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Abstract. We study the large deviations of a simple noise-perturbed dynamical
system having continuous sets of steady states, which mimic those found in some
partial differential equations related, for example, to turbulence problems. The
system is a two-dimensional nonlinear Langevin equation involving a dissipative,
non-potential force, which has the essential effect of creating a line of stable
fixed points (attracting line) touching a line of unstable fixed points (repelling
line). Using different analytical and numerical techniques, we show that the
stationary distribution of this system satisfies, in the low-noise limit, a large
deviation principle containing two competing terms: (i) a ‘classical’ but sub-
dominant large deviation term, which can be derived from the Freidlin–Wentzell
theory of large deviations by studying the fluctuation paths or instantons of the
system near the attracting line, and (ii) a dominant large deviation term, which
does not follow from the Freidlin–Wentzell theory, as it is related to fluctuation
paths of zero action, referred to as sub-instantons, emanating from the repelling
line. We discuss the nature of these sub-instantons, and show how they arise
from the connection between the attracting and repelling lines. We also discuss
in a more general way how we expect these to arise in more general stochastic
systems having connected sets of stable and unstable fixed points, and how they
should determine the large deviation properties of these systems.
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1. Introduction

The dynamics of physical systems described by partial differential equations, such as those
appearing in hydrodynamics, optics or quantum physics, are in many cases qualitatively
similar to those of finite-dimensional dynamical systems, especially when an important
dissipation mechanism is involved. When this is the case, the instabilities, bifurcations,
limit cycles and attractors are indeed often similar to their finite-dimensional counterparts
(see, e.g., [1]). By contrast, when dissipative mechanisms do not exist or are very small in
partial differential equations, these may exhibit phenomena that have no counterparts
in finite-dimensional systems. Examples of such phenomena include non-dissipative
relaxation and asymptotic stability [2]–[4], solitons, as well as the appearance of an
infinite number of conserved quantities and an infinite number of steady states [5]–[8].

In this work, we are interested in studying the rare events or large deviations [9] of
systems possessing continuous sets of steady states which effectively act as attractors.
Such sets of steady states are found in many dynamical equations having a non-
canonical Hamiltonian structure, such as the 2D Euler equation, the Vlasov equation,
magneto-hydrodynamic equations, and the shallow-water equations, to mention only a
few examples; see [5, 8] for more. In all of these examples, the consequence of the
non-canonical structure is the existence of an infinite number of conserved quantities or
Casimirs, which are responsible for the infinite (and continuous) set of steady states [5, 8].
Physically, these states are important because they can act as attractors, as has been
found in experiments [10, 11] and numerical simulations [12]. Moreover, in some cases,
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their attractive behavior can be explained theoretically [3, 4] using arguments and methods
based on statistical mechanics [8], [13]–[15].

The problem that we address here is how the existence of a continuous set of steady
states of a system influences its large deviation properties and how these properties
compare with those of finite-dimensional systems. For the latter systems, two generic
classes of systems have been considered from the large deviation point of view, namely (i)
strongly dissipative systems with well-defined and disconnected attractors, as exemplified
by the gradient dynamics of a Brownian particle in a potential (Kramers problem) [16],
and (ii) weakly perturbed Hamiltonian systems with added weak friction and noise. The
large deviations of both of these classes are well known: they can be obtained using
semi-classical (WKB or instanton) approximations of path integrals [9], [17]–[22] or, more
rigorously, using the theory developed by Freidlin and Wentzell [23].

Dynamical systems having an infinite number of steady states do not strictly fall in
either of these generic classes. The fact that the dynamics of these systems is effectively
irreversible and converges towards attractors that are asymptotically stable suggests that
they are analogous to the class of strongly dissipative systems. However, because their
steady states form one or several connected sets, the presence of a weak noise should
lead these systems to diffuse over their attractors, as is the case for Hamiltonian systems.
From this point of view, systems with infinite steady states share aspects of both strongly
dissipative systems and weakly perturbed Hamiltonian systems.

To illustrate this point, we consider in this paper a simple model with two degrees of
freedom, denoted by A and B, having a continuous set of steady states in the zero-noise
limit. Our goal in the following is to obtain the stationary probability density P (A, B)
of this model, which we refer to simply as the AB model, in the low-noise limit ν → 0,
where

√
ν is the noise amplitude. Following the theory of large deviations, we expect this

density to have the approximate form

P (A, B) ≈ e−cνI(A,B), (1)

in the limit ν → 0, where cν is a coefficient, called the speed, which diverges as ν → 0,
and I(A, B) is a ν-independent function, called the rate function or quasi-potential.
Large deviation approximations of this form have been extensively studied, as mentioned
above, for various noise-perturbed dynamical systems, including systems with single-point
attractors as well as systems with attracting limit cycles (see, e.g., [17]–[22]). In nearly all
the classical examples that we are aware of, the speed of the large deviation approximation
is 1/ν. In the case, for example, of a Langevin dynamics describing the overdamped motion
of a Brownian particle in a potential V (x) and in a fluid at temperature T , the speed is
1/(kBT ), with kB the Boltzmann constant, while the rate function is the potential V (x).
The resulting large deviation form for the stationary density,

P (x) ≈ e−V (x)/(kBT ), (2)

is in agreement with the known Arrhenius factor describing the transition probability
between stable or metastable states (Kramers theory), and implies, as physically expected,
that P (x) concentrates in the low-noise limit (or low-temperature limit) on the equilibrium
state minimizing the potential.

The results that we obtain for the AB model show that P (A, B) concentrates in a
similar way on the set of stable steady states of the model—in this case, a whole line of
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steady states—but does so, in contrast with the classical cases, with a speed proportional
to 1/

√
ν. Moreover, we show that close to the line of stable steady states, there is a

correction to this large deviation approximation having a speed proportional to 1/ν. For
a small but finite noise power ν, P (A, B) is therefore the sum of two contributions: a
large deviation approximation with speed 1/

√
ν, which accurately describes the form of

P (A, B) away from the attractor, and a large deviation approximation with speed 1/ν,
which describes P (A, B) close to the attractor.

These competing large deviation terms are related in the AB model to different types
of fluctuation path having different large deviation speeds and, notably, to fluctuation
paths of zero action, which we call ‘sub-instantons’. They are not related, we should
mention, to the divergence of the sub-leading prefactors entering in the large deviation
approximation, discussed, e.g., by Berglund and Gentz [24, 25]. We argue in the concluding
section of this paper that these sub-instantons should arise in more general systems having
multiple connected sets of steady states, and that they should lead, as in the AB model, to
stationary probability densities having competing large deviation terms in the low-noise
limit.

The rest of the paper is organized as follows. In section 2, we introduce the AB model,
and then proceed in sections 3–5 to obtain P (A, B) using three different approaches: a
path integral approach which leads to results similar to those obtained in the framework
of the Freidlin–Wentzell theory (section 3), a dynamical approach based on certain
approximations of the AB model (section 4), and an approach based on the Hamilton–
Jacobi equation (section 5). Throughout these sections, the analytical results obtained are
compared with numerical results obtained by solving the Fokker–Planck equation directly.
We conclude in section 6 with some remarks on the generality of our results.

2. Model

The model that we study is defined by the following set of two coupled (Itô) stochastic
differential equations (SDEs):

dA = (−AB − νA) dt + σA

√
ν dWA

dB = (A2 − νB) dt + σB

√
ν dWB,

(3)

where ν > 0 is a real coefficient that balances, together with the positive constants σA

and σB, the dissipation of the model and the intensity of the two uncorrelated Brownian
motions WA(t) and WB(t). Henceforth we refer to this model simply as the AB model.
Note that the inclusion of the two dissipative or friction forces −νA and −νB prevents
the system from escaping (by diffusion) to B = ∞ as t → ∞, and makes sure, therefore,
that a stationary density P (A, B) exists.

The zero-noise and zero-friction dynamics of the AB model is given by

Ȧ = −AB Ḃ = A2. (4)

This simple dynamics has the key properties that we referred to in the introduction,
namely the following.

(i) It has a continuous set of steady states, which corresponds here to the line A = 0.
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Figure 1. The vector field of the AB model giving rise to a line �s of stable fixed
points and a line �u of unstable fixed points.

(ii) The dynamics is irreversible and converges to an attractor, corresponding here to the
upper semi-line A = 0, B > 0, which we denote by �s. This semi-line is a line of
stable steady states or stable fixed points, as shown in figure 1. The lower semi-line
A = 0, B < 0, denoted by �u, is a line of unstable fixed points3.

(iii) The AB dynamics conserves the quantity E = A2 + B2, which we refer to as the
energy.

These properties are responsible for the competing large deviation scalings of P (A, B)
announced in section 1. We shall show in the next sections that these scalings arise
essentially from two very different fluctuation dynamics around �s and �u, which will
be studied analytically. To support our results, we shall also present numerical results
obtained by directly integrating the Fokker–Planck equation associated with equation (3)
for different noise powers4. Some of these results are shown in figure 2 as contour plots
of P (A, B). We can already see from this figure that P (A, B) concentrates on the stable
line �s as ν → 0, and that it is otherwise relatively isotropic away from �s. Our analytical
study of the AB model and of its fluctuations around �s and �u will explain these two
properties, among others. The main result that we shall obtain for σA = σB = 1 is the
large deviation result

lim
ν→0

−√
ν ln P (x) = I(A, B), (5)

3 The connecting point (0, 0) is marginally stable.
4 The numerical integration was carried out with the routine NDSolve of Mathematica using double-digit accuracy
and standard vanishing boundary conditions for square domains of the A–B plane. The domains used were [−5, 5]2

for ν = 0.5 and ν = 0.1, [−4, 4]2 for ν = 0.05, and [−2, 2]2 for ν = 0.025. Only a portion of these regions is shown
in figure 2.
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Figure 2. Contour plots of P (A,B) obtained by direct numerical integration of
the Fokker–Planck equation associated with the AB model for σA = σB = 1.
The noise intensity ν used in the integration is shown in the plots. Darker colors
correspond to larger values of P (A,B). The region plotted for each noise power
is different to highlight the concentration around the stable line.

with

I(A, B) =
2
√

2

3
(A2 + B2)3/4, (6)

away from the stable line �s. We shall also describe corrections of this large deviation
result for finite values of ν near �s.

3. Path integral solution

We give in this section a first derivation of the large deviation form of P (A, B) following
the classical theory of Freidlin and Wentzell [23]. This calculation is valid near the line �s

of stable points and yields the large deviation speed cν = 1/ν.

3.1. Classical theory

Consider a diffusion process {X(t)} in R
D which is the solution of the SDE

dX(t) = f(X(t)) dt +
√

ν dW (t), (7)

where dW (t) are increments of the Brownian motion. It is known from the work of
Freidlin and Wentzell (F–W) that the stationary density P (x) of this process satisfies,
under certain conditions, a large deviation form or large deviation principle (LDP) in the
low-noise limit ν → ∞, which we informally write as

P (x) ≈ e−V (x)/ν , (8)

to mean

lim
ν→0

−ν ln P (x) = V (x). (9)

Moreover, from the F–W theory, it is known that the rate function or pseudo-potential
V (x) defined by this limit can be obtained from the following minimization problem:

V (x) = inf
t>0

inf
x(0)∈O,x(t)=x

L[x] (10)

doi:10.1088/1742-5468/2012/05/P05028 6
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which involves the Lagrangian or action

L[x] =

∫ t

0

L(ẋ, x) ds, L(ẋ, x) = 1
2
(ẋ − f(x))2, (11)

associated with a path {x(s)}t
s=0 of the process. The minimization in (10) is performed

over all paths starting on the attractor O of the system at time t = 0 and reaches the
point x after a time t which is usually taken to go to infinity.

The LDP for P (x) is akin to the semi-classical or WKB approximation of quantum
mechanics, and can be explained heuristically as in quantum mechanics by expressing
P (x) in path integral form:

P (x) = lim
t→∞

P (x, t|x ∈ O, 0) = lim
t→∞

∫ x(t)=x

x(0)∈O

D[x] e−L[x]/ν , (12)

and by arguing that the probability to reach a point x is given, in the low-noise limit
ν → 0, by the most probable path, called the optimal path or instanton, which starts on
the attractor and reaches that point after a very long time. As this optimal path must
have a minimal action under the terminal constraint x(0) ∈ O and x(t) = x, we recover
the result of (10).

Freidlin and Wentzell [23] showed that this heuristic argument based on path integrals
is rigorously valid for the SDE (7) provided essentially that O is a unique point attractor of
the deterministic dynamics ẋ = f(x). If this dynamics admits many point attractors, then
the result of equation (10) holds locally in regions G ⊂ R

D that enclose single attractors
and do not include characteristic boundaries, such as separatrices. Graham [17, 26] also
showed semi-heuristically that the F–W theory can be applied for non-point attractors,
e.g., limit cycles or strange attractors.

Here we apply the F–W theory to the AB model in a local sense by considering a
region of the upper half-plane B > 0 surrounding the attracting line �s (see the gray region
in figure 1). As we take the limit ν → 0, we neglect the dissipative terms −νA and −νB
in the full action of the model. Therefore, the action that we consider in the minimization
problem is

L[A, B] =

∫ t

0

L ds, L =
1

2σ2
A

(Ȧ + AB)2 +
1

2σ2
B

(Ḃ − A2)2. (13)

The reason for neglecting the dissipative terms in the action is that they are sub-dominant
in the low-noise limit compared with the other terms, and lead to correction terms of order
ν in the rate function I(A, B). The net effect of neglecting these terms when solving the
minimization problem of (10) is to look for instantons that emanate anywhere from the
stable line �s of fixed points, which is the attractor of noiseless AB dynamics without the
dissipation forces, i.e., equations (4), rather than emanating from the origin (0, 0), which
is the attractor of the noiseless AB dynamics with the dissipative forces.

To find the instantons emanating from �s, we can solve the Euler–Lagrange equations

d

ds

∂L
∂Ȧ

− ∂L
∂A

= 0
d

ds

∂L
∂Ḃ

− ∂L
∂B

= 0, (14)

where L is the Lagrangian density defined in equations (13), with the boundary conditions
A(0), B(0) ∈ �s and A(t) = A, B(t) = B. By finding the solution of this equation for an

doi:10.1088/1742-5468/2012/05/P05028 7
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increasing ‘hitting’ time t, we then find a succession of approximations of the rate function
I(A, B), which converge to I(A, B) as t → ∞.

For the AB model, the Euler–Lagrange equations read explicitly

1

σ2
A

(Ä + AḂ − AB2) − 2

σ2
B

(A3 − AḂ) = 0

1

σ2
A

(A2B + AȦ) − 1

σ2
B

(B̈ − 2AȦ) = 0.
(15)

This is a set of nonlinear, second-order equations of motion, which can be solved only
numerically. In practice, it is easier to solve these equations by transposing them into an
equivalent set of first-order Hamiltonian equations of motion defined by

Ȧ =
∂H
∂ρA

, Ḃ =
∂H
∂ρB

, ρ̇A = −∂H
∂A

, ρ̇B = −∂H
∂B

, (16)

where

ρA =
∂L
∂Ȧ

, ρB =
∂L
∂Ḃ

(17)

are the conjugate momenta associated with A and B, respectively, and

H = ρAȦ + ρBḂ − L (18)

is the Hamiltonian density. For the AB model, the Hamiltonian equations are explicitly

Ȧ = σ2
AρA − AB, Ḃ = σ2

BρB + A2,

ρ̇A = ρAB − 2ρBA, ρ̇B = ρAA.
(19)

To numerically solve these equations, we use the fact that H is conserved in time
and that H = 0 on the attractor �s. As a result, the instantons are such that H = 0 for
all times. Moreover, since the dynamics from the attractor is unstable, we numerically
integrate the Hamiltonian equations backward in time instead of forward in time. This
means that we start the integration from the point (A, B), and find initial conditions for
ρA and ρB such that the time-reverse dynamics of (19) leads to the attractor �s.

A number of instantons obtained from this procedure are shown in figure 3 for different
points (A, B) in the first quadrant of the A–B plane5. The action associated with these
paths, which yields the rate function I(A, B) according to equation (10), is shown in
figure 4 as data points. The speed associated with this rate function is 1/ν. In the
same figure, we show with the full and dashed lines the results of analytical calculations
presented in section 5. The agreement between the two sets of results will be discussed in
more detail in these sections.

An interesting property of the instantons, seen from figure 3, is that they are different
from the natural decay paths of the system, i.e., the paths of the deterministic dynamics
starting from a point (A, B) away from the attractor and ending on the attractor (shown
in blue). This difference is characteristic of SDEs that are not gradient, i.e., which cannot

5 By the symmetry of the AB model, the instantons of the second quadrant, i.e., on the left of �s, must be the
mirror images of the instantons of the first quadrant.

doi:10.1088/1742-5468/2012/05/P05028 8
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Figure 3. Red lines: instantons reaching certain points (A,B) (black dots) from
the stable attracting line of the AB model. Blue lines: deterministic paths
connecting the same points back to the stable attractor according to the noiseless
dynamics of the AB model. Parameters: σA = σB = 1.

be written in the form

ẋ = −∇U(x) +
√

ν ξ(t) (20)

for a scalar function U(x). It is known that if such a form exists, then the rate function
I(x) associated with the stationary distribution P (x) is simply given by I(x) = 2U(x).
In this case, we moreover have that the instantons are the time-reversed version of the
natural decay paths.

For the AB model, these results do not apply: the SDE (3) is not of gradient-type,
which means that we must explicitly solve the Euler–Lagrange equations or the equivalent
Hamiltonian equations to find the instantons and their associated action. Physically, this
also means that the AB model is a nonequilibrium system that violates detailed balance
and gives rise to a non-vanishing probability current J = (JA, JB)T , whose components
are here given by

JA = (−AB − νA)P (A, B) − νσ2
A

2

∂P (A, B)

∂A
,

JB = (A2 − νB)P (A, B) − νσ2
B

2

∂P (A, B)

∂B
.

(21)

This current is actually a current loop, as shown in figure 5: it has the shape of a ‘squashed’
double-solenoid and circulates through the origin.

3.2. Sub-instantons

The instantons shown in figure 3 are not strictly speaking the only possible instantons
that the AB model admits. Interestingly, it is also possible to reach any points (A, B)

doi:10.1088/1742-5468/2012/05/P05028 9
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Figure 4. The rate function I(A,B) near �s as a function of A for different values
of B. Data points: rate function obtained from the instantons shown in figure 3.
Dashed and full lines: second- and fourth-order approximations, respectively, of
I(A,B) obtained from the Hamilton–Jacobi method; see section 5. Parameters:
σA = σB = 1.

Figure 5. Streamlines of the probability current J for ν = 0.05 and σA = σB = 1,
with level colors representing |J |. The darker colors correspond to larger current
magnitudes.

from the attractor by following a fluctuation path constructed as follows (see figure 6).

(i) Start from any point on the stable attractor and go down to the origin.

(ii) Follow the line �u of unstable fixed points down to the point (0, B′) such that
B′2 = A2 + B2.

(iii) Follow the natural orbit of energy E = A2 + B2 connecting (0, B′) to (A, B).

doi:10.1088/1742-5468/2012/05/P05028 10
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Figure 6. Optimal paths. The point in black in the A–B plane can be reached
either by a direct, excited path (in red) with positive action or by an indirect
path (in purple) that first goes along the stable and unstable lines of fixed points,
and then follows a natural trajectory of the deterministic dynamics. The latter
path has a null action.

As each of these parts either lies on the line of stable and unstable points or follows a
natural path of the deterministic system, the complete path thus constructed must have
a zero action on the large deviation scale 1/ν.

The existence of these zero-action instantons, or sub-instantons as we shall call them,
gives us an indication that the dominant behavior of P (A, B) does not have a speed 1/ν;
in fact it has a speed 1/

√
ν, as we shall see below. The crucial point to note, however,

is that P (A, B) has a sub-dominant LDP with speed 1/ν near the attractor �s (see the
gray region in figure 1), which is precisely the LDP that we have obtained before with
the F–W calculation. This sub-dominant LDP arises from instantons having a non-zero
action emanating from �s, whereas the dominant LDP, which scales with 1/

√
ν, is related

to fluctuation paths that are sub-instantons. The fact that these sub-instantons follow
in the end the deterministic dynamics explains the observed isotropy of P (A, B) away
from �s, i.e., why P (A, B) has constant level curves along the vector field of the AB
noiseless dynamics. The same indirect fluctuation paths also explain the existence of the
probability current mentioned before.

We show in the next two sections how to go beyond the F–W calculation to obtain
the dominant LDP of P (A, B). Two methods are presented: the first is based on the
solution of a timescale separation of the solution of the AB model, whereas the second is
based on a direct approximation of the solution of the Fokker–Planck equation.

4. Dynamical analysis

We analytically derive in this section LDPs for P (A, B) near �s and then near �u using the
insight gained in section 3. In treating �s and �u separately, we shall see how the stable
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and unstable dynamics, respectively, of each of these lines give rise to different LDPs. As
a prelude to these calculations, we obtain the stationary probability density of the energy
defined by E = A2 + B2 to show that it does not scale with ν, as is the case for weakly
perturbed Hamiltonian systems.

4.1. Energy

Given the original system of equations for A and B, displayed in equation (3), E is found
to evolve according to the Itô SDE:

dE = −2νE dt + ν
(
σ2

A + σ2
B

)
dt + 2

√
ν (σAA dWA + σBB dWB) . (22)

This equation is not closed—it explicitly depends on A and B—but the equation for the
mean energy is closed:

1

ν

d 〈E〉
dt

= −2 〈E〉 +
(
σ2

A + σ2
B

)
. (23)

From this, we find the stationary mean energy

〈E〉s =
σ2

A + σ2
B

2
. (24)

To find P (E), we solve the Fokker–Planck equation associated with the Langevin
equation for E. For simplicity, consider first the case σA = σB = σ and let φ be any test
function. Applying Itô’s formula and averaging over the noises, we obtain

1

2ν

d 〈φ(E)〉
dt

=
〈(

σ2 − E
)
φ′(E)

〉
+ σ2 〈Eφ′′(E)〉 . (25)

The associated Fokker–Planck equation for the energy pdf P (E, t) is thus

1

2ν

∂P

∂t
=

∂

∂E

[(
E − σ2

)
P + σ2 ∂

∂E
(EP )

]
, (26)

and admits the following stationary solution P (E):

P (E) =
1

σ2
e−E/σ2

. (27)

It is easy to verify from this result that 〈E〉s = σ2, in accordance with the exact result of
equation (24). Note also that P (E) does not depend on ν, as announced, which means
that there is no LDP for P (E).

For the case σA �= σB, Itô’s formula leads to

1

2ν

d 〈φ (E)〉
dt

=

〈(
σ2

A + σ2
B

2
− E

)
φ′(E)

〉
+

〈(
σ2

AA2 + σ2
BB2

)
φ′′(E)

〉
, (28)

which is exact for any test function φ. By contrast with equation (25), the equation above
is not a closed equation for E as the variables A and B are involved. However, because the
typical values of the variable A are of order

√
νσ1/

√
B, which is much smaller than both√

E and B as soon as E � ν2σ4
1, it is natural in equation (28) to make the approximations

B2  E and A2 � E. One then obtains a closed equation for φ(E) whose associated
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Fokker–Planck equation is

1

2ν

∂P

∂t
=

∂

∂E

[(
E − σ2

A + σ2
B

2

)
P + σ2

B

∂

∂E
(EP )

]
. (29)

The stationary solution of this equation is

P (E) = C E(σ2
A−σ2

B)/(2σ2
B ) e−E/σ2

B , (30)

where C is a normalization constant. We can verify that this expression reduces to the
one we found in equation (27) when σA = σB = σ. It is also easily verified that the
average energy obtained from this distribution is given by the exact relation displayed in
equation (24).

4.2. Dynamics around stable fixed points

We now derive a local LDP for P (A, B) around �s (see the gray region in figure 1) using
the fact that there exists a separation between the time with which A relaxes to 0 (time
of order 1/B) and the time with which E varies (time of order 1/ν). Since E ≈ B2 for
A close to 0, the slow dynamics of E translates into a slow dynamics of B, which can be
treated adiabatically with respect to A. Thus, we consider B to be constant and study
the dynamics of the rapid variable A given by the first equation of the AB model:

dA = (−AB − νA) dt + σA

√
ν dWA. (31)

For fixed B, this equation is linear in A, which means that A evolves according to an
Ornstein–Uhlenbeck process. In the stationary state, A is of order

√
ν and the term νA

can be considered negligible, and so we find

P (A|B) =

√
B

πνσ2
A

exp

(
−BA2

νσ2
A

)
(32)

for the stationary distribution of the fast variable A given that B is fixed. This stationary
distribution is reached on a timescale of order 1/B.

Next, we study the evolution of B given by

dB = ν(A′2 − B) dt +
√

ν σB dWB, (33)

using A′ = A/
√

ν. As we did for A, we can approximate A′ to be an Ornstein–Uhlenbeck
process with variance 〈A′2〉 = σ2

A/(2B). Accordingly, the fluctuations of the variable νA′2

must be such that 〈(νA′2 − 〈νA′2〉)2〉 is of order ν2. Such fluctuations are much smaller
than the effect of the white noise for B, and so, to leading order in ν, the fluctuations of
A′2 can be neglected. The approximate dynamics for B to leading order in ν is thus

dB = ν

(
σ2

A

2B
− B

)
dt +

√
ν σB dWB. (34)

The associated Fokker–Planck equation is

1

ν

∂P

∂t
=

∂

∂B

[(
B − σ2

A

2B

)
P +

σ2
B

2

∂P

∂B

]
, (35)
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and has for stationary solution

P (B) = C Bσ2
A/σ2

B e−B2/σ2
B , (36)

where C is a normalization constant. By combining this solution with the solution found
for P (A|B), we thus find

P (A, B) = P (A|B)P (B) = C B(2σ2
A+1)/2σ2

B exp

(
−B2

σ2
B

− BA2

νσ2
A

)
, (37)

where C is again a normalization constant. The LDP extracted from this result has the
form

P (A, B) ≈ e−I(A,B)/ν , I(A, B) = −BA2

σ2
A

, (38)

and is nothing but the LDP associated with P (A|B). This shows that the large deviations
of the AB model around the attractor are mainly the result of the diffusive fluctuations
of A for B constant.

The rate function I(A, B) of equation (38) is shown in figure 4 as a function of
A and for different values of B as dashed lines. We see that there is a favorable
comparison between this rate function and the rate function obtained from the F–W
theory (represented again by the data points). The difference from the F–W results can
be explained by noting that the rate function derived in this section is only a second-
order approximation of the rate function obtained by approximating the instantons as
straight, horizontal paths joining a point (0, B) on �s to a point (A, B) near �s. The
correct instantons, as seen from figure 3, have a certain inclination or curvature in the
B direction, which has the effect of reducing slightly the action of straight, constant-B
paths. We shall see in section 5 that the Hamiltonian–Jacobi method is able to capture
this effect as a fourth-order correction to I(A, B).

4.3. Dynamics around unstable fixed points

To obtain P (A, B) around the line �u of unstable fixed points, we need to construct a
different approximation of the AB dynamics that accounts for the fact that trajectories
starting at the origin have a small probability of diffusing down the line �u and that, as
soon as they depart from this line, they are rapidly expelled along the force lines of the
AB dynamics, to reach the stable line �s; see figures 1 and 6. This dynamics creates a
probability current because, eventually, the trajectories return to the origin by diffusing
down the line �s and start new loops by diffusing again down �u.

In order to qualitatively understand this fluctuation dynamics, we consider the
following approximation of the AB model:

dA = αAA dt + σA

√
ν dWA,

dB = −νB dt + σB

√
ν dWB,

(39)

which involves a ‘top-hill’ diffusion process for A (αA > 0) and a ‘down-hill’ diffusion for
B. The equation for B is the exact dynamics of B on the line A = 0, whereas the ‘top-hill’
term αAA is analogous to the term −AB in the original AB model. For now, we consider
αA to be independent of B in order to have a solvable model which will help us to gain
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a qualitative understanding of the unstable dynamics. We discuss the case αA = −B at
the end of this section.

For αA constant, equation (39) describes an unstable linear Gaussian process. To
find a stationary distribution P (A, B) for this process, we have to consider that there is
a probability (or current) source at the origin O. In this case, the probability to reach a
point (A, B) in the lower plane is given by integrating the probability P (A, B, t|O) that
a trajectory starting at the origin O reaches the point (A, B) after a variable time t, to
which we multiply the stationary probability density of starting at O:

P (A, B) = P (O)

∫ ∞

0

P (A, B, t|O) dt. (40)

For the decoupled dynamics of equation (39), the propagator P (A, B, t|O) is simply given
by

P (A, B, t|O) =
1

2π
√〈A2〉〈B2〉 exp

[
−

(
A2

2〈A2〉 +
B2

2〈B2〉
)]

, (41)

where

〈A2〉 =
σ2

Aν

2αA
(e2αAt − 1) (42)

and

〈B2〉 =
σ2

B

2
(1 − e−2νσ2

Bt). (43)

The difference between the behaviors of the variances of A and B plays an important
role in determining the LDP of P (A, B) in the low-noise limit. The variance of A grows
exponentially for large times, as a result of the instability of �u, whereas that of B goes
to a constant on a long timescale of order t ∼ (2σ2

Bν)−1. Taking the limit ν → 0, and
anticipating that the integral will be dominated by contributions with times such that
νt � 1, we obtain

P (A = 0, B) ≈ C

∫ ∞

0

e−αAt−B2/(2σ2
Bνt) dt (44)

for the probability density on �u, with C a normalization constant. This can be put in
the form of a Laplace integral with the change of variables t′ =

√
σ2

Bν t:

P (A = 0, B) ≈ C

∫ ∞

0

e−g(t′)/
√

ν dt′, (45)

where

g(t′) =
αA

σB
t′ +

B2

2σBt′
. (46)

In the limit ν → 0, the integral is therefore dominated by its maximum integrand, which
is here located at t′ = B/

√
2αA. As a result, we find

P (A = 0, B) ≈ e−ϕ(B)/
√

ν , ϕ(B) =

√
2αA

σB

B. (47)

Note the change of speed in this LDP: 1/
√

ν instead of 1/ν.
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From this simple ‘top-hill’ linear model, we conclude that the low probability P (0, B)
for the system to be on the unstable line �u results from the balance between the probability
to reach a finite value B after a time t and the probability that the system is not expelled
by the unstable dynamics before this time t. The rare coincidence of these two conditions
gives the large deviation result. The preceding computation suggests that the leading
contribution corresponding to these rare events corresponds to an optimal time t(B)
proportional to

√
ν.

This qualitative behavior also correctly describes the exact AB dynamics with
αA = B. In this case, one can explicitly solve the two equations shown in (39) with
αA = B. However, we have found it more convenient to use in this case an asymptotic
expansion of the Hamilton–Jacobi equation, which we discuss in the next section. For
now, we just note that substituting αA = B in equation (47) leads to ϕ(B) ∝ B3/2/σB, a
result that will be confirmed in section 5.

To close this section, note that the density P (A, B) away from �u is obtained by
radially radiating the value of P (0, B) obtained above, i.e., by setting P (A′, B′) = P (0, B)
for all (A′, B′) such that A′2 + B′2 = B2. This is expected from the numerical results
shown in figure 2 and follows, more precisely, by noticing that trajectories departing
infinitesimally from �u are radiated radially by the vector field of the AB model. As this
instability results only from the deterministic part of the AB equations, the probability
density must have circular level curves.

5. Hamilton–Jacobi approach

We give in this section a different derivation of the LDP of P (A, B) near �s and �u,
obtained by solving the stationary Fokker–Planck equation of the AB model, which reads

∂

∂A
(ABP ) − ∂

∂B
(A2P ) + ν

∂

∂A
(AP ) + ν

∂

∂B
(BP ) + ν

σ2
A

2

∂2P

∂A2
+ ν

σ2
B

2

∂2P

∂B2
= 0. (48)

As before, we look for solutions having the LDP form

P (A, B) = φ(A, B) e−cνI(A,B), (49)

where I(A, B) is the rate function and φ(A, B) is a function of A and B that does not
depend on ν. Moreover, following section 4, we choose the noise scaling cν = 1/ν around
�s and cν = 1/

√
ν around �u.

The advantage of the Fokker–Planck method is that it yields more precise expressions
for the rate function in the form of series expansions, which are not based, as in the
previous section, on approximations of the AB model. However, to be able to use this
method, we need to know the correct large deviation speed of P (A, B), i.e., the correct
scaling of cν with ν.

5.1. Stable fixed points

Inserting the ansatz (49) with cν = 1/ν in the Fokker–Planck equation (48) yields, to
order 1/ν, the following partial differential equation:

−AB
∂I

∂A
+ A2 ∂I

∂B
+

σ2
A

2

(
∂I

∂A

)2

+
σ2

B

2

(
∂I

∂B

)2

= 0. (50)
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Figure 7. Numerical test for I(A,B). Black dashed line: second-order result for
I(A,B) obtained from the Hamilton–Jacobi method. Black full line: fourth-order
analytical result for I(A,B) obtained with the same method. Colored lines: rate
functions obtained from the numerical integration of the Fokker–Planck equation
of the AB model for different values of ν. Parameters: σA = σB = 1.

This is a Hamilton–Jacobi equation corresponding to the weak-noise limit of our model.
Unfortunately, we are unable to solve this equation explicitly. However, we expect the
solution to be localized close to A = 0, and so it is natural to look for an expansion of I
for small A. By the symmetry of the AB model, the dependence of P (A, B) on A must
be even. Thus, assuming an expansion of I of the form

I(A, B) = I0(B) + I1(B)A2 + I2(B)A4 + O(A6) (51)

in equation (50), we directly obtain

I(A, B) =
B

σ2
A

A2 − 2σ2
A + σ2

B

8σ4
AB

A4 + O(A6). (52)

Figure 4 shows how this result compares with the calculation of the rate function
based on the instanton approximation presented in section 3. The full colored lines on
this plot show I(A, B), as given in equation (52), as a function of A for different values of
B. The dashed colored lines represent the same result but truncated to second order. The
data points, as mentioned in section 3, are the results of the instanton approximation.
The near perfect match between the data points and the full lines confirm the consistency
of the Hamilton–Jacobi and instanton results.

The result of equation (52) is also compared in figure 7 with results obtained by
numerically integrating the Fokker–Planck equation. We see in this figure that, for small
values of ν, the numerical results are relatively close to I, at least for points (A, B) near �s.
It must be said that it is rather difficult to obtain reliable results by numerically integrating
the Fokker–Planck with small noise intensities, especially away from the attractor. In our
case, we could not obtain reliable results for values of ν smaller than about ν = 0.025.
For this reason, the numerical results of figure 7 are presented to check that our analytical
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results have the correct scaling in ν, and that the rate functions obtained numerically and
analytically are qualitatively similar.

To obtain the correction factor φ, we need to consider the Hamilton–Jacobi equation
for φ obtained at order 0 of the Fokker–Planck equation:

Bφ + AB
∂φ

∂A
− A2 ∂φ

∂B
− A

∂I

∂A
φ − B

∂I

∂B
φ

− σ2
A

2

(
∂2I

∂A2
φ + 2

∂I

∂A

∂φ

∂A

)
− σ2

B

2

(
∂2I

∂B2
φ + 2

∂I

∂B

∂φ

∂B

)
= 0. (53)

As before, we attempt to solve this equation by expanding φ in even powers of A. Thus
we assume

φ(A, B) = φ0(B) + φ1(B)A2 + O(A4), (54)

and find at order A2

4(σ2
A + σ2

B)Bφ′
0 + (12B2 − 6σ2

A − 3σ2
B)φ0 + 8B2σ2

Aφ1 = 0, (55)

where φ′
0(B) is the B-derivative of φ0(B). This equation is not a closed differential

equation for φ0 as it involves φ1. To get a closed set of equations, we find a complementary
equation by looking at the Hamilton–Jacobi equation obtained at order ν, which reads

Bϕ + AB
∂ϕ

∂A
− A2 ∂ϕ

∂B
+ 2φ − A

∂I

∂A
ϕ + A

∂φ

∂A
− B

∂I

∂B
ϕ + B

∂φ

∂B

− σ2
A

2

(
∂2I

∂A2
ϕ + 2

∂I

∂A

∂ϕ

∂A
− ∂2φ

∂A2

)

− σ2
B

2

(
∂2I

∂B2
ϕ + 2

∂I

∂B

∂ϕ

∂B
− ∂2φ

∂B2

)
= 0. (56)

We seek a solution of the form ϕ(A, B) = ϕ0(B) + O(A2) for the function ϕ carrying the
ν-order correction. Substituting in the equation above the expressions of I and φ shown
in (52) and (54), respectively, we obtain at order A0

σ2
Bφ′′

0 + 2Bφ′
0 + 4φ0 + 2σ2

Aφ1 = 0. (57)

With this equation and equation (55), it is possible to eliminate the function φ1 to obtain
a closed differential equation for φ0:

4B2σ2
Bφ′′

0 + [8B3 − 4B(σ2
A + σ2

B)]φ′
0 + (4B2 − 6σ2

A − 3σ2
B)φ0 = 0. (58)

Looking for solutions of the form CBαe−βB2
, we then find

φ0(B) = CB(2σ2
A+1)/2σ2

Be−B2/σ2
B , (59)

where C is a normalization constant. This is the only normalizable solution to
equation (58).
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With the solution of I truncated to order O(A2) and φ truncated to order O(A0), i.e.,
φ = φ0 + O(A2), we can finally write down our approximation for P (A, B):

P (A, B) ≈
[
B(2σ2

A+1)/2σ2
B exp

(
−B2

σ2
B

)
+ O(A2)

]

× exp

(
−BA2

νσ2
A

+
2σ2

A + σ2
B

8σ4
AB

A4 + O(A6/ν)

)
, (60)

which reproduces the result of equation (37) to second order in A in the exponential.

5.2. Unstable fixed points

Knowing from the previous sections that P (A, B) is isotropic around the line �u of unstable
points, it makes sense to solve the Fokker–Planck equation in polar coordinates:

∂P

∂t
= − ∂

∂r

[(
−νr +

ν

2r
(σ2

A sin2 θ + σ2
B cos2 θ)

)
P

]

− ∂

∂θ

[(
r cos θ − ν sin 2θ +

ν sin 2θ

2r2
(σ2

A + σ2
B)

)
P

]

+
ν

2

∂2

∂r2

[
(σ2

A cos2 θ + σ2
B sin2 θ)P

]

+
ν

2

∂2

∂r∂θ

[(
−σ2

A

sin 2θ

r
+ σ2

B

sin 2θ

r

)
P

]

+
ν

2

∂2

∂θ2

[(
σ2

A

sin2 θ

r2
+ σ2

B

cos2 θ

r2

)
P

]
, (61)

using the large deviation ansatz P (A, B) = φe−I/
√

ν . At order ν−1/2, and setting
σA = σB = 1 for simplicity, this equation reduces to the simple partial differential equation

−r cos θ
∂I

∂θ
= 0, (62)

which shows that I does not depend on θ for A �= 0 (i.e., θ �= ±π/2). To find the r-
dependence of I, we have to consider the Hamilton–Jacobi equation associated with the
zeroth order of the Fokker–Planck equation in ν, which reads

− ∂

∂θ
(r φ cos θ) +

1

2

(
dI

dr

)2

φ = 0. (63)

We look for a solution of this equation close to θ = −π/2 by making the change of variables

θ = −π/2+u and by defining φ̃(u, r) = φ(−π/2+u, r). The equation above then becomes

∂

∂u

(
r φ̃ sin u

)
− 1

2

(
dI

dr

)2

φ̃ = 0. (64)

By symmetry, φ̃ must be even in u, which implies that ∂φ̃/∂u = 0 at u = 0, and so we
find [

r − 1

2

(
dI

dr

)2
]

φ̃(0, r) = 0. (65)
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Figure 8. Numerical test for I(A,B) on the line B = −1. σA = σB = 1. Black
line: analytical result for I(A,B). Colored lines: rate function I(A,B) obtained
from the numerical integration of the Fokker–Planck equation of the AB model
for different values of ν.

Assuming that φ̃(0, r) > 0, we then obtain

I(r) =
2
√

2

3
r3/2 (66)

as the solution for I.6 In terms of A and B, this yields the LDP

P (A, B) ≈ e−I(A,B)/
√

ν , (67)

where

I(A, B) =
2
√

2

3
(A2 + B2)3/4. (68)

This rate function is different from the one obtained in section 4. This is because
the dynamical model studied in section 4 is an approximation of the AB model in which
the dynamics of A is decoupled from B. This approximation is not assumed here, so we
should take the solution above as a more precise expression of the rate function. The
essential point to notice is that both approaches confirm the speed 1/

√
ν of the LDP of

P (A, B) near �u, which also appears to qualitatively match the scaling of the numerical
Fokker–Planck results; see figure 8. As before, it is difficult to push the numerical scaling
analysis beyond ν = 0.025, as the numerical integration of the Fokker–Planck equation
becomes unstable for smaller values of ν.

6. Discussion

The two LDPs that we have derived for P (A, B) can be thought of as an expansion of
P (A, B) that keeps its two first dominant terms, so that

P (A, B) = C1 e−I(A,B)/
√

ν + C2 e−J(A,B)/ν . (69)

6 Note that I must be positive and must vanish on the stable fixed point (0, 0).
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Figure 9. (a) Fluctuation paths for disconnected sets of stable (As) and unstable
(Au) fixed points. In this case, any path reaching a point x must contain an
instanton part, even if it goes through Au (blue path), so its large deviation
probability must have a speed 1/ν. (b) Fluctuation paths for connected sets of
stable and unstable fixed points. In this case, there are fluctuation paths that
reach x via ‘sub-instantons’ (blue path) instead of instantons (black path). Sub-
instantons have a large deviation speed smaller than 1/ν.

As discussed, the dominant term in this expansion is the 1/
√

ν term associated with
the repelling line and is ‘non-classical’ in the sense that it does not arise from instanton
fluctuation paths that are characteristic of the theory of Freidlin and Wentzell [23]. The
second term with large deviation speed 1/ν is the term that arises from this theory: it
is associated with instantons emanating from the attracting line and becomes important,
for small but finite ν, in the vicinity of this line.

The presence of the stable and unstable lines of fixed points is important for obtaining
these results, but what is also important is that these two sets of fixed points are connected
and that the system can diffuse from one to the other. If the attracting and repelling lines
were not connected, then all the fluctuation paths reaching a given point away from these
lines would necessarily be instantons having a non-zero action at the 1/ν order in the
exponential of P (A, B), which means that P (A, B) would then globally satisfy an LDP
with speed 1/ν. This is illustrated in a general way in figure 9. There we see that a point
x can be reached from an attracting set As either directly with a single instanton (black
path in figure 9(a)), or with a fluctuation path that reaches the repelling set Au before
reaching x (blue path). The second part of the latter fluctuation path, going from Au

to x, follows the natural dynamics of the system, and so carries zero action, while the
first part, going from As to Au, is an instanton with non-zero action at the scale 1/ν.
Consequently, the whole path must inherit the action of the instanton, which leads us to
conclude that large deviations in this scenario are instanton-related and, thus, have the
speed 1/ν.

If the sets As and Au of fixed points are connected, as is the case for the AB model,
then the part of the fluctuation path that goes from the attracting set to the repelling
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set (see figure 9(b)) is not an instanton anymore, at least not an instanton with positive
action at the scale 1/ν. In the AB model, it is a simple diffusing path or sub-instanton
that contributes, as we have seen, to a factor e−c/

√
ν in the stationary probability density,

where c is some positive constant. In general, this is larger than the probability of ‘true’
instantons, which scales like e−c/ν as ν → 0. It might be the case that, for points close to
the attracting set, and for small but finite values of ν, instantons can have a probability
greater than the probability of sub-instantons. This happens, for example, in the AB
model near the attracting line. However, the fact is that, because of their lower speed,
sub-instantons necessarily have a probability higher than the probability of instantons in
the limit ν → 0, which means that they determine the dominant LDP.

We expect this scenario to apply to more realistic systems having extended and
connected sets of steady states. In general, the probability of diffusing paths or sub-
instantons going from an attracting set to a repelling set is likely to depend on the
particular system considered, but what should be clear is that these paths have, in the
low-noise limit, a probability greater than the probability of instantons. As a result,
they must determine, if they exist, the dominant large deviation form of the stationary
probability density of the system, when such a stationary density exists. In the future, it
would be interesting to determine minimal conditions for the appearance of sub-instantons
or related fluctuation paths, and to see whether these generally arise in stochastic systems
violating detailed balance, as seems to be suggested by our results.
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