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We explain the emergence and robustness of intense jets in highly turbulent planetary
atmospheres, like that on Jupiter, by a general statistical mechanics approach to
potential vorticity patches. The idea is that potential vorticity mixing leads to the
formation of a steady organized coarse-grained flow, corresponding to the statistical
equilibrium state. Our starting point is the quasi-geostrophic 1-1/2 layer model, and
we consider the relevant limit of a small Rossby radius of deformation. Then narrow
jets are obtained, in the sense that they scale like the radius of deformation. These jets
can be either zonal, or closed into a ring bounding a vortex. Taking into account the
beta-effect and a sublayer deep shear flow, we predict organization of the turbulent
atmospheric layer into an oval-shaped vortex within a background shear. Such an
isolated vortex is centred over an extremum of the equivalent topography, combining
the interfacial geostrophic tilt due to the deep shear flow and the planetary beta-effect
(the resulting effective beta-effect is locally quadratic). This prediction is in agreement
with an analysis of wind data in major Jovian vortices (Great Red Spot and Oval
BC).

1. Introduction
Atmospheric and oceanic flows are often organized into narrow jets. They can

flow zonally around the planet like the jet streams in the Earth’s stratosphere, or
the eastward jet at 24◦ latitude in the northern hemisphere of Jupiter (Maxworthy
1984). Jets can alternatively become organized into rings, forming vortices, like the
rings shed by the meandering of the Gulf-Stream in the western Atlantic Ocean. The
flow field in Jupiter’s most famous feature, the Great Red Spot, is an oval-shaped
jet, rotating in the anticyclonic direction and surrounding an interior area with a
weak mean flow (Dowling & Ingersoll 1989), see figure 1(a). It is located at the same
latitude as the above-mentioned eastward jet, but in the southern hemisphere. Robust
cyclonic vortices are also observed with a similar jet structure (Hatzes et al. 1981),
see figure 1(b).

Such jets and vortices are in turbulent surroundings, and the persistence of their
strength and concentration in the presence of eddy mixing is intriguing. The expla-
nation proposed in this paper is based on a statistical mechanical approach: the
narrow jet or vortex appears as the most probable state of the flow after the turbulent
mixing of potential vorticity, taking into account constraints due to the quantities
conserved by the dynamics, especially energy. Such a statistical theory has been first
proposed for the two-dimensional Euler equations by Kuz’min (1982), Robert (1990),
Robert & Sommeria (1991), Miller (1990), see Sommeria (2001) for a recent review.
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Figure 1. Annular jets observed in the atmosphere of Jupiter. (a) Velocity field in the Great Red
Spot of Jupiter (20◦ S), from Dowling & Ingersoll (1988). (b) Velocity field in the cyclonic Barge of
Jupiter (14◦N) from Hatzes et al. (1981).

This theory predicts the organization of two-dimensional turbulence into a steady
flow, superposed with fine-scale ‘microscopic’ vorticity fluctuations. This is by far the
most likely result of random stirring, so the evolution to this statistical equilibrium
is in practice irreversible, although it is not at the molecular level (in a second stage,
true molecular mixing can suppress the local fluctuations, but without influencing
the mean flow). Complete vorticity mixing is prevented by the conservation of the
energy, which can be expressed as a constraint in the accessible vorticity fields. A
similar, but quantitatively different, organization had been previously obtained with
statistical mechanics of singular point vortices with the mean field approximation,
instead of continuous vorticity fields (Onsager 1949; Joyce & Montgomery 1973).
The possibility of using such ideas to explain the Great Red Spot has been suggested
since the first works on the two-dimensional Euler statistical mechanics by Robert
(1990), Miller (1990), Sommeria et al. (1991a) and Miller, Weichman & Cross (1992),
but without explicit predictions.

A first step in this direction has been the extension to the quasi-geostrophic (QG)



Intense jets as maximum-entropy structures 167

model, discussed by Sommeria et al. (1991a), Michel & Robert (1994a) and Kazantsev,
Sommeria & Verron (1998). The QG model describes a shallow water system with
a weak vorticity in comparison with the planetary vorticity (small Rossby number),
such that the flow is in geostrophic balance, and the corresponding free-surface
deformation is supposed small in comparison with the layer thickness. The new
contribution of the present work is to provide explicit predictions in the frame of a
realistic model for the Jovian atmosphere, proposed by Dowling & Ingersoll (1989),
see also Dowling (1995). The free surface of this shallow water system represents
the bottom of the active atmospheric layer, floating on a denser fluid with a given
deep zonal flow, depending only on latitude. The gradient of planetary vorticity is
accounted for by a beta-effect. An additional beta-effect, depending on the latitude
coordinate y, is introduced to represent the influence of the deep zonal flow on
the active layer, through the geostrophic tilt of the interface. Dowling & Ingersoll
(1989) found organization into a single vortex from direct numerical computations.
Our analytical approach provides a broader understanding of the general conditions
for such a self-organization process. We find for instance that a small change in
a bifurcation parameter yields an intense zonal jet, as observed in the northern
hemisphere.

The free-surface deformability, representing the strength of the density stratification,
is controlled by the Rossby radius of deformation R∗. The two-dimensional Euler
equation is recovered in the limit of very strong stratification for which R∗ → ∞.
We consider in this paper the opposite limit of weak stratification for which R∗ is
much smaller than the scale of the system L. This limit is appropriate for large-scale
oceanic currents, as the radius of deformation is typically 10–100 km. For Jupiter,
R∗ is estimated to be in the range 500–2500 km, while the Great Red Spot extends
over 20 000 km in longitude, and 10 000 km in latitude, so the limit R∗/L→ 0 seems
relevant. We show that in this limit the statistical equilibrium is made up of quiescent
zones with well-mixed uniform potential vorticity, bounded by jets with thickness of
order R∗ and jet velocity diverging in R∗−1. The persistence of such intense jets is
therefore justified as the result of turbulence mixing. Some of the ideas used have
been already sketched in Sommeria et al. (1991a), but we here provide a systematic
derivation and thorough analysis.

The QG approximation is thought to break down for scales much larger than
the radius of deformation, so that the limit R∗/L → 0 seems inconsistent with this
approximation. However the relevant scale is the jet width, which remains of order
R∗, so that the QG approximation does remain valid in this limit. This point has
been discussed by Marcus (1993) for the Great Red Spot, which he supposes to be a
uniform-potential-vorticity (PV) spot surrounded by a uniform-PV background (we
here justify this structure as the result of PV mixing with constraints on the conserved
quantities). Analysing wind data in the Great Red Spot, Dowling & Ingersoll (1989)
concluded that the QG approximation is good within typically 30% error, which is
reasonable to a first approximation. Statistical mechanics of the more general shallow
water system (Chavanis & Sommeria 2002), predicts a similar jet structure. The
present QG results therefore provide a good description as a first approximation.

We first consider the case without beta-effect in § 2, and furthermore assume periodic
boundary conditions (along both coordinates) to avoid consideration of boundary
effects. Starting from some initial condition with patches of uniform PV, we find that
these patches mix with uniform density (probability) in two subdomains, with strong
density gradient at the interface, corresponding to a free jet. The coexistence of the
two sub-domains can be interpreted as an equilibrium between two thermodynamic
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Figure 2. Phase diagram of the Gibbs states versus the energy E and the asymmetry parameter B
representing the normalized initial areas of the PV level a1 (see definition in § 2.2.1). The outer solid
line is the maximum energy achievable for a fixed B:E = 1

2
R2(1 − B2). Straight jets are obtained

for the nearly symmetric cases (B ≈ 0), while a vortex is formed when one of the PV levels has
a lower area. This vortex takes the form of a circular jet for sufficiently high energy. This plot
is derived in § 2.3.3. The boundary line between the straight jets and the circular jet corresponds
to a vortex area A1 = 1/π or A−1 = 1/π and its energy has been calculated using (33) and (34):
E = R2B2(2π − 2)/(π − 2)2. The dotted line representing the boundary between the axisymmetric
vortex and circular jet is defined as the energy value for which vortex area A1 or A−1 (33) is equal
to (2l)2, where l is the typical jets width (figure 7). This line depends on the value of R, the ratio
of the Rossby deformation radius to the domain scale. Here, it has been numerically calculated for
R = 0.03.

phases. We find that the interface has a free energy per unit of length, and its
minimization leads to a minimum length at equilibrium. This results in a constant
radius of curvature, in analogy with surface tension effects in thermodynamics, leading
to spherical bubbles or droplets. The range of the vortex interaction is of the order
R∗, therefore becoming very small in the limit of small radius of deformation, so the
statistical equilibrium indeed behaves as in usual thermodynamics with short-range
molecular interactions. This contrasts with the case of the Euler equation, with long-
range vortex interactions, analogous to gravitational effects (Chavanis, Sommeria &
Robert 1996; Chavanis 1998).

Figure 2 summarizes the calculated equilibrium states in this periodic case, depend-
ing on the total energy and a parameter B representing the asymmetry between the
initial PV patch areas, before the mixing process. We obtain a pair of straight jets
(with opposite direction) for a weak asymmetry and a circular jet otherwise. Such a
circular jet reduces to an axisymmetric vortex, with radius of order R∗, in the limit of
low energy.

The influence of the beta-effect or the deep zonal flow modifies the shape of these
jets, as discussed in § 3. The channel geometry, representing a zonal band periodic in
the longitude x is appropriate for that study. With the usual beta-effect βy, linear in the
transverse coordinate y, statistical equilibrium is, depending on the initial parameters,
a zonal flow or a meandering eastward jet or a uniform velocity vm = R2β whose
induced free-surface slope cancels the beta-effect (uniformization of PV) on which
circular vortices can coexist.

For more general beta-effects, due to the deep zonal flow, we find that the jet curva-
ture depends on latitude y. In particular a quadratic beta-effect ay2 leads to statistical
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equilibrium states with oval-shaped jets, similar to the Great Red Spot. Moreover,
the latitude of the vortex centre is the extremum of the beta-effect (determined in the
vortex reference frame). Using the determination of the sublayer flow from Voyager
data by Dowling & Ingersoll (1989), we show in § 4, that such a quadratic beta-effect
is indeed a realistic model for Jupiter’s atmosphere in the latitude range of the Great
Red Spot and the White Ovals, the other major coherent vortices on Jupiter (recently
merged into a single vortex). We finally propose an explicit model which, starting
from random PV patches, predicts the organization into either an oval-shaped vortex
or zonal jets, depending on the energy and the asymmetry parameter.

2. The case with periodic boundary conditions
2.1. The dynamical system

We start from the barotropic quasi-geostrophic (QG) equation:

∂q

∂t
+ v · ∇q = 0, (1)

q = −∆ψ +
ψ

R2
− h(y), (2)

v = −ez ∧ ∇ψ, (3)

where q is the potential vorticity (PV), advected by the non-divergent velocity v, ψ is
the stream function,† R is the internal Rossby deformation radius between the layer
of fluid under consideration and a deep layer unaffected by the dynamics; x and y
are respectively the zonal and meridional coordinates (x is directed eastward and y
northward). The term h(y) represents the combined effect of the planetary vorticity
gradient and of a given stationary zonal flow in the deep layer, with stream function
ψd(y): h(y) = −βy + ψd/R

2. This deep flow induces a constant deformation of the
free-surface, acting like topography on the active layer.‡ We shall therefore call h(y)
the ‘topography’, and study its influence in § 3. Let us assume h(y) = 0 in this section.
We define the QG equations (1), (2) in the non-dimensional square D = [− 1

2
, 1

2
]2. R is

then the ratio of the internal Rossby deformation radius R∗ to the physical scale of
the domain L.

Let 〈f〉 ≡ ∫
D
f d2r be the average of f on D for any function f. Physically, as the

stream function ψ is related to the geostrophic pressure, 〈ψ〉 is proportional to the
mean height at the interface between the fluid layer and the bottom layer, and due
to the mass conservation it must be constant (Pedlosky 1987). We make the choice

〈ψ〉 = 0 (4)

without loss of generality.

† We choose for the stream function ψ the standard sign convention used for the Euler equation,
which is the opposite of the one commonly used in geophysical fluid dynamics. Our stream function
ψ is therefore proportional to the opposite of the pressure fluctuation in the northern hemisphere
and to the pressure fluctuation in the southern hemisphere, as the planetary vorticity sign is reversed.
The signs of q and v are not influenced by this choice of sign for ψ.
‡ A real topography η(y) would correspond to h(y) = −f0η(y)/h0 where f0 is the reference

planetary vorticity at the latitude under consideration and h0 is the mean upper layer thickness.
Due to the sign of f0, the signs of h and η would be the same in the southern hemisphere and
opposite in the northern hemisphere. As we will discuss the Jovian southern hemisphere vortices
extensively, we have chosen this sign convention for h.
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The total circulation is 〈q〉 = 〈−∆ψ+ψ/R2〉 = 〈ψ/R2〉 due to the periodic boundary
conditions. Therefore

〈q〉 = 0. (5)

We note that the Dirichlet problem (2) on D with periodic boundary conditions has
a unique solution ψ for a given PV field.

Due to the periodic conditions for ψ, the linear momentum is also equal to 0,

〈v〉 = 0. (6)

The energy

E =
1

2

∫
D

qψ d2r =
1

2

∫
D

[
(∇ψ)2 +

ψ2

R2

]
d2r (7)

is conserved (we note that the first term on the right-hand side of (7) is the kinetic
energy whereas the second one is the gravitational available potential energy).

The Casimir integrals

Cf(q) =

∫
D

f(q) d2r (8)

for any continuous function f are also conserved, and in particular the different mo-
ments of the PV. Their conservation, as well as energy conservation, is a consequence
of symmetries of the Hamiltonian structure from which the QG equations (1), (2) may
be derived (see Salmon 1988 or Shepherd 1990 for reviews on Hamiltonian formalism
in the context of geophysical fluid dynamics).

2.2. The statistical mechanics on a two-PV-level configuration

2.2.1. The macroscopic description

The QG equations (1) and (2) are known to develop very complex vorticity filaments.
Because of the rapidly increasing amount of information it would require, as time
increases, a deterministic description of the flow for long time is both unrealistic and
meaningless. The statistical theory adopts a probabilistic description for the vorticity
field. The statistical equilibrium depends on the energy and on the global probability
distribution of PV levels. We shall consider the most simple case with only two PV
levels. As discussed in § 4, incoming thermal plumes should form patches with high
anticyclonic PV in a more quiet background, a situation which can be reasonably
described with two PV levels (high and low) in the absence of more information
about the forcing. Generalization to more PV levels is straightforward in principle
but it would involve more unknown parameters to describe the distribution of PV
areas. We expect only minor differences with the two-level case, as suggested by
various previous studies of the equilibrium states for two-dimensional Euler statistical
mechanics (Sommeria et al. 1991; Chen & Cross 1996; Kazantsev et al. 1998): the
equilibrium state is only weakly dependent on the discretization in vorticity levels.

The determination of the statistical equilibrium then depends only on the energy E,
on the two PV levels, denoted q = a1 and q = a−1 and on their respective areas A and
(1 − A) in D (the conservation of these areas is then equivalent to the conservation
of all the Casimirs (8)). The number of free parameters can be further reduced by
appropriate scaling. Indeed a change in the time unit permits the PV levels to be
defined up to a multiplicative constant, and we choose for the sake of simplicity

a1 − a−1

2
= 1 (9)
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and define the non-dimensional parameter B as

B ≡ a1 + a−1

2
. (10)

The condition (5) of zero mean PV imposes that a1A + a−1(1 − A) = 0. This means
that a1 and a−1 must be of opposite sign and, using (9) and (10), A = (1 − B)/2.
The distribution of PV levels is therefore fully characterized by the single asymmetry
parameter B, which takes values between −1 and +1. The symmetric case of two PV
patches with equal area A = 1/2 corresponds to B = 0, while the case of a patch with
small area (but high PV, such that 〈q〉 = 0) corresponds to B → 1. Note that we can
restrict the discussion to B > 1 as the QG system is symmetric for a change of sign
of the PV.

The two PV levels mix due to turbulent effects, and the resulting state is locally
described by the local probability (local area proportion) p(r) to find the first level at
the location r. The probability of finding the complementary PV level a−1 is 1 − p,
and the locally averaged PV at each point is then

q̄(r) = a1p(r) + a−1(1− p(r)) = 2(p− 1
2
) + B, (11)

where the second relation is obtained by using (9) and (10).
Since the patch with PV level a1 is mixed but globally conserved, the integral of its

density p over the domain must be equal to the initial area A,

A ≡ 1− B
2

=

∫
D

p(r) d2r. (12)

As the effect of local PV fluctuations is filtered out by integration (ψ̄ = ψ and
v̄ = v), the stream function and the velocity field are fully determined by the locally
averaged PV q̄ as the solution of

q̄ = −∆ψ +
ψ

R2
, ψ periodic (13)

and

v = −ez ∧ ∇ψ.
Therefore the energy is also expressed in terms of the field q̄:

E =
1

2

∫
D

[
(∇ψ)2 +

ψ2

R2

]
d2r =

1

2

∫
D

q̄ψ d2r. (14)

Here the energy of the ‘microscopic’ PV fluctuations has been neglected (replacing q
by q̄), as justified in the case of Euler equation by Robert & Sommeria (1991). Indeed,
for a ‘cutoff’ for the microscopic fluctuations much smaller than R, the small-scale
dynamics coincides with the Euler case.

The central result of the statistical mechanics of the QG equations (1), (2) is that,
under an ergodic hypothesis, we expect the long-time dynamics to converge towards
the Gibbs states defined by maximizing the mixing entropy

S = −
∫
D

[p(r) ln p(r) + (1− p(r)) ln(1− p(r))] d2r (15)

under the constraints of the global PV distribution (12) and energy (14). It can be
shown that the microscopic states satisfying the constraints given by the conservation
laws are overwhelmingly concentrated near the Gibbs state, which is therefore likely
to be reached after a complex flow evolution. A good justification of this statement is
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obtained by the construction of converging sequences of approximations of the QG
equations (1), (2), in finite-dimensional vector spaces, for which a Liouville theorem
holds. This is a straightforward translation of the work of Robert (2000) for two-
dimensional Euler equations. The sequence of such Liouville measures has then the
desired concentration properties as (1), (2) enter in the context considered in Michel
& Robert (1994b).

As in standard statistical mechanics (in gas for instance), the ergodic property of
a system is very unlikely to be proven for any generic system (in the current state
of our knowledge) and could moreover appear to be wrong in general. A weaker
property of mixing is however sufficient to justify the statistical mechanics due to
the concentration property stated in the above paragraph. The Gibbs state is most
likely to be reached even if the available microscopic states are not evenly explored.
In practice, the theory can be validated or invalidated only on the basis of its success
or failure to predict well-characterized phenomena. We postpone to the conclusion a
critical discussion of statistical mechanics ideas and geophysical applications such as
in the Jovian atmosphere.

2.2.2. The Gibbs states

Following Robert & Sommeria (1991), we seek maxima of the entropy (15) under
the constraints (12) and (14). To account for these constraints, we introduce two
corresponding Lagrange multipliers, which we denote 2α and −C/R2 for convenience
in future calculations. Then the first variation of the functionals satisfies

δS − 2αδA+
C

R2
δE = 0

for all variations δp of the probability field p. After straightforward differentiation
we obtain

δS = −
∫
D

[ln p− ln(1− p)]δp d2r, δA =

∫
D

δp d2r,

δE =

∫
D

ψδq̄ d2r =

∫
D

2ψδp d2r,

 (16)

where the expression for δE has been obtained by integrating by parts and expressing
q̄ by (11). Then we can write the first in the form

∫
D

[− ln p + ln(1 − p) − 2α +

2Cψ/R2]δp d2r, which must vanish for any small variation δp. This implies that the
integrand must vanish, and yields the equation for the optimum state:

p =
1− tanh(α− (Cψ/R2))

2
, (17)

and using (11) and (13), the partial differential equation

q = −∆ψ +
ψ

R2
= B − tanh

(
α− Cψ

R2

)
(18)

determining the Gibbs states (statistical equilibrium). From now on we omit the q
overbar for the locally averaged PV and refer to it as the PV.

We have shown that for any solution of the variational problem, two constants α
and C exist such that ψ satisfies (18). Conversely it can be proved that for any two
such constants, a solution to equation (18), in general not unique, always exists. Then
p associated with one of these solutions by (17) is a critical point of the ‘free energy’
−S(p) + 2αA(p) − (C/R2)E(p) (i.e. its first variation vanishes). Then the Lagrange
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multipliers are not given but have to be calculated by prescribing the constraints (12)
and (14) corresponding to the two parameters B and E respectively, given by the
initial condition. Furthermore, among the states of given energy E and asymmetry
parameter B, we have to select the actual free-energy minima (or constrained-entropy
maxima).

Finally, let us find a lower bound for the parameter C of the Gibbs states with
non-zero energy (i.e. ψ is not uniform). Multiplying (18) by −∆ψ, integrating by parts
and defining f(Cψ) ≡ B − tanh(α− (Cψ/R2)), we obtain

C =

∫
D

(
(∆ψ)2 +

1

R2
(∇ψ)2

)
d2r∫

D

−f′(Cψ)(∇ψ)2 d2r

,

from which, using 0 < −f′(Cψ) 6 1/R2 it follows that when ψ is not constant

C > 1. (19)

2.3. The limit of small Rossby deformation radius

As suggested by oceanographic or Jovian parameters, we seek solutions for the Gibbs
state equation in the limit of a small ratio between the Rossby deformation radius
and the length scale of the domain: R � 1 with our non-dimensional coordinates.
Then we expect that the Laplacian in the Gibbs state equation (18) can be neglected
with respect to ψ/R2, leading to sub-domains with uniform ψ separated by interfaces,
where strong ψ gradients are localized. The sub-domain areas and ψ values will be
given by a condition of thermodynamic phase equilibrium, while the contour length
will be a minimum, to minimize the free energy.†
2.3.1. The uniform subdomains

Neglecting the Laplacian transforms the Gibbs states equation (18) into the alge-
braic equation:

q =
ψ

R2
= B − tanh

(
α− Cψ

R2

)
. (20)

Depending on the parameters, this equation has either one or two or three solutions,
denoted ψ−1, ψ0 and ψ1 in increasing order (see figure 3). The case with a single
solution would correspond to a uniform ψ, which should be equal to 0 due to the
condition 〈ψ〉 = 0. This is only possible for E = 0. Otherwise, we have therefore two
or three solutions, with different solutions occurring in subdomains. This condition
of multiple solutions requires that the maximum slope for the right-hand side of
(20) must be greater than 1/R2; this is always realized due to the inequality (19).
Furthermore α must be in an interval centred in CB (α = CB in the symmetric case
of figure 3).

† Modica (1987) considered the minimization of the functional Eε(u) =
∫
Ω

[ε(∇u)2 + W0(u)] dx

with the constraint
∫
Ω
u(x) dx = m in the limit ε→ 0+ where W0 is a real function with two relative

minima. He proved, working with bounded variation functions, that if (uε) are solutions of this
variational problem, for any sub-sequence of (uε) converging in L1(Ω) as ε → 0, this sub-sequence
converges to a function u0 which takes only the values of W0 at its minima; and the interface
between the corresponding subdomains have a minimal area. We note that for a convenient choice
of W0 the corresponding equation for the first-order variations may be the same as the Gibbs state
equation (18). However, as the variational problem itself is different, this result cannot be used in
our context.
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Figure 3. (a) Graphical representation of the algebraic equation (20), with the rescaled variable
φ ≡ −α/C+ψ/R2. The three solutions are at the intersection of the curve (left-hand side) and straight
line (right-hand side). Here the integrability condition α = C0B for the differential equation (38) is
satisfied, so the two hatched areas are equal. (b) The corresponding potential U(φ), given by (39),
the integral from 0 to φ of the difference between the two curves (hatched area in a).

At the interface between two constant-stream-function subdomains, a strong gra-
dient of ψ necessarily occurs, corresponding to a jet along the interface. These jets
make first-order contributions to the entropy and energy, but let us first describe the
zero-order problem. Suppose that ψ takes the value ψ1 (resp. ψ−1) in subdomains of
total area A1 (resp. A−1). The reason why we do not select the value ψ0 will soon
become clear. Using (11) we conclude that the probability p takes two constant values
p±1 in their respective subdomains. The two areas A±1 (measured from the middle of
the jet) are complementary such that

A1 + A−1 = 1. (21)

Furthermore the constraint (4) of zero domain average for ψ implies at zero order

ψ1A1 + ψ−1A−1 = 0, (22)

or equivalently, using q±1 = ψ±1/R
2, (11) and (21)

2A1(p1 − 1
2
) + 2(1− A1)(p−1 − 1

2
) = −B. (23)

This can also be obtained from the constraint on the (microscopic) PV patch area (12).
The energy inside the subdomains reduces to the potential term ψ2/2R2, since velocity
vanishes. This area energy EA can be computed in terms of p±1 using q±1 = ψ±1/R

2
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and (11):

EA ≡ ψ2
1A1 + ψ2−1A−1

2R2
= A1e(p1) + (1− A1)e(p−1) (24)

with

e(p) ≡ R2(2(p− 1
2
)2 + 2B(p− 1

2
) + 1

2
B2). (25)

There is also energy in the jet at the interface of the subdomains, but it is small with
respect to EA. Indeed the velocity in the jet, of width R, is of order (ψ1−ψ−1)/R ∼ ψ/R,
and the corresponding integrated kinetic energy is of order ψ2/R. This is small in
comparison with the area energy EA of order ψ2/R2. A precise calculation will confirm
this estimate in the next subsection.

We need to determine three unknowns: the area A1 and the probabilities p±1 of
the PV level a1 in each subdomain, while the constraints (23) and (24) provide two
relations. An additional relation will be given by entropy maximization. As we neglect
the jet area, the entropy reduces at order zero to the area entropy:

SA ≡ A1s(p1) + (1− A1)s(p−1) with s(p) ≡ −p log p− (1− p) log(1− p). (26)

Thus the zero-order problem corresponds to the maximization of the area entropy
(26) with respect to the three parameters p±1 and A1, under the two constraints (23)
and (24). A necessary condition for a solution of this variational problem is the
existence of two Lagrange parameters α0 and C0 such that the first variations of the
total free energy,

FA ≡ −SA − C0

R2
EA + α0

〈ψ〉
R2

, (27)

vanish. Let us calculate FA using (23) and (24):

FA = A1f(p1) + (1− A1)f(p−1), (28)

with

f(p) ≡ −s(p)− 2C0(p− 1
2
)2 − 2(C0B − α0)(p− 1

2
)− 1

2
C0B

2 − α0B. (29)

The vanishing of the variations with respect to p1 and p−1 means that f(p±1) are
local minima of the free energy f(p). It is easily proven that the function f has two
local minima and one local maximum (for C0 > 1 and C0B − α0 small enough), see
figure 4. The local maximum is achieved for p0 corresponding to ψ0. This is why it
has not been selected for the uniform subdomains. In addition, the vanishing of the
first variations with respect to the area A1 imposes that the free energies f(p±1) in the
two subdomains be equal. This is like the condition of thermodynamic equilibrium
for a chemical species shared by two coexisting phases.

In the expression (29) for f(p), the entropy term s(p) is symmetric with respect to
p = 1

2
, as well as the quadratic term. Therefore if the linear term in (p− 1

2
) vanishes

the two maxima are equal, with p±1 symmetric with respect to 1
2
. The addition of a

linear term obviously breaks this condition of two equal maxima, so the coefficient
of the linear term must vanish, thus

α0 = C0B. (30)

Since p±1 are symmetric with respect to 1
2
, we introduce the parameter u as

p±1 = 1
2
(1± u). (31)
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Figure 4. The free energy density f(p) (29) versus the probability p. For C0 > 1 and (C0B − α0)
small enough f(p) has two local minima and one local maximum, allowing two values p±1 to be
obtained in the maximization of entropy under constraints.
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Figure 5. The parameter u versus the Lagrange parameter C0, as the solution of (35).

Using (11), (23) we deduce that

ψ±1 = R2(B ± u). (32)

From (22) we can state that the two constant stream functions (32) have to be of
opposite sign, so that u > |B|. Introducing (31) in the circulation constraint (23), and
using (21), we obtain

A±1 =
1

2

(
1∓ B

u

)
. (33)

Using these results, the energy (24) becomes

E ' EA = 1
2
R2(u2 − B2). (34)

This relates the parameter u to the given energy E and asymmetry parameter B.
Finally the condition that f(p±1) are maxima of f leads to

u = tanh(C0u), (35)

which determines the ‘temperature’ parameter C0, as represented in figure 5. Therefore
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all the quantities are determined from the asymmetry parameter B and from the
parameter u, related to the energy by (34).

In the limit of low energy, u → |B|, when for instance B > 0, then A1 goes to
zero, so that ψ−1 tends to occupy the whole domain. This state is the most mixed
one compatible with the constraint of a given value of B (or equivalently a given
initial patch area A = (1− B)/2). In the opposite limit u → 1, we see from (32) that
in the two subdomains q = ψ/R2 tends to the two initial PV levels a1 = 1 + B and
a−1 = −1 + B. Thus, this state is unmixed. It achieves the maximum possible energy
E = 1

2
R2(1 − B2) under the constraint of a given patch area. We conclude that the

parameter u, or the related ‘temperature’ C0, characterizes the mixing of these two
PV levels. We shall call u the segregation parameter, as it quantifies the segregation
of the PV level a1 (or its complement a−1) between the two phases.

Let us now study the interface between the subdomains.

2.3.2. Interior jets

At the interface between two constant-stream-function subdomains, a strong gradi-
ent of ψ necessarily occurs, corresponding to a jet along the interface. To study
these jets, we come back to the Gibbs state equation (18). We expect the Lagrange
parameters α and C to be close to the zero-order parameters α0 and C0, computed in
the previous subsection, so we use α = α0 and C = C0 to calculate the jet structure. In
such a jet, we cannot neglect the Laplacian term in (18), but a boundary-layer-type
approximation can be used: we neglect the tangential derivative with respect to the
derivative along the coordinate normal to the interface, ζ. Accordingly, we neglect
the inverse of the curvature radius of the jet with respect to 1/R.

Thus, from the Gibbs state equation (18), using (30), we deduce the jet equation:

−d2ψ

dζ2
+
ψ

R2
= B − tanh

(
C0

(
B − ψ

R2

))
. (36)

As the stream function depends only on the normal coordinate ζ, the velocity is
tangent to the interface, forming a jet with a typical width scaling with R. We thus
make the change of variables defined by

τ ≡ ζ

R
, φ ≡ −B +

ψ

R2
, (37)

leading to the rescaled jet equation

d2φ

dτ2
= − tanh(C0φ) + φ. (38)

The jet equation (38) is similar to a one-dimensional equation of motion for a
particle (with the position φ depending on a time τ) under the action of a force
−dU/dφ derived from the potential,

U(φ) =
ln(cosh(C0φ))

C0

− φ2

2
, (39)

represented in figure 3(b). In its trajectory the particle energy is conserved:

1

2

(
dφ

dτ

)2

+U(φ) = Const. (40)

Let φi ≡ ψi/R
2 − B, i = −1, 0, 1, corresponding to the solutions ψi of the algebraic

equation (20). From (32), we have φ±1 = ±u. Note that the stationary limit of (38),
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Figure 6. (a) Typical stream function profile in a jet (u = 0.75) versus the transverse coordinate
τ = ζ/R, and (b) corresponding velocity profile.

which must be reached for limτ→±∞, yields (35) again. Moreover, the particle energy
conservation (40) imposes the integrability condition,

U(φ−1) = U(φ1), (41)

which is indeed satisfied due to the symmetry of the potential U. We note that the
Lagrange parameter determination (30) and the symmetry of the probabilities (31)
with respect to 1

2
could have been deduced from this integrability condition (41)

instead of minimizing the free energy (29) (we shall proceed in this way in § 3 to take
into account the beta-effect).

The jet equation (38) has been numerically integrated. Figure 6 shows a typical
stream function and velocity profile in the jets. Figure 7(a) shows that the jet width
l is a decreasing function of the segregation parameter u, therefore a decreasing
function of the total energy. Figure 7(b) shows the dependence on u of the total non-
dimensional jet energy e(u) = 1

2

∫ +∞
−∞ (dφ/dτ)2 dτ and of the maximum non-dimensional

jet velocity

vmax(u) =

√
2

(
−u log(1− u2)

arg tanh u
− u2

2

)
(and two other quantities used in the next section).

As the jet structure (38) does not depend on the coordinate tangent to the jet, we
can define the jet entropy (resp. energy, free energy) per unit length SJet (resp. EJet,
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Figure 7. Jet properties versus the segregation parameter u. (a) Jet width l, defined as the width
of the region with velocity greater than half the maximum jet velocity. (b) Maximum velocity
vmax, jet kinetic energy e(u) (dotted line), maximal extension of the vortices with topography:
ay3

max(u) (81) and function i(u) linking the segregation parameter u to the non-dimensional quantity
σ∗y∗3max/(v∗maxl∗2) (83) in the presence of topography.

FJet). Multiplied by the jet length, these quantities are the first-order corrections to the
entropy (resp. energy, free energy). Using the change of variables (37), we calculate
the jet entropy per unit length:

SJet = R

∫ +∞

−∞
[s(p(τ))− s(p±1)] dτ,

where s is defined in (26), and p±1 are defined in (31). Using the probability equa-
tion (17) and (37) we obtain

SJet = R

∫ +∞

−∞
[̃s(φ)− s̃(φ±1)] dτ (42)

involving the function s̃(φ) ≡ ln(cosh(C0φ)) − C0φ tanh(C0φ). Similarly we straight-
forwardly calculate the potential and kinetic energy per unit length for the jet

EP
Jet =

R3

2

∫ +∞

−∞
(φ2 − φ2

1) dτ, EK
Jet =

R3

2

∫ +∞

−∞

(
dφ

dτ

)2

dτ.
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We use the integral (40) to calculate dφ/dτ and conclude

EJet = R3

∫ +∞

−∞
[g̃(φ)− g̃(φ±1)] dτ, (43)

with g̃(φ) = −(ln(cosh(C0φ)))/C0 + φ2. Due to their symmetry, the jets provide no
perturbation to the zero-order circulation, so there is no circulation term in the jet
free-energy expression: FJet = −SJet − C0/R

2EJet. Then

FJet = C0R

∫ +∞

−∞
[h̃(φ)− h̃(φ±1)] dτ (44)

with h̃(φ) = −φ(φ− tanh(C0φ)).
Let us study the sign of FJet. As φ1 satisfies φ1 = tanh(C0φ1) and as φ(τ) is an

increasing function of τ with limτ→+∞ φ(τ) = φ1 we conclude that h̃(φ) − h̃(φ1) > 0
for any τ > 0. Thus FJet > 0. Using the analogy with standard thermodynamics, the
‘surface tension’ is positive. This favours large ‘bubbles’ which minimize the interfacial
length and therefore the corresponding free energy (44). Our initial hypothesis of well-
separated domains with uniform ψ is thus supported, as discussed more precisely in
the next subsection.

2.3.3. Selection of the equilibrium structure

The above analysis has permitted us to determine the areas of subdomains in which
the stream function ψ takes the constant values ψ±1, but the subdomains shape is
still to be selected. There is an analogy with two phases coexisting in thermodynamic
equilibrium, for instance a gas bubble in a liquid medium, for which a classical
thermodynamic argument explains the spherical shape of the bubble by minimizing
its free energy, proportional to the bubble area. Our system is isolated rather than
in a thermal bath, but the jet energy is small (of order R) with respect to the total
energy. Therefore the subdomain interior behaves like a thermal bath with respect
to the jet, so the usual argument on free-energy minimization applies. We shall now
show this more precisely by directly maximizing the total entropy with constraints,
taking into account the jet contribution.

A jet with length L has an entropy SjetL and energy EjetL. Since the total energy
E = EA(C) + LEJet is given, the jet has also an indirect influence on the area energy
EA. A small energy change δEA results in a corresponding change in the area entropy
δSA = −(C0/R

2)δEA, from the condition (27) of zero first variations. Note that there
is no area change δA since the jet is symmetric and therefore has no influence in the
condition (12) of a given integral of p (the difference in p with respect to the case
of two uniform patches with boundary at the jet centre has zero integral). Therefore,
adding the direct and indirect contribution of the jet entropy leads to the total entropy

S = SA(C0)− FJet(C0)L, (45)

where SA(C0) is the zero-order area entropy, obtained in the limit of vanishing jet
width.†

We deduce from (45) that the maximization of the entropy is achieved by minimizing
the total free energy FJetL, which we have proved to be positive at the end of the

† This reasoning to obtain the first-order entropy (45) can be made more rigorous by evaluating
explicitly the first-order modification of the Lagrange parameter C (let, say, C1 ≡ C − C0) due to
the jet energy, and the first-order modification of the Lagrange parameter α (let, say, α1 ≡ α− α0 )
due to the jet curvature and computing the first-order entropy from its definition (15).
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previous subsection. Thus we conclude that the maximum-entropy state minimizes
the jet length, with the given area (33) of the subdomains.

The subdomain shape will therefore be a circle or a band. More precisely if A1 < 1/π
the jet forms a circle enclosing the positive constant-stream-function domain (the jet
bounds a cyclonic vortex), if 1/π < A1 < 1−1/π two straight line jets form a band, and
if A1 > 1− 1/π the jet form a circle enclosing the negative constant-stream-function
domain (the jet bounds an anti-cyclonic vortex).

The different types of solutions have been summarized in the (E, B) diagram
of figure 2. The outer parabola is the maximum energy achievable for a fixed
B:E = R2(1 − B2)/2. The interfaces between the straight jets and the circular jets
correspond to A1 = 1/π or A−1 = 1/π. It has been calculated using (33) and (34):
E = R2B2(2π− 2)/(π− 2)2. Note that the maximum accessible energy is in R2, but it
has been scaled by the normalization condition (9) on PV levels, so the real energy is
not bounded.

All this analysis assumes that the vortex size is much larger than the jet width l,
given by figure 7. In other words, the area A1 or A−1 (33) must be larger than (2l)2.
This is satisfied on the right of the dashed line in figure 2, representing the equality.
The condition of a large vortex is clearly not satisfied on the low-energy (left) side of
this line. The position of this dashed line depends on the numerical value of R (it has
been numerically computed here for R = 0.03), and it moves closer to the origin as
R → 0. We shall now determine the statistical equilibrium in this case of low energy.

In the limit of small energy with fixed B and (small) fixed R, axisymmetric vortices
are obtained (see Appendix A). In the limit of small E and B, i.e. the neighbourhood
of the origin in the phase diagram of figure 2, the jet tends to develop on the scale of
the whole domain, so the approximation of a localized jet, or an isolated axisymmetric
vortex, fails. Indeed from (34), u → |B| � 1. Figure 7 shows that for |u| � 1, the jet
width diverges.

In this limit of small E and B, we can linearize the Gibbs states equation (18). The
solutions are then expressed in terms of the eigenmodes of the Laplacian. The work
of Chavanis & Sommeria (1996) for Euler’s equation directly applies here: the results
are unchanged by the linear deformation term ψ/R2.

Only the first eigenmodes of the Laplacian can be entropy maxima. With the pe-
riodic boundary conditions, a sine function of one of the coordinates, for instance y,
is thus selected. This corresponds to the low-energy limit of the two jet configuration
shown in figure 2. The next eigenmode, in sin(πx) sin(πy), has the topology of the vor-
tex states. A competition between these two modes is expected in the neighbourhood
of the origin for small E and B. Note that the validity of the linear approximation
is limited to a smaller range of parameters than in the Euler case, and this range of
validity becomes smaller and smaller as R → 0. The dominant solution with uniform
subdomains and interfacial jets relies by contrast on the tanh-like relation between
the PV and stream function, and it is genuinely nonlinear.

3. The influence of beta-effect and bottom topography
We now introduce a beta-effect, or a mean sublayer zonal flow (topography), with

the term h(y) in (1). The two cases of a linear h(y) (beta-effect and/or uniform velocity
for the sublayer flow) and a quadratic h(y) will be considered. For that study, we first
need to adapt the previous results to the channel geometry, which represents a zonal
band around a given latitude.
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3.1. The dynamical system

Let us consider the barotropic QG equations (1), (2) and (3) in a channel D = [− 1
2
, 1

2
]2

with the velocity v tangent to the boundary for y = ± 1
2

and 1-periodicity in the
zonal direction. Due to the impermeability condition, the stream function must be x
independent at each boundary. The difference between the two boundary values is
equal to the physical x-wise momentum (the integral of velocity), a conserved quantity.
We can always set this momentum to zero by a change of reference frame, with a zonal
velocity V moving with the centre of mass of the fluid layer, and a corresponding
change of the deep flow, resulting in an additional beta-effect h → h + (Vy/R2). We
therefore choose for the boundary conditions a constant ψ, denoted ψb, which is the
same on the two boundaries y = ± 1

2
.

As in § 2, we need to specify the gauge constant in the stream function ψ, and we
generalize the integral condition (4) as

〈ψ〉
R2
− 〈h(y)〉 = 0. (46)

The total mass 〈ψ〉 is then constant in time (but not the boundary value ψb in general).
With these conditions, the Dirichlet problem (2) has a unique solution ψ for a given
PV field q.

The integral of any functions of the potential vorticity (8) is still conserved. Let in
particular Γ be the global PV, or circulation:

Γ ≡ 〈q〉 =

∫
D

−∆ψ d2r =

∫
∂D

v · dl. (47)

In contrast to the doubly periodic boundary conditions, the circulation Γ is not
necessarily equal to zero. The expression for the energy in terms of the PV (see
equation (7)) is therefore modified (due to the boundary term in the integration by
parts):

E =
1

2

∫
D

[
(∇ψ)2 +

ψ2

R2

]
d2r =

1

2

∫
D

(q + h(y))ψ d2r − 1
2
Γψb. (48)

Due to the invariance under zonal translation of the system, another conserved
quantity exists:

M =

∫
D

yq d2r. (49)

This constant moment fixes the ‘centre of mass’ latitude for the PV field.

3.2. General form of the Gibbs states in the channel geometry

Let us consider the statistical mechanics for a two-PV-level configuration: the initial
state is made up of patches with two levels of potential vorticity, q = a1 and q = a−1,
occupying respectively the areas A and (1 − A) in D. We keep the normalization (9)
and definition (10) for B. Now, since the circulation Γ is non-zero, the area A is
related to B by A = (1−B)/2 +Γ/2. The boundary condition ψb leads to a boundary
term in the integration by parts of the energy variation (16). Let γ be the Lagrange
multiplier associated with the conservation of the momentum M.

Adapting the periodic case computations, we then calculate the probability equation
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and the Gibbs state equation:

p =
1− tanh(α′ − (Cψ/R2) + γy)

2
, (50)

q = −∆ψ +
ψ

R2
− h(y) = B − tanh

(
α′ − Cψ

R2
+ γy

)
, (51)

with α′ ≡ α + Cψb/R
2. We have considered ψb as a constant parameter in the

maximization process: it is eventually imposed by the condition (46) on the resulting
equilibrium flow. These results generalize (17) and (18) of § 2.

In the case of a Gibbs state depending on x, the Lagrange parameter γ is related to
a zonal propagation of the equilibrium structure. The statistical theory only predicts
a set of equilibria shifted in x, but introducing the result back in the dynamical
equation yields the propagation. Indeed the Gibbs state equation (51) is of the form
q = f(ψ, y), which can be inverted (as it is monotonic in ψ, see Robert & Sommeria
(1991)) to yield

ψ = g(q) + R2 γy

C
, (52)

where g is a function of the potential vorticity. From this relation we calculate the
velocity using (3): v = R2(γ/C)ex − g′(q)ez ∧ ∇q. As PV is advected (equation (1)) we
obtain

∂q

∂t
+ R2 γ

C

∂q

∂x
= 0. (53)

Thus the PV field is invariant in a frame propagating with the zonal speed Vsr =
R2(γ/C).

3.3. The limit of small Rossby deformation radius

In this subsection we analyse the Gibbs state equation (51) in the limit of small
deformation radius (R � 1). The main difference with the periodic case resides in the
latitudinally dependent topography h(y), resulting in two effects. First the subdomains
of uniform PV are no longer strictly uniform, and they contain a weak zonal flow.
Secondly the jet curvature is no longer constant in general, but depends on the
local topography. As in the periodic case, the Laplacian term in the Gibbs state
equation (51) will be neglected, except possibly in an interior jet and in the vicinity
of the boundaries y = ± 1

2
(boundary jets).

Outside such jets, (51) reduces to the algebraic equation

ψ

R2
− h(y) = B − tanh

(
α′ − C ψ

R2
+ γy

)
. (54)

This is like (20), but replacing the constants B by B+h(y) and α by α′+ γy. The three
solutions can be still visualized using figure 3, but the position of the straight line with
respect to the tanh curve now depends on y, due to the terms h(y) and γy. We assume
that this dependence is linear in y or varies on scales much larger than R so that the
Laplacian term remains indeed negligible. The zero-order Lagrange parameters α′, C ,
γ, involved in this expression, can be obtained by directly maximizing the entropy by
the same method as in § 2.3.1. A relation between the jet curvature and topography
is then obtained at first order. This approach is developed in Appendix B.

However it is more simple to proceed differently: we start from the jet equation and
show that its integrability condition (41) is modified, providing a relation between the
jet curvature and topography. To capture this effect, we take into account the radius
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of curvature of the jet, denoted r, assumed constant across the thin jet. From the
Gibbs state equation (51), using the boundary layer approximation, we thus obtain
the jet equation in terms of the transverse coordinate ζ (then by definition ψ does
not depend on the along-jet coordinate):

−d2ψ

dζ2
− ε1

r

dψ

dζ
+
ψ

R2
− h(y) = B − tanh

(
α′ − C ψ

R2
+ γy

)
. (55)

We have introduced ε = ±1 to account for the direction of curvature (keeping r > 0).
We define ε = 1 (resp. −1) if the curvature of the jet is such that ψ1 (resp. ψ−1) is in
the inner part of the jet. Note that, in the case of a vortex, as in our notation ψ is
proportional to the pressure in the southern hemisphere, the case ε = 1 (resp. ε = −1)
corresponds to an anticyclone (resp. a cyclone) (the sign is reversed in the northern
hemisphere).

Let us make the change of variables

τ ≡ ζ

R
, φ ≡ −α

′ + γy

C
+
ψ

R2
. (56)

We assume that the variations of y within the jet width are negligible (R � scale of
variation of h(y)), so that y is treated as a constant. Then we obtain the jet equation:

−d2φ

dτ2
− εR

r

dφ

dτ
+ φ+

α′ + γy

C
= B + h(y) + tanh(Cφ), (57)

with φ → φ±1 for τ → ±∞, where again φ±1 corresponds to the solutions of the
algebraic equation (54), rescaled as

φ+
α′

C
− B +

γy

C
− h(y) = tanh(Cφ). (58)

Let us consider, as in § 2.3.2, the analogy of equation (57) with the equation of
motion of a particle in the potential:

U(φ) =
ln cosh(Cφ)

C
− φ2

2
+

(
B + h(y)− α′ + γy

C

)
φ. (59)

Integration of (57) from −∞ to +∞ imposes the integrability condition:

U(φ1)−U(φ−1) = ε
R

r

∫ +∞

−∞

(
dφ

dτ

)2

dτ. (60)

The second term of the left-hand side of equation (57) can be interpreted formally
as a friction term: if ε = 1, the ‘particle’ starting from rest at φ1 can reach a state of
rest at φ−1 only if the difference of ‘potential’ corresponds to the energy loss (60) by
friction (if ε = −1 the same is true in the reverse direction).

With our thin jet assumption R � r, this friction term (right-hand side of (60)) is
a correction of order R/r: U(φ1)−U(φ−1) = O(R/r). We first neglect it to obtain the
zero-order results, so we write U(φ) = U(φ−1) and the two hatched areas in figure 3
must be equal. Due to the symmetry of the tanh-function, this clearly implies that
the central solution of the rescaled algebraic equation (58) must be φ0 = 0, so that
α′0/C0 − B + γy/C0 − h(y) = 0 (denoting the zero-order Lagrange parameters by the
index 0). This is possible at different latitudes y only if γy/C0 − h(y) = 0, or is of
order R (so that it can be neglected at zero order). Then the integrability condition
becomes

α′0 = C0B. (61)
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Furthermore φ±1 are symmetric with respect to 0, of the form φ±1 = ±u, determined
by equation (35), like in § 2.3. This parameter u is again related to the energy by
(34). Finally, the terms γy/C0 − h(y) = 0 and the curvature term disappear in the jet
equation (57), which therefore reduces to (38), discussed in § 2.3.2.

The first-order solution outside the jet is obtained as a small correction δφ±1 to
the zero-order solutions ±u, with also a small correction α1 and C1 to the parameters
α′0/C0 and C0:

φ±1 = ±u+ δφ±1(y),
α′

C
=
α′0
C0

+ α1, C = C0 + C1. (62)

From (60), we deduce that U(φ1)−U(φ−1) has the sign of ε. As may be seen in figure 3,
when α1 is positive, the line φ+ (α′/C) moves upward, so that U(φ1) < U(φ−1). Thus
α1 has sign opposite to the sign of U(φ1) − U(φ−1); and we conclude that −εα1 is
always positive. Introducing this expansion (62) in the algebraic equation (58), using
the zero-order results (35) and (61), we obtain

δφ±1(y) =
−α1C0 ± C1u(1− u2)− (γ/C0)y + C0h(y)

1− C0(1− u2)
. (63)

The integrability condition (60) now provides the curvature of the jet. We can
approximate the right-hand side of this relation, of order R, by the zero-order jet
profile solution of (38), denoting

e(u) ≡ 1

2

∫ +∞

−∞

(
dφ

dτ

)2

dτ (64)

(this function is represented in figure 7(b)). The left-hand side of (60) can be expanded
using (62), (63). We first expand the expression (59) of the potential,

U(φ) = U0(φ) + C1/C0[φ tanh(C0φ)− log cosh(C0φ)/C0] + [h(y)− γy/C0 − α1]φ.

We can approximate φ ' ±u in the correction terms, and expand U0(φ) = U0(±u) +
dU0/dφ(±u). The zero-order equilibrium condition requires that dU0/dφ(±u) = 0, so
that (60) becomes

εu

(
h(y)− γy

C0

− α1

)
= e(u)

R

r
. (65)

This equation (65) expresses the dependence in latitude y of the curvature radius r
of the curve on which the jet is centred (the curve where φ is equal to zero), thus
defining the shape of the subdomain interface as a function of the topography.

Without topography and for γ = 0, we obtain a constant jet curvature. The same
result was obtained in § 2.3.3 by a different argument of free-energy minimization. The
parameter u, related to the energy by (34) and to C0 by (35), quantifies the strength
of the jet. By contrast, the vortex area is determined by the constraint on PV patch
area (parameter B), but it is also related to the jet curvature, proportional by (65)
to the small shift α1 in chemical potential and temperature. Likewise the equilibrium
temperature at a liquid–gas interface depends slightly on the bubble curvature, due
to capillary effects.

As explained at the end of § 3.2 the parameter γ is linked to the zonal propagation
speed of the structure. The term γy in (65), combined with a usual beta-effect (linear
topography term h(y)), leads to an oscillation with latitude y of the jet curvature 1/r,
i.e. a meandering jet. Another possibility is an exact compensation of the beta-effect
by the γy term, leading to a propagating circular vortex, and the selection between
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these two alternatives is discussed in the next subsection. An oval-shaped, zonally
elongated vortex, such as on Jupiter, is obtained when this compensation occurs, but
with an additional quadratic topography h(y). Indeed, to obtain a zonally elongated
vortex, supposed to be latitudinally centred on zero, the radius of curvature of the
jet must decrease for y > 0 and increase for y < 0. As a consequence, we deduce
from (65) that the topography must be extremal at the latitude on which the vortex
is centred: recalling the sign discussion of ε at the beginning of this section, one can
verify that h(y) actually admits a minimum in the cyclonic case and a maximum in
the anticyclonic case.

Our expansion also provides the velocity v outside the jets, by differentiating (63)
with respect to y. Coming back to the stream function ψ, using (56),

v = R2

(
dh/dy − γ(1− u2)

1− C0(1− u2)

)
ex, (66)

where ex is the eastward unit vector. The velocity is therefore a constant plus a
term proportional to the local beta-effect dh/dy. Notice that the corresponding
shear dv/dy is stronger than the deep shear d2ψd/dy

2 = R2d2h/dy2 by the factor
[1 − C0(1 − u2)]−1 > 1. This zonal velocity can be related to the jet curvature,
eliminating the topography between (66) and (65),

v = R2

(
γ

C0

+
εe(u)

u(1− C0(1− u2))

d

dy

(
R

r

))
ex. (67)

We deduce from this last equation that the zonal velocity is equal to R2γ/C0 at the
latitude of extremal curvature, on which the elongated vortex is centred. This is just
the speed of translation Vsr of the structure, so that the vortex does not propagate
with respect to its surroundings. We also deduce that the shear is cyclonic when the
longitudinally elongated vortex is a cyclone and anticyclonic when it is an anticyclone
(see the previous discussion on the sign of ε and the extrema of h).

The above derivation of the jet shape via the link (65) between the latitudinally
dependent topography and the radius of curvature of the jet may not determine
uniquely the jet shape. Several solutions of (65) with several values of the first-order
Lagrange parameter α1 but corresponding to the same energy and initial PV patch
areas may exist. A solution with two straight zonal jets flowing respectively westward
and eastward, and enclosing a band of slowly varying PV may be, for instance, in
competition with an oval shaped jet satisfying (65). The choice between such solutions
will be made by entropy maximization. We thus generalize the first-order entropy (45)
of § 2.3.3:

S = SA(C0)− FJet(C0)L+ 2εC0u

∫
Aε

[h(y)− γy/C0 − α1] d2r, (68)

where FJet(C0) is the jet free energy (44) per unit of length. As we seek entropy
maxima, this shows that anticyclonic (resp. cyclonic) vortices will preferably be near
maxima (resp. minima) of the topography (h(y)−γy/C0). We understand furthermore
the vortex oval shape (65) to be the result of the competition between a trend to
minimize the jet length, due to the second term in the right-hand side of (68) and
a trend for PV to lay close to topography extrema (we prove in Appendix B that
maximization of the entropy (68) does lead to the jet shape equation (65)). With
respect to oval-shaped vortices, two alternating straight jets enclosing an extremum
of the topography will be favoured because they allow a better distribution of PV
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near this topography extremum, but not favoured because they will require a greater
jet length. This competition will be analysed in detail in the case of a quadratic
topography in § 3.5.

Let us summarize our approximations. Writing the jet equation (55), when making
the boundary layer approximation, we have assumed R � r. We also assumed that
in the jet within the topography can be considered as a constant. If 1/

√
a is a typical

length scale for the topography variation, this gives aR2 � 1. Moreover we have
assumed that the topography effect h(y) − γy/C0 remains small along the jet. If LV
denotes the jet extent (for example a vortex latitudinal size) this approximation is
valid as long as aL2

V � 1.

3.4. Influence of a linear beta-effect on the statistical equilibrium jets

Let h(y) ≡ −βy in this section. β may mimic the beta-effect or a uniform velocity in
the sublayer (but we will refer it as the beta-effect).

A first class of equilibrium states corresponds to a single solution ψ(y) of the
algebraic equation (54). This determines a smooth zonal flow, possibly with intense
jets at the boundaries y = ± 1

2
. The solution depends on the unknown parameters

C , α′ and γ, which are indirectly determined by the energy E, momentum M, and
the condition 〈ψ〉 = 0. The limit of small energy corresponds to C → ∞, for which
we can neglect the term ψ/R2 on the left-hand side of (54), which then reduces to
ψ = (R2/C)[arg tanh(βy − B) + γy + α′]. This corresponds to arbitrarily small values
of ψ (small energy) as C →∞.

When the particular energy value E = R2β2/24 is reached, a uniform PV is possible,
with ψ/R2 = −βy. Then PV mixing is complete, which clearly maximizes the mixing
entropy. In this case,γ = −Cβ, so that γy cancels the term Cψ/R2 in (54). Physically,
the uniform westward zonal velocity,

vm = −R2β, (69)

tilts the free-surface with uniform slope through the geostrophic balance, and the
corresponding topographic beta-effect exactly balances the imposed beta-effect.

For a still higher energy, a first possibility is that again

γ = −Cβ (70)

so that the beta-effect is exactly balanced by the γy term in the jet equation of the
previous subsection. This cancellation is directly obtained in the general Gibbs state
equations (50) and (51). Indeed, the modified stream function ψ′ = ψ+R2βy satisfies
the same equations as in the doubly-periodic case. Therefore in the limit of small R,
the Gibbs states are made up of subdomains with uniform ψ′ (uniform PV), separated
by straight zonal jets or circular vortices. Such vortices move westward at the same
velocity vm, according to (53), so they are simply entrained by the background flow,
without relative propagation (this can be physically understood by the cancellation
of the beta-effect).

The selection of the subdomain areas and PV values is as in the periodic case
of § 2, just replacing ψ by ψ′ = ψ − βR2y. Therefore we obtain again probabilities
p±1 = (1 ± u) in the two subdomains with respective areas A±1 given by (33), and
stream function

ψ±1 = R2(B ± u)− R2βy. (71)

From this relation, we can calculate the energy E = 1
2
(ψ2−1A−1 + ψ2

1A1)/R
2, so the
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energy condition (34) then becomes

E =
R2

2
(u2 − B2) +

R2β2

24
. (72)

Therefore these solutions with cancelled beta-effect can be obtained only beyond
a minimum energy R2β2/24, corresponding to the potential energy of the surface
tilting associated with the drift velocity vm. Then the excess energy will control the
organization in two uniform PV areas.

The shape of these subdomains can again be obtained by minimization of the
jet free energy. However, unlike in the periodic case, jets occur at the boundaries
y = ± 1

2
as well as at subdomain interfaces. Indeed, such boundary jets are in general

necessary to satisfy 〈v〉 = 0, or equivalently that the stream function ψb must be equal
at the two boundaries y = ± 1

2
. In particular, the solutions (71) necessarily involve

a stream function difference (or mass flux) −R2β associated with the drift velocity
vm. This stream function difference must be compensated by boundary eastward jets
with opposite total mass flux. By analysing the competition between boundary and
interior jets, we can show that for two PV levels with similar initial areas a single
eastward jet, separating two regions of uniform PV and weak westward drift, is the
selected state (instead of the two opposite jets in the periodic case). In the case of a
strong PV level with a small initial area, the system is organized into a circular vortex
as in the periodic case. In the limit u→ |B|, as one of the areas A±1 goes to zero, the
jet approximation fails. The corresponding analysis of axisymmetric vortices and of
the linear approximation for the Gibbs states, as performed in § 2, is still valid here.

Up to now we have ignored the constraint of the momentum M expressed by (49).
This constraint imposes the latitude y0 of the equilibrium structure (a circular patch
or a zonal band with uniform PV). For instance in the case B > 0, for which A1 > A−1

(as seen from (33)), we define y0 ≡ ∫A1
y d2r/A1. Then

M ≡
∫
D

yq d2r =

∫
A1

y(B + u) d2r +

∫
A−1

y(B − u) d2r = 2uy0A1. (73)

We thus deduce the latitudinal position of the equilibrium structure:

y0 =
M

2uA1

. (74)

In the case of a single eastward jet, the subdomain position has already been
fixed by the area (y0 = A1/2). Then the only possibility for satisfying a moment M
different from uA2

1 is that the jet oscillates in latitude with some amplitude λ0 (then
M − uA2

1 ' uλ2
0). This is possible if γ 6= −βC according to (65), which becomes

1

r
= b(y − y0), (75)

where b ≡ −(u(γ + βC))/(2Ce(u)R) < 0 and y0 ≡ α1/b. This equation clearly leads
to a jet oscillating around the mean latitude y0 (as the curvature r is positive for
y < y0 and negative for y > y0; recall that the curvature is by definition positive
when positive PV is in the inner part of the jet). Note that this oscillation propagates
eastward at speed R2γ/C (given by (53)). Since b < 0, γ/C > −β, this speed is
eastward with respect to the background drift vm (69). We shall not give a complete
analysis of this situation here, which could be relevant for the Earth’s atmosphere.
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3.5. Influence of quadratic topography on the statistical equilibrium jets

As explained in § 3.3, in the limit of small Rossby deformation radius R, the Gibbs
state equation has solutions consisting of a vortex bounded by a strong jet on the scale
of R. This corresponds to the case of an initial patch with strong PV and small area
(the asymmetry parameter B is sufficiently large) with an energy sufficiently strong
to give a structure of closed jet (see figure 10 below). In the presence of moderate
topography h(y), this internal jet is no longer circular but its radius of curvature
r � R depends on y according to (65). We have seen in the previous subsection
that linear topography h(y) = −βy leads to oscillating jets, or to circular jets when
γ = −Cβ. We shall discuss here how a quadratic term in h(y) modifies the shape of
the closed jets. We therefore assume topography h(y) of the form

h(y) ≡ −aRy2 + by. (76)

This corresponds to a uniform deep zonal shear, with velocity vd = R2d(h−βy)/dy =
R2(−2aRy + b − β). We have introduced the non-dimensional parameter R to stress
the intervention of the topography at first order in our development. We focus our
attention on vortex solutions, seeking closed curve solutions of equation (65). The
vortices will be typically oval shaped like the ones seen on Jupiter. We then study
how this shape (for instance the ratio of the larger axis of the oval to the smaller one)
depends on the topography (sublayer flow) and on the jet parameters. Application of
these results to Great Red Spot observations will be discussed in next section.

To make equation (65) more explicit, let s be a curvilinear parameterization of our
curve, T (s) the tangent unit vector to the curve and θ(s) the angular function of the
curve defined by T (s) = (cos θ(s), sin θ(s)) for any s. Then the radius of curvature r of
the curve is linked to θ(s) by 1/r = dθ/ds and (65) yields the differential equations

dθ

dS
= −dY 2 + 1, (77)

dY

dS
= sin θ(S), (78)

dX

dS
= cos θ(S). (79)

In the above set of equations the space coordinates X, Y and S have been rescaled
with the length c′ ≡ (e(u)/u)(−εα1+(b−γ/C0)

2/4εa)−1, such that c′X = x, c′Y = y−y0,
c′S = s, and d = (εauc′3)/e(u), y0 = (γ/C0 − b)/2aR. Note that as explained in § 3.3,
εα1 < 0. We further assume that εa > 0 in accordance with the analysis of § 3.3,
showing that the topography admits a maximum when ε > 0 (anticyclone) and a
minimum when ε > 0 (cyclone). Thus c′ > 0 and d > 0.

We first note that the two variables θ and Y are independent of X. We will
therefore consider the system formed by the first two differential equations (77), (78).
It is easily verified that this system is Hamiltonian, with θ and Y the two conjugate
variables and

H ≡ cos θ − dY
3

3
+ Y (80)

the Hamiltonian. Thus H is constant on the solution curves. We look for vortex
solutions of our problem (77), (79) and (78) so we require θ to be a monotonic
function of S . Moreover the curves must close, that is X and Y must be periodic. For
symmetry reasons, it is easily verified that the solutions of (77), (79) and (78) with
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Figure 8. Typical subdomain shape with topography h(y) = ay2. For the inner curve, the parameter
d has been chosen such that the ratio of the length to the width is 2 as on Jupiter’s GRS. For the
outer curve, the parameter d is very close to its maximum value d = 4

9
. The shape is then very

elongated, with quasi-parallel latitudinal boundaries, as for instance the Jovian cyclonic vortices
(‘Barges’) described by Hatzes et al. (1981). The total velocity field is an intense jet of width l along
this curve superposed onto the background zonal shear flow (67).

initial conditions θ(0) = 1
2
π, Y (0) = 0 (H = 0) and some X(0) are periodic. We prove

in Appendix C that these initial conditions are the only ones leading to closed curves.
The resulting vortex is then symmetric with respect to the latitude y0. In the reference
frame of the vortex, γ is equal to zero (see (53)); thus y0 is the actual maximum
of the topography. This shows that vortex solutions of the jet shape equation (65)
are localized on extrema of the topography, in accordance with maximization of the
first-order entropy (68). We also prove in Appendix C that the solutions of (77), (79)
and (78) when d > dmax ≡ 4

9
do not define θ as a monotonic function of S . They

contain double points and thus are not possible solutions for our problem. Given
these initial conditions, we can easily prove that the structure has both a zonal and a
latitudinal symmetry axis passing through y0.

To study the shape of the jets, we numerically solve equations (77), (79) and (78)
with initial conditions: θ(0) = 1

2
π, y(0) = 0. We obtain closed curves with oval shapes,

as shown in figure 8. In figure 9 we show the half-width, the length and the aspect
ratio of these vortices versus the parameter d. When d tends to 4

9
, the vortex width

tends to a maximum value, Ymax = 3
2
, whereas the length diverges, so that the vortices

are very elongated. We can see in figure 9 that this maximum width Ymax is nearly
reached, and d ' 4

9
, for an aspect ratio of 2, corresponding of the Great Red Spot.

From this value of d we can then compute the scaling parameter c′. This permits
us to deduce that the actual vortex half-width ymax depends only on a and on the
segregation parameter u:

ymax =

(
3e(u)

2εau

)1/3

(81)

(for elongated vortices).
In summary, we have deduced all the jet properties as functions of the physical

parameters (deformation radius R, topography a, and asymmetry parameter B rep-
resenting the initial vortex patch areas) and of the segregation parameter u, related
to an a priori unknown ‘temperature’. The latitudinal half-width ymax of the vortex
(annular jet), the jet width Rl(u) and its maximum velocity Rv(u) are represented in
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Figure 9. (a) Subdomain non-dimensional length and width versus the parameter d (topography
h(y) = ay2). (b) Subdomain aspect ratio versus the parameter d.

figure 7. Once the vortex width is obtained, the length (in longitude), or equivalently
the vortex area A1, is given from the parameter B by (33). We have also obtained
the zonal velocity (66) outside the vortex, which yields a zonal shear (using the top-
ography specification (76)) of 2aR3σ(u) with σ(u) = (1− ((arg tanh u)/u)(1− u2))−1 (a
decreasing function of u, taking values from ∞ to 1 for u in the interval ]0,1[).

To make connections with observations on Jupiter, we must come back to the
dimensional variables, denoted by a star supersript. We need, in particular, to change
the time unit, by introducing the difference in the two physical PV levels a∗1 − a∗−1

(instead of the normalization (9)). The four previous relations now read

y∗3max =
3e(u)(a∗1 − a∗−1)

4ua∗
, σ∗ = 2a∗R∗3σ(u),

v∗max =
(a∗1 − a∗−1)R

∗v(u)
2

, l∗ = R∗l(u).

 (82)

These four relations (valid for elongated vortices) clearly relate the four free par-
ameters of our model u, R∗, a∗ and (a∗1 − a∗−1) to four easily measured vortex
characteristics: the latitudinal extent of the vortex ymax, the shear around the vortex
σ∗, the maximum jet velocity v∗max, and the jet width l∗. These four relations may
be easily inverted. In particular the segregation parameter u is determined by the
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Figure 10. Phase diagram of the Gibbs states versus the energy E and the asymmetry parameter
B, with quadratic topography and a domain aspect ratio corresponding to the Great Red Spot
parameters (400 000 km to 20 000 km). The outer line is the maximum energy achievable for a fixed
B:E = 1

2
R2(1 − B2). The inner solid line corresponds to the boundary between the vortex and

straight jet solutions. The dashed line corresponds to the limit of validity of the small deformation
radius hypothesis. It has been drawn using the condition that the maximal vortex width (81) be
equal to two Rossby deformation radii. The dotted lines are constant vortex aspect ratio lines with
values 2, 10, 20, 30, 40, 50, 70, 80 respectively.

non-dimensional quantity

σ∗y∗3max
v∗maxl∗2

= i(u), (83)

with i(u) ≡ 6e(u)/(uv(u)σ(u)l2(u)). As may be seen in figure 7(b), the function i(u) is an
increasing function of u ranging from 0 to 3/(4 log2(2)). Once u is determined from
(83), the other parameters are clearly determined by (82).

Let us assume, in contrast, that we know a priori the physical parameters, namely
the deformation radius R∗, the deep zonal shear (topography a∗), and the forcing
conditions (a∗1 − a∗−1, asymmetry B and energy E). Then our model predicts the final
organization resulting from PV mixing. We can in particular predict the competition
between a zonal jet equilibrium and an annular vortex, as represented in the (E, B)
diagram of figure 10. This diagram is obtained by first deducing, with the zero-
order results (34) and (33), the values of the segregation parameter u and of the
area occupied by the vortex A1. From A1 and u, using the numerical determination
of the vortex area versus d, we obtain the appropriate scaling factor c′ and the
corresponding value of d (assuming an infinite domain length). Each dotted line in
the figure represents a vortex shape with a given aspect ratio. The vortex elongation
increases with decreasing asymmetry parameters B, forming a pair of zonal jets when
the domain aspect ratio is reached (typically 20 in the region of the Great Red
Spot). The ‘phase transition’ between the vortex and zonal jet solutions is therefore
continuous (for infinite domain length). A direct comparison of the entropies (68)
for (unbounded) vortex solutions and the zonal jet leads to a preference of the latter
below the solid curve in figure 10. This boundary is not relevant here, as the vortex
solution no longer exists along this line (the aspect ratio is so large that the vortex
is bounded by the domain length). The situation would be however different for a
smaller aspect ratio (discontinuous phase transition). The parameters of the Great
Red Spot are indicated in the figure. An increase of energy and a decrease of B would
yield zonal jets, which may explain what is observed in the northern hemisphere. This
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could be physically due to an excitation by a wider convective plume, as discussed in
next section.

4. Application to Jupiter’s Great Red Spot and Oval BC
We here discuss how our statistical mechanics predictions fit with Jupiter’s data.

This is not an easy task as key physical parameters are poorly known. Busse (1983)
first suggested that the alternating eastward and westward winds observed on Jupiter
are generated in the deep interior, and are constant in columns aligned with the
axis of rotation. Some authors, however, remark that this is inconsistent with the
observed asymmetry of the winds in the southern and northern hemispheres. They
propose instead a generation limited to a thin atmospheric layer. Our statistical
mechanics approach provides clear predictions for this, see (65): a longitudinally
elongated anticyclonic vortex can only persist above maxima of the effective topogra-
phy h(y), induced by the combined effect of the deep zonal flow and the beta-effect
(in the reference frame moving with the structure). Elongated cyclonic vortices must
similarly sit on topography minima. Concerning the upper zonal flow, we predict
two kinds of flow features in our asymptotic limit of small R: the moderate zonal
velocity (66) which reproduces the deep flow structure, but with enhanced velocity,
and the stronger velocity in the narrow jets (represented in figure 6) separating
subdomains.

Only circular vortices are predicted in the absence of a quadratic beta-effect. In
the case of a uniform zonal flow, equivalent to an ordinary (linear) beta-effect, the
vortices drift at velocity −R∗β∗, but remain circular, as discussed in § 3.4. This is
specific to the case of small deformation radius. In the opposite limit of the Euler
equations, we do obtain elongated vortices in a shear layer as statistical equilibria
(Sommeria, Staquet & Robert 1991b), even without any beta-effect.

Observations clearly indicate the existence of an intense and narrow jet in the
northern hemisphere at 24◦N, which dominates the broader zonal flow. The observed
asymmetry of the zonal winds in the two hemispheres is mostly due to this intense
jet, which has no southern counterpart. The Great Red Spot (GRS) occupies the
same latitude region in the southern hemisphere. We claim that the two hemispheres
have the same deep zonal flow, while the observed differences correspond to the two
kinds of statistical equilibrium solutions in the atmospheric layer (the zonal jets and
annular vortex). This could be due to slightly different forcing conditions, as discussed
below.

The bottom topography associated with the deep zonal flow has been indirectly
determined by Dowling & Ingersoll (1989), from the measured velocity fields in the
GRS and White Oval BC, and we can use these data to test our predictions. They
analyse the observations in the framework of a 1-1/2 shallow water model (SW),
with an active shallow layer floating on a much deeper layer. The SW topography
gh∗2, depending only on the planetographic latitude λ, is then related to the deep
layer velocity v∗d(λ) (assumed zonal and steady) by the geostrophic balance f∗v∗d =
−(1/R∗l ) d(gh∗2)/dλ, where g is the reduced gravity and R∗l (λ) the latitudinal planetary

radius of curvature. The Bernouilli function B∗e = v∗2/2 + g(h∗1 + h∗2) and the shallow-
water potential vorticity q∗SW = (ω∗ + f∗)/h∗1 (h∗1 is the upper layer thickness) are
both advected and thus assumed constant along the streamlines of the steady vortex
flow. The field B∗e is deduced from the observed velocity field v∗ (and corresponding
vorticity ω∗) by integration of the steady flow relation ∇B∗e = −(ω∗+f∗)(ez× v∗). The
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topography gh∗2 is deduced from these relations as a quartic fit in the latitude λ:

gh∗2 = A0 + A1λ+ A2λ
2 + A3λ

3 + A4λ
4. (84)

This fit depends on a single unknown parameter, the Rossby radius of deformation
R∗ =

√
gh∗0/f∗0 , where h∗0 is a reference upper layer thickness and f∗0 a reference

Coriolis parameter. The same procedure has been applied to both the GRS and the
Oval BC, covering different latitude ranges. The coefficients Ai (in the vortex reference
frame) are reported in table 1 of Dowling & Ingersoll (1989), for three values of the
deformation radius.

Our model is the QG approximation of this shallow water system. Its validity
has been discussed by Dowling & Ingersoll (1989) and it was found reasonably
good as a first approach, although not accurate. We furthermore use the beta-plane
approximation, linearizing the planetary vorticity around a reference latitude λ∗0 (λ∗0
is taken to be −23◦ for the GRS and −33.5◦ for the Oval BC). Therefore we write
f∗ = f∗0 + β∗y∗, with f∗0 = 2Ω∗ sin λ0 and β∗ ≡ 2Ω∗ cos λ∗0/r∗z (λ0); Ω

∗ is the planetary
angular speed of rotation: 2π/Ω∗ = 9 h 55 mn 29.7 s and r∗z (λ0) is the zonal planetary
radius (which slightly differs from the latitudinal radius R∗l (λ) due to the ellipsoidal
planetary shape, see formula (4) of Dowling & Ingersoll (1989)). We then obtain
the QG potential vorticity (2) with the QG topography h∗(y∗) linked to the SW
topography (84) by

h∗(y∗) =
gh∗2
|f∗0 |R∗2 − β

∗y∗. (85)

In our QG model the deep layer zonal flow is given by v∗d = R∗2(d/dy∗)(h∗(y∗) +β∗y∗)
(recall that y∗ is directed northward, like λ, and that the Coriolis parameter f∗0 is
negative).

We have represented this QG topography (85) in figure 11 for the values of the
Rossby deformation radius considered by Dowling & Ingersoll (1989). The result
shows that, for both the GRS and the Oval BC, the QG topography has a maximum
at a latitude which is nearly the centre of the vortex. It means that the effective
beta-effect dh∗/dy∗ vanishes at this latitude: the planetary beta-effect β∗ is balanced
by the effect of the sloping interface due to the vertical shear. This means that the
bottom velocity vd is eastward with respect to the atmospheric layer, as can be directly
seen in figure 4 of Dowling & Ingersoll (1989).

A quadratic approximation h∗(y∗) = −a∗R∗y∗2 to the QG topography is indicated
in figure 11. It appears to be good for the latitudinal extent of the GRS. Repeating
this procedure for the three values R∗1 = 1700 km, R∗2 = 2200 km, and R∗3 = 2600 km,

we obtain respectively: a∗ = 5.4 × 10−16, 3.3 × 10−16 and 2.5 × 10−16 km−3 s−1,
corresponding to a deep shear σ∗d = 0.41× 10−5, 0.70× 10−5, and 0.93× 10−5 s−1.

The data analysis of Dowling & Ingersoll (1989) also provide the relationship
between the SW potential vorticity q∗SW and the Bernoulli function B∗e in the vortex.
This can be translated into a relationship between q∗SW and the SW stream function
ψSW , defined for a steady state by h∗1v∗ = −ez × ∇ψ∗SW (it expresses the conservation
of mass ∇ · (h∗1v∗) = 0). From the steady SW equations, dB∗e /dψ∗SW = −q∗SW , so that
ψ∗SW (B∗) can be deduced from q∗SW (B∗). We have numerically computed this relation,

ψ∗SW =
∫
q∗SW

−1 dB∗ (up to an arbitrary constant for ψ∗SW ) from the data of Dowling
& Ingersoll (1989). Using that q∗SW and ψ∗SW are respectively proportional to the QG
potential vorticity q and stream function ψ in the QG limit, we can compare these
curves with our q(ψ) relation. The result, shown in figure 12, is consistent with the
tanh predicted for a two-PV-level statistical equilibrium. The maximum and minimum
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Figure 11. QG topography (units s−1) versus latitude computed from data of Dowling & Ingersoll
(1989): (a) under the GRS; (b) under the Oval BC.

values of q∗SW provide an estimate of the corresponding PV levels. Converted to QG
variables, this reads u(a∗1 − a∗−1) = 0.8, 0.68, and 0.61 (units 10−4 s−1) for R∗ = R∗1 , R∗2
and R∗3 respectively.

These values are consistent with a PV difference of order of the planetary vorticity
|f∗0 | = 1.35 10−4 s−1. A physical justification could be that PV spots with value −f∗0 ,
occupying a small area proportion are randomly generated in the active layer. This
could be the result of intense incoming thermal plumes, as recently observed by
Ingersoll et al. (2000): conservation of the absolute angular momentum during the
radial expansion leads to a strong decrease of the local absolute vorticity, which comes
close to zero. This means that in the planetary reference frame, a local vorticity patch
with value −f∗0 is created. The opposite vorticity is globally created by the subducting
flow, but it is close to zero due the much larger area.

We can alternatively deduce the parameters of our model from more direct ob-
servations, using (83) and (82). We take the ambient shear σ∗ = 1.5 10−5 s−1 from
the analysis of Jupiter’s zonal flow by Limaye (1986). Mitchell et al. (1981) have
analysed the GRS jet velocity, assuming an elliptical shape for the vortex, and plot-
ted the tangential velocity with respect to the greater axis length of these ellipses.
From this study we take v∗max = 120 m s−1. Taking the ellipse greater axis where
the velocity achieves its maximum and rescaling it with the ellipse aspect ratio we
obtain y∗max = 4700 km. This analysis does not permit a precise determination of
the jet width l∗. The first reason is that velocity data in the outside part of the
jet are sparse. The second reason is that the width depends on latitude (the jet
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Figure 13. Velocity profile within the GRS from Mitchell et al. (1981). They have observed that the
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the velocities have been plotted with respect to the semi-major axis A of the ellipse on which the
measurement point lies. Results have been fitted by a quartic in A. l∗ is the jet width, defined as
the width in which the jet velocity is greater than half the maximum velocity.

has a greater width where the curvature is larger). From the data of Mitchell et
al. (1981), we deduce that on the ellipse major axis the jet width is 5600 km (see
figure 13); following its elliptical approximation, this corresponds to a 2600 km jet
width on the minor axis. To fit with our asymptotic analysis, we need to take a
(single) value between these two extrema, 3000 km 6 l∗ 6 5000 km. We then use the
non-dimensional expression (83) to determine the value of the segregation parameter
u and deduce the other free parameters from (82). For 3000 km 6 l∗ 6 5000 km,
we obtain 0.92 6 u 6 1 (u decreases as l∗ increases), 1580 km 6 R∗ 6 2000 km (R∗
decreases as l∗ increases), 1.2× 10−4 s−1 6 a∗1− a∗−1 6 3.1× 10−4 s−1 (a∗1− a∗−1 increases

as l∗ increases), 9.0 × 10−16 km−3 s−1 6 a∗ 6 1.4 × 10−15 km−3 s−1 (a∗ increases as l∗
increases) and 1.1 × 10−5 s−1 6 σ∗d 6 1.5 × 10−5 s−1 (σ∗d increases as l∗ increases). We
note that this deep shear σ∗d , deduced from the surface observations with our model,
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is in reasonable agreement (within a factor of two) with the analysis of Dowling &
Ingersoll (1989).

In this range of values, we note that a∗1 − a∗−1 = |f∗0 | is obtained for l∗ = 3200 km,

u = 0.99, R∗ = 2000 km, a∗ = 9.7 × 10−16 km−3 s−1, σ∗d = 1.5 × 10−5 s−1. We have
chosen these parameters to plot the GRS point in the phase diagram of figure 10.
A channel width of 20 000 km has been chosen (but this parameter is not critical
as long as the equilibrium vortex is not constrained by the lateral boundaries). The
asymmetry parameter B is then obtained from the observed GRS area using (33).

We can predict the effect of changing the forcing parameters B and E in the phase
diagram. Slightly larger area (smaller B) and energy lead to more elongated vortices.
At the end of the nineteenth century, the GRS was longer (40 000 km) with the same
width (Beebe & Youngblood 1979). Our model indeed indicates that the GRS length
is sensitive to the forcing parameters (in particular to B, unlike its width ymax, strongly
constrained by (82)). Elongated vortex solutions also provide a good description of
the dark brown cyclonic spots (‘Barges’) at 14◦N on Jupiter, as studied from Voyager
observations by Hatzes et al. (1981). The measured velocities show a boundary jet
organization around the perimeter of the barge (v∗max = 25 m s−1), see figure 1(b), in
agreement with our model. However the surrounding zonal shear is such that velocity
at the maximum latitude of the barge is the same as the maximum jet velocity, so
that our approximation aL2

V � 1 is not good. Note that this vortex is cyclonic (in a
cyclonic shear), supporting our view that the anticyclonic direction of the GRS is a
feature of the forcing condition, rather than a fundamental dynamical constraint.

For still smaller values of B, we obtain an x-independent uniform PV band, bounded
by intense zonal jets. There are two jets of opposite direction on each side of the
uniform PV band, but this is a peculiarity of the symmetry of this model with respect
to the y-coordinate. We may expect that on the half-sphere (e.g. on the northern
hemisphere), a single eastward jet can separate a high-PV mixed region in the north
from a low-PV mixed region in the south. This could explain the intense westward jet
observed at 24◦N. According to our model, this could be due to a different convective
activity than in the southern hemisphere, generating a more balanced proportion of
positive and negative PV patches.

The stability of such an intense jet has been a puzzling problem. We find that a single
jet satisfies the usual Fjortjoft condition of barotropic stability: its PV monotonically
varies with latitude between the values q−1 and q1. By contrast, for the pair of jets
obtained in our channel geometry, there is a PV maximum q1. This maximum is
very flat however, corresponding to the uniform PV region. Numerical simulations
indicate that this state is also stable, as we show in a forthcoming publication (the
Fjortjoft criterion is only a sufficient condition of stability, not a necessary one). More
generally the maximum entropy states are always found to be dynamically stable,
although this remarkale result has not been rigorously proven in general.

5. Conclusions
A first achievement of this work is the general analysis of the statistical mechanics

equilibrium states for the quasi-geostrophic model, in the limit of small Rossby
deformation radius. In the absence of topography or beta-effect, turbulence mixes
potential vorticity in subdomains, and jets occur at the interfaces of these subdomains,
with a width of the order of the deformation radius. From a thermodynamic point of
view, this is like the coexistence of two phases. Indeed, the vortex interaction becomes
short ranged in the limit of small deformation radius, and statistical mechanics leads
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to a thermodynamic equilibrium between two ‘phases’, with different concentrations
of the potential vorticity levels. The same conclusion is obtained from the general
partial differential equation (18) characterizing the equilibrium states. This equation
reduces to the algebraic equation (20) in the limit of small deformation radius, and
the two uniform subdomains correspond to two solutions ψ−1 and ψ1 of this equation.
At the interface of these subdomains, the general partial differential equation (18)
reduces to the equation (38), whose solution determines the jet velocity profile. In
addition, a solvability condition of this equation confirms the equilibrium relation
between the two ‘phases’, which was obtained in the thermodynamic approach.

Our results are for two initial potential vorticity levels only, to simplify the algebra.
However the conclusion that potential vorticity mixes in subdomains separated by
intense jets, scaling like the Rossby deformation radius, is quite general. It can also be
generalized to the shallow water model, beyond the QG approximation. Any initial
distribution of PV levels will lead to a monotonic function q(ψ) reaching asymptotic
extrema at the minimum and maximum PV levels (Robert & Sommeria 1991). In
most cases such a function will still be represented by a tanh-like curve, corresponding
again to the coexistence of two phases as represented in figure 3. We may also imagine
a curve with more than one inflection point, instead of a single one, resulting in the
coexistence of more than two phases. The most common case will be a two-phase
equilibrium however. Likewise in thermodynamics the coexistence of more than two
solutal phases is unlikely, even when many chemicals (equivalent to PV levels) are
mixed.

In the ocean or Earth’s atmosphere, the shallow water model (or its QG approx-
imation) is of limited interest. Indeed, vortices larger than the Rossby radius of
deformation may be unstable to baroclinic instability, which is only captured with
(at least) a two-layer model. In the limit of a thin upper layer, the growth rate of
this instability decreases like the ratio of the upper layer thickness to the lower one,
but it never cancels. By contrast the single layer model has no baroclinic instability.
Extension of the present statistical mechanics results to a two-layer model would be
therefore desirable.

The atmosphere of the Giant Planets is possibly the best field of application of
the shallow water model with small radius of deformation: it represents a stratified
atmosphere floating on the much deeper convective interior. In this context of
shallow water, many models of coherent vortices have been proposed to explain the
Great Red Spot of Jupiter. The models of solitary waves (Maxworthy & Redekopp
1976; Petviashvili 1981) address the robustness with respect to the dispersive effect
of Rossby waves. They do not, however, explain the robustness amidst turbulent
mixing, a stricking feature of spacecraft images. By contrast our maximum-entropy
vortex is not destroyed by turbulence: it results instead from the most complete PV
mixing consistent with energy conservation. The planetary beta-effect is balanced
by the modification of the zonal flow due to PV mixing, suppressing Rossby wave
propagation: the coherent vortex does not propagate with respect to the zonal flow
at the latitude of its centre, in agreement with observations.

In spite of the approximations (QG with small radius of deformation), our analysis
provides specific predictions which can be clearly compared with present or future
observations. The annular jet structure of the GRS is explained (unlike in solitary wave
theories). We can deduce the radius of deformation to be in the range 1580–2000 km,
from the fit of our model to the atmospheric wind data. We find that its elongated
shape must be associated with a deep zonal shear, such that the effective beta-effect
is quadratic at the latitude of the vortex centre. This means that the deep fluid moves
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eastward at the latitude of the GRS centre, at velocity R∗2β∗ = 12–18 m s−1. Such
a prediction is in agreement with the data analysis of Dowling & Ingersoll (1989).
Two vortices trapped at the same latitude tend to merge, as this clearly minimizes the
boundary length (like droplet merging by capilarity).

We can provide a general understanding of the organization of atmospheric motion
in a Giant Planet, with small radius of deformation. In the absence of a deep zonal
flow, we would find only intense zonal jets, with width of order R, or circular vortices,
with a circular annular jet structure.

We therefore conclude that the observed eastward and westward jets, much broader
than the deformation radius, must be due to a deep zonal flow. This deep shear
is reproduced in the atmospheric layer, with an amplifying factor. Furthermore a
systematic westward velocity tends to appear, as a consequence of mixing of the
planetary PV.

If a local extremum of the topography h(y) is reached, resulting in a quadratic
effective beta-effect, an isolated coherent vortex, with longitudinally elongated shape,
tends to be trapped. It is cyclonic for a minimum of h(y), corresponding to a cyclonic
background shear, and anticyclonic otherwise. The vortex equilibrium is centred on
the topography extremum, so it does not depend on the artificial channel boundaries
that we have introduced. In a more realistic multi-zone model, similar vortices would
appear as local equilibria, which could be meta-stable states of the global system.
Note that the latitude of the topography extremum, and the resulting vortex latitude,
depend on the chosen reference frame, which is itself set by the x-wise momentum
of the system. Depending on this parameter, the vortex can be at any latitude, going
with the local zonal flow.

An alternative possibility is the formation of intense zonal jets, scaling like the
deformation radius. The choice depends on the energy and initial areas of the PV
patches, as demonstrated in figure 10: a forcing by larger PV patches, resulting from
a stronger convective activity, could lead to a zonal jet.

For a more explicit application to the Giant Planets, a model of forcing should be
combined with our statistical mechanics approach. Forcing by incoming convective
plumes is a good candidate, as it produces a small area of high anticyclonic vorticity,
with value of order −f. Another possibility could be baroclinic instability, as produced
by Read & Hide (1984) in a laboratory experiment. They have obtained a single
coherent vortex in a rotating annulus with internal heating and cooling at the sides.
Interestingly, the corresponding geostrophic flow tilts the isopycnals with a maximum
at the centre of the annular channel, like with our topography.

In practice, the forcing should be introduced in kinetic equations like those devel-
oped in Kazantsev et al. (1998): the local PV fluctuations would be controlled by a
balance between local forcing and cascade process toward small scales, in addition to
the horizontal mixing described by the present statistical theory. The eddy diffusivity
depends on the scale of the fluctuations, but not the resulting equilibrium, which only
depends on the probability distribution of the PV levels (which can be conveniently
sketched in a model with only two levels). Furthermore, if we completely smooth out
the local fluctuations of a statistical equilibrium, then entropy maximization, taking
the new initial PV distribution, yields again the same equilibrium structure (Robert
& Sommeria 1991). Therefore our equilibrium model provides a robust description of
the mean flow, while the local fluctuations are strongly influenced by the forcing and
cascade effect.

Improvements of our equilibrium model could be made along the following lines.
First the approximation R � r of a thin jet, convenient for a qualitative understanding



200 F. Bouchet and J. Sommeria

via analytically tractable computation, is only marginally satisfied. Moreover we have
used a model quadratic topography and treated it as a first-order perturbation, which
in view of Dowling & Ingersoll (1989) data is not valid in the outer region of the
GRS. These limitations can be overcome by numerical determination of the Gibbs
state (18) using the relaxation methods of Turkington & Whitaker (1996) or Robert
& Sommeria (1992). Furthermore, extension to the more general shallow water model
is desirable, as the Rossby number (' 0.36 where it is maximal) is not very small.
The corresponding formulation has been given by Chavanis & Sommeria (2000).

Of course the whole approach relies on the assumption that potential vorticity
mixing is only constrained by the conservation laws. The underlying idea of potential
vorticity mixing by geostrophic turbulence has been proved relevant in oceanic gyres
(Rhines & Holland 1979). In the case of the Euler equations, some numerical and
laboratory experiments quantitatively support this statistical mechanics approach:
it describes well the result of vortex merging. In other cases mixing may not be
global but restricted to active regions (see e.g. Sommeria 2001). Organization into
local vortices, rather than at the scale of the whole domain, is more likely with a
small radius of deformation, as vortex interactions leading to coalescence are then
screened. This is observed for instance in the numerical computations of Kukharkin
& Orszag (1996). By contrast, the zonal shear in the Giant Planets promotes vortex
encounters, due to the latitude shift induced by vortex interaction. We therefore expect
a good relaxation toward the global statistical equilibrium in the shear zone domain
considered, always involving a single vortex. A good illustration of mixing properties
is given by the White Ovals. Three Ovals have persisted since their discovery in 1938,
at an equidistant position about 120◦ apart in longitude (see Beebe & Youngblood
1979). Within the last three years, these vortices have formed a single one by two
successive merging events. Such merging is predicted by statistical mechanics. However
the equidistant position is mechanically stable and the system only slowly moves away
from it by the effect of turbulent fluctuations. Similar behaviour has been observed
in a rotating tank experiment (Meyers, Sommeria & Swinney 1989).

The authors thank R. Robert for collaboration on statistical mechanics approach
and for useful comments on the present work.

Appendix A. Axisymmetric equilibrium vortices
We have noted in § 2.3.1 that, when for instance B > 0, in the limit of small energy

(E → 0 or equivalently u → |B|, for fixed B and R), the area A−1 occupied by ψ−1

tends to 1, the whole domain. Therefore, in this limit, the complementary area A1

tends to 0 and the vortex becomes smaller than the deformation radius, so we can no
longer neglect the curvature radius of the jet.

In this limit u→ |B|, as the vortex has a small area with respect to the total domain
it is not affected by the boundary conditions, so it can be supposed axisymmetric. We
introduce the rescaled stream function

φ = − α
C

+
ψ

R2
, (A 1)

which depends only on the radius r (expressed in units of the Rossby radius R).
From the general Gibbs state equation (18), we then deduce the axisymmetric vortex
equation:

−d2φ

dr2
− 1

r

dφ

dr
= −φ− α

C
+ B + tanh(Cφ). (A 2)
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From now on, we shall consider the case B > 0 (the case B < 0 is just the symmetric
case of a negative vortex).

For this equation to describe a localized vortex, we impose limr→∞ φ(r) = φ−1 ≡
−α/C + ψ−1/R

2, where ψ−1 is the positive solution of the algebraic equation (20).
Since nearly the whole fluid domain is covered by the asymptotic stream function ψ−1

outside the vortex, the condition of zero total circulation 〈q〉 = 〈ψ〉/R2 = 0 imposes
that ψ−1 ' 0 (it is of order R), so that φ−1 = −α/C , and the algebraic equation (20)
then leads to

α = arg tanh(B). (A 3)

We can thus eliminate α in (A 2), leading to an equation depending on two parameters,
B and C , with boundary conditions

dφ

dr
(r = 0) = 0 and lim

r→∞φ(r) = −arg tanhB

C
, (A 4)

where the regularity condition at r = 0 has been included.
Let us consider, as in § 2.3.2, the analogy of equation (A 4) with one-particle motion

with ‘position’ φ and ‘time’ r. The right-hand side of (A 2) can be written as the
derivative −dU/dφ of the potential,

U(φ) =
ln(cosh(Cφ))

C
− φ2

2
+

(
B − arg tanhB

C

)
φ, (A 5)

while the first term can be interpreted as a friction effect. Indeed, integration of (A 4)
leads to

U(φ−1)−U(φ(r = 0)) = −
∫ +∞

0

1

r

(
dφ

dr

)2

dr < 0. (A 6)

Thus, in figure 3(a), the hatched area on the right must be greater than the one
on the left (since (U(φ1) − U(φ−1)) > U(φ(r = 0) − U(φ−1) > 0). It is clear from
this figure that this is possible only if φ0 < 0 and α/C < B, or, using (A 3),
C > α/B = arg tanhB/B. C = α/B corresponds to the integrability condition (41)
when the effect of jet curvature is neglected. This effect is now taken into account by
the departure of C from this value, which we shall denote ∆C ≡ C − arg tanhB/B.
Then ∆C > 0 and we expect to recover the results of § 2.3.2 in the limit ∆C → 0.
Moreover, we must reach a uniform stream function at large distance, the solution of
the algebraic equation (20), so it must have three solutions. We easily show that the
corresponding ∆C must not exceed a maximal value, denoted ∆Cmax.

We can prove that for any B > 0 and arg tanhB/B < C < arg tanhB/B + ∆Cmax,
equation (A 4) has a unique solution. Such solutions have been numerically obtained
for B = 0.75 and 0 < ∆C < ∆Cmax. Corresponding stream function profiles are shown
in figure 14.

As ∆C is decreased from ∆Cmax to zero, two stages can be seen in figure 14. First
the maximum value of the stream function is increased while the mean width of the
vortex remains of the order of R. In a second stage, when ∆C goes to zero, as we
are closer to the integrability condition for big vortices (41), φ remains longer in
the vicinity of φ1 so the vortex size increases. Note that the energy monotonically
increases as ∆C is decreased, first by an increase in the vortex maximum stream
function and then by an increase in size. Finally the case of a jet with negligible
curvature studied in § 2.3.2 is reached when ∆C → 0.

In conclusion, we have shown that in the limit of small energy, with fixed B and R,
the Gibbs states are approximated by axisymmetric vortices, whose radial structure
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depends on the parameter ∆C , which monotonically decreases from ∆Cmax to 0 as
energy is increased.

Appendix B. Determination of the Gibbs state by direct entropy
maximization, in the presence of a topography (beta-effect)

In § 3.3, we studied the limit of small Rossby deformation radius in the Gibbs state
equation (51) by considering the jet equation (55) and its integrability condition (60).
We deduced that the Gibbs states are composed of subdomains in which ψ satisfies
the algebraic equation (54) separated by an interfacial jet whose curvature satisfies
(65). The aim of this Appendix is to prove that these results can be obtained by
directly maximizing the entropy, adapting the method used in § 2.3.1.

Let us make the following assumptions:
1. In the limit of small Rossby deformation radius, the probability p of finding the

PV level a1 takes two values p±1(y), depending only on y. We are looking for vortex
solutions. The vortex shape is described by the length Λ(y) on which the probability
p takes the value p−1(y) (see figure 15).

2. The two subdomains where p take the two values p±1(y) are separated by a jet.
The probabilities p±1(y) are supposed to be close to their values without topography
p±1 = ±u, such that the free energy per unit length of the jet is approximated well by
that calculated without topography (44). If LV denotes the vortex size, 1/

√
a a typical

length on which topography varies, we will show this approximation to be valid as
long as aL2

V � 1.
3. The boundary conditions can be relaxed; that is no boundary term appears

in the variation of the free energy at the order considered here (see the discussion
concerning boundary jets in § 3.3).
Given these, the Gibbs state is described by the three functions p±1(y) and Λ(y). We
will determine them by maximizing the entropy S (15) under the three constraints:
energy (48), mass conservation (46) and momentum (49). A necessary condition for
a solution to this variational problem is the existence of three Lagrange parameters
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Figure 15. Definition of Λ(y).

C0, α0 and γ such that the first variations of the free energy

F ≡ −S − C0

R2
E + α0

〈ψ〉
R2

+ γM (B 1)

vanish. Using (15), (48), (46) and (49) together with (2) and (11) and the above
assumption (see figure 15), a direct calculation shows that the free energy (B 1) is, up
to a constant,

F =

∫ ymax

ymin

[f(p1(y), y)(1− Λ(y)) + f(p−1(y), y)Λ(y)] dy(p− 1
2
)

+

∫ ymin

−1/2

f(p1(y), y) dy +

∫ 1/2

ymax

f(p1(y), y) dy + LFJet(u) (B 2)

with

f(p, y) ≡ (p log p+ (1− p) log(1− p))− 2C0(p− 1
2
)2 − 2(C0B − α0)(p− 1

2
)

−2(C0h(y)− γy)

and where L is the jet length, FJet(u) is the jet free energy per unit length (44),
calculated without topography.

Considering first variations of the free energy (B 2) under variations of p1(y) (resp.
p−1(y)) proves that (∂f/∂p)(p1(y), y) = 0 and that (∂f/∂p)(p−1(y), y) = 0. A direct
calculation shows that

2(p±1 − 1
2
) = tanh(2C0(p±1 − 1

2
) + C0h(y)− γy + C0B − α). (B 3)

Using (11) and (2) and recalling that we neglect the Laplacian term, a straight
calculation shows that (B 3) is equivalent to the algebraic equation (54).

Let us consider now first variations of the free energy (B 2) under small variations
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δΛ(y) of Λ(y). Using that the length of the jet is given by

L = 2

∫ ymax

ymin

√
1 + 1

4
(dΛ/dy)2 dy,

a straightforward calculation shows that

δL = −
∫ ymax

ymin

δΛ(y)/r dy

where r is the radius of curvature of the jet. We thus deduce from first variations of
the free energy (B 2) that

FJet(u)

r
= f(p1(y), y)− f(p−1(y), y). (B 4)

From assumption 2 aL2
V � 1 permitted us to consider FJet(u) as independent of y. In

accordance with this hypothesis we evaluate f(p1(y), y)−f(p−1(y), y) at order zero, with
p±1 = 1

2
(1±u) at this order. We obtain f(p1(y), y)−f(p−1(y), y) = 2u(α1 +C0h(y)−γy).

Moreover using the free energy per unit length expressions (44), (39) and (40), one
can show that FJet(u) = 2e(u)C0R where e(u) is defined by (64). These two last results
show that (B 5) is equivalent to (65), the expression for the radius of curvature r
found by the integrability condition for the jet.

Appendix C. Conditions for closed-jet (vortex) solutions of
equations (77), (79) and (78) of the oval-shaped vortex boundary

We here investigate in which cases equations (78), (79) with d > 0, defining the
curve followed by the jet, admit periodic solutions both in x and y, corresponding
to vortices. As stressed in § 3.5, equations (78) derive from the Hamiltonian (80), in
which y and θ are the two conjugated variables. Let us study the phase portrait of
H . For θ in [0, 2π[, there are four critical points: P1 = (0, 1/

√
d), P2 = (0,−1/

√
d),

P3 = (π, 1/
√
d), P4 = (π,−1/

√
d). By linearization around these fixed points, one

can easily prove that P1 and P4 are stable fixed points whereas P2 and P3 are
hyperbolic fixed points. This permits us to draw the phase portraits of figure 16.
Using the expression (80) for H , we obtain that the unstable manifolds are given by
1 − 2/(3

√
d) = H and −1 + 2/(3

√
d) = H respectively. The parameter d governs a

transition of the phase-space structure, from figures 16(a) to 16(b). This transition
occurs when the two unstable manifolds merge, for d = 4

9
.

We are looking for vortex solutions of (78), (79), for which the jet angle θ must
monotonically depend on the coordinate s, without bound. This excludes the closed
curves (c) in figure 16 (which would correspond to oscillating jet solutions). Further-
more, a single position y must be reached for each angle θ, which excludes the curves
b2 of figure 16(b) (these would lead loops in the physical space).

Another condition for closed jets is that x, determined by (79), must be a periodic
function of θ. We can show that this is only possible for H = 0. Indeed, let us denote
by ∆x the x variation when θ is in [0, 2π]. We thus impose the condition ∆x = 0.
Using (79) and (78) we calculate

∆x =

∫ L

0

cos θ ds =

∫ 2π

0

cos θ dθ

−dy2(θ) + 1

=

∫ π/2

−π/2
cos θ

d[y2(θ)− y2(θ − π)]

(−dy2(θ) + 1)(−dy2(θ − π) + 1)
dθ = 0. (C 1)
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Figure 16. Phase portraits of the Hamiltonian H (80) for y0 = 0, governing the jet shape via
differential equations (78) (two periods in θ). For vortices, we are looking for periodic solutions in y.
Thus only trajectories a and b are of interest. Conversely the closed trajectories c could correspond
to oscillating jets. The parameter d governs a transition between two types of phase portraits.
(a) For d < 4

9
(here d = 0.075), only the trajectory labelled 0 represents a vortex. (b) For d > 4

9
(here d = 2, the curves y(θ)) admit double points, so they cannot define a vortex.

(The last expression is obtained rewriting the integral as a sum on [− 1
2
π, 1

2
π] plus

a sum on [ 1
2
π, 3

2
π] and performing a change of variables.) Let us study the sign of

y2(θ) − y2(θ − π). Using (80) we deduce that −d(y3(θ)/3) + y(θ) = H − cos θ and
−d(y3(θ − π)/3) + y(θ − π) = H + cos θ. From these two relations we conclude that
y(θ − π) = y(θ) implies cos(θ) = 0 and that y(θ − π) = −y(θ) implies H = 0. Thus
if H 6= 0, y2(θ) − y2(θ − π) does not change sign in [− 1

2
π, 1

2
π]. Moreover, on the

curves a and b1 (−dy2(θ) + 1) does not change sign. Thus if H 6= 0, the argument
of the last integral of (C 1) does not change sign and ∆x cannot be zero. We thus
conclude that the only solution where x is a periodic function of θ corresponds to
H = 0.

This solution is the one obtained from (78), (79) with initial conditions y(0) = 0
and θ(0) = 1

2
π. Since we have previously excluded the curves b2 (when d > 4

9
) we

conclude that no vortex solution exists when d > 4
9
. We conclude that equations

(78), (79) with d > 0, define a vortex only when d < dmax = 4
9
. This solution

corresponds to H = 0 (80). The vortex then admits a latitudinal and a zonal axis of
symmetry.
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