance the shallow water model).

We also note that other numerical algorithms exist to compute equilibrium states
for the 2D Euler equations: the Turkington and Whitaker algorithm [22, 23], relaxation
equations [24], or continuation algorithms [7, 25] (please see [1] for a description of
these algorithms). However, these three algorithms compute extrema or critical points of
the mean-field variational problem. They thus rely on large-deviation theoretical results
that are so far not known to exist for more complex models, like for instance the 3D
axisymmetric equations or the shallow water models.

In this paper we also discuss the discovery of a first-order phase transition in the
microcanonical ensemble, found using Creutz’s algorithm for the 2D Euler equations.
This phase transition is striking in many respects. It is a first-order phase transition in
the microcanonical ensemble, which is a thermodynamical curiosity (see [8]). As discussed
in detail in [8], such a first-order phase transition in the microcanonical ensemble is a sign
of ensemble inequivalence, as the entropy curve cannot be concave at such a transition
point. Moreover, it is a transition from a disordered state towards an ordered state when
the energy is increased, in contrast with what could be expected from classical statistical
mechanics arguments. This paradox is due to the negative temperature of the system.
Indeed, then the entropy, the measure of disorder, decreases when the energy increases.
We discuss this point further in section 5. From a fluid mechanics point of view, this
transition is a drastic change of the flow topology from a dipole to a parallel flow. A very
interesting recent example of two different phase transitions in two different statistical
ensembles is discussed in [26].

The outline of this paper is as follows. In section 2, the 2D Euler equations are
introduced. The statistical mechanics theory is treated, as well as the finite-dimensional
approximation of the 2D Euler microcanonical measure. Section 3 provides a proof of
why Creutz’s algorithm samples microcanonical measures. Theoretical predictions from
the microcanonical mean-field variational problem presented in section 2 are confronted
with numerical results in section 4, where we focus mainly on the negative temperature
of the system. In section 5, examples of phase transitions and an example of ensemble
inequivalence are discussed. In this section, we also discuss the transition from a disordered
state to an ordered one upon increasing energy. Section 6 provides some perspectives and
we give comments for future work.

2. Statistical mechanics of the 2D Euler equations

2.1. The 2D Euler equations and invariants

The 2D Euler equations are given by

∂tω + v · ∇ω = 0, v = ez ×∇ψ, and ω = ∆ψ, (1)

where ω = (∇×v)·ez is the vorticity, and v is the non-divergent velocity expressed as the
curl of the stream function ψ. The stream function is defined up to a constant, which is
set to zero without loss of generality. The relation ω = ∆ψ is complemented with doubly
periodic boundary conditions on a domain given by D = [0, 1)× [0, 1) and r = (x, y). The
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energy of the flow reads

E [ω] = 1
2

∫
D

d2r v2 = 1
2

∫
D

d2r (∇ψ)2 = −1
2

∫
D

d2rωψ. (2)

The energy is conserved, i.e. dtE = 0. The equations also conserve an infinite number
of functionals, named Casimirs. These are related to the degenerate structure of the
infinite-dimensional Hamiltonian system and can be understood as invariants arising from
Noether’s theorem [27]. These functionals are of the form

Cs[ω] =

∫
D

d2r s(ω), (3)

where s is any sufficiently smooth function depending on the vorticity field. We note that
on a doubly periodic domain the total circulation is zero,

Γ =

∫
D

d2rω = 0. (4)

A special Casimir is

C(σ) =

∫
D

d2rH(−ω + σ), (5)

where H(·) is the Heaviside step function. This Casimir returns the area of B(σ) =
{r | ω(r) ≤ σ} , i.e. the domain of all vorticity levels smaller than or equal to σ. C(σ) is an
invariant for any σ and therefore any derivative of it as well. Therefore, the distribution
of vorticity, defined as D(σ) = C ′(σ), where the prime denotes a derivation with respect
to σ, is also conserved by the dynamics. The expression D(σ) dσ is the area occupied by
the vorticity levels in the range σ ≤ ω ≤ σ + dσ.

Moreover, any Casimir can be written in the form

Cf [ω] =

∫
dσ f(σ)D(σ). (6)

The conservation of all Casimirs (equation (3)) is therefore equivalent to the conservation
of D(σ).

The conservation of the distribution of vorticity levels can also be understood from the
equations of motion, cf equation (1). We find that Dω/dt = 0, showing that the values of
the vorticity field are Lagrangian tracers. This means that the values of ω are transported
through the non-divergent velocity field, thus keeping the distribution unchanged. The
Casimirs and energy are the invariants of the 2D Euler equations. Their existence plays a
crucial role in the dynamics of the system.

From now on, we restrict ourselves to a K-level vorticity distribution. We make this
choice for pedagogical reasons, but the generalization to a continuous vorticity distribution
is straightforward. The K-level vorticity distribution is defined as

D(σ) =
K∑
k=1

Akδ(σ − σk), (7)

where Ak denotes the area occupied by the vorticity value σk. The areas Ak are not
arbitrary as their sum must obey

∑K
k=1Ak = |D | = 1 (the total area of the domain is
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equal to unity). Moreover, the boundary condition (equation (4)) imposes the constraint∑K
k=1Akσk = 0.

2.2. Microcanonical measure

As the 2D Euler equation is a conservation law (the time derivative of ω is the divergence
of a current), it verifies a formal Liouville theorem [28, 29]. This formally justifies that
the microcanonical measure will be dynamically invariant. In order to properly identify
a microcanonical measure, we will thus discretize the vorticity field in finite-dimensional
space, with N2 degrees of freedom, and then take the limit N →∞. As any point in the
physical space has a symmetric role, a uniform grid has to be chosen in order to preserve
the volume conservation corresponding to the Liouville theorem.

We denote the lattice points by rij = (i/N, j/N), with 0 ≤ i, j ≤ N − 1, and denote
ωNij = ω(rij) to be the vorticity value at point rij. The total number of points is N2.

As discussed in section 2.1, we assume D(σ) =
∑K

k=1Akδ(σ − σk). For this finite-N
approximation, our set of microstates (configuration space) is then

XN =
{
ωN = (ωNij )0≤i,j≤N−1 | ∀i, j ωNij ∈ {σ1, . . . , σK} , and

∀ k #
{
ωNij | ωNij = σk

}
= N2Ak

}
. (8)

Here, #(A) is the cardinality of set A. We note that XN depends on D(σ) through Ak
and σk (see equation (7)). We note that all microstates in XN have the proper vorticity
distribution.

In order to define a microcanonical ensemble, we also have to impose an energy
constraint. Using the above expression we define the energy shell ΓN(E,∆E) as

ΓN(E,∆E) =
{
ωN ∈ ΓN | E0 ≤ EN [ωN ] ≤ E0 + ∆E

}
, (9)

where

EN =
1

2N2

N−1∑
i,j=0

(
vNij
)2

= − 1

2N2

N−1∑
i,j,i′,j′=0

ωNijGij,i′j′ωNi′j′ (10)

is the finite-N approximation of the system energy, with vNij = v(rij) being the discretized
velocity field, ∆E is the width of the energy shell, and Gij,i′j′ is a finite-N approximation
of the Laplacian Green function on domain D . We shall define these finite-N approximate
fields more precisely in section 3. Note that a finite width of the energy shell is necessary for
our discrete approximation, as the cardinality of XN is finite. Indeed, the set of accessible
energies on XN is also finite. Let ∆NE be the typical difference between two successive
achievable energies. We therefore assume that ∆NE � ∆E � E0.

The fundamental assumption of statistical mechanics states that all microstates in
this ensemble are equiprobable. By virtue of this assumption, the probability to observe
any microstate is Ω−1

N (E0,∆E), where ΩN(E0,∆E) is the number of accessible microstates
and is defined as the cardinality of the set ΓN(E0,∆E). The finite-N specific Boltzmann
entropy is then given by

SN(E0,∆E) =
1

N2
log ΩN(E0,∆E). (11)
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The microcanonical measure is defined through the expectation values of any observable
A . For any observable A [ω] (for instance a smooth functional of the vorticity field),
we refer to its finite-N approximation by AN [ωN ]. The expectation value of AN for the
microcanonical measure reads〈
µN(E0,∆E), AN(ωN)

〉
≡
〈
AN(ωN)

〉
N
≡ 1

ΩN(E0,∆E)

∑
ωN∈ΓN (E0,∆E)

AN(ωN). (12)

The microcanonical measure µ for the 2D Euler equation is defined as a limit of the
finite-N measure,

〈µ(E0), A (ω)〉 ≡ lim
N→∞

〈µN(E0,∆E), AN(ωN)〉. (13)

The specific Boltzmann entropy is defined as

S(E0) = lim
N→∞

SN(E0,∆E). (14)

The limit measure and the entropy just defined are expected to be independent of ∆E in
the limit N →∞. This will be justified in section 2.3 with large-deviation principles.

2.3. Sanov theorem and mean-field entropy

Computing the Boltzmann entropy by direct evaluation of equation (14) is usually an
intractable problem. However, we shall give heuristic arguments in order to show that the
limit N →∞ can be easily evaluated. The Boltzmann entropy (equation (14)) can then
be computed through maximizing a constraint variational problem (called a mean-field
variational problem, see equation (23)).

This variational problem is the foundation of the Robert–Sommeria–Miller (RSM)
approach to the equilibrium statistical mechanics for the 2D Euler equations. The essential
message is that the entropies computed from the mean-field variational problem (to be
defined below) and from Boltzmann’s entropy definition (equation (14)) are equal in
the limit N → ∞. The ability to compute the Boltzmann entropy through this type
of variational problem is one of the cornerstones of statistical mechanics.

Our heuristic derivation is based on the same type of combinatoric argument as
the ones used by Boltzmann for the interpretation of his H function in the theory of
relaxation to equilibrium of a dilute gas. This derivation does not use the technicalities
of large-deviation theory. The aim is to actually obtain the large-deviation interpretation
of the entropy and to provide a heuristic understanding using basic mathematics only.
The modern mathematical proof of the relation between the Boltzmann entropy and
the mean-field variational problem involves the theory of large deviations and Sanov’s
theorem.

Macrostates are sets of microscopic configurations sharing similar macroscopic
behavior. Our aim is to properly identify macrostates that fully describe the main features
of the largest scales of 2D turbulent flows and compute their probability or entropy.

Let us first define macrostates through local coarse graining. We divide the N × N
lattice into (N/n)× (N/n) non-overlapping boxes each containing n2 grid points (n is an
even number, and N is a multiple of n). These boxes are centered on sites (i, j) = (In, Jn),
where integers I and J verify 0 ≤ I, J ≤ N/n− 1. The indices (I, J) label the boxes.

doi:10.1088/1742-5468/2013/02/P02017 8
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For any microstate ωN ∈ ΓN , let FN
k,IJ be the frequency of finding a vorticity value σk

in box (I, J),

FN
k,IJ(ωN) =

1

n2

In+n/2∑
i=In−n/2+1

Jn+n/2∑
j=Jn−n/2+1

δd(ω
N
ij − σk),

where δd(x) is equal to one whenever x = 0, and zero otherwise. We note that for all
(I, J)

∑
kF

N
k,IJ(ωN) = 1.

A macrostate pN =
{
pNk,IJ

}
0≤I,J≤N/n−1;1≤k≤K , is the set of all microstates ωN ∈

XN such that FN
k,IJ(ωN) = pNk,IJ for all I, J , and k (by abuse of notation, and for

simplicity, pN =
{
pNk,IJ

}
0≤I,J≤N/n−1;1≤k≤K refers to both the set of values pNk,IJ and the

set of microstates having the corresponding frequencies). The property
∑

kF
N
k,IJ(ωN) = 1

imposes a local normalization constraint ∀I, J
∑

kp
N
k,IJ = 1. The entropy of the macrostate

is defined as the logarithm of the number of microstates in the macrostate,

SN [pN ] =
1

N2
log #

{
ωN ∈ XN | for all I, J, and k, Fk,IJ(ωN) = pNk,IJ

}
. (15)

From an argument by Boltzmann (a classical exercise in statistical mechanics), using
combinatorics and the Stirling formula, and taking the limit N > n� 1, the asymptotical
entropy of the macrostate is

SN [pN ] ∼
N�n�1

SN [pN ] = − n
2

N2

N/n−1∑
I,J=0

K∑
k=1

pNk,IJ log pNk,IJ if ∀I, J N [pIJ ] = 1 and ∀kAN [pNk ] = A,

−∞ otherwise,

where N [pNIJ ] ≡
∑

kp
N
k,IJ . In large-deviation theory, this result could have been obtained

using Sanov’s theorem.
The coarse-grained vorticity is defined as

ωNIJ =
1

n2

In+n/2∑
i′=In−n/2+1

Jn+n/2∑
j′=Jn−n/2+1

ωNi′j′ . (16)

Note that, over the macrostate pN , the coarse-grained vorticity depends on pN only,

ωNIJ =
K∑
k=1

pNk,IJσk for ωN ∈ pN .

We now consider a new macrostate (pN , E0) which is the set of microstates ωN with energy
EN [ωN ] verifying E0 ≤ EN [ωN ] ≤ E0 + ∆E (the intersection of ΓN(E,∆E) and pN). For a
given macrostate pN , not all microstates have the same energy. Thus, the constraint on the
microstate energy cannot be recast as a simple constraint on the macrostate pN . Therefore,
treating the energy constraint requires a more subtle approach. The energy (10) is

EN [ωN ] = − 1

2N4

N−1∑
i,j,i′,j′=0

ωNijGij,i′j′ωNi′j′ . (17)
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Then, in the limit N � n� 1, the variations of Gij,i′j′ for (i′, j′) running over the small
box (I, J) are vanishingly small. Hence, Gij,i′j′ can be well approximated by the average
value over the boxes GIJ,I′J ′ ,

Gij,i′j′ = GIJ,I′J ′ + o

(
1

n

)
. (18)

From equation (17), using equations (16) and (18), it is easy to conclude that in the limit
N � n� 1 the energy of any microstate of the macrostate pN is very well approximated
by the energy of the coarse-grained vorticity,

EN [ωN ] ∼
N�n�1

EN [ωNIJ ] = − n2

2N2

N/n−1∑
I,J=0

ωNIJψ
N
IJ ,

where ψNIJ is the stream function, and is related to the velocity field and vorticity
field by equations (1). Note that in the above equation we made use of the relation

E [ωN ] = EN [ωN ] + o (1/n).
Hence, the Boltzmann entropy of the macrostate is

SN [pN , E0] ∼
N�n�1

{
SN [pN ] if ∀k AN

(
pNk
)

= Ak, N [pN ] = 1 and EN [ωNIJ ] = E0,

−∞ otherwise.

(19)

Consider PN,E0(p
N) to be the probability density to observe the macrostate pN . By

definition of the microcanonical ensemble and of the entropies SN(E0) (see equation (11))
and SN(pN , E0) (see equation (19)), we have

PN,E0(p
N) = exp

{
N2
[
SN [pN , E0]− SN(E0)

]}
. (20)

Let PM be the probability density for the random variable XM . The statement

lim
M→∞

− 1

M
log [PM(XM = x)] = I(x) (21)

is called a large-deviation result. I(x) is the large-deviation rate function, and M the
large-deviation rate. From this definition, we see that formula (20) is a large-deviation
result for macrostate pN for the macrocanonical measure. The large-deviation rate is N2

and the large-deviation rate function is −SN [pN , E0] + SN(E0).
We now consider the continuous limit n→∞, N →∞. The macrostates pNk are now

seen as finite-N approximations of pk, the local probability to observe ω(r) = σk : pk(r) =
〈δ(ω(r)− σk)〉. The macrostate is now characterized by p = {p1, . . . , pK}. Taking the limit
N � n� 1 allows us to define the entropy of the macrostate (p, E0) as

S[p, E0] =
S [p] ≡ −

∑
k

∫
D

dr pk log pk if ∀kN [pk] = 1, A
(
pk
)

= Ak and E [ω] = E0,

−∞ otherwise,

(22)

where ∀r, N (r) =
∑K

k=1pk(r) = 1 is the local normalization. In the same limit, it is clearly
seen from definition (15) and result (22) that there is a concentration of microstates close
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to the most probable macrostate: the equilibrium state. The exponential concentration
close to the equilibrium state is a large-deviation result, where the entropy appears as the
opposite of a large-deviation rate function (up to a constant).

The exponential convergence towards this most probable state also justifies the
approximation of the above entropy with the entropy of the most probable macrostate,
equation (14), as

S(E0) = max
{p}|N (r)=1

{
S [p] | E [ω̄] = E0, ∀k A (pk) = Ak

}
, (23)

where p = {p1, . . . , pK}, ∀r N (r) =
∑K

k=1pk(r) = 1 is the local normalization, S [p] is
as defined in equation (22), and A [pk] is the area of the domain corresponding to the
vorticity value ω = σk. The fact that the Boltzmann entropy S(E0) (equation (14)) can
be computed from the variational problem (23) is a powerful non-trivial result from large-
deviation theory.

In section 3, we shall test the prediction of concentration of microstates close to the
equilibrium macrostate with numerical simulations. We first define Creutz’s algorithm and
explain why it is able to sample microcanonical measures. We continue by applying this
algorithm to the 2D Euler equations.

3. Creutz’s algorithm

Creutz’s algorithm was introduced by Creutz in 1983 [14]. It is a generalization of
the Metropolis–Hastings algorithm that samples the Gibbs measure (with a Boltzmann
factor). Creutz’s algorithm, on the other hand, samples the microcanonical measure in
the energy shell E0 ≤ E ≤ E0 + ∆E (a uniform distribution over the set ΓN(E0,∆E)).
Here, the system energy is denoted by E .

In section 3.1 we present Creutz’s algorithm and prove that it actually samples the
microcanonical measure. In section 3.2 we provide a method to calculate the inverse
temperature β using this algorithm. We shall refer to appendix A for a precise definition
of Markov chains, the detailed balance condition, and invariant measures (stationary
distributions).

Creutz and others using his algorithm used the notion of a daemon. The aim of the
daemon is to allow for slight energy fluctuations, which are necessary for systems with a
discrete configuration space. With our notation the daemon energy Ed is nothing else
than Ed = E0 + ∆E − E . The original Creutz algorithm samples a uniform measure
over all microstates of energy smaller than E0 + ∆E. For this measure, in systems with
positive temperature and a large number of degrees of freedom, the energy distribution is
concentrated close to E0 + ∆E, and typical energy fluctuations are small.

In the 2D Euler case considered in this paper the temperature can be negative, as will
be discussed in section 4.1.2. Microstates with the smallest possible energy then become
overwhelmingly probable. In order to sample the microcanonical measure, we then need
to impose a lower bound on the energy. In order to cope with all possible temperature
cases we sample a uniform measure over the energy shell E0 ≤ E ≤ E0 + ∆E. Because
of energy concentration properties, the microcanonical measure is independent of these
definitions or of the value of ∆E in the limit of an infinite number of degrees of freedom.
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Classic heuristic arguments using the daemon energy lead to misleading conclusions,
for instance in the case of negative-temperature systems. For this reason we prefer not
to use this concept at all. We notice, moreover, that the daemon concept is actually not
useful as its energy contains no more information than the state energy E .

3.1. Definition of Creutz’s algorithm

We consider an ensemble of states of a physical system. Each state x is a set of M values,
x = (xi)1≤i≤M . The set of states

X = {x = (xi)1≤i≤M} (24)

is called the configuration space. Note that i ∈ N is the index for components of x.
For instance, a state of an Ising spin system is given by ∀i xi ∈ {−1

2
,+1

2
}. Note that

the values x could also be continuous, i.e. ∀i xi ∈ R. For the 2D Euler equations, the
configuration space is XN as defined in equation (8), and M = N2.

The energy of each microstate is given by E (x). Furthermore, we define

Γ(E0,∆E) = {x ∈ X | E0 ≤ E (x) ≤ E0 + ∆E} (25)

as the set of microstates in the energy shell E0 ≤ E (x) ≤ E0 + ∆E. The microcanonical
measure is defined as the uniform measure over Γ(E0,∆E) (each microstate in Γ(E0,∆E)
has probability Ω(E,∆E) = (#Γ(E0,∆E))−1 to occur, where we recall that #(A) is the
cardinality of set A). Furthermore, as in section 3, we assume that ∆ME � ∆E � E0.
Our goal is to sample the microcanonical measure over Γ(E0,∆E).

We assume that there exists a Markov chain T , defined through a sequence of random
numbers

{
yl ∈ X

}
l≥0

with transition probability T (x, x′) (so T (x, x′) is the probability to

observe yl+1 = x if yl = x′). Here, l ∈ N is the index for the position in the Markov
chain. We assume that T verifies detailed balance for the uniform measure on X. This is
equivalent to the statement T (x, x′) = T (x′, x). See appendix A for more details. Lastly,
we note that T (or T ) does not depend on the system energy.

In order to sample the microcanonical measure over Γ(E0,∆E) an algorithm is needed
that generates realizations

{
zl
}

of a new Markov chain Q defined by its corresponding
transition probability Q and over the configuration space Γ(E0,∆E). We shall call this
algorithm Creutz’s algorithm, and we define it in the following way.

Let the system’s current state be yl = x′. We pick at random x ∈ X with probability
T (x, x′). If E0 ≤ E (x) ≤ E0 + ∆E then we accept this move and yl+1 = x. Otherwise, we
do not accept and yl+1 = yl = x′. Iteration of this procedure defines a Markov chain Q.

We can show that Q verifies detailed balance for the uniform measure over
Γ(E0,∆E). It is easily checked that Q(x, x′) = T (x, x′) if x 6= x′, and Q(x, x) = T (x, x) +∑

x′∈X\Γ(E,∆E)T (x′, x) = 1 −
∑

x′∈Γ(E0,∆E),x6=x′T (x, x′). (Q(x, x) is the probability of a

move from yl to yl+1 to fail because of the energy constraint.) We thus find that
∀x, x′ ∈ Γ(E0,∆E) : Q(x, x′) = Q(x′, x) by virtue of the detailed balance on T . Therefore,
Q verifies a detailed balance for a uniform measure on Γ(E0,∆E). Thus, Q has this
uniform measure as a stationary measure, see appendix A. In conclusion, if Q is ergodic
then it samples the microcanonical measure over Γ(E0,∆E).

doi:10.1088/1742-5468/2013/02/P02017 12

http://dx.doi.org/10.1088/1742-5468/2013/02/P02017


J.S
tat.M

ech.(2013)
P

02017

Sampling microcanonical measures of the 2D Euler equations through Creutz’s algorithm

We conclude by describing how to properly empirically sample an observable A. The
expectation value of observable A is computed through

〈A(y)〉 = lim
N→∞

1

L

L∑
l=1

A(yl). (26)

It is important to notice that if for yl, the Creutz algorithm fails to change the state K
times (yl = yl+1 = · · · yl+K−1), then these K configurations need to be included into the
sum (26). We clarify this statement in appendix B.

3.2. Temperature computation using the Creutz algorithm

We continue with the computation of the inverse temperature from the energy distribution
at equilibrium. We denote ρM(E) as the density of states for energy E. The number of
microstates in Γ(E0,∆E) then reads

ΩM(E0,∆E) =

∫ E0+∆E

E0

dE ρM(E). (27)

We assume that the energy density of states has a large-deviation behavior, i.e.,

∀E lim
M→∞

1

M
log ρM(E) →

M→∞
S(E). (28)

We can assume a stronger property, namely

ρM(E) ∼
M→∞

C(E) eMS(E). (29)

We note that this assumption is verified for most microcanonical measures. For the 2D
Euler equations, it follows from the large-deviation results discussed in section 2.3.

In the microcanonical ensemble the temperature is defined as β = dS/dE. It then
follows that S(E) = S(E0)+β(E−E0)+o(E−E0) and ρM(E) ∼

M→∞
C(E)eMS(E0)+βM(E−E0).

We thus have, using the fact that equation (27) is a Laplace integral, that
limM→∞(1/M) log ΩM(E0,∆E) = S(E0) is independent of ∆E.

Moreover,

ρM(E) ∼
M→∞

C1(E0,∆E) e−βM(E−E0), (30)

and

P (E) ∼
M→∞

C2(E0,∆E) e−βM(E−E0). (31)

The energy distribution is exponential with rate βM . If β is positive, the energy of the
system is concentrated close to E0 + ∆E. If β is negative, the energy of the system is
concentrated close to E0.

We will return to this result in section 4.

3.3. 2D Euler algorithm

We now want to apply the Creutz algorithm to the 2D Euler model. We will follow the
general definition from section 3.1. Thus, we need to (i) define a Markov chain for the
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2D Euler model and (ii) precisely define the approximate energy such that we can sample
states in the energy shell [E0, E0 + ∆E].

Firstly, following section 3.1, we consider the Markov chain T , now defined through
its configuration space

XN =
{
ωN = (ωij)0≤i,j≤N−1 | ∀i, j ωNij ∈ {σ1, . . . , σn} , and

∀k #
{
ωNij | ωNij = σk

}
= N2Ak

}
, (32)

and transition probability T (ω, ω′). T denotes the probability to go from a vorticity state
yl = ω′ ∈ XN to yl+1 = ω ∈ XN , where as before l ≥ 0 denotes the position of yl in T .
We assume the detailed balance condition holds for T .

Secondly, we need to calculate the approximate energy EN given by equation (10).
The discretized vorticity field ωN is transformed to Fourier space with a two-dimensional
(discrete) fast Fourier transform (FFT). The discretized velocity field and stream function
field are then computed by making use of the Fourier representation of equations (1) and
an inverse FFT, resulting in vN = (vNij )0≤i,j≤N−1 and ψN = (ψNij )0≤i,j≤N−1.

With these definitions the microcanonical measure over equation (9) can be sampled.
We take the current system state to be yl = ω ∈ XN (the current vorticity-field
configuration) and yl+1 = ω ∈ XN as the next state (next vorticity-field configuration)
in T . Similarly, the current energy is denoted by EN [yl] and the energy of the next state
by EN [yl+1].

We now describe how we construct a realization of the Markov chain T under the
energy constraint. The vorticity field y0 = ωN ∈XN is initialized with N2/2 values of σ+ =

+1 and N2/2 values of σ− = −1 such that the conditions
∑2

k=1Ak = 1 and
∑N−1

i,j=0ω
N
ij = 0

are satisfied (see section 2.1). We use a two-level potential vorticity distribution as an
example, but generalization to higher-level distributions is straightforward. To sample the
microcanonical measure, obeying the energy and vorticity distribution constraints, the
following routine is followed.

(1) Let the current state of the system be yl = ω′. We randomly choose two lattice sites,
(i0, j0) and (i1, j1), with a uniform distribution. The values at these sites are ω′i0j0 and
ω′i1j1 , respectively. The vorticity values at these positions are then interchanged. In
other words, ωij = ω′ij ∀ij 6= {i0j0, i1j1}, ωi0j0 = ω′i1j1 , and ωi1j1 = ω′i0j0 . We note that
by interchanging two vorticity values, the new field ω still belongs to XN .

(2) The new energy, EN [ωN ], is calculated.

(3) The energy check is performed. If E0 ≤ EN [ωN ] ≤ E0 +∆E then we accept the move in
step (1), i.e., ωl+1 = ω. If the new energy is not in the allowed energy range, we reverse
step (1) such that we get the old vorticity field back, i.e., ωl+1 = ωl = ω′. The new
energy in this case is thus given by EN [ω] = EN [ω′]. This step ensures conservation
of energy and only configurations that are in the set ΓN(E0,∆E) are allowed, see
equation (9). In either case, we return to step (1).

Iteration of steps ((1)–(3)) then builds a realization
{
ωl
}
l≥0

of the Markov chain Q. Since

we assumed that detailed balance holds for T , we know (by virtue of section 3.1) that
the microcanonical measure is an invariant measure of Q. If we assume Q to be ergodic
then we sample the microcanonical measure.

This vorticity exchange method has some analogies with spin ones in the Kawasaki
algorithm [30]. The Kawasaki algorithm is a convenient way to treat dynamics with
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conservation laws in spin or lattice gas Monte Carlo dynamics. Our algorithm slightly
differs from Kawasaki’s, as we consider non-local vorticity value exchanges.

We define a Monte Carlo step as N2 accepted changes in the vorticity field, for reasons
mentioned in section 3.1. Typically, equilibrium is reached after ten Monte Carlo steps for
a two-level distribution and fifty for a three-level vorticity distribution. We note that the
equilibration time depends on the energy E0 chosen.

4. Numerical results

In this section we present the numerical results obtained by sampling the microcanonical
measure of the 2D Euler equations using the algorithm described in section 3.3.
For pedagogical reasons, we restrict the simulations to two- and three-level vorticity
distributions, but note that generalization to more general vorticity-level distributions
is straightforward. We consider the vorticity distribution (see equation (7))

D(σ) = 1
2
δ(σ − σ+) + 1

2
δ(σ − σ−) (33)

for the two-level distribution, and

D(σ) = 1
4
δ(σ − σ+) + 1

2
δ(σ − σ0) + 1

4
δ(σ − σ−) (34)

for the three-level distribution. In the above, σ+ = 1, σ0 = 0, σ− = −1.

4.1. Mean-field behavior and negative temperature

4.1.1. Mean-field predictions. The variational problems (23) associated to the two- and
three-level cases have been explicitly solved in the past, see [24, 25, 31]. We summarize
their results here and compare them to our numerical results.

For the two-level vorticity case the local probability to find a vorticity value of
ω = σ+ = 1 is found to be ρ1 = 1

2
(1 − tanh(α − βψ(r))) [5], where α and β are

Lagrange parameters associated with the conservation of area A and energy, respectively.
Furthermore, β is the inverse temperature, β = dS/dE. Since there are only two possible
values for ω, the local probability to find a vorticity value of ω = σ− = −1 is therefore
ρ2 = 1− ρ1. Hence, the locally averaged vorticity reads

ω = ρ1σ+ + (1− ρ1)σ− = − tanh(α− βψ). (35)

We consider a symmetric distribution D(σ) (D(σ) = −D(−σ)). If we assume this
symmetry then α = 0.

For the three-level distribution a similar calculation, assuming symmetry is not broken,
yields [31]

ω =
µ sinh(βψ)

1 + µ cosh(βψ)
, (36)

where µ is an additional Lagrange parameter arising from the conservation of A.

4.1.2. Negative temperature in doubly periodic domains. The first statistical mechanics
approach to self-organization of 2D turbulence was Onsager’s work on the point vortex
model [32]. Onsager argued in his paper that ensembles of point vortices may have negative

doi:10.1088/1742-5468/2013/02/P02017 15

http://dx.doi.org/10.1088/1742-5468/2013/02/P02017


J.S
tat.M

ech.(2013)
P

02017

Sampling microcanonical measures of the 2D Euler equations through Creutz’s algorithm

temperatures. This property is traced back to the fact that, in contrast with many other
systems, the phase space is bounded (the point vortex model has no quantity analogous
to the kinetic energy in particle systems, allowing the system to explore higher and higher
energy with increasing entropy). The same argument also holds for the 2D Euler equations
with continuous vorticity fields, so one expects negative temperatures to exist for some
ranges of energy. In this section we show that, in the case of a doubly periodic domain,
the inverse temperature of the 2D Euler equations is actually always negative. Note that
the proof was first established by Mikelic and Robert [33].

From the mean-field variational problem we can prove that for any vorticity
distribution there exist functions f such that

ω = ∆ψ = f(βψ). (37)

Moreover, it can be proven that f ′(x) > 0 (see for instance [5]).
Multiplying the above equation by ∆ψ and integrating by parts gives

β = −
∫

D d2r (∆ψ)2∫
D d2r (∇ψ)2 f ′(βψ)

. (38)

Using f ′(x) > 0, we conclude that3 β < 0.
Let us find the value of β in the low energy limit for domain D . Previous works [1] have

shown that in this limit, the expression for the vorticity field for the parallel flow is given
by ω = A cos(2πx+φ) (or ω = A cos(2πy+φ)), where A is a constant depending on E and
φ is an arbitrary phase. Furthermore, in the same limit, we may linearize equation (37)
and find ω ' βψ. From ω = A cos(2πx+ φ) = ∆ψ we compute ψ = −(4π2)−1ω. Together
with ω ' βψ we find that β = −4π2, which is indeed negative for all energies.

4.1.3. Numerical results. We now confront the analytical results with numerical
computations. In order to do so, we must first ensure that the system is in equilibrium.
We can test this by computing the mean-field entropy. We recall the entropy of a coarse-
grained macrostate pN , see equation (19). The mean-field entropy is computed for the
two-level distribution (K = 2, σ+ = 1, σ− =−1) with parameter values N = 256 and n = 3,
and energies ranging from E0 = 0.01Emax to 0.99Emax. Here, Emax is the maximum possible
value of energy that the two-level system can obtain. We will compute Emax below. We
take ∆E = 0.01E0 but note that its value is not of high importance since the actual energy
fluctuations at this resolution are much lower than ∆E.

The result is depicted in figure 1(a). Equilibrium is reached quickly for all energy
levels. To be on the safe side, we take an equilibration time of one hundred Monte Carlo
steps. We define a Monte Carlo step as M accepted iterations of the Creutz algorithm.
With this definition, the size of a state x and the Monte Carlo step scale linearly, such
that after K Monte Carlo steps each value xi has been changed K times on average. All
results that follow below were obtained after the system had reached equilibrium.

Two-level vorticity distribution. For the 2D Euler equations and for a given vorticity
distribution, energy maxima correspond to segregated states. For example, when the left
half of the vorticity field contains only values of σ+ = 1 and the right half consists solely
values of σ−1 = −1 we have E0 = Emax.

3 Note that doubly periodicity is required to ensure that the temperature is always negative. This is due to a
partial integration step in the proof.
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(a)

(b)

Figure 1. (a) Mean-field entropy as a function of Monte Carlo steps for a two-level
vorticity distribution at a resolution of N = 256. Equilibrium is reached within
fifty Monte Carlo steps for any energy level. (b) Mean-field entropy as a function
of E0/Emax. The numerical fluctuations are smaller than the size of the balls.

We calculate Emax analytically. We have d2ψ/dx2 = −1 for 0 ≤ x < 1
2

and d2ψ/d2x =

+1 for 1
2
≤ x < 1. The general solutions to these two differential equations on their

respective domains are denoted by ψ−1 and ψ1. These equations are complemented with
the boundary conditions ψ−1(0) = ψ1(1) = 0, ψ−1(1

2
) = ψ1(1

2
), and ψ′−1(1

2
) = ψ′1(1

2
). We

find ψ−1(x) = −x2/2 + 1
4
x and ψ1(x) = x2/2− 3

4
x+ 1

4
. The maximum energy is now easily

calculated as Emax = 1
96

. The numerical value of Emax = 0.0104 corresponds well to this
theoretical value.

We perform numerical simulations at N = 256 for E0 = 0.9EMax and an energy
tolerance set to ∆E = 0.01E0. After reaching equilibrium, we compute the pN and stream
function ψN by point-wise averaging one hundred fields that are separated in time by
N2 permutations, respectively. The averaged coarse-grained vorticity field ω̄N is then
computed from pN . Figure 2(a) shows the averaged coarse-grained vorticity ω̄N versus the
averaged stream function ψN .

The data points (blue) are fitted with equation (35) by tuning the Lagrange parameter
β. The result (red curve) corresponds to a temperature of β =−96.2. The numerical results
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(a) (b)

Figure 2. Numerical result of a two-level vorticity distribution with resolution
256 × 256 at energy E0 = 0.90Emax and coarse-graining parameter n = 3.
(a) Averaged coarse-grained vorticity versus stream function. An inverse
temperature of β = −96.2 is found. (b) The averaged stream function field shows
a parallel (pure) flow.

are clearly in agreement with the theoretical predictions. In figure 2(b) the stream function
field is plotted, showing a unidirectional flow.

The fluctuations in ω̄N visible in figure 2(a) are a result of the coarse graining of ω (or

equivalently in p). The level of fluctuations in pN is of o(1/
√
n2) = o(1/n). This amounts

to fluctuations of about 0.3 for n = 3. This is close to the observed fluctuations near the
center (ψ = 0), see figure 2(a).

Three-level vorticity distribution. Although determining Emax for the two-level case
was possible due to the simple geometry, this is less trivial for the three-level case. Instead
of trying to compute Emax analytically, we determine it numerically. We let the algorithm
run for some time and accept only moves that increase the energy. We find that the system
converges towards a maximum energy of Emax = 0.005 208.

We now show results for a three-level distribution with N = 256, E0 = 0.9Emax and
an energy tolerance of ∆E = 0.01E0. We follow the same averaging procedure as in the
two-level case, see above.

In figure 3(a) the averaged coarse-grained vorticity ω̄N is plotted against the averaged
stream function ψN . The data points (blue) are fitted with equation (36), see figure 3 for
more details. This is again in agreement with theory. In figure 3(b) the averaged stream
function field is plotted, showing a dipole flow.

4.2. Inverse temperature computation

The 2D Euler equations have the property of negative temperature, as discussed in
section 4.1.2.

In this section we present three different methods to compute the inverse temperature
of the two-level vorticity system. The first method is a direct measure of energy
fluctuations, as discussed in section 4.2.1. It is independent of any assumption (mean
field, large N , etc). It is therefore a good method to verify the two other methods which
rely on mean-field approximations. The second method, studied in section 4.2.2, uses
the mean-field equation (35) and a fit to compute β. The third method, proposed in
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Figure 3. Numerical result of a three-level vorticity distribution with resolution
256 × 256 at energy E0 = 0.9Emax and coarse-graining parameter n = 3.
(a) Averaged coarse-grained vorticity versus stream function. The fitting
parameters are β = −252.1 and µ = 0.0969. (b) The averaged stream function
field shows a dipole flow.

section 4.2.3, uses the mean-field approximation of the entropy (22) to find β from the
relation β = dS/dE.

We show that all three methods give similar results. Furthermore, we find negative
temperatures for all energies, in agreement with our finding in section 4.1.2.

Lastly, in the high energy limit, we find that the inverse temperature tends to β =−∞.
In the low energy limit, we find β = −39.74, which is close to the theoretically predicted
value of β = −4π2 for our domain D , see section 4.1.2.

4.2.1. Temperature from the energy distribution in the Creutz algorithm. This method
makes use of the theory discussed in section 3.2 and is applied to the two-level case.

After equilibrium is reached, the system’s energy is computed ten times per
Monte Carlo step for a total of one hundred Monte Carlo steps. The histogram is shown
in figure 4(a) for E0 = 0.95Emax. The data are fitted with equation (30), from which we
obtain a value of β.

This method is repeated for different values of energy E0, such that we obtain a plot
of β versus energy, as shown in figure 4(b). Notice that the temperature is negative over
the full range of energy values, as expected.

4.2.2. Temperature from the mean-field equation. We compute the inverse temperature
through the mean-field equation (16) by using the same method as discussed in
section 4.1.1, see also figure 2(a).

After the system has reached equilibrium, the average fields ψN and ω̄N are computed
for several energies E0. We plot ω̄N versus ψN for each energy and fit the result with
equation (35) from which we obtain a negative temperature β(E), see the red curve in
figure 5.

4.2.3. Temperature from the mean-field entropy. This method relies on the mean-field
entropy, see equation (22) and section 4.1.1.

For each chosen energy E0 the algorithm is run until equilibrium is reached. The
simulation is then continued for another fifty Monte Carlo steps. We average the coarse-
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(a) (b)

Figure 4. Two-level vorticity distribution with N = 256. (a) The energy
distribution after reaching equilibrium. The energy distribution is proportional
to ΩN (E). The distribution follows an exponential law (equation (30)), see
the red curve. This gives access to the inverse temperature β. (b) The inverse
temperature, obtained using the method of (a), is plotted for several energies E0.
The error bars show the standard error of the estimate of β obtained via the
fitting procedure.

Figure 5. Inverse temperature plotted against energy from the equilibrium energy
distribution (blue), the mean-field equation (red) and the mean-field entropy
(black).

grained entropy and energy over this interval and repeat this process for energies ranging
from E0 = 0 to Emax. The data are fitted with a polynomial, which can be derived. The
temperature of the system is then found via β(E) = dS/dE(E). The resulting values of
β are then plotted against energy, see the black curve in figure 5.

From the same figure we can conclude that the temperature is indeed negative for all
values of E0. Furthermore, note that all three methods give very similar results, especially
in the low energy limit. In this limit, statistical mechanics theory predicts a temperature of
β = −4π2, see section 4.1.2. The values in this limit, shown in the figure, indeed approach
this theoretical value.
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5. Phase transitions and statistical ensemble inequivalence

In this section, we use Creutz’s algorithm in order to study the microcanonical measures for
the 2D Euler equations. We are specifically interested in the study of phase transitions, as
they play a major role in the dynamics of equilibrium and non-equilibrium flows [7, 1]. The
numerical computations shown in this section are compared with the low energy statistical
equilibria and phase diagrams analytically computed in [7, 1]. Creutz’s algorithm allows
us to search beyond the low energy limit. In section 5.2, we observe a first-order phase
transition that does not exist in the low energy limit, for a three-level vorticity distribution.

5.1. Summary of theoretical results

We begin with a summary of the theoretical results describing phase transitions for the 2D
Euler equations in the low energy limit [1, 34]. In a domain with doubly periodic boundary
conditions and in the low energy limit, statistical equilibria are well approximated by
largest scale eigenmodes of the Laplacian

ω(x, y) ∼
E→0

A cos(2πx+ φ) +B cos(2πy + φ′), (39)

where A,B are constants.
For a square geometry, there are three possible equilibrium flows. Two of these

equilibria have amplitudes of (A = 0, B 6= 0) and (A 6= 0, B = 0), respectively, and are
called pure states, or parallel flows. The last type of flow, called a symmetric dipole, is the
case for which A = B. Symmetric dipoles and parallel flows have been found numerically
with our algorithm, see the previous sections. We proceed now to a more detailed study
of the phase transitions between these equilibria when the energy is changed.

It is shown in [1, 34] that the selection of either a dipole or a parallel flow in the
low energy limit is related to inflection points in the relation between the coarse-grained
vorticity and the stream function. To be more precise, consider the Taylor expansion

ω = f(βψ) with f(x) = x+ a4x
3 + o(x3). (40)

Using β < 0 (see section 4.1.2), we note that when a4 > 0, the curve ω−ψ bends upwards
for positive x, similar to a hyperbolic sine. When a4 < 0, then it bends downward for
positive x, similarly to a hyperbolic tangent. The theory predicts parallel flows when
a4 < 0, and dipole flows when a4 > 0.

Let us study this criterion in the case of a two-level vorticity distribution. From
the theoretical predictions (equation (35)) we find for the two-level case with symmetric
vorticity distribution (α = 0) that ω ' βψ− 1

3
β3ψ3, from which we find that a4 = −1

3
< 0,

in accordance with the tanh-like behavior observed (see figure 2(a)). We thus expect to
always observe parallel flows for the two-level case, and no phase transitions. This is in
agreement with the results obtained by using Creutz’s algorithm.

The three-level case is more interesting. Linearization of equation (36) yields ω '
(µ/(1 + µ))βψ + ((1 − 2µ)µ/6(1 + µ)2)β3ψ3. For 0 ≤ µ < 1/2 we find that a4 > 0 and
expect to observe a dipole. This is the case studied in the previous section (see figure 3).
Interestingly, in the three-level case, a4(µ) = (1 − 2µ)µ/6(1 + µ)2 is negative for either
µ > 1/2 or µ < 0. This open the possibility of a phase transition in the three-level case.
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We have not tried to theoretically compute µ as a function of the energy as this
would be very involved, but we find that a phase transition actually exists using Creutz’s
algorithm. We show the result in section 5.2.

The theoretical results [1, 34] are valid in the low energy limit. In this limit the
theoretical results indicate that the transition is of second order (symmetry breaking,
by transition from parallel to dipole flows) and occurs when a4 = 0. In the following we
perform computations both in the low energy limit and for large energies. We find that
the sign of a4 remains relevant for finding phase transitions. However, we will see that for
large energies the transition can be of first order.

5.2. Phase transition in the three-level case

In order to study the phase transition between dipole and parallel flows we first define an
appropriate order parameter. We consider the Fourier coefficients of the vorticity field ωN ,
denoted ω̂k, where k = (kx, ky), such that in equation (39) A = |ω̂(2π,0)| and B = |ω̂(0,2π)|.
We define ωmin = min

{
|ω̂(2π,0)|, |ω̂(0,2π)|

}
and ωmax = max{|ω̂(2π,0)|, |ω̂(0,2π)|}. Then the

order parameter

r =
ωmin

ωmax

(41)

characterizes the equilibrium state in which the system resides. We have 0 ≤ r ≤ 1, and
for r = 1, ωmin = ωmax, A = B and we observe a purely symmetric dipole, whereas for
r = 0, ωmin = 0, we find that either A or B is equal to zero, corresponding to either a
horizontal or a vertical parallel flow. For an intermediate value of r, a mixed state between
a parallel flow and a dipole will be observed (which is not a statistical equilibrium but
can be observed transiently).

For N = 128 we compute the order parameter 256 times per Monte Carlo step for
energies ranging from E0 = 0 to Emax for the two- and three-level cases, see figure 4. For
both cases we found degeneracy at very low energies. Indeed, in a square box, theory [7,
1] predicts a second-order phase transition at E = 0 as a4 →

E→0
0. Then, for finite N , both

parallel and dipole flows are possible at non-zero but small energies due to finite-size
effects. Figure 4(a) confirms this. It is also expected in [7, 1] that there is no other phase
transition for E > 0 in the case of two levels of vorticity. Our numerical results agree with
this observation.

For the three-level case, figure 6(b) shows that a phase transition exists around
E0 = 0.7Emax.

In order to determine the order of the phase transition, we ran Creutz’s algorithm
with three levels of vorticity, increasing the energy adiabatically from Em = 0.60Emax up
to EM = 0.82Emax; see figure 7. We took a resolution of N = 256 such that the fluctuations
were small.

Two simulations were run at this resolution: a forward (low to high energy) simulation
and a backward (high to low energy) simulation. The energy is adiabatically increased
(decreased) with a rate corresponding to 4.4 × 10−4Emax per Monte Carlo step, for a
total of 500 Monte Carlo steps. Within each Monte Carlo step, we compute averages of
the order parameter over 512 realizations, for each of the 500 energy levels. The result is
shown in figure 7. We observe hysteresis behavior, a typical signature of first-order phase
transitions.
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(a) (b)

Figure 6. The order parameter r versus E/Emax = 0 to E/Emax = 1.0 for two-
level (a) and three-level (b) vorticity distributions. Both distributions show
degeneracy at low energies. Only the three-level case exhibits a phase transition
around E = 0.7Emax.

Figure 7. Hysteresis in the transition from parallel flow to dipole. The plot
shows the order parameter versus the energy for a forward (low to high
energy) simulation (blue) and a backward (high to low energy) simulation (red)
(resolution N = 256).

Using the standard terminology in describing phase transitions, the dipole is the
ordered phase in the sense that it has lost the translational symmetry. The parallel
flow is the corresponding disordered phase. An interesting remark is that we observe
a transition from the disordered phase to the ordered one as the energy is increased. This
is in contrast with classical thermodynamics and statistical physics results. For instance,
the first-order solid–liquid transition is a transition from the ordered phase (solid with
broken symmetry) to the disordered phase (liquid) when the energy (or temperature) is
increased. Similarly, the ferromagnetic–paramagnetic phase transition is a second-order
phase transition from the ordered phase (ferromagnetism, with broken symmetry) to a
disordered phase (paramagnetism) when the energy is increased.

This paradox is due to the fact that our system has a negative temperature. Then
the entropy decreases with the energy. It is thus natural to expect a transition from the
disordered state (high entropy and symmetric) to the disordered state (low entropy and
with broken symmetry) when the energy is increased. This paradoxical property is traced
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back to the fact that, in contrast with any other systems, for the 2D Euler equations the
phase space is bounded (there is no equivalent of kinetic energy allowing the system to
explore higher and higher energy with increasing entropy).

We have described a first-order phase transition in the microcanonical ensemble with
hysteretical behavior. In systems with short-range interactions, microcanonical first-order
transitions usually do not exist because of the possibility of phase coexistence [8], whereas
they are generic features in systems like the 2D Euler equations which have long-range
interactions. A very general argument [8] shows that such a first-order phase transition
in the microcanonical ensemble is necessarily associated with a situation of inequivalence
between the microcanonical and canonical ensembles.

6. Conclusions

In this paper we have presented a novel numerical method based on Creutz’s algorithm
to sample microcanonical measures of hydrodynamical systems. Although we have only
presented numerical results for the 2D Euler model, we stress that this numerical
scheme can easily be generalized to more complex hydrodynamical models such as the
axisymmetric 3D Euler equations or the shallow water equations.

For the 2D Euler model, we have reproduced the (theoretically) well-known
equilibrium states characterized by parallel and dipole flows. Using our algorithm, we
were able to compute the temperature of the system in three different ways. One of
these approaches allowed the computation of the temperature without making use of
any mean-field assumptions, and therefore served as a verification tool for the mean-
field approximations made in theoretical predictions. All three methods match very well,
showing consistency between the numerical approach and the mathematical results; this
also proves that the mean-field description is exact in the large-N limit.

Furthermore, we have found a previously unknown phase transition in the
microcanonical description of the 2D Euler equations. We have shown that in the
energy range where the transition occurs there is an ensemble inequivalence between
the microcanonical and canonical ensembles. This transition is very interesting from a
statistical mechanics point of view, as it is a transition from an ordered phase with broken
symmetry towards an asymmetric ordered phase when the energy is increased. From a
fluid mechanics point of view, it is also very interesting, as it describes a discontinuous
change of the flow topology. A similar phase transition has already been observed in a
non-equilibrium framework for the 2D stochastic Navies–Stokes equations [7]. This new
equilibrium result will probably be very useful in explaining why the 2D-Navier–Stokes
non-equilibrium phase transition has the phenomenology of a first-order phase transition
rather than of a second-order one.

The numerical method we propose is extremely easily implemented and the
generalization to similar models is rather straightforward. We guess that it will have
many applications for theoretical, experimental and geophysical flows.
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Appendix A. Markov chains, detailed balance and invariant distributions

In this appendix we formalize the notions of Markov chain, detailed balance, and reversible
Markov chain. These definitions are used in sections 3.1 and 3.3.

Markov chain. A Markov chain is a (mathematical or physical) system that undergoes
changes from one state to another between a finite number of states. Such changes
are called transitions and the probabilities associated with the state changes are called
transition probabilities. The system is driven by a random and memoryless process, i.e., the
next state in the chain depends only on the current state and not on the sequence of
states that preceded it. The memoryless property of the system is usually referred to as
the Markov property. The set of all possible states, called the configuration space, and the
transition probabilities fully characterize a Markov chain.

The configuration space is defined by

X = {x = (xi)1≤i≤M} .

A state is thus described by a set of M values, x = (xi)1≤i≤M .
Formally, a Markov chain T is a sequence of random variables

{
yl ∈ X

}
l≥0

with the

Markov property, where the transitions between states are determined by the transition
probabilities

T (xl+1, xl, xl−1, . . . , x0) = T (xl+1, xl) = T (x, x′).

This gives the probability to go from a state yl = x′ to the state yl+1 = x. We call a sequence{
zl
}
l≥0

a realization of the Markov chain T . Note that i ∈ N is the index for components

of x, while l ∈ N is the index for the position in the Markov chain. Furthermore, we denote
P l(x′) as the probability for yl = x′. The probability to observe the system in state yl+1 = x
is then given by P l+1(x) =

∑
x′∈XT (x, x′)P l(x′). The stationary distribution, denoted P∞,

is defined such that P∞(x) =
∑

x′∈XT (x, x′)P∞(x′). The stationary distribution is thus
invariant under T .

Detailed balance. A Markov chain T is said to be reversible with respect to the
distribution P∞(x) if

∀x, x′ ∈ X: P∞(x)T (x, x′) = P∞(x′)T (x′, x). (A.1)

This condition is also known as the detailed balance condition. Summing equation (A.1)
over x gives

∀x′ ∈ X:
∑
x∈X

P∞(x′)T (x, x′) =
∑
x∈X

P∞(x′)T (x′, x) = P∞
∑
x∈X

T (x′, x) = P∞(x′). (A.2)

Hence, for reversible Markov chains, P∞ is always a steady-state (stationary) distribution
of T . In the case where P∞(x) is uniform over X, i.e. P∞(x) = cste, the detailed balance
condition reduces to

∀x, x′ ∈ X: T (x, x′) = T (x′, x). (A.3)

We thus find that if a Markov chain obeys detailed balance, there exists an invariant
(stationary) distribution P∞ over X.
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Appendix B. A wrong way to define and use the Creutz algorithm

A common error in using the Creutz algorithm is to define yl+1 as the first accepted move
after yl with the condition E0 ≤ EN(yl+1) ≤ E0 + ∆E, thereby discarding any unaccepted
state in the expectation value of an observable A, cf equation (26). We consider the Markov
chain that corresponds to this wrong procedure and show that it does not verify detailed
balance.

Let us define more precisely the wrong algorithm. Given any configuration, we
randomly pick a new configuration yl+1 with probability T (x, x′). If E0 ≤ EN(yl+1) ≤
E0 + ∆E we accept the move. If the condition is not satisfied we keep picking new values
for yl+1 at random until the condition E0 ≤ EN(x) ≤ E0 + ∆E is fulfilled and then accept
the move. This defines a Markov chain R with transition probability

R(x, x′) = C(x′)T (x, x′), (B.2)

where C(x′) =
∑

x∈ΓN (E,∆E)T (x, x′) is called the acceptance ratio (depending on x′ only).

The detailed balance condition would require ∀x, x′ ∈ ΓN(E,∆E): R(x, x′) = R(x′, x).
This would only hold when C(x′) = C(x), but there is no reason for this to be true in
general.

We now recall how to properly empirically sample an observable A. The expectation
value of observable A is computed through

〈A(y)〉 = lim
L→∞

1

L

L∑
l=1

A(yl). (B.3)

In using the above defined wrong Creutz algorithm, the expectation value of A is calculated
over R. Since the detailed balance condition does not hold for this Markov chain, one does
not sample a stationary measure.
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