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Abstract. We discuss the dynamics and thermodynamics of the Hamiltonian Mean Field model (HMF)
which is a prototypical system with long-range interactions. The HMF model can be seen as the one Fourier
component of a one-dimensional self-gravitating system. Interestingly, it exhibits many features of real self-
gravitating systems (violent relaxation, persistence of metaequilibrium states, slow collisional dynamics,
phase transitions,...) while avoiding complicated problems posed by the singularity of the gravitational
potential at short distances and by the absence of a large-scale confinement. We stress the deep analogy
between the HMF model and self-gravitating systems by developing a complete parallel between these two
systems. This allows us to apply many technics introduced in plasma physics and astrophysics to a new
problem and to see how the results depend on the dimension of space and on the form of the potential of
interaction. This comparative study brings new light in the statistical mechanics of self-gravitating systems.
We also mention simple astrophysical applications of the HMF model in relation with the formation of
bars in spiral galaxies.

PACS. 05.20.-y Classical statistical mechanics – 05.45.-a Nonlinear dynamics and nonlinear dynamical
systems

1 Introduction

The statistical mechanics of systems with long-range in-
teractions is currently a topic of active research in physics
because it differs in many respects from that of more fa-
miliar systems with short-range forces that are extensive
[1]. Among long-range interactions, gravity is probably
the most important and most fundamental example [2,3].
However, the statistical mechanics of self-gravitating sys-
tems initiated by Antonov [4] and Lynden-Bell [5] is com-
plicated due to the divergence of the gravitational force
at short distances and to the absence of shielding (or con-
finement) at large distances. These difficulties are specific
to the gravitational force and not to the long-range na-
ture of the interaction. Therefore, it may be of conceptual
interest to consider simpler systems with long-range inter-
actions to distinguish what is specific to the gravitational
force and what is common to systems with long-range in-
teractions.

A toy model of systems with long-range interactions
is the so-called HMF (Hamiltonian Mean Field) model. It
consists of N particles moving on a circle and interacting
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via a cosine binary potential. This can be seen as a one-
dimensional plasma where the potential of interaction is
truncated to one mode. This model is of great concep-
tual interest because it exhibits many features present in
more realistic systems with long-range interactions such as
gravitational systems. In addition, it is sufficiently simple
to allow for accurate numerical simulations and analytical
results.

To our knowledge, what is now called the HMF model
was first introduced by Konishi & Kaneko [6]. They found
that a cluster is formed in some cases and that the sys-
tem remains uniform in other cases. Inagaki & Konishi
[7] realized that the Konishi-Kaneko system is nothing
but the one Fourier component of a one-dimensional self-
gravitating system and explained the formation of clus-
ters as an instability similar to the Jeans instability in
self-gravitating systems described by the Vlasov equation.
Inagaki [8] studied the thermodynamical stability of the
Konishi-Kaneko system and identified the existence of a
second order phase transition at a critical temperature Tc.
Above Tc the only statistical equilibrium state is uniform,
whereas below Tc this uniform state looses its thermo-
dynamical stability and clustered states appear. In order
to justify his results dynamically, Inagaki [9] developed a
“collisional” kinetic theory of the Konishi-Kaneko system
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based on results of plasma physics and proposed to model
the dynamics of the system by the Lenard-Balescu equa-
tion for a one dimensional plasma truncated to one mode.
However, as we shall see, his conclusions demand further
discussion.

The same model was considered at about the same
time by Pichon and Lynden-Bell (Pichon [10]) who gave
an astrophysical application of this model in relation with
the formation of bars in galactic disks. In their approach,
the stars follow rigid elliptical orbits with eccentricity e. If
φi represents the inclination of ellipse i and Ωi its angular
velocity, the torque exerted by an orbit to the other can
be written α−1dΩ1/dt = ∂ψ12/∂φ1 where α−1 is the adi-
abatic moment of inertia of the inner Lindblad orbit and
ψ12 = GA2 cos 2(φ1−φ2) is the effective alignement poten-
tial. At high temperatures, the orbits are almost uniformly
distributed in space and the system is in a disk phase (see
Fig. 4). However, below some critical temperature Tc, the
ellipses tend to align to each other and form a bar (see
Fig. 5). Those bars are reported observationally in real
galaxies. Pichon and Lynden-Bell studied the linear sta-
bility of these bars with respect to the Vlasov equation
and proposed that the clustered phase could result from
a process of violent relaxation, a concept introduced by
Lynden-Bell [11] to explain the regularity of collisionless
stellar systems such as elliptical galaxies.

The Konishi-Kaneko system, now called the HMF
model, also appeared in statistical mechanics [12]. In that
context, the motivation was to devise a simple model with
long-range interactions keeping the richness of more real-
istic systems while being amenable to a full analytical and
numerical treatement. Excitingly, this simple model dis-
plays a lot of interesting features (violent relaxation, per-
sistence of metaequilibrium states, slow collisional relax-
ation, phase transitions,...) also present in other systems
with long-range interactions such as stellar systems and
2D vortices [3]. The properties of the HMF model have
been studied in great detail in a lot of recent papers (see
Dauxois et al. [13] for a review). Despite its oversimplifica-
tion, the HMF model can be seen as a pedagogical model
to take a step into the physics of systems with long-range
interactions. It is said sometimes to represent the “har-
monic oscillator” of systems with long-range interactions.
This probably explains its popularity.

In the present paper, we shall emphasize the connec-
tion between the HMF model and the results established
in astrophysics and plasma physics. In particular, we will
adapt the methods developed for 3D self-gravitating sys-
tems to the case of a one-dimensional system of particles
with cosine interactions. The motivation of this extension
is two-fold. The first is to show that the results obtained
in astrophysics and plasma physics can have applications
in other domains of physics, including the HMF model
(this has not been sufficiently appreciated by workers in
that field since the early work of Inagaki). The second is
to stress the analogies and the differences which appear in
long-range systems as we change the dimension of space
and the potential of interaction. Among the analogies be-
tween 3D self-gravitating systems and the HMF model,

we note: the concept of violent relaxation and the slow
collisional dynamics. Among the differences, we note: the
equivalence of statistical ensembles for the HMF model
(contrary to 3D gravitational systems), the existence of
second order phase transitions (instead of first order or ze-
roth order phase transitions for 3D gravitational systems)
and the vanishing of the collision operator at the order
1/N in the BBGKY hierarchy contrary to the Coulom-
bian or Newtonian case.

The paper is organized as follows. In Section 2, we
consider the statistical equilibrium states of the HMF
model in both microcanonical and canonical ensembles.
We synthesize previously known results and we derive ex-
plicit criteria of thermodynamical stability for the uni-
form phase as well as for the clustered phase. We also de-
scribe corrections to the mean-field approximation close
to the critical point. In Section 3, we consider a one-
dimensional gaseous system with cosine interactions (the
analogue of a “gaseous star”) described by the Euler equa-
tions with a barotropic equation of state. We discuss in
particular the equivalent of the Jeans instability. In Sec-
tion 4, we consider the collisionless evolution of the HMF
model (the analogue of a “stellar system”) described by
the Vlasov equation and discuss the concept of violent re-
laxation and metaequilibrium states. We interprete these
quasi-equilibrium states as particular stationary solutions
of the Vlasov equation on the coarse-grained scale result-
ing from phase mixing and incomplete violent relaxation.
We regard Tsallis functional Sq[f ] = − 1

q−1

∫
(f q − f)dθdv

and Boltzmann functional SB[f ] = − ∫
f ln fdθdv as par-

ticular H-functions in the sense of Tremaine et al. [14]
associated with polytropic and isothermal distributions.
We study the dynamical stability of stationary solutions
of the Vlasov equation and compare with the dynami-
cal stability of stationary solutions of the barotropic Eu-
ler equations. This is the same type of comparison as
between “gaseous systems” and “stellar systems” in as-
trophysics. In that respect, we discuss the equivalent of
the Antonov first law [15] for the HMF model. We de-
rive a criterion of nonlinear dynamical stability for steady
states of the Vlasov equation of the form f = f(ε) with
f ′(ε) < 0 where ε is the individual energy, and show that
it can be written as a condition on the velocity of sound in
the corresponding barotropic gas. This criterion is equiv-
alent to the criterion obtained by Yamaguchi et al. [16]
but it is expressed differently. We also analyze the linear
dynamical stability of steady states of the Vlasov equa-
tion and study the dispersion relation for isothermal and
polytropic distributions. In Section 5, we discuss the col-
lisional evolution of the HMF model and explain why the
kinetic theory is more complicated than for 3D Newtonian
interactions. In particular, the Landau and the Lenard-
Balescu collision terms vanish for 1D systems so that the
evolution of the system as a whole is due to terms of
order smaller than 1/N in the expansion of the correla-
tion functions for N → +∞. This implies that the relax-
ation time is larger than NtD (where tD is the dynamical
time). By contrast, we can develop a kinetic theory at or-
der 1/N to analyze the relaxation of a “test particle” in
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a bath of “field particles” with static distribution f0(v).
The evolution of the distribution function P (v, t) of the
velocity of the test particle satisfies a Fokker-Planck equa-
tion. We give explicit expressions for the diffusion coeffi-
cient and the auto-correlation function and we compare
their expressions depending on whether collective effects
are taken into account or not. We also show that the
auto-correlation function decreases exponentially rapidly
in time with a rate coinciding with the damping rate γ
of a stable perturbed solution of the Vlasov equation. Fi-
nally, in Section 6, we discuss the case of self-attracting
Brownian particles described by non-local Fokker-Planck
equations. This stochastic model is the canonical coun-
terpart of the Hamiltonian N -body problem. It could be
called the BMF (Brownian Mean Field) model. We study
the dynamical stability of steady states of the non-local
Smoluchowski equation and solve this equation numeri-
cally to show the formation of a clustered state from an un-
stable homogeneous state due to long-range interactions.
We also provide analytical solutions of the dynamics close
to the critical point Tc and for T = 0. All these models
have an equivalent in the astrophysical literature and this
paper stresses the analogies and differences between self-
gravitating systems and the HMF model. This compar-
ative study brings new light in the statistical mechanics
of self-gravitating systems by showing what is specific to
gravity and what is common to systems with long-range
interactions.

2 Statistical equilibrium

2.1 The mean-field approximation

We consider a system of N particles moving on a circle
and interacting via a cosine binary potential. This is the
so-called HMF model. As explained in the Introduction,
this model can also describe a system of stars moving on
elliptical orbits, each orbit exerting a torque on the others.
Fundamentally, the dynamics of this system is governed
by the Hamilton equations

mi
dθi

dt
=
∂H

∂vi
, mi

dvi

dt
= −∂H

∂θi
,

H =
N∑

i=1

1
2
miv

2
i − k

4π

∑

i�=j

mimj cos(θi − θj), (1)

where θi is the angle that makes particle/ellipse i with an
axis of reference and k is the coupling constant (similar
to the gravitational constant G). In the rest of the paper,
we shall refer to this system as a “stellar system”; this is
to emphasize the analogies with real 3D stellar systems
whose dynamics is also governed by Hamiltonian equa-
tions with long-range interactions. We have also general-
ized the usual HMF model to a population of particles
with different masses mi. However, in most of the paper,
we shall assume that all the particles have the same mass
m = 1. The multi-species HMF model will be discussed
specifically in Section 7.

The evolution of the N -body distribution function is
governed by the Liouville equation

∂PN

∂t
+

N∑

i=1

(

vi
∂PN

∂θi
+ Fi

∂PN

∂vi

)

= 0 (2)

where Fi = − k
2π

∑N
j=1 sin(θi − θj) is the force experi-

enced by particle i. Any distribution of the form PN =
χ(H)δ(E − H) is a stationary solution of the Liouville
equation. For N � 1 (fixed) and t → +∞, this system is
expected to reach a statistical equilibrium state due to the
development of correlations between particles (this will be
referred to as a “collisional” relaxation). As is customary
in statistical mechanics, we shall assume that the equi-
librium N -body distribution function is described by the
microcanonical distribution

PN (θ1, v1, ..., θN , vN ) =
1

g(E)
δ(E −H), (3)

expressing that all accessible microstates (with the right
values of energy and mass) are equiprobable. Whether this
is indeed the case has not been proved rigorously as it
relies on a hypothesis of ergodicity, so this statement is
essentially a postulate.

For systems with long-range interactions (self-
gravitating systems, 2D vortices, HMF model,...), it can
be shown that the mean-field approximation is exact in an
appropriate thermodynamic limit. This can be shown for
example by considering an equilibrium BBGKY-like hier-
archy [17,18]. For the HMF model, the thermodynamic
limit is N → +∞ in such a way that the properly normal-
ized energy ε = 8πE/kM2 and temperature η = βkM/4π
are fixed, where M = Nm is the total mass. These con-
trol parameters are similar to those, ε = ER/GM2 and
η = βGMm/R, describing 3D gravitational systems [19].
In that limit N → +∞, the two-body distribution func-
tion can be expressed as a product of two one-body dis-
tribution functions

P2(θ1, v1, θ2, v2) = P1(θ1, v1)P1(θ2, v2) +O(1/N). (4)

The average density of particles in phase space is given by
f(θ, v) = 〈∑i δ(θ − θi)δ(v − vi)〉 = NP1(θ, v). The total
mass can then be expressed as

M =
∫
fdθdv. (5)

On the other hand, the average energy E = 〈H〉 is

E = N

∫
P1(θ, v)

v2

2
dθdv

− k

4π
N(N − 1)

∫
cos(θ − θ′)P2(θ, v, θ′, v′)dθdvdθ′dv′. (6)

In the mean-field limit, it reduces to

E =
1
2

∫
fv2dθdv +

1
2

∫
fΦdθdv, (7)
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where

Φ(θ) = − k

2π

∫ 2π

0

cos(θ − θ′)ρ(θ′)dθ′, (8)

is the potential and ρ =
∫
fdv is the spatial density. Note

that the average force experienced by a particle located in
θ is 〈F 〉 = −Φ′(θ). If ρ is symmetric with respect to the
x-axis, so that ρ(−θ) = ρ(θ), the foregoing relation can be
rewritten

Φ(θ) = B cos θ, (9)

where

B = − k

2π

∫ 2π

0

ρ(θ′) cos θ′dθ′. (10)

This parameter B is the equivalent of the magnetization
(usually denoted M) in the case of spin systems. Inserting
the relation (9) in equation (7), we find that the energy
can be rewritten

E =
1
2

∫
fv2dθdv − πB2

k
, (11)

so that the potential energy is directly expressed in terms
of B.

2.2 The Boltzmann entropy

We wish to determine the macroscopic distribution of par-
ticles at statistical equilibrium, assuming that all acces-
sible microstates (with given E and M) are equiproba-
ble. To that purpose, we divide the µ-space {θ, v} into a
very large number of microcells with size h. We do not
put any exclusion, so that a microcell can be occupied
by an arbitrary number of particles. We shall now group
these microcells into macrocells each of which contains
many microcells but remains nevertheless small compared
to the phase-space extension of the whole system. We call
ν the number of microcells in a macrocell. Consider the
configuration {ni} where there are n1 particles in the 1st
macrocell, n2 in the 2nd macrocell etc. Using the standard
combinatorial procedure introduced by Boltzmann, the
number of microstates corresponding to the macrostate
{ni}, i.e. its probability, is given by

W ({ni}) = N !
∏

i

νni

ni!
. (12)

This is the Maxwell-Boltzmann statistics. As is customary,
we define the entropy of the state {ni} by

S({ni}) = lnW ({ni}). (13)

It is convenient here to return to a representation in terms
of the distribution function giving the phase-space density
in the ith macrocell fi = f(θi, vi) = ni/νh. Using the
Stirling formula and passing to the continuum limit ν → 0,
we obtain the usual expression of the Boltzmann entropy

SB[f ] = −
∫
f ln fdθdv, (14)

up to some unimportant additive constant. Then, the sta-
tistical equilibrium state, corresponding to the most prob-
able distribution of particles, is obtained by maximizing
the Boltzmann entropy (14) at fixed mass M and energy
E, i.e.

Max {SB[f ] | E[f ] = E,M [f ] = M}. (15)

This maximization problem defines the microcanonical
equilibrium state, which is the correct description for an
isolated Hamiltonian system.

We shall also consider the canonical description which
applies to a system in contact with a thermostat imposing
its temperature T . We will give an example of canonical
system in Section 6 corresponding to Brownian particles
in interaction described by stochastic (not Hamiltonian)
equations (BMF model). In the canonical ensemble, the
statistical equilibrium state is obtained by minimizing the
free energy FB[f ] = E[f ] − TSB[f ] at fixed mass M and
temperature T , i.e.

Min {FB[f ] | M [f ] = M}. (16)

The relation between the Boltzmann entropy SB[f ] and
the density of states g(E) in the microcanonical ensem-
ble and between the Boltzmann free energy FB[f ] and the
partition function Z(β) in the canonical ensemble is dis-
cussed in Chavanis [17,18]. The variational problems (15)
and (16) correspond to a saddle point approximation in
the functional integral representation of g(E) and Z(β).

The variational problem (15) has been first investi-
gated, in the HMF context, by Inagaki [8]. We review and
precise the main results of his study and present an alter-
native derivation of the condition of thermodynamical sta-
bility using methods similar to those introduced by Pad-
manabhan [2] and Chavanis [20,19] for 3D self-gravitating
systems. This will make the analogy between the two sys-
tems (stellar systems and HMF model) closer. This will
also allow us to study the thermodynamical stability of
the clustered phase, while the analysis of Inagaki [8] is
restricted to the uniform phase.

2.3 The first variations: the Maxwell-Boltzmann
distribution

We need first to determine the critical points of entropy at
fixed mass and energy. We write the variational principle
in the form

δSB − βδE − αδM = 0, (17)

where β = 1/T (inverse temperature) and α (chemi-
cal potential) are Lagrange multipliers enforcing the con-
straints on E andM . The solution of (17) is the mean-field
Maxwell-Boltzmann distribution

f = A′e−β( v2
2 +Φ), (18)

where Φ depends on f through equation (8). The foregoing
relation is therefore an integro-differential equation. Inte-
grating over the velocity, we obtain the mean-field Boltz-
mann distribution

ρ = Ae−βΦ. (19)
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The same distributions (18) and (19) are obtained in the
canonical ensemble by cancelling the first variations of free
energy at fixed mass, using δFB − αδM = 0. Therefore,
the critical points of the variational problems (15) and
(16) coincide. In the microcanonical ensemble, we need to
relate the Lagrange multiplier β to the energy E. This
defines a series of equilibria β = β(E). In the canonical
ensemble, the inverse temperature β is assumed given and
the corresponding (average) energy is obtained by invert-
ing the graph β(E). Of course, only the stable part of the
series of equilibria is of physical interest, and defines the
caloric curve (see Sect. 2.5). We note that the equilibrium
distributions (18) and (19) can also be obtained from an
equilibrium BBGKY-like hierarchy in the thermodynamic
limit N → +∞ defined in Section 2.1 (Chavanis [17,18]).

Using the relation (9), the distribution of particles at
statistical equilibrium is given by

ρ = Ae−βB cos θ. (20)

The axis of symmetry is determined by the initial condi-
tions. If B = 0, the density ρ is uniform. This defines the
homogeneous phase. If B �= 0, we have inhomogeneous
states with one cluster at θ = 0 (if B < 0) or at θ = π (if
B > 0). The constant A is related to the mass by

M = 2πAI0(βB), (21)

where In are the modified Bessel functions

In(z) =
1
π

∫ π

0

ez cos θ cos(nθ)dθ. (22)

For z → 0,

In(z) = (
1
2
z)n

[
1

Γ (n+ 1)
+

z2

4Γ (n+ 2)
+ ...

]

, (23)

and for z → +∞,

In(z) =
ez

√
2πz

[

1 − 4n2 − 1
8z

+ ...

]

. (24)

Using equations (10) and (22) we find that the order
parameter B is determined as a function of the tempera-
ture β by the implicit equation

B =
kM

2π
I1(βB)
I0(βB)

. (25)

Setting x = βB, we can rewrite the foregoing relation in
the form

4πT
kM

x = 2
I1(x)
I0(x)

. (26)

Then x, and consequentlyB, is determined as a function of
T by a simple graphical construction sketched in Figure 1.
We see that B = 0 is always solution although B �= 0 is
possible only if

T <
kM

4π
≡ Tc. (27)

−20 −10 0 10 20
x

−3

−2

−1

0

1

2

3

2I
1(

x)
/I 0(

x)

T<Tc

T=TcT>Tc

Fig. 1. Graphical construction showing the appearance of a
clustered phase below some critical temperature Tc.
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B
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B>0

B<0

Clustered
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Homogeneous
phase

Fig. 2. Order parameter B (magnetization) as a function of
the inverse temperature.

In terms of the energy (11) this corresponds to

E <
kM2

8π
≡ Ec. (28)

The function B(T ) is shown in Figure 2 and its asymp-
totic behaviours are given in Section 2.4. Figure 2 displays
a second order phase transition. We have a situation simi-
lar to a gravitational collapse below a critical temperature
Tc or below a critical energy Ec. For T > Tc, the system
is homogeneous. For T < Tc, the system forms one cluster
around θ = 0 (for B < 0) or around θ = π (for B > 0). At
T = 0, the equilibrium state is a Dirac peak ρ = Mδ(θ−π)
(for B = Bmax). Density profiles are plotted in Figure 3
for different values of x = βB(β). Using the stellar disk
interpretation of Pichon Lynden-Bell, we have represented
some stellar orbits in Figures 4 and 5 by randomly choos-
ing the orbits’ angles with the equilibrium distribution
ρ(θ). The “disk phase” for T > Tc is represented in Fig-
ure 4 and the “bar phase” for T < Tc is represented in
Figure 5.
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0 2 4 6
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2π
ρ(

θ)
/M

T=Tc

T−>0

Fig. 3. Evolution of the density profile as temperature is de-
creased (from bottom to top).
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Fig. 4. Stellar orbits in the “disk phase” for T > Tc.

2.4 The thermodynamical parameters

According to equation (26), the relation between the tem-
perature and the order parameter can be written in di-
mensionless form as

η ≡ β/βc =
x

2
I0(x)
I1(x)

. (29)

For x→ 0,

η = 1 +
x2

8
+ ... (30)

and for x→ +∞,

η =
x

2

(

1 +
1
2x

+ ...

)

. (31)

Returning to original variables, we deduce that

B

Bmax
= ±

√

2
(

1 − T

Tc

)

, (0 <
Tc − T

Tc
	 1), (32)
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Fig. 5. Stellar orbits in the “bar phase” for T < Tc.

B

Bmax
= ±

(

1 − T

4Tc

)

, (T 	 Tc), (33)

where Bmax = 2Tc = kM/2π is the maximum value of the
magnetization obtained for T = 0 when all the particles
are at θ = π. With this notation, the parameter x can be
written

x = 2ηB/Bmax. (34)

On the other hand, for the Maxwellian velocity distri-
bution (18), the expression of the energy (11) becomes

E =
1
2
MT − πB2

k
. (35)

In terms of dimensionless parameters, we get

ε ≡ E/Ec =
1
η

(

1 − x2

2η

)

. (36)

For the homogeneous phase B = 0, we simply have

ε =
1
η
. (37)

For the inhomogeneous phase, we can easily obtain asymp-
totic expansions. For x→ 0,

ε = 1 − 5
8
x2 + ... (38)

and for x→ +∞,

ε = −2
(

1 − 2
x

+ ...

)

. (39)

Returning to original variables, we deduce that

E

E0
=

1
2
T

Tc
, (T > Tc), (40)

E

E0
=

1
2

(

6 − 5
T

Tc

)

, (0 <
Tc − T

Tc
	 1), (41)
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C
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Fig. 6. Specific heat C = dE/dT as a function of temperature.
It experiences a discontinuity at the critical temperature Tc.

E

E0
=

T

Tc
− 1, (T 	 Tc), (42)

where −E0 = −kM2/4π is the minimum value of energy
obtained for T = 0 (ε0 = −2). For T → T−

c , the specific
heat C = dE/dT is given by C = 5

2M and for T > Tc by
C = M

2 . Therefore, at the critical point, it experiences a
discontinuity (see Fig. 6):

C(T−
c ) − C(T+

c ) = 2M. (43)

The caloric curve/series of equilibria β(E) is shown in
Figure 7. It displays a second order phase transition at
(ε, η) = (1, 1). This is different from 3D gravitational sys-
tems which rather display first order and zeroth order
phase transitions (see, e.g., Chavanis [21]).

2.5 The second variations: thermodynamical stability

To analyze the thermodynamical stability of the solutions
determined by the variational problems (15) and (16), we
use an approach similar to that followed by Padmanabhan
[2] and Chavanis [20,19] in the case of 3D self-gravitating
systems. We first maximize SB[f ] at fixed M [f ], E[f ] and
ρ(θ). This gives the Maxwellian

f(θ, v) =
1√
2πT

ρ(θ)e−
v2
2T . (44)

Then, we can re-express the entropy and the energy as a
function of the density in such a way that

SB =
1
2
M lnT −

∫
ρ lnρ dθ, (45)

E =
1
2
MT +

1
2

∫
ρΦdθ. (46)
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Fig. 7. Calorique curve (series of equilibria) for the HMF
model. The system displays a second order phase transition
at a critical point Ec, Tc.

We now take the variations of entropy around an equilib-
rium solution. To second order

δSB =
M

2
δT

T
− M

4

(
δT

T

)2

−
∫
δρ lnρdθ − 1

2

∫
(δρ)2

ρ
dθ.

(47)

Now, the conservation of energy implies

0 = δE =
1
2
MδT +

∫
Φδρdθ +

1
2

∫
δρδΦdθ. (48)

Eliminating δT , we find that

δ2SB = − 1
2T

∫
δρδΦdθ

− 1
MT 2

(∫
Φδρdθ

)2

− 1
2

∫
(δρ)2

ρ
dθ. (49)

We define the quantity q by the relation

δρ =
dq

dθ
. (50)

Physically, q =
∫ θ

0
δρdθ represents the mass perturbation

within the interval [0, θ]. Then, the conservation of mass
is equivalent to q(0) = q(2π) = 0. Inserting this relation
in equation (49) and using integrations by parts, we can
put the second order variations of entropy in the quadratic
form

δ2SB =
∫ 2π

0

∫ 2π

0

dθdθ′q(θ)K(θ, θ′)q(θ′), (51)

with

K(θ, θ′) = − 1
MT 2

dΦ

dθ
(θ)

dΦ

dθ
(θ′)

+
k

4πT
sin(θ − θ′)

d

dθ′
+

1
2
δ(θ − θ′)

d

dθ′

[
1

ρ(θ′)
d

dθ′

]

. (52)
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We are thus led to consider the eigenvalue problem
∫ 2π

0

K(θ, θ′)qλ(θ′)dθ′ = λqλ(θ). (53)

This yields

d

dθ

(
1
ρ

dq

dθ

)

+
k

2πT

∫ 2π

0

q(θ′) cos(θ − θ′)dθ′

=
2V
MT 2

dΦ

dθ
+ 2λq, (54)

where

V =
∫ 2π

0

dΦ

dθ
q(θ)dθ. (55)

The system is stable if all λ < 0 and unstable if at least
one λ > 0. So far, we have worked in the microcanonical
ensemble. If we work in the canonical ensemble, we have
to minimize the free energy FB = E − TSB at fixed mass
and temperature. We can easily check that fixing T in the
preceding calculations amounts to taking V = 0. Thus,
instead of equation (54), we obtain

d

dθ

(
1
ρ

dq

dθ

)

+
k

2πT

∫ 2π

0

q(θ′) cos(θ − θ′)dθ′ = 2λq. (56)

2.6 The condition of thermodynamical stability

If we consider the stability of the uniform solution ρ =
M/2π and Φ = 0, the foregoing equations simplify into

2π
M

d2q

dθ2
+

k

2πT

∫ 2π

0

q(θ′) cos(θ − θ′)dθ′ = 2λq. (57)

The eigenvalue equation is the same in the two ensembles.
Hence, the stability criteria coincide, implying that the
statistical ensembles (microcanonical and canonical) are
equivalent. This is at variance with the case of 3D stellar
systems [2,20,19].

We can study the solutions of equation (57) by de-
composing q in Fourier series. For the mode n, we have
qn = An sin(nθ). For n �= 1, we get λn = −πn2

M < 0
showing that these modes do not induce instability. For
n = 1, we have λ1 = k

4T − π
M . The uniform solution will

be unstable if λ1 > 0 yielding condition (27). Therefore,
the uniform phase is stable for T > Tc while it is unstable
for T < Tc. By using the theory of linear series of equi-
libria (Katz [22–24]), applied here to a bifurcation point,
we directly conclude from the inspection of Figure 7 that
the clustered phase will be stable for T < Tc when the
homogeneous phase becomes unstable.

More precisely, it is possible to solve equations (54)
and (56) analytically for the clustered phase in the limit
B → 0, which is valid close to the critical point (Ec, Tc).
The calculations are detailed in Appendix A. In the canon-
ical ensemble (V = 0), it is found that the largest eigen-
value is

λM = −2π
(
β

βc
− 1

)

, (58)

0 0.5 1 1.5 2 2.5 3
β/βc

−15

−10

−5

0

5

10

λM

(CE)

STABLE

B>0

B>0

B=0

UNSTABLE

STABLE

(MCE)

Fig. 8. Dependence of the largest eigenvalue λ with the
temperature. A negative value of λ corresponds to stability
(δ2S < 0) and a positive value of λ corresponds to instability.

and in the microcanonical ensemble (V �= 0) that

λM = −10π
(
β

βc
− 1

)

. (59)

More generally, the exact value of λ obtained by solving
equations (54) and (56) numerically is plotted versus the
inverse temperature in Figure 8. Since λ < 0, we check
explicitly that the clustered phase is stable.

2.7 Correction to the mean-field approximation close
to the critical point

We can obtain the expression of the two-points correla-
tion function from an equilibrium BBGKY-like hierarchy
by closing the second equation of the hierarchy with the
Kirkwood approximation [17,18]. This is valid to order
1/N in the thermodynamic limit defined previously. For
the HMF model, it is then possible to obtain an explicit
expression of the correlation function in the homogeneous
phase. Writing the two-body distribution function as

N2P2(θ1 − θ2) = ρ2[1 + h(θ1 − θ2)], (60)

it is found that [17]:

h(θ1 − θ2) =
2
N

β/βc

1 − β/βc
cos(θ1 − θ2). (61)

We note that the correlation function diverges close to the
critical point β → βc where the clustered phase appears
and the homogeneous phase becomes unstable. This im-
plies that the mean-field approximation ceases to be valid
close to the critical point. We expect a similar result for
3D self-gravitating systems although the situation is more
difficult to analyze as (real) self-gravitating systems are
always inhomogeneous.
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If we take into account the contribution of non-trivial
pair correlations (61) in the potential energy, we find fur-
thermore that equation (37) is replaced by

ε =
1
η
− 1
N

2η
1 − η

. (62)

Therefore, finite N effects modify the shape of the caloric
curve in the vicinity of the critical point. The mean-field
approximation is valid if N(1 − η) � 1. When the mean
field approximation is valid, its order one correction for
the specific heat is

C =
N

2

[

1 +
1
πN

1
(T/Tc − 1)2

]

(T > Tc). (63)

Finally, it is found that the spatial correlations of the
force are given by [17,18]:

〈F (0)F (θ)〉 =
ρk2

4π
1

1 − β/βc
cos θ. (64)

In particular, the variance of the force is

〈F 2〉 =
ρk2

4π
1

1 − β/βc
. (65)

Note that without the correlations, we would have sim-
ply obtained 〈F 2〉 = ρk2

4π which corresponds to the high
temperature limit (T → +∞) of equation (65).

For the HMF model, the variance (65) of the force
is finite while the variance of the Newtonian force for
3D self-gravitating systems is infinite (Chandrasekhar and
von Neumann [25]). For the HMF model, the distribution
of the force is normal (Gaussian) while the distribution of
the gravitational force in D = 3 is a particular Lévy law
called the Holtzmark distribution. On the other hand, for
2D point vortices, the variance of the velocity is a marginal
Gaussian distribution intermediate between normal and
Lévy laws (Chavanis and Sire [26]). Therefore, these three
systems with long-range interactions (self-gravitating sys-
tems, 2D vortices and HMF model) have their own speci-
ficities despite their overall analogies.

3 Gaseous systems

As indicated in the Introduction, the HMF model is sim-
ilar to stellar systems in astrophysics. In Sections 4 and
5, we shall discuss the kinetic theory of the HMF model
and obtain the equivalent of the Vlasov and Landau equa-
tions that are used to describe the dynamics of elliptical
galaxies and globular clusters respectively. However, in or-
der to facilitate the discussion and the comparison, it is
useful to discuss first the dynamics of a one-dimensional
barotropic fluid system with cosine interactions described
by the Euler equations. In astrophysics, these equations
describe the dynamics of barotropic stars. Stellar systems
and barotropic stars are often treated in parallel due to

their analogies [15]. In particular, it is possible to infer suf-
ficient conditions of dynamical stability for spherical stel-
lar systems from the dynamical stability of a barotropic
star with the same density distribution. This constitutes
the Antonov first law. Therefore, it is also of interest to de-
velop this parallel in the case of the HMF model. To have
a similar vocabulary, the systems considered in this paper
will also be called “stellar systems” and “gaseous stars”
although they are only one-dimensional and correspond to
a cosine interaction.

3.1 Euler equations and energy functional

We consider a gaseous system described by the Euler equa-
tions

∂ρ

∂t
+

∂

∂θ
(ρu) = 0, (66)

∂u

∂t
+ u

∂u

∂θ
= −1

ρ

∂p

∂θ
− ∂Φ

∂θ
, (67)

where the potential Φ is given by (8). To close the equa-
tions, we consider an arbitrary barotropic equation of
state p = p(ρ). We emphasize that these equations cannot
be derived from the HMF model (1) which rather leads
to kinetic equations like the Vlasov equation. However,
we shall see that there is a close connection between the
stationary states of the Vlasov and the Euler equations
and that the limits of dynamical stability are the same in
the two systems. Thus, the study of the Euler equation
(which is simpler than the Vlasov equation) brings many
information about the stability of stationary states of the
HMF model with respect to the Vlasov equation even if
the Euler system does not describe dynamically the HMF
model.

It is straightforward to verify that the energy func-
tional

W =
∫
ρ

∫ ρ

0

p(ρ′)
ρ′2

dρ′dθ +
1
2

∫
ρΦdθ +

∫
ρ
u2

2
dθ, (68)

is conserved by the Euler equations (Ẇ = 0). The first
term is the internal energy, the second the potential energy
and the third the kinetic energy associated with the mean
motion. The mass is also conserved. Therefore, a minimum
of W at fixed mass determines a stationary solution of the
Euler equations which is formally nonlinearly dynamically
stable in the sense of Holm et al. [27]. We are led therefore
to consider the minimization problem

Min {W [ρ, u] | M [ρ] = M}. (69)

3.2 First variations: the condition of hydrostatic
equilibrium

Cancelling the first order variations of equation (68), we
obtain u = 0 and the condition of hydrostatic equilibrium

dp

dθ
= −ρdΦ

dθ
. (70)
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Therefore, extrema of W correspond to stationary solu-
tions of the Euler equations (66–67). On the other hand,
combining the condition of hydrostatic equilibrium (70)
and the equation of state p = p(ρ), we get

∫ ρ p′(ρ′)
ρ′

dρ′ = −Φ, (71)

so that ρ is a function of Φ that we note ρ = ρ(Φ). Using
equation (9), we find that

ρ = ρ(B cos θ), (72)

where B is determined by the implicit equation

B = − k

2π

∫ 2π

0

ρ(B cos θ′) cos θ′ dθ′. (73)

Again, B = 0 is a solution of this equation characteriz-
ing a homogeneous phase ρ = M/2π. To determine the
point of bifurcation to the inhomogeneous phase, we ex-
pand equation (73) around B = 0. Then, we find that
cluster solutions appear when

1 +
k

2
dρ

dΦ
(0) ≤ 0. (74)

Using the condition of hydrostatic balance (70), this can
be rewritten

c2s ≤ (c2s)crit =
kM

4π
, (75)

where cs = (dp/dρ)1/2 is the velocity of sound in the ho-
mogeneous phase where ρ = M/2π.

3.3 Second variations: the condition of nonlinear
dynamical stability

The second variation of W due to variation of the velocity
is trivially positive. The second variation of W due to
variation of ρ is

δ2W =
1
2

∫
δρδΦdθ +

∫
p′(ρ)
2ρ

(δρ)2dθ, (76)

which must be positive for stability. Using the same proce-
dure as in Section 2.5, we find that the eigenvalue equation
determining the stability of the solution is now

d

dθ

(
p′(ρ)
ρ

dq

dθ

)

+
k

2π

∫ 2π

0

q(θ′) cos(θ − θ′)dθ′ = 2λq,

(77)

and that the condition of stability is λ < 0 (this yields a
maximum of −W). For the uniform solution ρ = M/2π,
we can repeat exactly the same steps as in Section 2.6
since p′(ρ) is a constant c2s which plays the role of T in
the thermodynamical analysis. Therefore, we find that the

uniform phase is formally nonlinearly dynamically stable
with respect to the Euler equations when

c2s ≥ kM

4π
, (78)

and dynamically unstable otherwise. According to equa-
tion (75), the onset of dynamical instability coincides with
the point where the clustered phase appears.

The stability of the clustered phase can be investigated
by solving the eigenvalue equation (77) for a specified
equation of state p(ρ). This equation is the counterpart
of equation (222) of Chavanis [19] for 3D self-gravitating
gaseous spheres.

3.4 The condition of linear stability: Jeans-like
criterion

We now study the linear dynamical stability of a sta-
tionary solution of the Euler equation. We consider a
small perturbation around a stationary solution of equa-
tions (66–67) and write ρ = ρ + δρ, u = δu etc... The
linearized equations for the perturbation are

∂δρ

∂t
+

∂

∂θ
(ρδu) = 0, (79)

ρ
∂δu

∂t
= − ∂

∂θ
(p′(ρ)δρ) − ρ

∂δΦ

∂θ
− δρ

∂Φ

∂θ
, (80)

δΦ(θ) = − k

2π

∫ 2π

0

cos(θ − θ′)δρ(θ′)dθ′. (81)

Writing the time dependence in the form δρ ∼ eλt,..., we
get

λδρ+
d

dθ
(ρδu) = 0, (82)

λρδu = − d

dθ
(p′(ρ)δρ) − ρ

dδΦ

dθ
− δρ

dΦ

dθ
. (83)

Introducing the notation (50), the continuity equation can
be integrated into

λq + ρδu = 0, (84)

where we have imposed δu(0) = δu(2π) = 0. Substituting
this relation in equation (83) and using the condition of
hydrostatic equilibrium (70), we finally obtain

d

dθ

(
p′(ρ)
ρ

dq

dθ

)

+
k

2π

∫ 2π

0

q(θ′) cos(θ − θ′)dθ′ =
λ2

ρ
q.

(85)

This equation is the counterpart of the Eddington equa-
tion of pulsations for a barotropic star (see also Eq. (224)
of Chavanis [19]). We note that equations (77) and (85)
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coincide for the neutral point λ = 0. Therefore, the con-
ditions of linear stability and formal nonlinear dynami-
cal stability coincide. The same conclusion holds for 3D
barotropic stars [19].

Considering the uniform phase ρ = M/2π and follow-
ing a method similar to that developed in Section 2.6, we
find that the most destabilizing mode (n = 1) is

δρ = a1 cos θ eλt, δu = −2πλ
M

a1 sin θ eλt, (86)

where the growth rate is given by

λ2 =
kM

4π
− c2s. (87)

When c2s ≤ kM/4π, then λ = ±√
λ2 and the perturbation

grows exponentially rapidly (unstable case). When c2s ≥
kM/4π, then λ = ±i√−λ2 and the perturbation oscillates
with a pulsation ω =

√−λ2 without attenuation (stable
case). Therefore, the uniform phase is linearly (and also
formally nonlinearly) dynamically stable with respect to
the Euler equations when

c2s ≥ kM

4π
, (88)

and linearly dynamically unstable otherwise.

3.5 Particular examples

3.5.1 Isothermal gas

For an isothermal gas, we have

p = ρT, c2s = T, (89)

and

W = T

∫
ρ lnρdθ +

1
2

∫
ρΦdθ +

∫
ρ
u2

2
dθ, (90)

where the temperature T is uniform. We note that the
energy functional (90) of an isothermal gas coincides with
the Boltzmann free energy FB [ρ] = E[ρ]−TSB[ρ] of a N -
body system in the canonical ensemble, see equations (45)
and (46) of Section 2.5. This remark also holds for 3D
self-gravitating systems [20]. The pulsation equation (85)
becomes

d

dθ

(
1
ρ

dq

dθ

)

+
k

2πT

∫ 2π

0

q(θ′) cos(θ − θ′)dθ′ =
λ2

Tρ
q,

(91)

which can be connected to equation (56). According to the
criteria (78–88), the uniform phase is formally nonlinearly
dynamically stable for

T ≥ Tc ≡ kM

4π
, (92)
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Fig. 9. Growth rate and pulsation period of an isothermal gas
as a function of the temperature.

and linearly dynamically unstable otherwise. This crite-
rion (or more generally the criterion (88)) can be regarded
as the counterpart of the Jeans instability criterion in as-
trophysics [15]. We emphasize, however, an important dif-
ference. In the case of 3D self-gravitating systems, the
Jeans criterion selects a critical wavelength λJ (increasing
with the temperature) above which the system is unsta-
ble against gravitational collapse. In the present context,
where the interaction is truncated to one Fourier mode
n = 1, the criterion (92) selects a critical temperature be-
low which the system is unstable. The generalization of
the Jeans instability criterion for an arbitrary binary po-
tential of interaction in D dimensions is discussed in Ap-
pendix C and in Chavanis [17]. This generalization clearly
shows the connection between the HMF model and 3D
self-gravitating systems.

According to equation (87), the relation between λ and
the temperature T is

λ2 = Tc − T, Tc =
kM

4π
. (93)

For T < Tc, the growth rate is λ = (Tc − T )1/2 and for
T > Tc, the pulsation is ω = (T − Tc)1/2. Following the
preceding remark, we stress that, in the present context,
λ and ω only depend on the temperature T , while for a
3D gravitational gas, they depend on the wavelength of
the perturbation [15]. Here, the unstable mode is fixed to
n = 1.

Considering now the clustered phase and using a per-
turbative approach similar to that of Appendix A for
T → T−

c (not detailed), we find that the pulsation is given
by ω =

√
2(Tc − T ). For smaller temperatures, the eigen-

value equation can be solved numerically and the results
are shown in Figure 9.
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3.5.2 Polytropic gas

For a polytropic gas, we have

p = Kργ , γ = 1 +
1
n
, (94)

where K is the polytropic constant and n is the polytropic
index. For n → +∞, we recover the isothermal case with
γ = 1 and K = T . For that reason K is sometimes called
a polytropic temperature. The energy functional (68) can
be written

W =
K

γ − 1

∫
(ργ − ρ)dθ +

1
2

∫
ρΦdθ +

∫
ρ
u2

2
dθ. (95)

We have added a constant term (proportional to the total
mass) in the polytropic energy functional (95) so as to
recover the isothermal energy functional (90) for n→ +∞.
Under this form, we note that the energy functional of a
polytropic gas has the same form as the Tsallis free energy
Fγ [ρ] = E[ρ] − KSγ [ρ] where γ plays the role of the q-
parameter and K the role of a generalized temperature.
The same remark holds for 3D self-gravitating systems.
However, this resemblance is essentially fortuitous and the
mark of a thermodynamical analogy [19,28].

If we define the local temperature by p(θ) = ρ(θ)T (θ),
we obtain T (θ) = Kρ(θ)1/n and c2s(θ) = γT (θ). We note
that, for a polytropic distribution, the kinetic temperature
T (θ) usually depends on the position while the polytropic
temperature K is uniform as in an isothermal gas. How-
ever, in the uniform phase T = Kρ1/n is a constant that
can be called the temperature of the polytropic gas. The
velocity of sound in the homogeneous phase is

c2s = γT = Kγργ−1 = K
1 + n

n

(
M

2π

)1/n

. (96)

The condition of dynamical stability (78–88) can be writ-
ten

K ≥ Kn ≡ kM

4π
n

1 + n

(
2π
M

)1/n

, (97)

or, equivalently,

T ≥ Tn ≡ Tc

γ
=
kM

4πγ
. (98)

For γ > 1 (i.e., n > 0), the critical temperature Tn is
smaller than the corresponding one for an isothermal gas
Tc = T∞, i.e. the instability is delayed. For γ < 1 (i.e.,
n < 0), the instability is advanced. Similar results are
obtained for 3D gravitational systems [28]. According to
equation (87), the relation between λ and the kinetic tem-
perature T is

λ2 = γ(Tn − T ). (99)
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Fig. 10. Characteristics of the forced Burgers equation (102)
showing the appearance of shocks and chevrons.

3.6 The local Euler equation

We can consider a simplified problem where the poten-
tial in equation (67) is fixed to its equilibrium value
Φ = B cos θ. In that case, we get the local Euler equa-
tion

∂u

∂t
+ u

∂u

∂θ
= −1

ρ

∂p

∂θ
+B sin θ. (100)

The stationary solutions are given by (72). The linear
stability of a stationary solution amounts to solving the
Sturm-Liouville problem

d

dθ

(
p′(ρ)
ρ

dq

dθ

)

=
λ2

ρ
q. (101)

This problem will be considered in Section 6.3 for the
isothermal equation of state.

In the pressureless case, we get the forced Burgers
equation

∂u

∂t
+ u

∂u

∂θ
= B sin θ. (102)

It can be solved by the method of characteristics, writing
the equation of motion of a particle as

d2θ

dt2
= B sin θ. (103)

The trajectories θ(t) can then be expressed in terms of el-
liptic functions. The dynamics of the forced Burgers equa-
tion is interesting as it develops “shocks” and “chevrons”
(caustics) singularities (see Fig. 10). The Burgers equa-
tion also appears in cosmology to describe the formation
of large-scale structures in the universe (Vergassola et al.
[29]). A detailed description of this dynamics is given by
Barré et al. [30] in the context of the repulsive HMF
model. In that case, the forced Burgers equation (102)
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with sin(2θ) instead of sin θ models the short time dy-
namics of the Hamiltonian N -body system. For the at-
tractive HMF model (1), the short time dynamics can be
modelled by the non-local Euler equation (67) with zero
pressure p = 0. This is solution of the Vlasov equation (see
Sect. 4) with f(θ, v, t) = ρ(θ, t)δ(v − u(θ, t)). This single-
speed solution is valid until the first shock. However, the
connection with the local Euler equation (102) is not clear
in that case because the homogeneous phase is unstable
which precludes the possibility of deriving (102) from (67)
as is done in Barré et al. [30] in the repulsive case. Note
also that in the attractive HMF model (ferromagnetic)
we just have one cluser while the repulsive HMF model
(anti-ferromagnetic) shows a bicluster.

4 Violent relaxation, metaequilibrium states
and dynamical stability of collisionless stellar
systems

We now come back to the HMF model defined by the
Hamilton equations (1) and develop a kinetic theory by
analogy with stellar systems. In particular, we emphasize
the importance of the Vlasov equation and the concept of
violent relaxation introduced by Lynden-Bell [11].

4.1 Vlasov equation and H-functions

For systems with long-range interactions, the relaxation
time toward the statistical equilibrium state (18) is larger
than NtD, where tD is the dynamical time [17]. Accord-
ingly, for N → +∞, the relaxation time is extremely long
and, for timescales of physical interest, the evolution of
the system is essentially collisionless. More precisely, for
t 	 trelax and N → +∞ (Vlasov limit), the time de-
pendence of the distribution function is governed by the
Vlasov equation

∂f

∂t
+ v

∂f

∂θ
− ∂Φ

∂θ

∂f

∂v
= 0, (104)

which has to be solved in conjunction with equation (8).
This system of equations is similar to the Vlasov-Poisson
system describing the dynamics of elliptical galaxies and
other collisionless stellar systems in astrophysics. Starting
from an unstable initial condition, the HMF model (1) will
achieve a metaequilibrium state (on a coarse-grained scale)
as a result of phase mixing and violent relaxation [15]. This
metaequilibrium state is a particular stationary solution of
the Vlasov equation. Since it results from a complex mix-
ing, it is highly robust and nonlinearly dynamically stable
with respect to collisionless perturbations. The process of
violent relaxation and the convergence of the distribution
function toward a stationary solution of the Vlasov equa-
tion has been illustrated numerically by Yamaguchi et al.
[16] for the HMF model. This is similar to the violent re-
laxation of stellar systems in astrophysics and 2D vortices
in hydrodynamics [3].

One question of great importance is whether we can
predict the metaequilibrium state achieved by the system
as a result of violent relaxation. Lynden-Bell [11] has tried
to make such a prediction by resorting to a new type of
statistical mechanics accounting for the conservation of all
the Casimirs imposed by the Vlasov equation. This the-
ory was developed for the gravitational interaction, but
the general ideas and formalism apply to any system with
long-range interactions described by the Vlasov equation.
In the non-degenerate limit, he predicts a Boltzmann dis-
tribution of the form f ∼ e−βε where the individual mass
of the particles does not appear. Lynden-Bell [11] also
understood that his statistical prediction is limited by
the concept of incomplete relaxation. The system tries to
reach the most mixed state but, as the fluctuations be-
come weaker and weaker as we approach equilibrium, it
can settle on a stable stationary solution of the Vlasov
equation which is not the most mixed state. In order to
quantify the importance of mixing, Tremaine et al. [14]
have introduced the concept of H-functions

S = −
∫
C(f)dθdv, (105)

where C is an arbitrary convex function. The H-functions
calculated with the coarse-grained distribution function
f increase as a result of phase mixing in the sense that
S[f(θ, v, t)] ≥ S[f(θ, v, 0)] for t > 0 where it is as-
sumed that, initially, the system is not mixed so that
f(θ, v, 0) = f(θ, v, 0). This is similar to the H-theorem in
kinetic theory. However, contrary to the Boltzmann equa-
tion, the Vlasov equation does not single out a unique
functional (the above inequality is true for all H-functions)
and the time evolution of the H-functions is not neces-
sarily monotonic (nothing is implied concerning the rela-
tive values of H(t) and H(t′) for t, t′ > 0). On the other
hand, any stationary solution of the Vlasov equation of
the form f = f(ε) with f ′(ε) < 0 extremizes a H-function
at fixed mass and energy. If, in addition, it maximizes S
at fixed E, M , then it is nonlinearly dynamically stable
with respect to the Vlasov equation. In astrophysics, such
distribution functions depending only on the energy de-
scribe spherical stellar systems. This is a particular case
of the Jeans theorem [15]. For a 1D system such as the
HMF model, this is the general form of inhomogeneous
stationary solutions of the Vlasov equation. Therefore, we
expect that the H-functions will increase during violent
relaxation until one of them (non-universal) reaches its
maximum value at fixed mass and energy when a station-
ary solution of the Vlasov equation is reached (this is not
necessarily the case in astrophysics since the system can
reach a steady state that does not depend only on energy).
Note that the Boltzmann and the Tsallis functionals are
particular H-functions (not thermodynamical entropies in
that context) associated with particular stationary solu-
tions of the Vlasov equation: isothermal stellar systems
and stellar polytropes [28]. All these ideas, first developed
for stellar systems, apply to other systems with long-range
interactions such as the HMF model.
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4.2 Nonlinear dynamical stability criterion
for the Vlasov equation

The theory of violent relaxation explains how a collision-
less system out of mechanical equilibrium can reach a
steady solution of the Vlasov equation on a very short
timescale due to long-range interactions and chaotic mix-
ing. Since this metaequilibrium state is stable with respect
to collisionless perturbations, it is of interest to determine
a criterion of formal nonlinear dynamical stability for the
Vlasov equation. For the HMF model, this has been con-
sidered by Yamaguchi et al. [16] using the Casimir-Energy
method. We shall propose another derivation of the sta-
bility criterion which uses a formal analogy with the ther-
modynamical analysis developed in Section 2 and which
is also applicable to the clustered phase. This approach
is similar to the one developed by Chavanis [19] for 3D
stellar systems.

Let us introduce the functional S = − ∫
C(f)dθdv

where C(f) is a convex function. This functional is a par-
ticular Casimir so it is conserved by the Vlasov equation.
The energy E and the mass M are also conserved. There-
fore, a maximum of S at fixed massM and energyE deter-
mines a stationary solution f(θ, v) of the Vlasov equation
that is nonlinearly dynamically stable. We are led there-
fore to consider the maximization problem

Max {S[f ] | E[f ] = E,M [f ] = M}. (106)

We also note that F [f ] = E[f ] − TS[f ] (where T is a
positive constant) is conserved by the Vlasov equation.
Therefore, a minimum of F at fixed mass M is nonlinearly
dynamically stable with respect to the Vlasov equation (F
is called an energy-Casimir functional). This corresponds
to the formal stability criterion of Holm et al. [27]. This
criterion can be written

Min {F [f ] | M [f ] = M}. (107)

To study the nonlinear dynamical stability of collision-
less stellar systems, we are thus led to consider the opti-
mization problems (106) and (107). These are similar to
the conditions of thermodynamical stability (15) and (16)
but they involve a more general functional S[f ] than the
Boltzmann entropy. In addition, they have a completely
different interpretation since they determine the nonlin-
ear dynamical stability of a steady solution of the Vlasov
equation, not the thermodynamical stability of the statis-
tical equilibrium state. Due to this formal resemblance,
we can develop a thermodynamical analogy [31] and use
an effective thermodynamical vocabulary to investigate
the nonlinear dynamical stability of a collisionless stel-
lar system. In this analogy, S plays the role of an effective
entropy, T plays the role of an effective temperature and
F plays the role of an effective free energy. The criterion
(106) is similar to a condition of microcanonical stability
and the criterion (107) is similar to a condition of canon-
ical stability.

We also note that the stability criterion (106) is con-
sistent with the phenomenology of violent relaxation. In-
deed, the H-functions increase on the coarse-grained scale

while the mass and the energy are approximately con-
served. Therefore, the metaequilibrium state is expected
to maximize a certain H-function (non-universal) at fixed
mass and energy. In that interpretation, f has to be viewed
as the coarse-grained distribution function f , not the dis-
tribution function itself. The point is that during mixing
Df/Dt �= 0 and the H-functions S[f ] increase. Once it
has mixed Df/Dt = 0 so that Ṡ[f ] = 0. Since f(θ, v, t)
has been brought to a maximum f0(θ, v) of a certain H-
function and since S[f ] is conserved (after mixing), then
f0 is a nonlinearly dynamically stable steady state of the
Vlasov equation.

4.3 First variations: stationary solutions of the Vlasov
equation

Introducing Lagrange multipliers as in Section 2.3, the
critical points of the variational problems (106) and (107)
are given by

C′(f) = −βε− α, (108)

where ε = v2

2 + Φ is the energy of a particle. Since C′ is
a monotonically increasing function of f , we can inverse
this relation to obtain

f = F (βε+ α), (109)

where F (x) = (C′)−1(−x). We can check that any DF
f = f(ε) is a stationary solution of the Vlasov equation
(104). From the identity

f ′(ε) = −β/C′′(f), (110)

resulting from equation (108), we see that f(ε) is a mono-
tonic function of the energy. Assuming that f(ε) is de-
creasing, which is the physical situation, imposes β =
1/T > 0.

We note also that for each stellar system with f = f(ε),
there exists a corresponding barotropic star with the
same equilibrium density distribution. Indeed, defining
the density and the pressure by ρ =

∫ +∞
−∞ fdv = ρ(Φ),

p =
∫ +∞
−∞ fv2dv = p(Φ), and eliminating the potential

Φ between these two expressions, we find that p = p(ρ).
Writing explicitly the density and the pressure in the form

ρ = 2
∫ +∞

Φ

F (βε+ α)
1

[2(ε− Φ)]1/2
dε, (111)

p = 2
∫ +∞

Φ

F (βε+ α)[2(ε− Φ)]1/2dε, (112)

and taking the θ-derivative of equation (112), we obtain
the condition of hydrostatic equilibrium (70).

Due to the analogy between stellar systems and
barotropic stars, it becomes possible to use the results
obtained in Section 3 to study the stationary solutions
of the Vlasov equation (104). In particular, the transition
from homogeneous (B = 0) to inhomogeneous (B �= 0)
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solutions is again given by the criterion (75). Now, in the
case of stellar systems, it is more relevant to express this
criterion in terms of the distribution function. Using the
identity (299), the criterion (75) determining the appear-
ance of the clustered phase is equivalent to

1 +
k

2

∫ +∞

−∞

f ′(v)
v

dv ≤ 0. (113)

We will soon see how this quantity is related to the dielec-
tric function of a gravitational plasma.

4.4 Second variations: the condition of nonlinear
dynamical stability

We shall investigate the formal nonlinear dynamical sta-
bility of stationary solutions of the Vlasov equation by us-
ing the criterion (107). This criterion is less refined than
the criterion (106) because all solutions of (107) are so-
lution of (106), but the reciprocal is wrong in general. In
particular, for long-range interactions, the optimization
problems (106) and (107) may not coincide. In thermo-
dynamics, this corresponds to a situation of ensemble in-
equivalence [32]. Therefore, the criterion (107) can only
give a sufficient condition of nonlinear dynamical stabil-
ity for stationary solutions of the Vlasov equation of the
form f = f(ε) with f ′(ε) < 0. This corresponds to the
criterion of formal nonlinear dynamical stability given by
Holm et al. [27]. The more refined criterion (106) has been
introduced by Ellis et al. [33] in 2D hydrodynamics (for
the 2D Euler-Poisson system) and applied by Chavanis
[19] in stellar dynamics (for the Vlasov-Poisson system).

To obtain a manageable criterion of dynamical sta-
bility, we use the same procedure as the one developed
in Chavanis [19]. We shall not repeat the steps that are
identical. We first minimize the functional F [f ] at fixed
temperature and density ρ(θ). This gives an optimal dis-
tribution f∗(θ, v), determined by C′(f∗) = −β v2

2 − λ(θ),
which depends on the density ρ(θ) through the Lagrange
multiplier λ(θ). Then, after some manipulations [19], we
can show that the functional F [ρ] = F [f∗] can be put in
the form

F =
1
2

∫
ρΦdθ +

∫
ρ

∫ ρ

0

p(ρ′)
ρ′2

dρ′dθ, (114)

where p(ρ) is the equation of state determined by C(f)
according to equations (111) and (112). We now need to
minimize F [ρ] at fixed mass. To that purpose, we just have
to observe that F [ρ] corresponds to the energy functional
(68) of a barotropic gas with u = 0. Therefore, the cancel-
lation of the first variations of equation (114) returns the
condition of hydrostatic equilibrium (70) and the positiv-
ity of the second variations leads to the stability criterion
λ < 0 linked to the eigenvalue equation (77). Therefore,
the criterion of formal nonlinear dynamical stability (107)
for the Vlasov equation (stellar systems) is equivalent to
the criterion of formal nonlinear dynamical stability (69)
for the Euler equations (gaseous barotropic stars).

Using the results of Section 3, we conclude that the
uniform phase is formally nonlinearly dynamically stable
with respect to the Vlasov equation when

c2s ≥ kM

4π
. (115)

When the inequality is reversed, the uniform phase is a
saddle point of F at fixed mass M and we shall see that it
is linearly dynamically unstable. Using the identity (299),
the nonlinear criterion (115) can be rewritten as

1 +
k

2

∫ +∞

−∞

f ′(v)
v

dv ≥ 0, (116)

which was found by Yamaguchi et al. [16] using a differ-
ent method. An advantage of the present approach is that
this approach is also applicable to an inhomogeneous sys-
tem. Indeed, the stability of the clustered phase can be
investigated by solving the eigenvalue equation (77) for
the equation of state specified by the function C(f), and
investigating the sign of λ.

4.5 About the Antonov first law

As discussed previously, the criterion (107) providing a
condition of nonlinear dynamical stability for a stellar sys-
tem with f = f(ε) and f ′(ε) < 0 is equivalent to the crite-
rion (69) determining the nonlinear dynamical stability of
a barotropic star with the same equilibrium density distri-
bution. On the other hand, we have already indicated that
the criterion (107) is less refined than the criterion (106)
which is believed to be the strongest criterion of nonlinear
dynamical stability for stationary solutions of the Vlasov
equation of the form f = f(ε) with f ′(ε) < 0. In general,
the criterion (107) just provides a sufficient condition of
nonlinear dynamical stability. Thus, we can “miss” stable
solutions if we use just (107) instead of (106) [said differ-
ently, the set of solutions of (107) is included in (106)].
From these remarks, we conclude that “a stellar system is
stable whenever the corresponding barotropic gas is sta-
ble” but the converse is wrong in general. This is the so-
called Antonov first law in astrophysics [15]. Our approach
provides an extension of the Antonov first law to the case
of nonlinear dynamical stability (while the usual Antonov
first law corresponds to linear dynamical stability). Fur-
thermore, by developing a thermodynamical analogy, we
have provided an original interpretation of the nonlinear
Antonov first law in terms of “ensembles inequivalence”
for systems with long-range interactions [19].

For 3D self-gravitating systems, we know that the en-
sembles are not equivalent so that the criterion (107) is
more restrictive than the criterion (106). In that case,
(107) is just a sufficient condition of nonlinear dynamical
stability (definitely). For example, using the criterion (69),
it can be shown that polytropic stars with index n < 3 are
nonlinearly dynamically stable with respect to the Euler
equations while polytropic stars with index 3 < n < 5
are dynamically unstable (polytropes with index n > 5
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have infinite mass). Therefore, using the “canonical” cri-
terion (107), we can only deduce that stellar polytropes
with index n < 3 are nonlinearly dynamically stable with
respect to the Vlasov equation. However, using the “mi-
crocanonical” criterion (106), we can prove that all stellar
polytropes with index n < 5 are nonlinearly dynamically
stable with respect to the Vlasov equation. Polytropes
with index 3 < n < 5 lie in a region of “ensemble in-
equivalence” (in the thermodynamical analogy) where the
“specific heat” is negative [19].

For the HMF model considered in this paper, we be-
lieve that the criteria (106) and (107) determine the same
set of solutions so that the ensembles are equivalent in that
case (no solution is forgotten by (107)). We have shown
in Section 2 that this is at least the case for isothermal
distributions. If we take for granted that this equivalence
extends to any functional (105), we conclude that, for
the HMF model, “a stellar system is stable if, and only
if, the corresponding barotropic gas is stable”. This would
be the HMF version of the nonlinear Antonov first law. In
that case, the stability limits obtained for the Euler equa-
tion in Section 3 can be directly applied to the Vlasov
equation (they coincide). Clearly, it would be of great in-
terest to derive general criteria telling when the ensembles
are equivalent or inequivalent, depending on the form of
the functional (105) and on the form of the potential of
interaction u(r− r′).

4.6 The condition of linear stability

We now study the linear dynamical stability of a spatially
homogeneous stationary solution of the Vlasov equation
described by f = f(v). This problem was first investigated
by Inagaki and Konishi [7] and Pichon [10] and more re-
cently by Choi and Choi [34]. We shall complete here their
study. Writing the perturbation in the form δf ∼ ei(nθ−ωt)

and using standard methods of plasma physics, we obtain
the dispersion relation

ε(n, ω) ≡ 1 +
k

2
(δn,1 − δn,−1)

∫
f ′(v)
nv − ω

dv = 0,

(117)

where ε(n, ω) is the dielectric function and the integral
must be performed by using the Landau contour. For the
destabilizing mode n = 1 (n = −1 gives the same result),
equation (117) reduces to

1 +
k

2

∫
f ′(v)
v − ω

dv = 0. (118)

The condition of marginal stability is ωi = 0 where ωi

is the imaginary part of ω = ωr + iωi. In that case, the
integral in equation (118) can be written as

1 +
k

2
P

∫
f ′(v)
v − ωr

dv + iπ
k

2
f ′(ωr) = 0, (119)

where P denotes the principal value. Identifying real and
imaginary parts, if follows that

1 +
k

2
P

∫
f ′(v)
v − ωr

dv = 0,

f ′(ωr) = 0. (120)

The second relation fixes the frequency of the perturbation
and the first equation determines the point of marginal
stability in the series of equilibria. The system is linearly
dynamically stable if

1 +
k

2
P

∫
f ′(v)
v − ωr

dv ≥ 0, (121)

and linearly dynamically unstable otherwise. Note that
f(v) does not need to be symmetrical. However, if f(v)
extremizes a H-function at fixed mass and energy, then it
has a single maximum at v = 0. Therefore, ωr = 0 accord-
ing to equation (120) and the criterion of linear dynamical
stability (121) coincides with the criterion of formal non-
linear dynamical stability (116).

4.7 Particular examples

We shall now present explicit results for particular sta-
tionary solutions of the Vlasov equation. We consider the
case of isothermal stellar systems and stellar polytropes.

4.7.1 Isothermal stellar systems

We consider the H-function

S = −
∫
f ln fdθdv, (122)

which is similar to the Boltzmann entropy (14) in thermo-
dynamics. However, as explained in Section 4.1, its phys-
ical interpretation is different. Its maximization at fixed
mass and energy determines a formally nonlinearly dy-
namically stable stationary solution of the Vlasov equa-
tion corresponding to the isothermal distribution function

f = Ae−βε. (123)

This distribution function has the same form (but a dif-
ferent interpretation) as the statistical equilibrium state
(18) of the N -body system.

The barotropic gas corresponding to the isothermal
distribution function (123) is the isothermal gas with an
equation of state p = ρT where T = 1/β. Therefore, the
velocity dispersion β−1 of an isothermal stellar system is
equal to the velocity of sound c2s = T in the corresponding
isothermal gas. The functional (114) takes the form

F [ρ] =
1
2

∫
ρΦdθ + T

∫
ρ ln ρdθ, (124)

and the density is related to the potential according to the
formula

ρ = A′e−βΦ, (125)



P.H. Chavanis et al.: Dynamics and thermodynamics of the HMF model 77

which can be obtained by extremizing F [ρ] at fixed mass.
We can also express the distribution function in terms of
the density according to

f =
(
β

2π

)1/2

ρ(θ)e−β v2
2 . (126)

According to what has been said in Section 4.5 about the
correspondence between stellar systems and barotropic
stars, we conclude that the uniform phase of an isother-
mal stellar system (123) is formally nonlinearly dynami-
cally stable with respect to the Vlasov equation if T > Tc

and linearly dynamically unstable otherwise. In terms of
the dimensionless parameters η = kM

4πT and ε = 8πE
kM2 , the

conditions of dynamical stability can be written

η ≤ 1, ε ≥ 1. (127)

They coincide with the conditions of thermodynamical
stability (see Sect. 2).

For the Maxwellian distribution function (126) with
uniform density, the dielectric function can be written

ε(1, ω) = 1 − ηW (
√
βω), (128)

where

W (z) =
1√
2π

∫ +∞

−∞

x

x− z
e−

x2
2 dx, (129)

is the W -function of plasma physics [35]. This is an ana-
lytic function in the upper plane of the complex z plane
which is continued analytically into the lower half plane.
Explicitly,

W (z) = 1 − ze−
z2
2

∫ z

0

dye
y2
2 + i

√
π

2
ze−

z2
2 . (130)

We look for solutions of the dispersion relation ε(1, ω) = 0
in the form ω = iλ where λ is real. First, we note that

ε(1, iλ) = 1 − η/G

(√
β

2
λ

)

, (131)

where we have defined the G-function

G(x) =
1

1 −√
πxex2erfc(x)

. (132)

For x → 0, G(x) = 1 +
√
πx + .... For x → +∞, G(x) =

2x2(1 + 3
2x2 + ...). For x → −∞, G(x) ∼ − 1

2
√

πx
e−x2

.
Therefore, the relation between λ and T is given by

η = G

(√
β

2
λ

)

. (133)

The case of neutral stability ω = 0 corresponds to T =
Tc (or η = 1). The case of instability (λ > 0) corresponds
to T < Tc. The perturbation grows exponentially rapidly

as δf ∼ eλt. The growth rate λ is given by equation (133)
which can be explicitly written

1 − Tc

T

{

1 −
√

π

2T
λe

λ2
2T erfc

(
λ√
2T

)}

= 0. (134)

For T → T−
c , we have

λ ∼
√

8
kM

(Tc − T ), (135)

and for T → 0, we have

λ→
√
kM

4π

(

1 − 3
T

Tc

)1/2

. (136)

The first term in equation (136) can be deduced directly
from equation (118) by using the distribution function
f(v) = ρ δ(v) valid at T = 0 and integrating by parts. The
case of stability (λ < 0) corresponds to T > Tc. The per-
turbation is damped exponentially rapidly as δf ∼ e−γt

where γ = −λ. This is similar to the Landau damping
in plasma physics, except that here there is no pulsation
(ωr = 0). By contrast, in plasma physics, the pulsation
ωr is much larger than the damping rate γ. The damping
rate γ = −λ is given by

η = F

(√
β

2
γ

)

(137)

where we have defined the F -function

F (x) =
1

1 +
√
πxex2erfc(−x) , (138)

such that F (x) = G(−x). For x→ 0, F (x) = 1−√
πx+....

For x → −∞, F (x) ∼ 2x2(1 + 3
2x2 + ...). For x → +∞,

F (x) ∼ 1
2
√

πx
e−x2

. Explicitly,

1 − Tc

T

{

1 +
√

π

2T
γe

γ2
2T erfc

(

− γ√
2T

)}

= 0. (139)

For T → T+
c , we have

γ ∼
√

8
kM

(T − Tc), (140)

and for T → +∞, we have

γ ∼
√

2T lnT . (141)

Obviously, the relation (134) between the growth rate
and the temperature of an isothermal stellar system is
different from the corresponding relation (93) valid for an
isothermal gas (they coincide only at T = 0). A simi-
lar distinction is noted in the case of 3D self-gravitating
systems. In particular, Figure 11 can be compared with
Figure 5.1 of Binney and Tremaine [15]. Moreover, in the
unstable regime, a gaseous medium supports sound waves
with pulsation ω = (T − Tc)1/2 that are not attenuated.
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Fig. 11. Growth rate and decay rate of isothermal stellar sys-
tems and isothermal stars as a function of the temperature in
the framework of the HMF model.

By contrast, in a stellar medium at T < Tc, there exists
solutions with no wave (ωr = 0) for which the perturba-
tion is damped exponentially. Other solutions with ωr �= 0
probably exist but they are more difficult to investigate
analytically. This is left for a future study.

The relations (134) and (139) have been obtained pre-
viously by Choi and Choi [34] using a slightly different
approach. Our derivation emphasizes the close link with
results in plasma physics. In addition, our formalism will
be used in Section 5.4 to show that the damping rate γ
of a perturbation is equal to the exponential decay of the
time auto-correlation function of the force. The general-
ization of these results for an arbitrary form of long-range
potential is given in Chavanis [17].

4.7.2 Stellar polytropes

We consider the H-function

Sq = − 1
q − 1

∫
(f q − f)dθdv, (142)

where q is a real number. This functional has been in-
troduced by Tsallis [36] in non-extensive thermodynam-
ics. The aim was to develop a generalized thermodynam-
ical formalism to describe quasi-equilibrium structures in
complex media that are not described by the Boltzmann
distribution. In this sense, Sq[f ] is interpreted as a gen-
eralized entropy and its maximization as a condition of
(generalized) thermodynamical stability. In the context
of Vlasov systems, we shall rather interprete Sq[f ] as a
particular H-function (see Sect. 4.1) and its maximiza-
tion as a condition of nonlinear dynamical stability 1. Its

1 If we were to apply Tsallis thermodynamics in the con-
text of violent relaxation, we would need to introduce the fine-
grained distribution of phase levels ρ(θ, v, η) [which is the rele-
vant probability field in that context] and replace the Lynden-

maximization at fixed mass and energy leads to a par-
ticular class of nonlinearly dynamically stable stationary
solutions of the Vlasov equation called stellar polytropes.
The fact that the criteria (106) and (107) of nonlinear dy-
namical stability are similar to criteria of generalized ther-
modynamical stability is the mark of a thermodynamical
analogy [31,28].

Stellar polytropes are described by the distribution
function

f =
[

µ− (q − 1)β
q

ε

] 1
q−1

, (143)

obtained from equation (108). When the term in brackets
is negative, the distribution function is set equal to f = 0.
The index n of the polytrope in one dimension is related

Bell entropy SL.B.[ρ] = − ∫
ρ ln ρdθdvdη (Lynden-Bell [11]) by

Sq[ρ] = − 1
q−1

∫
(ρq − ρ)dθdvdη as suggested in Brands et al.

[37]. In that case, Sq[ρ] can be regarded as a generalized en-
tropy trying to take into account non-ergodicity and lack of
complete mixing in collisionless systems with long-range inter-
actions. In that point of view, the parameter q measures the
efficiency of mixing (q = 1 if the system mixes well which is
implicitly assumed in Lynden-Bell’s statistical theory). In the
two-levels approximation f ∈ {0, 1} and in the dilute limit
f � 1, Sq[ρ] can be expressed as a functional of the coarse-
grained distribution function f ≡ ∫

ρηdη = ρ of the form

Sq[f ] = − 1
q−1

∫
(f

q − f)dθdv. In this particular limit, Sq [f ]
can be interpreted as a thermodynamical entropy generalizing
S[f ] = − ∫

f ln fdθdv which is a particular case of the Lynden-
Bell entropy for two levels in the dilute limit [38]. In conclu-
sion, Tsallis functional Sq[ρ] expressed in terms of ρ(θ, v, η) is
an entropy but Tsallis functional Sq [f ] expressed in terms of
f(θ, v) is either a H-function (dynamics) or the reduced form
of entropy Sq[ρ] (thermodynamics) for two levels in the dilute
limit. In any case, it is not clear why non-ergodic effects could
be encapsulated in the simple functional Sq[ρ] introduced by
Tsallis. Tsallis entropy is “natural” because it has mathemat-
ical properties very close to those possessed by the Boltzmann
entropy and it is probably relevant to describe a certain type of
mixing and non-ergodic behaviour as in the case of porous me-
dia and weak chaos (it may be seen as an entropy on a fractal
phase space). However, many other types of non-ergodic be-
haviour can occur and other functionals S = − ∫

C(ρ)dθdvdη
could be relevant. Observation of stellar systems, 2D vortices
and quasi-equilibrium states of the HMF model resulting from
incomplete violent relaxation do not favour Tsallis distribu-
tions in a universal manner. Other distributions can emerge.
In fact, we must give up the hope to predict the metaequilib-
rium state in case of incomplete relaxation. We must rather try
to construct stable stationary solutions of the Vlasov equation
in order to reproduce observed phenomena. The H-functions
(105) can be useful in that context. An alternative procedure
is to keep the Lynden-Bell form of entropy unchanged and de-
velop a dynamical theory of violent relaxation [39,40] in order
to take into account incomplete mixing through a variable dif-
fusion coefficient related to the strength of the fluctuations. In
that case, non-ergodicity is explained by the decay of the fluc-
tuations of Φ driving the relaxation, not by a complex structure
of phase-space. Generalized entropies are not necessary in that
case.
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to the parameter q by the relation [41]:

n =
1
2

+
1

q − 1
. (144)

For n → +∞ (or q → 1), we recover the isothermal dis-
tribution function (123) and the H-function (122). There-
fore, Tsallis functional connects continuously isothermal
and polytropic distributions. Physical polytropic distri-
bution functions (see Chavanis and Sire [41]) have β > 0
and q ≥ 1 (i.e. n ≥ 1/2) or 1/3 < q ≤ 1 (i.e. n < −1).

The barotropic gas corresponding to the polytropic
distribution function (143) is the polytropic gas

p = Kργ , γ = 1 +
1
n
, (145)

with the polytropic constant

K =
1

n+ 1

{√
2A

Γ (1/2)Γ (n+ 1/2)
Γ (n+ 1)

}−1/n

, n >
1
2

(146)

K = − 1
n+ 1

{√
2A

Γ (1/2)Γ (−n)
Γ (1/2− n)

}−1/n

, n < −1 (147)

where A = (|q − 1|β/q)1/(q−1). In the present context,
the polytropic constant K is related to the Lagrange mul-
tiplier β. Therefore, K and T0 = β−1 play the role of
effective temperatures (see Chavanis and Sire [28] for a
more detailed discussion). For a polytropic distribution,
the functional (114) takes the form

F [ρ] =
1
2

∫
ρΦdθ +

K

γ − 1

∫
(ργ − ρ)dθ, (148)

and the relation between the density and the potential is

ρ =
[

λ− γ − 1
Kγ

Φ

] 1
γ−1

. (149)

Comparing equations (143) and (149), we note that a poly-
tropic distribution with index q in phase space yields a
polytropic distribution with index γ = 1+2(q−1)/(q+1)
in physical space. In this sense, polytropic laws are sta-
ble laws since they keep the same structure as we pass
from phase space f = f(ε) to physical space ρ = ρ(Φ)
as noticed in Chavanis [42]. This is probably the only
distribution enjoying this property. Similarly, comparing
(142)-(7) and (148) the “free energy” in phase space
F [f ] = E[f ] − T0Sq[f ] (where T0 = 1/β) becomes F [ρ] =
E[ρ]−KSγ[ρ] in physical space. Morphologically, the poly-
tropic temperatureK plays the same role in physical space
as the temperature T0 = 1/β in phase space.

We can express the distribution function in terms of
the density according to

f =
1
Z

[

ρ(θ)1/n − v2/2
(n+ 1)K

]n−1/2

, (150)

with

Z =
√

2
Γ (1/2)Γ (n+ 1/2)

Γ (n+ 1)
[K(n+ 1)]1/2, n >

1
2

(151)

Z =
√

2
Γ (1/2)Γ (−n)
Γ (1/2 − n)

[−K(n+ 1)]1/2, n < −1. (152)

Introducing the kinetic temperature (velocity dispersion)
T (θ) = 〈v2〉 = p(θ)/ρ(θ) = Kρ(θ)1/n, this can be rewrit-
ten

f = Bn
ρ(θ)

√
2πT (θ)

[

1 − v2/2
(n+ 1)T (θ)

]n−1/2

, (153)

with

Bn =
Γ (n+ 1)

Γ (n+ 1/2)(n+ 1)1/2
, n >

1
2

(154)

Bn =
Γ (1/2 − n)

Γ (−n)[−(n+ 1)]1/2
, n < −1. (155)

Equation (153) is the counterpart of equation (126) for
isothermal systems. For n > 1/2, the distribution f = 0
for |v| > vmax =

√
2(n+ 1)T .

According to what has been said in Section 4.4
about the correspondence between stellar systems and
barotropic stars, we conclude that the uniform phase of
a polytropic stellar system (143) with index n is formally
nonlinearly dynamically stable with respect to the Vlasov
equation if K ≥ Kn or T ≥ Tn and linearly dynamically
unstable otherwise. It can be useful to introduce the di-
mensionless parameter η = kM/4πT where T = Kρ1/n is
the kinetic temperature in the homogeneous phase where
ρ = M/2π. For n→ +∞ (isothermal case), we recover the
dimensionless parameter η = kM/4πT of Section 4.7.1.
On the other hand, in the homogeneous phase (B = 0),
the energy (7) is given by E = 1

2

∫
pdθ = 1

2MT . There-
fore, the normalized energy ε = 8πE/kM2 is expressed in
term of η according to ε = 1

η . In terms of these dimension-
less parameters, the uniform phase is formally nonlinearly
dynamically stable for

η ≤ ηcrit = γ, ε ≥ εcrit =
1
γ
, (156)

and linearly dynamically unstable otherwise. Note how the
critical energy and temperature are simply expressed in
terms of the polytropic index γ. For n→ +∞, we recover
the case of isothermal stellar systems with εcrit = 1 and
ηcrit = 1. Note that the line (εcrit, ηcrit) coincides with the
line B = 0 in Figure 7. We thus clearly see how the series
of equilibria for polytropic distributions places itself in
the (ε, η) plane (we just have to displace the critical point
(εcrit, ηcrit) along the line B = 0 as sketched in Fig. 12).

We also emphasize that, using the criterion (115) we
have obtained the condition of nonlinear dynamical insta-
bility (156) for stellar polytropes with almost no calcula-
tion. Of course, the same result can be obtained from the
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Fig. 12. Bifurcation diagram of stellar polytropes that are
stationary solutions of the Vlasov equation. The homogeneous
phase is nonlinearly dynamically stable for ε ≥ εcrit = 1/γ
where γ = 1 + 1/n and n = 1

2
+ 1

q−1
. It becomes linearly dy-

namically unstable for ε < εcrit where the branch of clustered
states (represented schematically by a line) appears. Isother-
mal stellar systems correspond to (q = 1, n = ∞, γ = 1). In
ordinate, T is defined by K(M/2π)1/n. In the homogeneous
phase, it represents the kinetic temperature of a polytropic
stellar system. Note that η is a monotonic function of the La-
grange multiplier β so that the curve can be viewed as a series
of equilibria of polytropic distributions.

criterion (116) by explicitly performing the integral. The
criterion of nonlinear dynamical stability (115) that we
have found is simpler, albeit equivalent. Moreover, it has
a more physical interpretation since it is expressed as a
condition on the velocity of sound in a gas with the same
equation of state as the original kinetic system.

For the polytropic distribution (153) with uniform den-
sity, the dielectric function can be written

ε(1, ω) = 1 − Tn

T
Wn(ω/

√
T ), (157)

where we have introduced the function

Wn(z) =
1√
2π

Bn

n
(n− 1/2)

∫
x[1 − x2/2

n+1 ]n−3/2

x− z
dx (158)

with Wn(0) = 1. The range of integration is such that
the term in brackets remains positive. For n → +∞, we
recover the W -function (129). For ω = 0, we obtain the
critical temperature T = Tn as in a polytropic gas. As
in Section 4.7.1, we look for solutions of the dispersion
relation ε(1, ω) = 0 in the form ω = iλ where λ is real.
For T < Tn, the system is unstable and the growth rate
λ > 0 is given by

Tn

T
= Gn

(
λ√
2T

)

, (159)
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Fig. 13. Growth rate and decay rate for stellar polytropes
and polytropic stars in the framework of the HMF model. The
index goes from n = 1 to n = 100. We have also shown the case
n = 1/2 (water-bag distribution). The critical temperature is
smaller than for an isothermal gas (Tn < Tc).

where

Gn(x)=
{
Bn

n
√
π

(

n− 1
2

) ∫
t2

t2 + x2

[

1 − t2

n+ 1

]n− 3
2

dt

}−1

.

For T > Tn, the system is stable and the damping rate
γ = −λ > 0 is given by

Tn

T
= Fn

(
γ√
2T

)

, (160)

where

Fn(x) =
1

Gn(x)−1 +Rn(x)
(161)

with

Rn(x) =
2
√
πBn

n

(

n− 1
2

)

x

[

1 +
x2

n+ 1

]n− 3
2

. (162)

This additional term comes from the residue theorem
when the pulsation ω = −iγ lies in the lower half of the
complex plane. For n → +∞, we recover the G and F
functions (132) and (138). The dependence of the growth
rate and decay rate with the temperature is shown in Fig-
ures 13 and 14. For n = ∞, we recover the isothermal case
of Figure 11.

4.7.3 Fermi or water-bag distribution

For n = 1/2, the distribution function (143) is a step
function: f(ε) = η0 if −v0(θ) ≤ v ≤ v0(θ) and f(ε) = 0
otherwise. This is similar to the Fermi distribution at T =
0 describing cold white dwarf stars in astrophysics [43].
This is also called the water-bag distribution in plasma
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Fig. 14. Growth rate and decay rate for stellar polytropes and
polytropic stars in the framework of the HMF model. The in-
dex goes from n = −1.5 to n = −100. The critical temperature
is larger than for an isothermal gas (Tn > Tc).

physics (when v0 is independent on θ). The density and
the pressure are given by ρ = 2η0v0 and p = (2/3)η0v3

0 .
This leads to a polytropic equation of state p = Kρ3 of
index n = 1/2 and polytropic constant K = 1/(12η2

0).
For a homogeneous system, we have the relation M =
4πη0v0. Then, combining the preceding relations, we find
that the velocity of sound is cs = v0. Therefore, the system
is formally nonlinearly dynamically stable if

v2
0 ≤ kM

4π
, (163)

and linearly dynamically unstable otherwise. Noting that
the kinetic temperature is T = v2

0/3, we check that the
above result returns (98) with γ = 3. Thus, ηcrit = 3 and
εcrit = 1/3. Once again, these results have been obtained
with almost no calculation. This is an advantage of for-
mula (115) with respect to formula (116).

On the other hand, using f ′(v) = η0[δ(v + v0)− δ(v −
v0)], the dielectric function (117) can be written

ε(1, ω) = 1 − T1/2

T
W1/2(ω/

√
T ), (164)

with

W1/2(z) =
1

1 − 1
3z

2
. (165)

We look for solutions of the dispersion relation ε(1, ω) = 0
in the form ω = Ω where Ω is real. This solution only
exists for T > T1/2 and corresponds to an oscillatory so-
lution δf ∼ eiΩt. The pulsation is given by

Ω = ±
√

3(T − T1/2)1/2 = ±
√

v2
0 − kM

4π
. (166)

We now consider the case ω = iλ where λ is real. This
solution only exists for T < T1/2 and

λ = ±√
3(T1/2 − T )1/2 = ±

√
kM

4π
− v2

0 . (167)

The case λ > 0 corresponds to a growing (unstable) mode
δf ∼ eλt and the case λ = −γ < 0 corresponds to a
damped mode δf ∼ e−γt. We note that for this special
case n = 1/2, the growth rate and the pulsation period
of the stellar system are the same as for the correspond-
ing barotropic gas, see equation (87). The results (166)
and (167) have been previously derived by Choi and Choi
[34]. They are recalled here for sake of completeness and
because we will need them in Section 5.3.

5 Collisional relaxation of stellar systems

The Vlasov equation (104) can be obtained from the
BBGKY hierarchy, issued from the Liouville equation (2),
by using the mean-field approximation (4) which is valid
in the limit N → +∞ with η and ε fixed. We would like
now to take into account the effect of correlations between
particles in order to describe the “collisional” relaxation.
We shall develop a kinetic theory which takes into account
terms of order 1/N in the correlation function.

5.1 The evolution of the whole system: the Landau
equation

There are different methods to obtain a kinetic equation
for the distribution function f(θ, v, t). One possibility is
to start from the N-body Liouville equation and use pro-
jection operator technics. This method has been followed
by Kandrup [44] for stellar systems and by Chavanis [45]
for the point vortex gas. We shall first consider an appli-
cation of this theory to the HMF model (Chavanis [46]).
In the large N limit and neglecting collective effects, the
projection operator formalism leads to a kinetic equation
of the form

∂f

∂t
+ v

∂f

∂θ
+ 〈F 〉∂f

∂v
=

∂

∂v

∫ t

0

dτ

∫
dθ1dv1F(1 → 0, t)

×
{

F(1 → 0, t− τ)
∂

∂v
+ F(0 → 1, t− τ)

∂

∂v1

}

×f(θ1, v1, t− τ)f(θ, v, t − τ). (168)

Here, f(θ, v, t) = NP1(θ, v, t) is the distribution func-
tion, 〈F 〉(θ, t) is the (smooth) mean-field force and
F(1 → 0, t) = F (1 → 0, t) − 〈F 〉(θ, t) is the fluctuating
force created by particle 1 (located at θ1, v1) on particle 0
(located at θ, v) at time t. Between t and t− τ , the parti-
cles are assumed to follow the trajectories determined by
the slowly evolving mean-field 〈F 〉(θ, t). Equation (168) is
a non-Markovian integrodifferential equation. We insist on
the fact that this equation is valid for an inhomogeneous
system while the kinetic equations presented below will
only apply to homogeneous systems. Unfortunately, equa-
tion (168) remains too complicated for practical purposes
and we will have to make simplifications. If we consider a
spatially homogeneous system for which the distribution
function f = f(v, t) depends only on the velocity, and if
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we implement a Markovian approximation, the foregoing
equation reduces to

∂f

∂t
=

∂

∂v

∫ +∞

0

dτ

∫
dθ1dv1F (1 → 0, t)

×F (1 → 0, t− τ)
(
∂

∂v
− ∂

∂v1

)

f(v1, t)f(v, t), (169)

where F (1 → 0, t) = − k
2π sin(θ(t) − θ1(t)). We thus need

to calculate the memory function

M =
∫ +∞

0

dτ

∫
dθ1F (1 → 0, t)F (1 → 0, t− τ)

=
k2

4π2

∫ +∞

0

dτ

∫
dθ1 sin(θ − θ1) sin[θ(t− τ) − θ1(t− τ)],

(170)

where θi(t − τ) is the position at time t − τ of the ith
particle located at θi = θi(t) at time t. Since the system is
homogeneous, the mean force acting on a particle vanishes
and the average equations of motion are θ(t− τ) = θ− vτ
and θ1(t− τ) = θ1 − v1τ . Thus, we get

M =
k2

4π2

∫ +∞

0

dτ

∫ 2π

0

dφ sinφ sin(φ − uτ), (171)

where φ = θ − θ1 and u = v − v1. The integration yields

M =
k2

4π

∫ +∞

0

dτ cos(uτ) =
k2

4
δ(u). (172)

Therefore, the kinetic equation (169) becomes

∂f

∂t
=
k2

4
∂

∂v

∫
dv1δ(v − v1)

(

f1
∂f

∂v
− f

∂f1
∂v1

)

= 0. (173)

This equation can be considered as the counterpart of the
Landau equation describing the “collisional” evolution of
stellar systems such as globular clusters (in that case, the
system is not homogeneous but the collision term is often
calculated by making a local approximation). The Landau
collision term can also be obtained from the BBGKY hi-
erarchy at the order O(1/N) by neglecting the cumulant
of the three-body distribution function of order 1/N2 [17].
For the HMF model, and for one dimensional systems in
general, we find that the Landau collision term vanishes.
This is because the diffusion term (first term in the r.h.s.)
is equally balanced by the friction term (second term in
the r.h.s.). A similar cancellation of the collision term at
order 1/N is found in the case of 2D point vortices when
the profile of angular velocity is monotonic (Dubin and
O’Neil [47], Chavanis [45], Dubin [48]). Therefore, after a
phase of violent relaxation, the system can remain frozen
in a stationary solution of the Vlasov equation for a very
long time, larger than NtD. Only non-trivial three-body
correlations can induce further evolution of the system.
However, their effect is difficult to estimate. Note that the
collision term of order 1/N may not cancel out in the case
of inhomogeneous systems and for the multi-species HMF
model (see Sect. 7).

5.2 The evolution of a test particle in a thermal bath:
the Fokker-Planck equation

Equations (168) and (169) can also be used to describe
the evolution of the distribution function P (v, t) of a test
particle evolving in a bath of field particles with static
distribution function f1(v1). In that case, we have to con-
sider that the distribution function of the bath is given,
i.e. f1 = f0(v1). The evolution of P (v, t) is then governed
by the equation

∂P

∂t
=

∂

∂v

∫ +∞

0

dτ

∫
dθ1dv1F (1 → 0, t)

×F (1 → 0, t− τ)
(
∂

∂v
− ∂

∂v1

)

f0(v1)P (v, t). (174)

Equation (174) can be written in the form of a Fokker-
Planck equation

∂P

∂t
=

∂

∂v

(

D
∂P

∂v
+ Pη

)

. (175)

The two terms of this equation correspond to a diffusion
and a friction. The diffusion coefficient is given by the
Kubo formula

D =
∫ +∞

0

dτ〈F (t)F (t − τ)〉dτ. (176)

The friction can be understood physically by developing
a linear response theory. It arises from the response of
the field particles to the perturbation induced by the test
particle, as in a polarization process (see Kandrup [49]).

Introducing the memory function (172), the Fokker-
Planck equation (174) can be rewritten

∂P

∂t
=
k2

4
∂

∂v

∫
dv1δ(v − v1)

(
∂

∂v
− ∂

∂v1

)

f0(v1)P (v, t).

(177)

It can be put in the form (175) where the coefficients of
diffusion and friction are explicitly given by [46]:

D =
k2

4

∫
dv1δ(v − v1)f0(v1) =

k2

4
f0(v), (178)

η = −k
2

4

∫
dv1δ(v − v1)

df0
dv

(v1) = −k
2

4
f ′
0(v). (179)

More precisely, comparing equation (175) with the general
Fokker-Planck equation

∂P

∂t
=

1
2
∂2

∂v2

(

P
〈(∆v)2〉
∆t

)

− ∂

∂v

(

P
〈∆v〉
∆t

)

. (180)

we find that

〈(∆v)2〉
∆t

= 2D,
〈∆v〉
∆t

=
dD

dv
− η. (181)
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Using equations (178) and (179), we obtain

η = −1
2
〈∆v〉
∆t

. (182)

Therefore, η represents half the friction force. This is
the same result as in the case of Coulombian or New-
tonian interactions (see, e.g., Chavanis [50]). Using equa-
tions (178) and (179), the Fokker-Planck equation (175)
can be rewritten

∂P

∂t
=

∂

∂v

[

D

(
∂P

∂v
− P

d ln f0
dv

)]

, (183)

with the initial condition P (v, t = 0) = δ(v − v0). It
describes the evolution of a test particle in a potential
U(v) = − ln f0(v) created by the field particles. A similar
equation is found for 2D point vortices in position space
where the friction is replaced by a drift [45]. When f0(v) is
the Maxwellian (18), corresponding to a statistical equilib-
rium state (thermal bath approximation), equation (183)
takes the form of the Kramers equation

∂P

∂t
=

∂

∂v

[

D(v)
(
∂P

∂v
+ βPv

)]

, (184)

as in the theory of Brownian motion [51]. We note in par-
ticular that the friction coefficient is given by the Ein-
stein formula ξ = Dβ. However, in the present context,
the diffusion coefficient depends on the velocity and, in
the ballistic approach that we have considered, is given
by [46]:

D(v) =
ρk2

4

(
β

2π

)1/2

e−β v2
2 . (185)

We note that P (v, t) always converges to the distribution
function of the bath NP (v, t) → f0(v) for t → +∞ while
for 3D self-gravitating system, this is the case only when
f0 is the statistical equilibrium distribution.

Finally, again neglecting collective effects, a simple cal-
culation shows that the temporal correlations of the force
are

〈F (0)F (t)〉 =
k2

4π

∫ +∞

−∞
cos[(v − v1)t]f0(v1)dv1

=
k2

2
cos(vt)f̂0(t) = 2 cos(vt)D̂(t), (186)

where D̂(t) is the Fourier transform of D(v). For the
Maxwellian distribution, we get

〈F (0)F (t)〉 =
ρk2

4π
cos(vt)e−

t2
2β , (187)

which seems to indicate a Gaussian decay of the correla-
tions.

5.3 Collective effects: the Lenard-Balescu equation

The kinetic theory developed previously (Chavanis [46]),
while useful as a first step, is however inaccurate because

it is based on a ballistic approximation and ignores collec-
tive effects which are non-negligible for the HMF model
close to the critical temperature (Bouchet [52]). In the
case of 3D stellar systems, collective effects have only a
weak influence on the kinetic theory and they are often
neglected. This implicitly assumes that the size of the
system is smaller than the Jeans length (recall that the
Jeans length plays the role of the critical temperature in
the present context). In general, collective effects can be
taken into account by developing a kinetic theory as in the
case of plasmas [35]. Noting that the HMF model is the
one Fourier mode of a one dimensional plasma, Inagaki
[9] proposed to describe the collisional evolution of the
system by the corresponding form of the Lenard-Balescu
equation. It can be written

∂f

∂t
=
k2

4
∂

∂v

∫
dv1

δ(v − v1)
|ε(1, v)|2

(

f1
∂f

∂v
− f

∂f1
∂v1

)

= 0, (188)

where ε(1, v) is the dielectric function (117). We note that
the collision term again cancels out. However, if we use
this equation to describe the evolution of a test particle in
a thermal bath, as we did in Section 5.2 by replacing f1
by f0(v1), we obtain equation (183) where the expression
of the diffusion coefficient is now given by

D =
k2

4
f0(v)

|ε(1, v)|2 . (189)

It differs from the preceding expression (178) due to
the occurrence of the term |ε(1, v)|2 in the denomina-
tor which takes into account collective effects. For the
Maxwellian distribution, the dielectric function is given
by equations (128) and (130). This leads to the expression
of the diffusion coefficient

D(v) =
ρk2

4 ( β
2π )1/2e−β v2

2

[1 − ηA(
√
βv))]2 + π

2 η
2βv2e−βv2 (190)

with A(x) = 1−xe− x2
2

∫ x

0
e

u2
2 du. We note that A(x) = 1−

x2 + ... for x→ 0 and A(x) ∼ −1/x2 for x→ +∞. There-
fore, the diffusion coefficient behaves as equation (185) for
v → + ∞ and tends to ρk2

4 (β/2π)1/2/(1 − η)2 for v → 0
and η < 1. At the critical temperature η = 1 it diverges
as D(v) ∼ ρk2

2π (β/2π)1/2/(βv2) for v → 0. Its behaviour is
represented in Figure 15.

The expression (190) of the diffusion coefficient was
obtained by Bouchet [52] in a different manner, by ana-
lyzing the stochastic process of equilibrium fluctuations.
This approach was then generalized to an arbitrary dis-
tribution function by Bouchet and Dauxois [53], leading
to equation (189). In fact, formulae (189) and (190) cor-
respond to the one dimensional version of the diffusion
coefficient computed in plasma physics [35] when the po-
tential of interaction is truncated to one Fourier mode.
The general expression of the diffusion coefficient and of
the Fokker-Planck equation is given in Chavanis [17] for
an arbitrary potential of interaction in D dimensions.
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Fig. 15. Dependence of the diffusion coefficient D(v) on
the velocity v for different values of the inverse temperature

η = β/βc. The normalization constant is D0 = nk2

4
(β/2π)1/2

corresponding to D(0) for η = 0. We note that D(0) increases
as η increases and that it diverges at the critical point η = 1.

We emphasize that the previous results are valid for
an arbitrary distribution function f0(v) of the bath pro-
vided that it is stable with respect to the Vlasov equation.
This is because, as we shall see, the relaxation time of
the “field particles” (bath) towards statistical equilibrium
(Maxwellian) is longer than the relaxation time of a “test
particle” towards f0, so that the distribution function f0
of the bath can be considered as “frozen”. The general
expression of the diffusion coefficient can be written

D(v) =
k2

4 f0(v)

[1 + k
2P

∫ +∞
−∞

f ′
0(w)
w−v dw]2 + k2π2

4 f ′
0(v)2

, (191)

where P stands for the principal value. Its asymptotic be-
haviour for v → +∞ is always given by equation (178). As
a complementary example to Figure 15, we have plotted in
Figures 16 and 17 the diffusion coefficient corresponding
to a polytropic distribution of index n = 1 and n = −2
(in that case f0 is given by equation (153) where ρ and T
are uniform). Another example is provided by the water-
bag model for which an explicit expression of D(v) can be
given. Using equations (164), (165) and (166), it can be
written conveniently as

D(v) =
k2

4
η0

[
v2
0 − v2

Ω2 − v2

]2

, (192)

for v ≤ v0 and D = 0 otherwise. The diffusion coeffi-
cient diverges when the velocity of the particle v is in
phase with the frequency Ω < v0 of the wave arising from
the slightly perturbed distribution of field particles (see
Sect. 4.7.3). This divergence occurs because, for the water
bag distribution, there exists purely oscillatory modes for
a wide range of temperatures. In general, the diffusion co-
efficient (189) diverges only at the critical point for v = ωr

with f ′(ωr) = 0; this precisely correspond to the criterion
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Fig. 16. Same as Figure 15 for a polytropic distribution with
index n = 1. Here η = kM/4πT where T is the kinetic temper-
ature. In this case, the critical point is η1 = 2. The diffusion
coefficient vanishes at the maximum velocity vmax =

√
4T .
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Fig. 17. Same as Figure 15 for a polytropic distribution with
index n = −2. Here η = kM/4πT where T is the kinetic tem-
perature. In this case, the critical point is η−2 = 1/2. This
figure is very similar to Fig. 15 except that the diffusion coef-
ficient decreases algebraically.

of marginal stability (120). For example, for the Gaus-
sian distribution, we recover the divergence at T = Tc for
v = ωr = 0.

5.4 The auto-correlation function

We note that for high temperatures (i.e., η → 0), equa-
tion (190) reduces to the expression (185) found in the
ballistic approach developed in Sect. 5.2. This is because,
in that limit, collective effects are weak with respect to
the pure ballistic motion and ε  1 according to equa-
tion (128). However, the behaviour of the correlation func-
tion is different. Indeed, a direct analysis [17] shows that
the temporal auto-correlation function of the force is given
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by

〈F (0)F (t)〉 =
k2

4π

∫ +∞

−∞

cos[(v − v1)t]
|ε(1, v1)|2 f0(v1)dv1

= 2 cos(vt)D̂(t). (193)

Substituting this expression in the Kubo formula (176)
and using δ(v − v1) = 1

π

∫ +∞
0

cos[(v − v1)t]dt, we re-
cover equation (189). In the ballistic approximation, the
correlation function (187) is Gaussian while the exact
treatment taking into account collective effects shows
that the decay of the fluctuations is in fact exponential
with a decay exponent γ(β) = (2/β)1/2F−1(η) where
F (x) = 1/(1 +

√
πxex2

erfc(−x)) is the F -function (138).
This result was obtained by Bouchet [52] by working
out the integro-differential equation satisfied by the auto-
correlation function. We shall present here an alternative
derivation (Chavanis [17]) which will make a clear link
with the decay exponent appearing in the linear stabil-
ity analysis of the Vlasov equation in Section 4.7.1. Not-
ing that the correlation function is proportional to the
Fourier transform of the diffusion coefficient, according to
equation (193), we can obtain the expression of γ by deter-
mining the pole of D(v) in equation (189). Setting v = iλ
where λ is real, we find after some calculations that

|ε|2(1, iλ) = ε(1, iλ)ε(1,−iλ) (194)

where we recall that ε(1, iλ) is given by equation (131).
Clearly, |ε|2(1, iλ) is an even function of λ. We need to de-
termine the values of λ for which this function vanishes.
Since η < 1, we find that λ = ±γ where γ > 0 is deter-
mined by ε(1,−iγ) = 0. Therefore, γ is the damping rate
of the stable perturbed solutions of the Vlasov equation; it
is given by equation (137). Next, we consider λ = ±γ+ ε.
Expanding equation (194) for ε	 1, we find after elemen-
tary calculations that

D(v) ∼ K(γ)
v2 + γ2

, K(γ) =
2T√
π

1
|F ′( γ√

2T
)| (195)

for v → ±iγ. Therefore, for t → +∞, the correlation
function (193) is the Fourier transform of a Lorentzian so
it decays like

〈F (0)F (t)〉 ∼ k2M

8π2

√
2T
γ

1
|F ′( γ√

2T
)| cos(vt)e−γt, (196)

with

γ = (2/β)1/2F−1(η). (197)

The exponential decay of the correlation function corre-
sponds to the Markovian limit of the stochastic process,
thereby justifying the Markovian approximation in the ki-
netic theory. This is quite different from the correlations of
the gravitational force which decay as t−1 (Chandrasekhar
[54]). This slow decay may throw doubts on the validity
of the ordinary Landau equation, based on a Markovian

approximation, used to describe stellar systems (see Kan-
drup [44] for a detailed discussion). For the HMF model,
the decay exponent γ(β) depends on the temperature. It
diverges like γ ∼ √

2T lnT as T → +∞. This is why the
correlation function is Gaussian in the treatement neglect-
ing collective effects (see Sect. 5.2). On the other hand,
γ ∼ (8/kM)1/2(T−Tc) as T → T+

c , so that the correlation
function decreases very slowly close to the critical temper-
ature. This may invalidate the Markovian approximation
close to the critical point. The Fokker-Planck equation
(184) with the diffusion coefficient (190) has been recently
investigated by Bouchet & Dauxois [53]. In this paper, us-
ing the rapid decay for large v of the diffusion coefficient
(190), the numerically observed [55,56] anomalous alge-
braic decay of the velocity autocorrelation function is ex-
plained and algebraic exponents are explicitly computed.
For a large class of bath distribution function f0, this may
also lead to anomalous diffusion of angles θ.

5.5 The relaxation timescale

Let us consider the relaxation of a test particle in a ther-
mal bath. Due to the rapid decrease of D(v) for large
v, the spectrum of the Fokker-Planck equation (184) has
no gap, and it exists no exponential relaxation time (see
Bouchet and Dauxois [53] for a detailed discussion). A
time scale will however describe relative relaxation speeds
for different values of the temperature T . We shall ob-
tain an estimate of this time scale. Ignoring collective
effects in a first step, this process is described by equa-
tions (184–185). If the diffusion coefficient were constant,
we would deduce that the dispersion of the particles in-
creases as 〈(∆v)2〉 = 2Dt. Introducing the r.m.s velocity
vm = 〈v2〉1/2, we define the relaxation timescale tr such
that 〈(∆v)2〉 = v2

m. This leads to tr = v2
m/2D. Since D

depends on v, the description of the diffusion process is
more complex. However, the formula

tr =
v2

m

2D(vm)
, (198)

provides a useful estimate of the speed of relaxation. For
the Maxwellian distribution for which vm = 1/

√
β, we get

tr =
v3

m

0.121ρk2
. (199)

We can also estimate the relaxation timescale by t′r = 1/ξ,
where ξ is the friction coefficient. Using the Einstein re-
lation ξ = Dβ, this yields t′r = 2tr. Finally, setting
w = v/(

√
2vm), we can rewrite equation (184) in the di-

mensionless form

∂P

∂t
=

1
tR

∂

∂w

[

G(w)
(
∂P

∂w
+ 2Pw

)]

, (200)

where G(w) = e−w2
and

tR =
v3

m

0.05ρk2
, (201)
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which provides a useful time renormalization factor in the
Fokker-Planck equation. If we use expression (190) of the
diffusion coefficient, we need to multiply the relaxation
timescale by |ε(1, vm)|2 = (1 + 2.25η)2 + 0.578η2. In par-
ticular, close to the critical temperature (i.e. η = 1), the
relaxation timescale is multiplied by  11.1.

If we now introduce a dynamical timescale through the
relation

tD =
2π
vm

, (202)

we find that tR/tD ∼ v4
m/Nk

2 ∼ 1/Nk2β2 ∼ N/η2 ∼
N in the thermodynamic limit of Section 2.1. Therefore,
the relaxation time of a test particle in a thermal bath
increases linearly with the number N of field particles.
More precisely, we have

tR =
0.127
η2

NtD. (203)

The collision term in equation (200) is of order 1/N in
the thermodynamic limit N → +∞ with η fixed. This
scaling also holds for the collision term in the Landau
equation (173) noting that k ∼ 1/N and f ∼ N if we
take vm ∼ 1. It represents therefore the first correction to
the Vlasov limit in an expansion in 1/N of the correlation
function. However, contrary to the relaxation of a single
particle in a thermal bath, the relaxation time of the whole
system is not trelax ∼ NtD because, as we have seen, the
collision term cancels out at the order 1/N . Therefore, the
relaxation time of the whole system is larger than NtD.
This is consistent with the finding of Yamaguchi et al. [16]
who numerically obtain trelax ∼ N1.7tD.

It is interesting to compare this result with other sys-
tems with long-range interactions. For stellar systems, the
Chandrasekhar relaxation time scales as trelax ∼ N

ln N tD.
It corresponds to the NtD scaling polluted by logarithmic
corrections. This is the relaxation time of a test star im-
mersed in a bath of field stars as well as the relaxation time
of the whole cluster itself (in the absence of gravothermal
catastrophe). For the point vortex gas, the collision term
in the kinetic equation cancels out at the order 1/N when
the profile of angular velocity is monotonic. Therefore, the
relaxation time of the whole system is larger than NtD.
In fact, it is not clear whether the point vortex gas ever
relaxes towards statistical equilibrium [3,48]. By contrast,
the relaxation time of a test vortex in a thermal bath of
field vortices scales as trelax ∼ N

ln N tD [3].

6 Self-attracting Brownian particles:
the BMF model

The Hamilton equations (1) describe an isolated system
of particles with long-range interactions. Since energy is
conserved, the fundamental statistical description of the
system is based on the microcanonical ensemble. It can be
of interest to consider in parallel the case where the system
is stochastically forced by an external medium. We thus

introduce a system of Brownian particles with long-range
interactions which is the canonical version of the Hamilto-
nian system (1). This could be called the BMF (Brownian
Mean Field) model. Likewise in the case of 3D Newto-
nian interactions, a system of self-gravitating Brownian
particles has been recently introduced and studied (see
Chavanis et al. [57] and subsequent papers).

6.1 Non-local Kramers and Smoluchowski equations

We consider a one-dimensional system of self-attracting
Brownian particles with cosine interaction whose dynam-
ics is governed by the N -coupled stochastic equations

dθi

dt
= vi,

dvi

dt
= − ∂

∂θi
U(θ1, ..., θN ) − ξvi +

√
2DRi(t), (204)

where −ξvi is a friction force and Ri(t) is a white noise
satisfying

〈Ri(t)〉 = 0, 〈Ri(t)Rj(t′)〉 = δijδ(t− t′), (205)

where i = 1, ..., N refer to the particles. The particles in-
teract through the potential U(θ1, ..., θN ) =

∑
i<j u(θi −

θj) where u(θi − θj) = − k
2π cos(θi − θj). We define the

inverse temperature β = 1/T through the Einstein rela-
tion ξ = Dβ. The stochastic model (204–205) is analogous
to the model of self-gravitating Brownian particles intro-
duced by Chavanis et al. [57]. For this system, the relevant
ensemble is the canonical ensemble where the temperature
measures the strength of the stochastic force. The evolu-
tion of the N -body distribution function is governed by
the N -body Fokker-Planck equation

∂PN

∂t
+

N∑

i=1

(

vi
∂PN

∂θi
+ Fi

∂PN

∂vi

)

=

N∑

i=1

∂

∂vi

(

D
∂PN

∂vi
+ ξPNvi

)

, (206)

where Fi = − ∂U
∂θi

. The stationary solution corresponds to
the canonical distribution

PN =
1
Z
e−β(

∑N
i=1

v2
i
2 +U(θ1,...,θN)). (207)

We note that the canonical distribution (207) is the only
stationary solution of the N -body Fokker-Planck equa-
tion while the microcanonical distribution (3) is just a
particular stationary solution of the Liouville equation
(see Sect. 2.1). For the system (204–205), the equilib-
rium canonical distribution does not rely, therefore, on
a postulate. In the thermodynamic limit N → +∞ with
η = βkM/4π fixed, one can prove that the N particles
distribution function factorizes and that the mean-field
approximation is exact [58,17]. The evolution of the one
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particle distribution function is then governed by the non-
local Kramers equation

∂f

∂t
+ v

∂f

∂θ
− ∂Φ

∂θ

∂f

∂v
=

∂

∂v

(

D
∂f

∂v
+ ξfv

)

, (208)

which has to be solved in conjunction with equation (8).
These equations have been considered, independently, by
Choi and Choi [34].

To simplify the problem further, we shall consider a
strong friction limit ξ → +∞ or, equivalently, a long time
limit t � ξ−1. In that case, we can neglect the inertia of
the particles and the stochastic equations (204) reduce to

dθi

dt
= −µ ∂

∂θi
U(θ1, ..., θN ) +

√
2D∗Ri(t), (209)

where µ = 1/ξ is the mobility and D∗ = D/ξ2 = T/ξ is
the diffusion coefficient in physical space. The evolution
of the N -body distribution function is governed by the
N -body Fokker-Planck equation

∂PN

∂t
=

N∑

i=1

∂

∂θi

[

D∗
∂PN

∂θi
+ µPN

∂

∂θi
U(θ1, ..., θN )

]

. (210)

The stationary solution corresponds to the canonical dis-
tribution in configuration space

PN =
1
Z
e−βU(θ1,...,θN). (211)

In the thermodynamic limit N → +∞ with η = βkM/4π
fixed, the mean-field approximation is exact and the evo-
lution of the one particle distribution function is governed
by the non-local Smoluchowski equation

∂ρ

∂t
=

∂

∂θ

[
1
ξ

(

T
∂ρ

∂θ
+ ρ

∂Φ

∂θ

)]

, (212)

where Φ is given by equation (8). Alternatively, the Smolu-
chowski equation (212) can be obtained from the non-local
Kramers equation (208) by using a Chapman-Enskog ex-
pansion in power of 1/ξ [59]. In that approximation, the
distribution function is close to the Maxwellian

f(θ, v, t) =
1√
2πT

ρ(θ, t)e−
v2
2T +O(ξ−1), (213)

and the evolution of the density is governed by the non-
local Smoluchowski equation. The equations (208) and
(212) conserve mass and decrease the Boltzmann free en-
ergy, i.e. ḞB ≤ 0. This is the canonical version of the
H-theorem [31,50].

6.2 Linear stability

The stationary solutions of equation (212) are given by
equation (19). They extremize the Boltzmann free energy
FB = E − TSB with (45) and (46) at fixed mass and
temperature. Furthermore, only stationary solutions that

minimize the free energy are linearly dynamically stable
with respect to the non-local Smoluchowski equation [31].
Therefore, thermodynamical and dynamical stability are
clearly connected: the stable stationary solutions of equa-
tion (212) correspond to the canonical statistical equilib-
rium states in the mean-field approximation.

Considering a small perturbation δρ around a station-
ary solution of equation (212), we get

∂δρ

∂t
=

∂

∂θ

[
1
ξ

(

T
∂δρ

∂θ
+ δρ

∂Φ

∂θ
+ ρ

∂δΦ

∂θ

)]

. (214)

Writing δρ ∼ eλt and introducing the notation (50), we
obtain the eigenvalue equation

d

dθ

(
1
ρ

dq

dθ

)

+
k

2πT

∫ 2π

0

q(θ′) cos(θ − θ′)dθ′ =
λξ

Tρ
q,

(215)

which is similar to the eigenvalue equations obtained in the
preceding sections. These eigenvalue equations all coincide
at the point of marginal stability λ = 0 implying that the
onset of the instability is the same in all the models con-
sidered. Equation (215) is the counterpart of equation (27)
of Chavanis et al. [57] for self-gravitating Brownian parti-
cles. We note that the eigenvalue equations (91) and (215)
for the Euler model and the Brownian model only differ
by the substitution λ2 → λξ. Therefore, the results of Sec-
tion 3.5.1 can be directly extended to the present context.

For the uniform phase, the most destabilizing mode
(n = 1) is

δρ = a1 cos θ eλt, (216)

with a growth rate

λ =
1
ξ
(Tc − T ), Tc =

kM

4π
. (217)

For T < Tc, the perturbation grows exponentially while it
is damped exponentially for T > Tc.

Considering now the clustered phase and using a per-
turbative approach similar to that of Appendix A for
T → T−

c (not detailed), we find that the perturbation
is damped exponentially with a rate

λ = −2
ξ
(Tc − T ). (218)

From equations (217) and (218), we find that, starting
from a homogeneous solution at T = T−

c , there is first
an exponential growth on a timescale ξ(Tc − T )−1. Then,
non-linear terms come into play and the system relaxes
towards a clustered state on a timescale (1/2)ξ(Tc−T )−1.

6.3 Local Fokker-Planck equation

Before studying the non-local Smoluchowski equation
(212)-(8) numerically, it may be of interest to study a
simplified problem where Φ is replaced by its equilibrium
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Fig. 18. Eigenvalues of the Sturm-Liouville equation (220).

value Φ = B cos θ, where B is fixed. Considering again
the strong friction limit, we obtain the classical (local)
Smoluchowski equation

∂ρ

∂t
=

∂

∂θ

[
1
ξ

(

T
∂ρ

∂θ
−Bρ sin θ

)]

. (219)

This Fokker-Planck equation also appears in the model of
rotation of dipoles in a constant electric field developed by
Debye. The stationary solutions of this equation are given
by equation (19). Considering a perturbation δρ ∼ eλt

around a stationary solution and setting δρ = dq/dθ, we
obtain the eigenvalue equation

d

dθ

(
1
ρ

dq

dθ

)

=
λξ

Tρ
q. (220)

This equation has the form of a Sturm-Liouville problem.
For B 	 1, so that ρ is approximately uniform, we find
to leading order that the eigenvalues are λn = −n2T/ξ
where n = 1, 2, ... Using a procedure similar to that of
Appendix A (not detailed), the next order correction is
−λnξ/T = n2 +n2/[2(4n2−1)]x2 + ... where x = βB 	 1.
The eigenvalues of the Sturm-Liouville equation (220) are
evaluated numerically in Figure 18.

For B 	 1, the Fokker-Planck equation (219) can be
solved analytically. Assuming that, initially, the density is
uniform, we find

ρ =
M

2π

[

1 + (e−t/ξβ − 1)βB cos θ
]

. (221)

For t� trelax = ξβ (relaxation time), the density reaches
its equilibrium value (19). For short times t	 1, we have

ρ =
M

2π

(

1 − 1
ξ
tB cos θ

)

. (222)

Starting from a homogeneous solution, there is first a
linear growth followed by an exponential relaxation to-
wards the clustered state on a timescale ∼ ξ/T . This
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Fig. 19. Evolution of the density profile according to the local
Fokker-Planck equation for η = 2 (corresponding to x = 3.33)
starting from a homogeneous solution (numerical simulation).
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Fig. 20. Evolution of the density profile according to the local
Fokker-Planck equation for η = 1.005 (corresponding to x =
0.2) starting from a homogeneous solution. In this case, we have
used the analytical solution (221) which is valid for B � 1.

is illustrated numerically in Figure 26 and compared
with the time evolution of the non-local Fokker-Planck
equation (212). The evolution is of course quite differ-
ent since, as we have seen, the non-local Fokker-Planck
equation displays an exponential growth on a timescale
ξ(Tc − T )−1 followed by an exponential relaxation on a
timescale (1/2)ξ(Tc − T )−1. These timescales diverge as
we approach the critical temperature Tc while there is no
critical temperature for the local Fokker-Planck equation
where B is fixed. The numerical solution of equation (219)
is shown in Figure 19 and the analytical solution (221) in
Figure 20 for two different values of η.

We also note that the change of variables

ρ = e−
1
2 βΦψ(θ, t), (223)
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Fig. 21. Characteristics of equation (229). For t → +∞, all
the particles converge at θ = π and a Dirac peak is formed.

transforms the Fokker-Planck equation (219) into a
Schrödinger-like equation (with imaginary time)

ξ
∂ψ

∂t
= T

∂2ψ

∂θ2
+ V (θ)ψ, (224)

with

V (θ) =
1
2

[

∆Φ− β

2
(∇Φ)2

]

ψ. (225)

In our case

V (θ) = −1
2

[

B cos θ +
β

2
B2 sin2 θ

]

. (226)

We can use this formalism to study the low temperature
regime T → 0. In that case, the equilibrium state is close
to a Dirac peak centered on θ = π so that we can expand
the potential to leading order in x = θ−π. Equation (219)
becomes a Kramers-like equation

∂ρ

∂t
=

∂

∂x

[
1
ξ

(

T
∂ρ

∂x
+ ρBx

)]

. (227)

The corresponding Schrödinger-like equation (224) is that
of a harmonic oscillator

ξ
∂ψ

∂t
= T

∂2ψ

∂x2
+

1
2
(B − 1

2
βB2x2)ψ. (228)

Therefore, for T → 0 the eigenvalues are given by λn =
−nB/ξ, i.e. λnξ/T = −nx (with n = 1, 2, ...) and the cor-
responding eigenfunctions are the Hermite polynomials.

It is also possible to solve the problem exactly at T = 0
by using the method of characteristics. Indeed, the Fokker-
Planck equation becomes

ξ
∂ρ

∂t
+

∂

∂θ
(ρB sin θ) = 0, (229)
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Fig. 22. Evolution of the density profile at T = 0 starting
from a homogeneous distribution.

which is equivalent to an advection equation by a velocity
field v = (B/ξ) sin θ. Therefore, the evolution is determin-
istic and the equation of motion of a particle is

dθ

dt
=

1
ξ
B sin θ. (230)

This equation of motion is readily solved and we get

θ(t) = 2Arctan
[

tan
(
θ0
2

)

eBt/ξ

]

, (231)

where θ0 is the initial position of the particle. The char-
acteristics are shown in Figure 21. For t → +∞, all
the particles converge at θ = π and a Dirac peak is
formed. The density profile is determined by the condition
ρ0dθ0 = ρ(θ, t)dθ yielding ρ(θ, t) = ρ0/(dθ/dθ0). From
equation (231), we get

ρ(θ, t) =
ρ0[1 + tan2(θ/2)]e−Bt/ξ

1 + tan2(θ/2)e−2Bt/ξ
. (232)

This profile is shown in Figure 22 at different times.
To make the link between Figures 21 and 10, we can

consider an intermediate hydrodynamical equation

∂u

∂t
+ u

∂u

∂θ
= −1

ρ

∂p

∂θ
− ∂Φ

∂θ
− ξu. (233)

This could be called the damped Euler equation (see Cha-
vanis [31]). For ξ = 0 we recover the Euler equation (67)
and for ξ → +∞, using the continuity equation (66), we
recover the Smoluchowski equation (212). For p = 0 and
Φ = B cos θ, equation (233) can be solved by the method
of characteristics and the results are reported in Figure 23.
This clearly shows the passage from Figure 10 to Figure 21
as the friction parameter ξ increases.

6.4 Dynamics of Brownian particles in interaction

We now turn to the evolution of a system of Brown-
ian particles in interaction described by the N -coupled
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Fig. 23. Characteristics of the damped Euler equation (233)
for p = 0 and Φ = B cos θ. The ratio ξ/B = 1/2.
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Fig. 24. Evolution of the density profile according to the non-
local Fokker-Planck equation. For η = 0.769 < 1, the homoge-
neous solution is stable.

stochastic equations (204). Despite all the simplifications
introduced, this model remains a non-trivial and interest-
ing model exhibiting a process of self-organization. In par-
ticular, it shows the passage from a homogeneous phase
(disk-like) to a clustered phase (bar-like) under the influ-
ence of long-range interactions. Interestingly, the large N
limit of this system is exactly described by an explicit ki-
netic equation (208) reducing to equation (212) for large
times. By contrast, the kinetic equation describing the
evolution of the HMF model (1) towards statistical equi-
librium is not known as the collision term cancels out at
the order 1/N within the approximations usually consid-
ered (see Sect. 5).

For the Brownian gas, we have to solve the integro-
differential equation

ξ
∂ρ

∂t
= T

∂2ρ

∂θ2
+

k

2π
∂

∂θ

{

ρ

∫ 2π

0

sin(θ − θ′)ρ(θ′, t)dθ′
}

.

(234)
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Fig. 25. For η = 2 > 1, the homogeneous solution (disk-
like) is unstable and the system forms a cluster (bar-like). The
evolution is longer than with the local Fokker-Planck equation
represented in Figure 19 as also shown in the next figure and
explained in the text.
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Fig. 26. Evolution of the different modes an(t) for the non-
local (full lines) and local (dashed lines) Fokker-Planck equa-
tions. The control parameters are η = 2, x = 3.33.

Substituting the decomposition

ρ = a0(t) +
+∞∑

n=1

an(t) cos(nθ) (235)

in equation (234), we find that

a0 =
M

2π
, (236)

ξ
da1

dt
+ Ta1 =

k

2
a1

(
M

2π
− a2

2

)

, (237)

ξ
dan

dt
+ Tn2an =

k

4
na1(an−1 − an+1), (n ≥ 2). (238)



P.H. Chavanis et al.: Dynamics and thermodynamics of the HMF model 91

We note that the coefficient a1(t) is related to the mag-
netization B(t), defined in equation (10), by the formula
B(t) = −k

2a1(t). According to equations (20), (21) and
(22), the coefficients an are given at equilibrium by

an =
M

π
(−1)n In(βB)

I0(βB)
. (239)

Therefore, the static equations (237) and (238) with
d/dt = 0 coincide with the recursive relations satisfied
by the Bessel functions In(x).

For T → T−
c , the coefficients scale as an ∼ Bn with

B 	 1. Therefore, after a transient regime of order 1/Tn2,
equation (238) can be simplified in

an =
k

4T
1
n
a1an−1. (240)

In particular, for n = 2, we get a2 = k
8T a

2
1. This shows

that the second mode is slaved to the first. Substituting
this in equation (237), we get

ξ
da1

dt
+ (T − Tc)a1 = − k2

32T
a3
1. (241)

This equation is readily solved (it may be convenient to
use p = a2

1 as a variable) and we obtain

a2
1(t) =

A(Tc − T )e2(Tc−T )t/ξ

1 + Ak2

32T e
2(Tc−T )t/ξ

, (242)

where

A =
a1(0)2

(Tc − T ) − k2a1(0)2

32T

. (243)

For t → +∞, we get a1(∞)2 = 32T
k2 (Tc − T ), or equiv-

alently B2 = 8T (Tc − T ). We thus recover the equi-
librium result (32) valid close to the critical point. The
approach to equilibrium for t → +∞ is governed by
δa1(t)/a1(∞) = 16T

A2k2 e
−2(Tc−T )t/ξ yielding the damping

rate (218). On the other hand, for t 	 trelax, one has
a1(t) = a1(0)e(Tc−T )t/ξ yielding the growth rate (217).
Finally, at T = Tc, Eq. (241) leads to

a1(t) = ± 1
√

1
a1(0)2

+ k2t
16ξTc

. (244)

so that the magnetization B(t) = −k
2a1(t) tends to zero

algebraically as t−1/2 for t → +∞. Using equation (240),
the coefficients an(t) are expressed in terms of a1(t) by

an =
(
k

4T

)n−1 1
n!
an
1 . (245)

In the previous calculations, we have assumed for simplic-
ity that the density profile is symmetrical with respect
to the x-axis. The general case is treated in Appendix F.
Away from the critical point, the non-local Smoluchowski

equation has to be solved numerically. Some numerical
simulations are shown in Figures 24–26. Note also that
for T → 0 and for sufficiently large times, the density is
peaked around θ = π and equation (234) becomes equiva-
lent to the local Kramers equation (227) withB = kM/2π.
Therefore, for T → 0, the eigenvalues of equation (215)
tend to λn = −nkM/2πξ (harmonic oscillator). Substitut-
ing ξλ → λ2, we deduce that, for T → 0, the eigenvalues
of Eq. (91) tend to λ2

n = −nkM/2π (they are represented
in Fig. 9).

7 The multi-species HMF model

We finally briefly comment on the generalization of the
preceding results to the case of the multi-species HMF
model. We thus return to the Hamiltonian equations (1)
and account for the possibility of having particles with
different masses. Stellar systems also possess a mass spec-
trum, so this generalization has a counterpart in astro-
physics.

Considering first the statistical equilibrium state, a
straightforward generalization of the counting analysis of
Section 2.2 yields

W ({nia}) =
∏

a

Na!
∏

i

νnia

nia!
, (246)

for the probability of the state {nia}, where nia gives the
number of particles with mass ma in the ith macrocell.
Therefore, the entropy S = lnW of the multi-species gas is

S = −
∑

a

∫
fa

ma
ln

fa

ma
dθdv, (247)

where fa(θ, v)dθdv gives the total mass of particles of
species a in (θ, v). The distribution function of the whole
assembly is

f(θ, v) =
∑

a

fa(θ, v). (248)

The statistical equilibrium state is obtained by maximiz-
ing the entropy (247) while conserving the total energy E
and the mass Ma of each species of particles. This yields

fa = A′
ae

−βma( v2
2 +Φ), (249)

which generalizes equation (18). Note that the inverse
temperature β is the same for all species in accordance
with the theorem of equipartition of energy. This clearly
leads to a mass segregation since the r.m.s. velocity of
species a decreases with the mass: 〈v2〉a = T/ma. More
precisely, equation (249) implies

fa(ε) = Cab[fb(ε)]ma/mb , (250)

where Cab is a constant. Therefore, heavy particles will
have the tendency to occupy regions of low energy. Recall,
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by contrast, that there is no mass segregation in Lynden-
Bell’s statistical theory of violent relaxation for collision-
less systems (see Sect. 4) since the mass of the particles
does not appear in the Vlasov equation [11]. It would be
of interest to study these problems of mass segregation
with the HMF model for which numerical simulations are
simpler than with gravitational systems.

Considering now the collisional relaxation, a straight-
forward generalization of the Lenard-Balescu equation to
a multi-species system yields

∂fa

∂t
=
k2

4
∂

∂v

∑

b

∫
dv′

δ(v − v′)
|ε(1, v)|2

(

mbf
′
b

∂fa

∂v
−mafa

∂f ′
b

∂v′

)

(251)

with

ε(1, ω) = 1 +
k

2

∑

b

∫
f ′

b(v)
v − ω

dv. (252)

We now see that the collision term does not vanish any-
more when there are at least two different species. The
diffusion and the friction experienced by a particle of one
species are caused by collisions with particles of another
species. Equation (251) can be rewritten in the suggestive
form

∂fa

∂t
=

∂

∂v

∑

b

[

Dab
∂fa

∂v
−Dab

∂fb

∂v

]

, (253)

where

Dab =
k2

4
mbfb

|ε(1, v)|2 , (254)

is the diffusion coefficient for species a due to collisions
with species b and

Dab =
k2

4
mafa

|ε(1, v)|2 , (255)

is an “off-diagonal” diffusion coefficient. It corresponds to
a friction force

ηa = −Dab

fa

∂fb

∂v
. (256)

These diffusion coefficients satisfy the relation

Dab

mafa
=

Dab

mbfb
. (257)

These results are similar to those obtained by Dubin
[48] for the multi-components point vortex gas in two
dimensions. When the profile of angular velocity is non-
monotonic, the vorticity profile evolves under the effect of
long-range collisions caused by a process of resonance [47,
45,3]. When the profile of angular velocity is monotonic,
there is no evolution for the single-species system. An evo-
lution is, however, possible for the distribution function of
each species in the multi-components system. In a sense,

at the order 1/N , the kinetic theory of the point vortex
gas (evolution of the single-species system when the angu-
lar velocity profile is non-monotonic) is intermediate be-
tween the kinetic theory of stellar systems (evolution of
the single-species system in any case) and the kinetic the-
ory of the HMF model (no evolution of the single-species
system).

Therefore, the results of Dubin [48] can be directly
transposed to the present context. In particular, we note
that the total distribution function

∑
a fa(v, t) = f(v) is

stationary so that the conservation of energy is trivially
satisfied. On the other hand, a H-theorem can be proved
for the entropy (247), i.e. Ṡ ≥ 0. The equality Ṡ = 0
corresponds to vanishing currents

Ja = −
∑

b

[

Dab
∂fa

∂v
−Dab

∂fb

∂v

]

= 0, (258)

implying the following equilibrium relation between the
densities

fa(v) = Kab[fb(v)]ma/mb , (259)

whereKab is a constant independent on v. This equation is
similar to equation (250) but, here, fa(v) is not necessarily
the Maxwellian. Indeed, equation (259) is satisfied by any
distribution of the form fa(v) = Aaexp[−βmaχ(v)], where
χ(v) is determined by the initial conditions.

We can use these results to study the relaxation of
a test particle of mass m in a bath of field particles
with mass mf . Neglecting collective effects for simplicity,
we find that the equivalent of the Fokker-Planck equa-
tion (184) is now

∂P

∂t
=

∂

∂v

[

D(v)
(
∂P

∂v
+ βmPv

)]

. (260)

with

D(v) =
nk2

4
m2

f

(
βmf

2π

)1/2

e−βmf
v2
2 , (261)

where n is the number density of field particles. The equi-
librium distribution of the test particle is

Peq(v) =
(
βm

2π

)1/2

e−βm v2
2 . (262)

The timescale of collisional relaxation is

tr =
v3

mf

0.121nm2
fk

2
, (263)

and t′r = 2(mf/m)tr. In dimensionless form, equa-
tion (260) can be rewritten

∂P

∂t
=

1
tR

∂

∂w

[

G(w)
(
∂P

∂w
+ 2

m

mf
Pw

)]

, (264)

with

tR =
v3

m

0.05nm2
fk

2
(265)
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and G(w) = e−w2
. If we properly account for collective

effects, the diffusion coefficient is given by

D(v) =
nk2

4 m2
f (βmf

2π )1/2e−βmf
v2
2

[1 − ηA(
√
βmfv)]2 + π

2 η
2βmfv2e−βmfv2 , (266)

where η = kMmf

4πT . On the other hand, for a distribution of
the bath of the form f0(v), the Fokker-Planck equation is

∂P

∂t
=

∂

∂v

[

D(v)
(
∂P

∂v
− m

mf
P
d ln f0
dv

)]

, (267)

with D(v) = k2

4 mff0(v)/|ε(1, v)|2. We note that the
equilibrium distribution of the test particle is Peq(v) =
Af0(v)m/mf .

8 Conclusion

In this paper, we have given an exhaustive description
of the HMF model that recently appeared in statistical
mechanics as a simple model with long-range interactions
similar to self-gravitating systems. The originality of our
approach is to offer an overview of the subject and to see
how different models (Hamiltonian, Brownian, fluids,...)
are related to each other. Other studies concentrate in
general on a specific aspect of the problem. We think that
putting all the models in parallel is illuminating because
they are closely connected to each other so that a unified
(and aesthetic) description can be given. These connec-
tions were previously noted by one of us (P.H.C) in the
case of 3D self-gravitating systems and it was natural to
extend these results to the HMF model. A more general
approach is given in Chavanis [17] for an arbitrary po-
tential of interaction in D dimensions. The present paper
can be seen as a particular application of this general for-
malism for a one dimensional potential truncated to one
mode. The main interest of the HMF model in this context
is to yield simple explicit results.

Another originality of our approach is to emphasize the
connection between the HMF model and self-gravitating
systems (and 2D vortices) although this link is only
sketched in other papers, except in the early work of Ina-
gaki. Many concepts and technics that are well-known in
astrophysics have been rediscovered for the HMF model,
sometimes with a different point of view. This is true in
particular for the notion of violent relaxation and metae-
quilibrium states. In statistical mechanics, this has been
approached via a notion of “generalized thermodynamics”
(Tsallis [36]) although it was understood early in astro-
physics (Lynden-Bell [11], Tremaine et al. [14]) that these
metaequilibrium states correspond to particular station-
ary solutions of the Vlasov equations on a coarse-grained
scale (Chavanis et al. [39], Chavanis [19]). Thus, our dy-
namical interpretation of Tsallis functional as a particular
H-function differs from the thermodynamical interpreta-
tion given by Boghosian [60], Latora et al. [61] and Taruya
& Sakagami [62].

Concerning the interest of the HMF model for astro-
physicists, we have shown that it exhibits the same types
of behaviors as 3D self-gravitating systems while being
much simpler to study because it is one dimensional and
avoids complicated problems posed by the divergence of
the gravitational potential at short distances and the ab-
sence of a large-scale confinement. Thus, it distinguishes
what is common to long-range interactions and what is
specific to gravity. This comparative study should bring
new light in the statistical mechanics of self-gravitating
systems which has long been a controversial subject. Other
simplified models of gravity have been introduced such as
the parallel planar sheets of Camm [63], the concentric
spherical shells of Hénon [64] or the toy models of Lynden-
Bell & Lynden-Bell [65] and Padmanabhan [2]. These toy
models have often allowed advances in the description of
more realistic self-gravitating systems that are difficult to
study in full detail. We think that, similarly, the HMF
model should find its place in the astrophysical literature.

Another interest of the HMF model is to allow to study
in great detail what happens close to the critical point. In
the HMF model, the potential is truncated to one mode
n = 1 and there exists a critical temperature Tc = kM/4π
below which the uniform phase is unstable. For infinite
homogeneous self-gravitating systems, there is a continu-
ous spectrum of modes but there exists a critical wave-
length λJ = (πT/Gmρ)1/2 (depending on the tempera-
ture) above which the system is unstable. Alternatively,
if we fix the size of the system (for example by placing it
in a box of radius R), the maximum wavelength is R and
the Jeans instability criterion now determines a critical
temperature Tc ∼ GmM/(πR) below which the system
becomes unstable (we have used λJ = R and ρ ∼M/R3).
In fact, in the case of box-confined gravitational systems,
we must consider that the gaseous phase is inhomogeneous
and use a more precise stability analysis (Chavanis [20])
yielding Tc = GmM/(2.52R). These remarks show that
the critical temperature in the HMF model plays exactly
the same role as the critical temperature in finite isother-
mal spheres. Now, in the framework of the HMF model, it
is possible to study how the mean-field results are altered
close to the critical point due to collective effects. This
is more complicated for self-gravitating systems because
they are inhomogeneous. However, on a qualitative point
of view, we expect similar results: divergence of the two-
point correlation function like in equation (61), divergence
of the force auto-correlation function like in equation (64),
alteration of the diffusion coefficient and increase of the re-
laxation time like in equation (190), increase of the decor-
relation time like in equation (197)... These problems are
difficult to study for self-gravitating systems but they are
of considerable importance. They have never been dis-
cussed in detail because it is usually implicitly assumed
that the system size is much smaller than the Jeans scale
(or the temperature much larger than Tc) so that collective
effects are neglected and the dielectric function is approxi-
mated as ε  1. The present simplified study is a first step
to understand the failure of the mean-field approximation
close to the critical point and it can thus find important
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applications in theoretical astrophysics. Note that fluctua-
tions in isothermal spheres close to the critical point have
been studied by Katz and Okamoto [66] and Chavanis [18].

Finally, we have given an astrophysical application of
the HMF model in relation with the formation of bars
in spiral galaxies, following the original idea of Pichon
and Lynden-Bell. This simple model is consistent with the
phenomenology of structure formation which results from
a competition between long-range interactions (gravity)
and thermal motion (velocity dispersion). It is sometimes
argued that the moment of inertia α−1 of stellar orbits
can be negative [10]. In that case, we must consider equa-
tion (1) with k < 0. This corresponds to the repulsive
(anti-ferromagnetic) HMF model. Now, Barré et al. [30]
have observed that this model leads to the formation of
a bicluster. In the stellar disk analogy, the equivalent of
the “bicluster” would be two bars perpendicular to each
other. We do not know whether this type of structure is
observed in astrophysics.

One of us (P.H.C) is grateful to Donald Lynden-Bell for in-
spiring discussions some years ago. He is also grateful to Pr.
D. Dubin for drawing his attention to his work on non-neutral
plasmas. We would like to thank T. Dauxois for interesting
discussions.

Appendix A: Estimate of the eigenvalue close
to the critical point

For simplicity, we restrict ourselves to symmetrical per-
turbations with respect to the x-axis. The general case is
treated in Appendix F by another method. In the canon-
ical ensemble, we have to study the eigenvalue equation
(V = 0):

d

dθ

(
1
ρ(θ)

dq

dθ

)

+
k

2πT

∫ 2π

0

q(θ′) cos(θ − θ′)dθ′ = 2λq,

(268)

where ρ(θ) is the equilibrium density profile and q(θ) is
the perturbation. We consider the clustered phase close
to the critical point Tc. Thus, we can perform a system-
atic expansion of the parameters in powers of B 	 1 or,
equivalently, in powers of x = βB 	 1.

Using equations (20) and (21), the density profile can
be expanded as

1
ρ

=
2π
M

[

1 + x cos θ +
x2

4
(1 + 2 cos2 θ) + ...

]

. (269)

Substituting this result in equation (268), and using the
expansion (30) of the temperature, we obtain

d

dθ

{

π

[

1 + x cos θ +
x2

4
(1 + 2 cos2 θ)

]
dq

dθ

}

+
(

1 +
x2

8

) ∫ 2π

0

q(θ′) cos(θ − θ′)dθ′ = µx2q. (270)

where we have set λM = µx2 with µ = O(1). Here, λ
refers to the largest eigenvalue of equation (268) which
is equal to zero for x = 0 (the other eigenvalues are
λnM = −πn2 + O(x) for n ≥ 2). Furthermore, the fol-
lowing expansion shows that the term of order x vanishes
so we have directly written λ ∼ x2. According to equa-
tion (30), we have

λ =
8µ
M

(
β

βc
− 1

)

, (271)

where µ has to be determined self-consistently. We thus
expand the perturbation as

q(θ) = q0(θ) + x q1(θ) + x2 q2(θ) + ... (272)

and we introduce the differential operator

Lq = π
d2q

dθ2
+

∫ 2π

0

q(θ′) cos(θ − θ′)dθ′. (273)

To order 0, we have
Lq0 = 0, (274)

yielding q0 = sin θ. To order 1, we get

Lq1 = π sin(2θ), (275)

yielding

q1 = −1
4

sin(2θ) + C sin θ, (276)

where C is an arbitrary constant. Finally, to order 2, we
have after simplification

Lq2 =
(

µ+
π

4

)

sin θ + πC sin(2θ) − 3π
8

sin(3θ), (277)

yielding
µ = −π

4
, (278)

and

q2 = D sin θ − C

4
sin(2θ) +

1
24

sin(3θ), (279)

where D is an arbitrary constant. Therefore, close to the
critical point, the largest eigenvalue of equation (268) is

λM = −π
4
x2, or λM = −2π

(
β

βc
− 1

)

. (280)

We can obtain the expression of the eigenvalue by a
slightly different method. We consider the Hilbert space of
2π-periodic continuous real functions with scalar product

〈f, g〉 =
1
2π

∫ 2π

0

f(θ)g(θ)dθ. (281)

We note that the operator (273) is Hermitian in the sense
that

〈Lf, g〉 = 〈f,Lg〉. (282)
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The equation obtained to second order can be written

Lq2 = g(θ), (283)

with

g(θ) =
(

µ+
π

4

)

sin θ + πC sin(2θ) − 3π
8

sin(3θ). (284)

We note q0 the Kernel of L, i.e. Lq0 = 0. Then, we have
the condition of solvability

〈q0, g〉 = 0. (285)

Indeed,

〈q0, g〉 = 〈q0,Lq2〉 = 〈Lq0, q2〉 = 0. (286)

In our case, q0 = sin θ, so that the condition 〈q0, g〉 = 0
with (284) yields equation (278).

In the microcanonical ensemble, we have to study the
eigenvalue equation (V �= 0):

d

dθ

(
1
ρ(θ)

dq

dθ

)

+
k

2πT

∫ 2π

0

q(θ′) cos(θ − θ′)dθ′

=
2V
MT 2

dΦ

dθ
+ 2λ′q. (287)

To leading order in B 	 1, the term 2V
MT 2

dΦ
dθ can be writ-

ten 2π
M x2 sin θ. Therefore, equation (287) becomes

d

dθ

{

π

[

1 + x cos θ +
x2

4
(1 + 2 cos2 θ)

]
dq

dθ

}

+
(

1 +
x2

8

) ∫ 2π

0

q(θ′) cos(θ − θ′)dθ′ = πx2 sin θ + µ′x2q.

(288)

The eigenvalue is now

µ′ = −π
4
− π = −5π

4
, (289)

yielding

λM = −5π
4
x2, or λM = −10π

(
β

βc
− 1

)

. (290)

Although the onset of instability is the same in the two
ensembles, the eigenvalues differ in the condensed phase.

Appendix B: Some useful identities

For any system described by a distribution function
f(θ, v), we define the density and the pressure by

ρ =
∫
fdv, p =

∫
fv2 dv. (291)

The kinetic temperature T = p/ρ is equal to the velocity
dispersion of the particles. If the distribution function is
of the form f = f(ε) with ε = v2

2 + Φ(θ), we have

dp

dθ
=

∫
f ′(ε)

dΦ

dθ
v2dv =

dΦ

dθ

∫
∂f

∂v
vdv

= −dΦ
dθ

∫
fdv = −ρdΦ

dθ
, (292)

which returns the condition of hydrostatic balance (70).
This relation is equivalent to

p′(ρ)
ρ

= − 1
ρ′(Φ)

. (293)

Now, we note that

dρ

dΦ
=

∫
f ′(ε) dv =

∫
∂f

∂v

1
v
dv. (294)

This yields the important identity

p′(ρ)
ρ

=
−1

∫
∂f
∂v

1
v dv

. (295)

This identity is valid for both homogeneous and inhomo-
geneous systems. It may be useful to rederive it in the case
of homogeneous systems since Φ = 0 in that case so that
the above procedure is ill-determined.

We consider a homogeneous system described by the
distribution function f = F (β v2

2 + α) where α is a La-
grange multiplier taking into account the conservation of
mass (normalization). In that case, ρ = ρ(α) and p = p(α).
Now,

dp

dα
=

∫
F ′(β

v2

2
+ α)v2 dv

=
∫

∂

∂v
F (β

v2

2
+ α)

v

β
dv = − ρ

β
, (296)

and

dρ

dα
=

∫
F ′(β

v2

2
+ α) dv

=
∫

∂

∂v
F (β

v2

2
+ α)

1
βv
dv =

∫
f ′(v)
βv

dv. (297)

Eliminating α from the foregoing relations, we obtain

p′(ρ)
ρ

=
−1

∫ f ′(v)
v dv

, (298)

which is consistent with equation (295). Now, introducing
the velocity of sound c2s = p′(ρ) and using ρ = M/2π, we
get

c2s = −M
2π

1
∫ +∞
−∞

f ′(v)
v dv

. (299)
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Appendix C: General dispersion relation
for a gaseous system

We consider the Euler equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (300)

ρ

[
∂u
∂t

+ (u · ∇)u
]

= −∇p− ρ∇Φ, (301)

in D dimensions and for an arbitrary binary potential of
interaction u(|r− r′|) such that

Φ(r, t) =
∫
u(r − r′)ρ(r′, t)dDr′. (302)

We also consider an arbitrary barotropic equation of state
p = p(ρ). Clearly, ρ = Cst., u = 0 and Φ = 0 is a
stationary solution of equation (300–302) provided that∫
u(x)dDx = 0 (for the gravitational potential, this is not

the case and we must advocate the Jeans swindle). We
shall restrict ourselves to such homogeneous solutions. The
linearized Euler equations are

∂δρ

∂t
+ ρ∇ · δu = 0, (303)

ρ
∂δu
∂t

= −p′(ρ)∇δρ− ρ∇δΦ, (304)

δΦ(r, t) =
∫
u(r − r′)δρ(r′, t)dDr′. (305)

These equations can be combined to give

∂2δρ

∂t2
− c2s∆δρ− ρ∆δΦ = 0, (306)

where we have introduced the velocity of sound c2s = p′(ρ).
We introduce the Fourier transform of the interaction po-
tential such that

u(x) =
∫
eik·xû(k)dDk. (307)

Taking the Fourier transform of equations (305) and (306)
with the convention δρ ∼ ei(k·r−ωt), and combining the
resulting expressions, we find that

ω2 = c2sk
2 + (2π)Dû(k)k2ρ, (308)

which is the required dispersion relation. The system will
be unstable if

c2s + (2π)Dû(k)ρ < 0. (309)

In particular, it is necessary that û(k) < 0 correspond-
ing to attractive potentials. In that case, the condition of
instability reads

c2s < (c2s)crit ≡ (2π)Dρ|û(k)|max. (310)

Then, the unstable lengthscales are determined by equa-
tion (309). Various situations can happen [17] depending
on the form of the potential û(k). For the gravitational
interaction in D = 3, using ∆u = 4πGδ(x), we have
(2π)3û(k) = −4πG/k2. We recover the usual formula [15]:

ω2 = c2sk
2 − 4πGρ. (311)

The system is always unstable ((c2s)crit = ∞) for suffi-
ciently large wavelengths or equivalently for

k < kJ ≡
(

4πGρ
c2s

)1/2

, (312)

where kJ is the Jeans wave number. For the HMF model,
ûn = 0 if n �= ±1 and û±1 = − k

4π . In that case, equa-
tion (308) returns equation (87). The system is unstable
for the mode n = 1 if c2s < kM/4π.

Appendix D: General dispersion relation
for a stellar system

We consider the Vlasov equation

∂f

∂t
+ v · ∂f

∂r
−∇Φ · ∂f

∂v
= 0, (313)

in D dimensions and for an arbitrary binary potential of
interaction u(|r − r′|) as before. Clearly, a distribution
function f = f0(v) which depends only on the velocity
is a stationary solution of equation (313) under the same
assumptions as before. We shall restrict ourselves to such
homogeneous solutions. The linearized Vlasov equation is

∂δf

∂t
+ v · ∂δf

∂r
−∇δΦ · ∂f0

∂v
= 0, (314)

which must be supplemented by

δΦ(r, t) =
∫
u(r− r′)δρ(r′, t)dDr′. (315)

Taking the Fourier transform of equations (314) and (315)
with the convention δf ∼ ei(k·r−ωt) and combining the
resulting expressions, we find that

(ω − k · v)δf̂ + (2π)Dû(k)k · ∂f0
∂v

∫
δf̂(k,v, ω)dDv = 0.

(316)

This can be rewritten

ε(k, ω) ≡ 1 + (2π)Dû(k)
∫

k · ∂f0
∂v

ω − k · vd
Dv = 0, (317)
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which is the dispersion relation of the system. For the
gravitational interaction in D = 3, using (2π)3û(k) =
−4πG/k2, we recover the usual formula [15]:

1 − 4πG
k2

∫
k · ∂f0

∂v

ω − k · vd
Dv = 0. (318)

For the HMF model, we recover equation (117).

Appendix E: General dispersion relation
for a Brownian system

We finally consider a gas of Brownian particles in interac-
tion described in the strong friction limit by the Smolu-
chowski equation

∂ρ

∂t
= ∇ ·

[
1
ξ
(T∇ρ+ ρ∇Φ)

]

, (319)

where Φ is given by equation (302). Under the same con-
ditions as in Appendix C, the linearized Smoluchowski
equation is

∂δρ

∂t
= ∇ ·

[
1
ξ
(T∇δρ+ ρ∇δΦ)

]

. (320)

Taking the Fourier transform of equation (320), we obtain
the dispersion relation

iξω = Tk2 + (2π)Dû(k)k2ρ, (321)

which can be compared to equation (308). In the gravita-
tional case, we get

iξω = Tk2 − 4πGρ. (322)

The stability condition coincides with the Jeans criterion
for an isothermal gas

k < kJ ≡
(

4πGρ
T

)1/2

. (323)

However, the stable modes are exponentially damped in
the case of Brownian particles while they have an oscilla-
tory nature in the case of gaseous systems. For a sinusoidal
potential of interaction, we recover equation (217).

Appendix F: Generalization of the analytical
solution (242) to arbitrary perturbations

In Section 6.4, we have restricted our analysis to density
profiles that are always even, i.e. ρ(−θ, t) = ρ(θ, t). It
is not difficult to relax this hypothesis. Let us write the

density profile in the general form

ρ =
+∞∑

n=−∞
an(t)einθ. (324)

Substituting this decomposition in equation (234), we find
that

a0 =
M

2π
, (325)

ξ
dan

dt
+ Tn2an =

k

2
n(a1an−1 − a−1an+1). (326)

To first order in Tc − T 	 Tc, we can neglect an with
|n| ≥ 3. We thus get

a±2 =
k

4T
a2
±1. (327)

The equations for the modes a±1 are therefore

ξ
da1

dt
+ (T − Tc)a1 = − k2

8T
a2
1a−1, (328)

ξ
da−1

dt
+ (T − Tc)a−1 = − k2

8T
a2
−1a1. (329)

At that point, it is convenient to introduce the variables
p = a1a−1 and X = a1 +a−1. They satisfy the differential
equations

ξ
dX

dt
+ (T − Tc)X = − k2

8T
pX, (330)

ξ
dp

dt
+ 2(T − Tc)p = − k2

4T
p2. (331)

The equation for p is readily solved and we obtain

p(t) =
2A(Tc − T )e2(Tc−T )t/ξ

1 + Ak2

4T e2(Tc−T )t/ξ
. (332)

Substituting this result in equation (330) and solving the
resulting equation, we get

X(t) =
B

√
|Ak2

4T + e−2(Tc−T )t/ξ|
. (333)

The modes a1 and a−1 are deduced from X and p by
solving the second order equation a2−Xa+p = 0 yielding

a±1(t) =
X(t) ± √

∆(t)
2

. (334)
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The discriminant can be written

∆ =
B2 − 8|A|(Tc − T )
|k2A

4T + e−2(Tc−T )t/ξ| . (335)

The constants of integration A and B, which can be pos-
itive or negative, are fixed by the initial condition. They
must satisfy ∆(0) ≥ 0, i.e. B2 ≥ 8|A|(Tc − T ). Then,
∆(t) ≥ 0 at all times. If initially a−1(0) = a1(0), then
∆(0) = 0. By equation (335), this implies that ∆(t) = 0
for all times. Therefore, if the initial perturbation is even,
it remains even during all the evolution. We thus recover
the results of Section 6.4 with a1 equals to 2a±1 with the
present notations. Finally, for T = Tc, equations (330) and
(331) lead to

p(t) =
1

1
p(0) + k2t

4ξTc

, X(t) =
X(0)

√
1 + k2p(0)t

4ξTc

. (336)

We can also use this approach to study the dynami-
cal stability of stationary solutions of equation (234). By
truncation to order 2 (a3 = a−3 = 0), we obtain the
equilibrium relations: B = −kae

1 (we suppose ae
1 = ae

−1

without lack of generality), ae
2 = ae

−2 = 2
k (Tc − T ) and

B2 = 8Tc(Tc−T ). These expressions are valid up to order
1 in Tc − T . Let us compute the four smallest eigenval-
ues corresponding to the relaxation towards equilibrium.
Defining an = ae

n + exp(λt)δan, we obtain after lineariza-
tion MY = 0 where Y is a row vector of components
T (δa1, δa−1, δa2, δa−2) and

M =







−ξλ+∆T −∆T −√
2Tc∆T 0

−∆T −ξλ+∆T 0 −√
2Tc∆T

4
√

2Tc∆T 0 −ξλ− 4T 0
0 −4

√
2Tc∆T 0 −ξλ− 4T







where we have set ∆T = Tc − T . The eigenvalues are the
zeros of the determinant of M . The two lowest eigenvalues
scale as (Tc−T ) so we set λ = 1

ξ (Tc−T )λ1. First dividing
the two first rows and the two first columns by

√
(Tc − T ),

and dividing the two last rows by 2
√

2Tc and the two last
columns by

√
2Tc we obtain at leading order

det






−λ1 + 1 −1 −1 0
−1 −λ1 + 1 0 −1
2 0 −1 0
0 −2 0 −1




 = 0

which gives λ2
1 + 2λ1 = 0. The smallest eigenvalue λ1 = 0

is the neutral mode associated to the angle rotation invari-
ance, whereas the smallest non zero eigenvalue is λ1 = −2
or equivalently λ = − 2

ξ (Tc − T ). The two consecutive
eigenvalues are of order 0. Considering the determinant
of M at order 0, we obtain two degenerate eigenvalues
λ = −4Tc/ξ. We note that this degeneracy will be re-
moved at next order.
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16. Y.Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, S.
Ruffo, Physica A 337, 36 (2004)

17. P.H. Chavanis, 2004, cond-mat/0409641
18. P.H. Chavanis, A&A 432, 117 (2005)
19. P.H. Chavanis, A&A 401, 15 (2003)
20. P.H. Chavanis, A&A 381, 340 (2002)
21. P.H. Chavanis, Phys. Rev. E 65, 056123 (2002)
22. J. Katz, MNRAS 183, 765 (1978)
23. J. Katz, MNRAS 190, 497 (1980)
24. J. Katz, Found. Phys. 33, 223 (2003)
25. S. Chandrasekhar, J. von Neumann, ApJ 95, 489 (1942)
26. P.H. Chavanis, C. Sire, Phys. Rev. E 62, 490 (2000)
27. D.D. Holm, J.E. Marsden, T. Ratiu, A. Weinstein, Phys.

Rep. 123, 1 (1985)
28. P.H. Chavanis, C. Sire, 2004, cond-mat/0409569
29. M. Vergassola, B. Dubrulle, U. Frisch, A. Noullez, A&A

289, 325 (1994)
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59. P.H. Chavanis, P. Laurençot, M. Lemou, Physica A 341,

145 (2004)
60. B.M. Boghosian, Phys. Rev. E 53, 4754 (1996)
61. V. Latora, A. Rapisarda, C. Tsallis, Physica A 305, 129

(2002)
62. A. Taruya, M. Sakagami, Physica A 322, 285 (2003)
63. G.L. Camm, MNRAS 110, 305 (1950)
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