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Abstract. We numerically compute correlation functions of momenta and
diffusion of angles with homogeneous initial conditions in the quasi-stationary
states of the Hamiltonian mean field model. This is an example, in an N -body
Hamiltonian system, of anomalous transport properties characterized by non-
exponential relaxations and long-range temporal correlations. Kinetic theory
predicts a striking transition between weak anomalous diffusion and strong
anomalous diffusion. The numerical results are in excellent agreement with the
quantitative predictions of the anomalous transport exponents. It is noteworthy
that, at statistical equilibrium also, the system exhibits long-range temporal
correlations: the correlation function is inversely proportional to time with a
logarithmic correction instead of the usually expected exponential decay, leading
to weak anomalous transport properties.
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1. Introduction

Recently, new light was shed on long-range interacting systems [1]. The first reason
is that a mathematical characterization [2] and the study of several simple models
have completely clarified the inequivalence of ensembles that might exist between the
microcanonical and the canonical ensembles [3, 4]. The second is the appearance of a very
useful technique, namely the large deviation theory, for computing the microcanonical
number of microstates and thus the associated microcanonical entropy [5]. The third is
a classification of all possible situations of ensemble inequivalence [6]. The last, but
not least, reason is the understanding that the broad spectrum of applications (self-
gravitating [7] and Coulomb systems, vortices in two-dimensional fluid mechanics, wave–
particle interaction, trapped charged particles, . . .) [1] should be considered simultaneously
since significant advances were achieved independently in the different domains. However
as usual in physics, the study of simple models is of particular interest not only for
pedagogical properties, but also for testing ideas that might be derived analytically and
verified numerically without very expensive simulations.

We consider here the Hamiltonian mean field (HMF) model, which is considered as
the paradigmatic dynamical model for long-range interacting systems. This model [8]–[11]
consists of N particles moving on the unit circle, and is described by the Hamiltonian

H =
1

2

N
∑

j=1

p2
j +

1

2N

N
∑

j=1

N
∑

k=1

[1 − cos(θj − θk)], (1)

where θj is the angle of the jth particle and pj its conjugate momentum. Using a change of
the time unit, the prefactor 1/N of the second term is added in order to get an extensive en-
ergy [5]. Thus, in the limit N → ∞, the appropriate mean field scaling is obtained for the
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statistical mechanics. Studies of the HMF model have been recently reinforced by the dis-
covery of its link with the Colson–Bonifacio model for the single-pass free electron laser [5].

Within this model, a striking disagreement was reported between the canonical
statistical mechanics predictions and time averages of constant energy molecular dynamics
simulations [11, 12]. As the model has only a second-order phase transition [5] at
the critical energy density Uc = 3/4, the possibility that the origin might lead
to an inequivalence between canonical and microcanonical statistical mechanics can
be excluded [6]. Moreover, recently, it has been shown unambiguously that the
microcanonical entropy leads to the same predictions as the canonical free energy [5].
Very interesting results about the behaviour of such a system in contact with a thermal
bath have however been recently reported [13, 14].

The origin of the apparent disagreement comes from a particularly slow dynamical
evolution of this long-range system. Indeed, in Hamiltonian systems with long-range
interactions, systems are sometimes trapped in quasi-stationary states (QSS) before going
to equilibrium. Examples of such QSS were found in a one-dimensional self-gravitating
system [15] and in the HMF model [16]. The trapping time diverges algebraically in the
limit N → ∞ and, hence, time averages disagree with canonical averages if the computing
time is not long enough.

To understand the dynamics during such a long period, QSS were interpreted as stable
stationary states of the Vlasov equation [17, 18] that can be derived from the Hamiltonian
dynamics. The Vlasov equation, which governs the one-particle distribution function
is indeed exact [19] in the limit N → ∞, but only approximate for a finite system:
finite size effects indeed drive the system from the Vlasov stable stationary state to the
Boltzmann equilibrium. Recently, Caglioti and Rousset [20] proved, for a wide class of
potentials which includes the HMF case, that N particles starting close to a Vlasov stable
stationary state remain close to it for a timescale proportional to at least N1/8. The
result is consistent with numerical results which state that the lifetime of QSS scales like
N1.7 [16].

Using a kinetic approach which goes beyond the above Vlasov interpretation,
the correlation function of momenta was recently derived [21, 22] with the following
assumptions: (i) a finite but large enough number of particles, (ii) a homogeneous
distribution of angles, and (iii) a system in a (quasi-)stationary state. As shown
in [17, 18], the latter condition amounts to considering initial distributions of momenta
f0(p) satisfying the inequality

1 +
1

2

∫ +∞

−∞

f ′

0(p)

p
dp > 0. (2)

This condition has been derived for the linear [23] and formal [17] stability of the
distribution f0 (see also [24] for another derivation). This condition defines a critical
energy U∗

c which is, in general, different from the critical energy Uc = 3/4 where the
second-order phase transition is located. However, as expected, the two values coincide
for a Gaussian distribution f0(p). The above theory is expected to be valid in the time
interval 1 ≪ τ ≪ N , where τ = t/N is the appropriate rescaled time.

Among the main predictions summarized in table 1, one might emphasize that
distributions f0(p) with algebraic tails were proved to have a correlation function of
momenta Cp(τ) with an algebraic decay in the long time regime. Striking algebraic
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Table 1. Asymptotic forms of initial distributions f0(p), and theoretical
predictions of correlation functions Cp(τ) and the diffusion σ2

θ(τ) in the long time
regime. Asymptotic forms of the distribution and the predictions are assumed
and predicted in the limits |p| → ∞ and τ → ∞ respectively, where τ = t/N is
a rescaled time. The exponent α is given as α = (ν − 3)/(ν + 2). See [22] for
details.

Tails f0(p) Cp(τ) σ2
θ(τ)

Power law |p|−ν τ−α τ2−α

Stretched exponential exp(−β|p|δ) (ln τ)2/δ

τ τ(ln τ)2/δ+1

large time behaviours for momentum autocorrelations were first numerically observed
in [12, 25]. In contrast, distributions with stretched exponential tails correspond to
correlation functions inversely proportional to time with a logarithmic correction. It
is also important to stress that Gaussian distributions, which correspond to δ = 2 in the
stretched exponential case, leads to a long time correlation of ln τ/τ instead of the usual
exponential decay in the stable, supercritical energy regime U > U∗

c = Uc, although the
initial distribution is at equilibrium. The origin of this unusual long time momentum
correlation depends not on the centre part of the momentum distribution f0(p) but on
its tails. One might understand this behaviour physically through the fact that particles
located in these tails move almost freely, and hence yield long time correlations.

In these (quasi-)stationary states, the theoretical law for the diffusion of angles σ2
θ(τ)

has also been derived. The predictions [22, 26] for the diffusion properties are listed
in table 1. They clarify the highly debated disagreement between different numerical
simulations reporting either anomalous [27] or normal [16] diffusion, in particular by
delineating the time regime for which such anomalous behaviour should occur. We
briefly recall that when the moment of order n of the distribution scales like τn/2 at
large time, such a transport is called normal. However, anomalous transport [28]–[30],
where moments do not scale as in the diffusive case, were reported in some stochastic
models, in continuous time random walks (Levy walks), and for systems with a lack of
stationarity of the corresponding stochastic process [31]. When the distribution f0(p) is
changed within the HMF model, a transition between weak anomalous diffusion (normal
diffusion with logarithmic corrections) and strong anomalous diffusion is thus predicted.
From the physical point of view, as particles with large momentum p fly very fast in
comparison to the typical timescales of the fluctuations of the potential, they are subjected
to a very weak diffusion and thus maintain their large momentum for a very long time.
A thick distribution of waiting time with a large momentum explains the anomalous
diffusion. From a mathematical point of view, these behaviours are linked to the non-
exponential relaxation of the Fokker–Planck equation describing the diffusion of momenta,
leading to long-range temporal correlations [22]. This mechanism is new in the context
of kinetic theory. However, similar Fokker–Planck equations, with rapidly vanishing
diffusion coefficients obtained from other physical mechanisms, have been studied in
several frameworks [32]–[34].

The first purpose of this paper is to numerically check the theoretical predicted
correlation functions for power-law tail and Gaussian distributions by using accurate
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numerical simulations. The other is to clarify whether diffusion is normal or anomalous,
which depends on the choice of the initial distribution f0(p).

The paper is organized as follows. Some useful quantities are introduced in section 2.
In sections 3 and 4, we respectively focus on initial distributions with power-law and
Gaussian tails. In each section, we first check the stationarity and the stability following
the method developed in [17] and determine the time region of the QSS. We also study
carefully the correlation function and the diffusion, comparing them with theoretical
predictions. Finally, section 5 concludes the discussion.

2. Quantities of interest and numerical protocol

In order to check the stationarity and the stability of an initial distribution f0(p), we
study the temporal evolutions of several macrovariables:

• The magnetization defined as the modulus M of the vector M = (Mx, My), where
the two components are defined as Mx = 〈cos θ〉N and My = 〈sin θ〉N . The bracket

〈·〉N represents the average over all particles, for instance 〈cos θ〉N = (
∑N

j=1
cos θj)/N .

Note that the magnetization M is constant if the system is stable stationary.

• The moments of the one-body distribution function f(θ, p, t). As explained in detail
in [17], the stationarity of the one-body distribution f(θ, p, t) implies the stationarity
of the individual energy distribution fe(e, t), where e = p2/2 − Mx cos θ − My sin θ.
Moreover, the stationarity of fe(e, t) implies the stationarity of all moments µn =
〈en〉N . As the stationarity of the moment is a necessary condition for stability,
vanishing derivatives µ̇n = dµn/dt, for n = 1, 2 and 3, would suggest that the system is
in a (quasi-)stationary state, while large derivatives clearly indicate a non-stationary
state. In addition, stability is suggested if a state stays stationary for a long period.

While checking the stationarity and the stability, we identify a time region where
the system is in the QSS, during which we observe the correlation function of momenta
Cp(τ) = 〈p(τ)p(0)〉N and the diffusion of angles σ2

θ(τ) = 〈[θ(τ) − θ(0)]2〉N . The latter
quantity can be rewritten as follows:

σ2
θ(τ)

N2
=

∫ τ

0

dτ1

∫ τ

0

dτ2 〈p(τ1)p(τ2)〉N = 2

∫ τ

0

ds

∫ τ−s

0

dτ2 〈p(s + τ2)p(τ2)〉N , (3)

where the factor 1/N2 comes from the time rescaling τ = t/N , while the new variable
s = τ1−τ2 was introduced to take advantage of the division of the square domain into two
isoscale triangles corresponding to s > 0 and s < 0. In the (quasi-)stationary states, the
integrand 〈p(s + τ2)p(τ2)〉N does not depend on τ2 (the QSS evolve on a timescale much
larger than N) and hence diffusion can be simplified [16] by using the correlation function
as

σ2
θ(τ)

N2
= 2

∫ τ

0

(τ − s)Cp(s) ds. (4)

We numerically performed the temporal evolution of the canonical equations of motion
by using a fourth-order symplectic integrator [35, 36] with a time step ∆t = 0.2 and a
total momentum set to zero. The initial values of angles are randomly chosen from
a homogeneous distribution; the magnetization M is hence of order 1/

√
N . Omitting

doi:10.1088/1742-5468/2007/01/P01020 5
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this vanishing value of M , the energy density U = K + (1 − M2)/2 where K is the
kinetic energy density can thus be well approximated by the kinetic energy density K as
U = K + 1/2. To characterize the simulations, the only remaining point is the initial
distribution of momenta: in the following sections, as anticipated, we will carefully study
distributions with power-law and Gaussian tails.

3. Power-law tails

3.1. Initial distribution

In this section, we consider the initial distribution

f0(p) =
Aν

1 + |p/p0|ν
, (5)

whose power-law tails are characterized by the exponent ν. Unity, added in the
denominator to avoid the divergence at the origin p = 0, does not affect either the
asymptotic form, or the theoretical predictions. The parameter p0 is directly determined
by the kinetic energy density as p0 = (2K sin(3π/ν)/sin(π/ν))1/2, while the normalization
factor is

Aν =
ν

2π

(

sin3(π/ν)

2K sin(3π/ν)

)1/2

. (6)

From the stability criterion (2), one gets that this initial state is Vlasov stable when the
kinetic energy density satisfies the condition

K >
1

4

sin(π/ν)

sin(3π/ν)
. (7)

One thus gets a dynamical critical energy U∗

c = 0.75, 0.625 and 0.603 55 . . . for ν = 4, 6
and 8 respectively. In the rest of this section, we set the exponent ν to 8.

3.2. Stationarity and stability checks

Let us numerically check the stationarity and the stability of these states; in particular,
it will clarify the time region of existence of the QSS. Figure 1 presents the temporal
evolution of M and µ̇n (n = 1, 2, 3) for the unstable (U = 0.6 < U∗

c ) and stable (U = 0.7 >
U∗

c ) cases. In both cases, the magnetization M eventually goes toward the equilibrium
value Meq, indicated by horizontal lines. The three quantities µ̇n have vanishing small
fluctuations around zero except during the time interval 0.0005 < τ < 0.003 for the
unstable case. In the unstable case, the system is first in an unstable stationary state
(τ < 0.0005), before becoming non-stationary (0.0005 < τ < 0.003) and finally reaches
stable stationary states (τ > 0.003). On the other hand, in the stable case, the stable
stationarity holds throughout the computed time.

In the stable case, the magnetization M stays around zero before taking off around
τ = 20 to reach the equilibrium value Meq. The fluctuation level of µ̇n increases around
the take-off time τ = 20, but the increase does not imply any non-stationarity of the
system, since the fluctuation level is 10 times smaller than the corresponding one in the
non-stationary time region of the unstable case. The non-zero magnetization might be at

doi:10.1088/1742-5468/2007/01/P01020 6
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µ. n

τ

M

Meq

non-stationary

µ. n

τ

M

Meq

0.0001 0.001 0.01 0.1 1 10 100

(a) (b)

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

–0.1

–0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.0001 0.001 0.01 0.1 1 10 100

Figure 1. Stationarity check for initial distributions with power-law tails. Note
the logarithmic scale for the rescaled time τ = t/N . Panel (a) presents the
unstable case U = 0.6 while panel (b) shows the stable one U = 0.7. The
three curves µ̇n (n = 1, 2, 3) are reported in both panels. Their vertical
scales are multiplied by 100 for graphical purposes. Curves and horizontal lines
indicated by symbols M and Meq represent respectively temporal evolutions of
the magnetization and its equilibrium value. All numerical curves are obtained
by averaging 20 different numerical simulations for N = 104.

the origin of the fluctuations being larger than in the zero-magnetization cases, since the
former has a phase and an individual energy e which depends not only on the modulus
M but also on the phase.

3.3. Check of the theoretical prediction

For the stable case (U = 0.7), we perform numerical computations for N = 103, 104, 2×104

and 5 × 104, and average over 20, 20, 10 and 5 sample orbits respectively. Temporal
evolutions of magnetization M are shown in figure 2(a), and M takes off toward the
equilibrium value Meq around τ2 = 1, 20 and 50 for N = 103, 104 and 2× 104 respectively.
The take-off time defines the end of the applicable time region of the theory since the
homogeneous assumption (ii) breaks. Note that no take-off time appears in the case
N = 5 × 104, within the computed time interval.

The theory predicts (see table 1 for ν = 8) that the correlation function decays
algebraically with the exponent −1/2, i.e. Cp(τ) ∼ τ−1/2, up to the take-off time
τ2. According to figure 2(b), the theoretical prediction agrees well with numerical
computations in the intermediate time region τ1 < τ < τ2, where τ1 = 2 for any value N .
This is expected since, on the one hand, the short time region τ < τ1 is out of the time
domain of application since the theory gives asymptotic estimates. The time τ1 is marked
as a long vertical line in figure 2(b) to clearly indicate the start of the applicable time
domain. Although the quantity τs ≃ 0.005 is not derived theoretically, the straight lines
with the slope −1/2 in figure 2(b), representing (τ/τs)

−1/2, emphasize the agreement of
the predicted exponent.

Introducing the expression for the correlation function in relation (4) leads to the
law σ2

θ(τ) ∼ τ 3/2: figure 2(c), in which the four curves for the four different values of

doi:10.1088/1742-5468/2007/01/P01020 7
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τ
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0.35
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0.01

0.1
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1e-08

1e-06
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1

100

10000
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1.2

1.4

1.6

1.8

2

2.2

2.4

(a) (b)

(c) (d)

Figure 2. Check of the theoretical prediction for stable initial distributions
with power-law tails, for the case U = 0.7. Points are numerically obtained
by averaging 20, 20, 10 and 5 realizations for N = 103, 104, 2 × 104 and 5 × 104

respectively. Panel (a) shows the temporal evolution of the magnetization with
the timescale τ = t/N . The take-off times of M are estimated as τ2 = 1, 20 and
50 for N = 103, 104 and 2× 104 respectively, and the τ2 are marked in panels (b)
and (d). No take-off for N = 5 × 104 is observed in this computing time. The
horizontal line represents the equilibrium value of M . In panel (b), four curves
represent the correlation functions of momenta, while the straight lines with the
slope −1/2 represent the theoretical prediction. The curves and the lines are
multiplied from the original vertical values by 2, 4 and 8 for N = 104, 2×104 and
5× 104 for graphical purposes. The vertical line indicates τ1 = 2 from which the
valid time region of the theory starts. Similarly, panel (c) presents the diffusion
of angles, while the straight line with the slope 3/2 is theoretically predicted. The
four curves for the four different values of N are reported and almost collapse.
Finally, panel (d) shows the temporal evolution of the instantaneous exponent γ,
defined in equation (8), and γ stays around the theoretically predicted value 3/2
in the time region τ1 < τ < τ2. The values 0.1, 0.2 and 0.3 are added in vertical
values for N = 104, 2 × 104 and 5 × 104 respectively for graphical purposes.
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N almost collapse, attests also to the validity of this prediction in the intermediate time
region τ1 < τ < τ2. It is possible to confirm more precisely that the diffusion exponent is
3/2 by introducing the instantaneous exponent γ [37] defined as

γ =
d ln σ2

θ(τ)

d ln τ
=

1

σ2
θ(τ)

dσ2
θ(τ)

d ln τ
. (8)

The instantaneous exponent γ, shown in figure 2(d), goes down and once crosses 3/2.
However, γ comes back and stays around 3/2 in the time interval τ1 < τ < τ2. The
above result confirms therefore unambiguously that the diffusion is anomalous, namely
superdiffusive, in the intermediate QSS time interval as predicted by the theory [22].

The temporal evolution of γ was also recently discussed by Antoniazzi et al [38],
and was shown to monotonically decrease toward 1. The difference has two different
origins: first, Antoniazzi et al considered non-homogeneous initial distributions of angles,
which are out of the applicable range of the theory tested here; second, they considered
a water-bag initial distribution of momenta, which does not have tails initially, although
tails develop of course as soon as the time is slightly positive. As the theory states that
the asymptotic law for diffusion is determined by the tails of the initial distribution of
momenta, there is no contradiction in the temporal evolution of γ being different. A similar
remark applied with the out-of-equilibrium initial distribution discussed by Moyano and
Anteneodo [37].

For the power-law tail initial distributions, the theoretical predictions are essentially
good, but not exact. We first note that the increase of N does not affect either the
correlation function, or the diffusion, at least for 104 ≤ N ≤ 5 × 104 (the case N = 103

has been excluded since no validity time region τ1 < τ < τ2 appears). In the numerical
results, the slope of the diffusion γ is not 1.5 but belongs to [1.44, 1.48]. The relative
discrepancy is thus at most of 4%. There are two possibilities for understanding this
small discrepancy: (a) the lack of the samples, and (b) the lack of stationarity which is
the assumption (iii) of the theory. We will discuss the origin of these discrepancies at the
end of the next section.

4. Gaussian distribution

4.1. Initial distribution

In this section, we consider the Gaussian initial distribution

f0(p) =
1√
2πT

e−p2/2T , (9)

where the initial temperature T is determined from the energy density as T = 2K = 2U−1.
The dynamical critical energy of this Gaussian distribution coincides with the critical
energy of the second-order phase transition Uc = 3/4. As the distribution of angles is
homogeneous, the system is therefore at equilibrium for any supercritical energy U > Uc.

4.2. Stationarity and stability checks

The stationarity and stability are checked as in section 3.2 by considering temporal
evolutions of magnetization and the derivatives of moments µn shown in figure 3. The

doi:10.1088/1742-5468/2007/01/P01020 9
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Figure 3. Stationarity check for Gaussian initial distributions with N = 104.
Note the logarithmic scale for the rescaled time τ = t/N . Panel (a) presents
the unstable case U = 0.7 while panel (b) shows the stable one U = 0.8.
The three curves µ̇n (n = 1, 2, 3) are reported in both panels. Their vertical
scales are multiplied by 100 for graphical purposes. Curves indicated by the
symbol M represent the temporal evolutions of the magnetization. In panel (a),
the horizontal line indicated by Meq represents the equilibrium value, while in
panel (b), the equilibrium value is zero. All numerical curves are obtained by
averaging 20 different numerical simulations.

scenario of relaxation of this initial distribution with power-law tails is very similar.
In the unstable case (U = 0.7 < Uc), the system reaches stable stationary states
after experiencing unstable stationary and non-stationary states. In the stable case
(U = 0.8 > Uc), the state is stable stationary in the whole time domain since it is
initially at equilibrium.

4.3. Check of the theoretical prediction

Let us focus on the stable case U = 0.8 with N = 104. The correlation function obtained
numerically, and shown in figure 4(a), is in good agreement with the theoretical prediction
(ln τ)/τ in the long time region τ > τ1 = 1 if we accept the second scaling of time as
τ → τ/τs with τs = 0.2. As already mentioned in section 3.3, the second scaling is not
provided by the theory, while the asymptotic theoretical estimate is out of the range of
applicability in the short time domain τ < τ1. We would like also to stress that the
logarithmic correction makes the prediction more precise rather than a simple algebraic
decay 1/τ .

The correlation function can thus be approximated as

Cp(τ) =







Cp(0), if τ < τ1,
cτs

τ
ln

τ

τs

, if τ > τ1,
(10)

where the short time value has to be Cp(0) = 〈p2(0)〉N = 2K = 0.6, while c = 0.85 is
obtained by a fitting procedure. This approximation of the correlation function and the
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J.
S

ta
t.

M
e
c
h
.

(2
0
0
7
)

P
0
1
0
2
0

Algebraic correlation functions and anomalous diffusion in the HMF model

Figure 4. Check of the theoretical prediction for Gaussian stable initial
distributions for the case U = 0.8 with N = 104. Points are numerically
obtained by averaging 20 realizations. In panel (a), the symbols show the
correlation function of momenta. The theoretical prediction, ln τ/τ , is a better
approximation than the simpler law 1/τ . Panel (b) presents the diffusion of
angles. Although the diffusion is normal, the straight line τ1.35 wrongly suggests
that it is not. See the text for explanations and details. Panel (c) shows

the quantity
√

σ2
θ(τ)/(τN2) as a function of ln τ , to confirm the logarithmic

correction of the diffusion. The straight line is a guide for the eyes. Finally,
panel (d) presents the temporal evolution of the instantaneous exponent γ. The
dashed line corresponds to relation (12).

relation (4) leads to the following expression for the diffusion:

σ2
θ(τ)

N2
=































Cp(0)τ 2, if τ < τ1,

2Cp(0)

(

τ1τ − τ 2
1

2

)

+ cτsτ

[

(

ln
τ

τs

)2

−
(

ln
τ1

τs

)2
]

− 2cτs

[

τ

(

ln
τ

τs

− 1

)

− τ1

(

ln
τ1

τs

− 1

)]

, if τ > τ1.

(11)

Figure 4(b) presents the diffusion obtained numerically. Both curves indicating the
short and long time regions show a very good agreement. The diffusion seems anomalous
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with an exponent 1.35 in the long time region. Similarly, the instantaneous exponent γ
seems to converge toward 1.35 as shown by figure 4(d). However, these observations are not
accurate, and only due to a long transient, induced by the logarithmic correction. Diffusion
is essentially proportional to the time τ , and hence must be normal in the asymptotic time
region. Expression (11) provides the asymptotic form of the instantaneous exponent

γ = 1 +
2

ln(τ/τs)
. (12)

This prediction is in good agreement with numerical results as attested by figure 4(d). In
the limit of τ → ∞, the exponent γ goes logarithmically toward unity, and we therefore
conclude that diffusion is normal although a long transient time is necessary to observe
it. This is an excellent illustration of the difficulty of getting reliable numerical estimates
for the diffusion exponent. Such a case explains a posteriori the reason for the previous
disagreement [16, 27].

As predicted by table 1, the logarithmic correction of the correlation function
yields a logarithmic correction of the diffusion, so that its asymptotic form should be
σ2

θ(τ)/N2 ∼ τ(ln τ)2. Figure 4(c) confirms this prediction, plotting
√

σ2
θ(τ)/(τN2) as a

function of ln τ : one gets a linear behaviour in the long time region τ > 1. We thus have
confirmed the existence of weak anomalous diffusion, i.e. normal diffusion with logarithmic
corrections.

Let us return to the origin of discrepancies for α and γ, discussed at the end of the
previous section for the power-law tails. It seems natural to exclude the possibility (a),
lack of samples, since the same number of orbits, 20, has been used in the case N = 104,
for both the power-law tails and the Gaussians, while the latter case agrees extremely well
with the theoretical predictions, even including the logarithmic correction. This excellent
agreement comes from the absence of any breaking of theoretical assumptions, since the
state is at equilibrium and stationary accordingly. Consequently, we can consider that the
possibility (b), lack of stationarity, explains the discrepancies of α and γ for power-law
tails.

5. Summary

We have numerically confirmed the theoretical predictions proposed in [22] for initial
distributions with power-law or Gaussian tails: the correlation function and diffusion are
in good agreement with numerical results. Diffusion is indeed anomalous superdiffusion

in the case of power-law tails, while it is normal for the Gaussian case. In the latter case,
the system is at equilibrium, but the diffusion exponent shows a logarithmically slow
convergence to unity due to a logarithmic correction of the correlation function. This
long transient time for observing normal diffusion, even for Gaussian distribution and
at equilibrium, suggests that one should be very careful in deciding whether diffusion is
anomalous or not [39]–[41].

For the power-law tail initial distribution, the numerically obtained exponent of
diffusion is slightly different from the theoretical prediction (a few per cent). As discussed
above, this discrepancy comes from the breaking of the stationary assumption. The
state is only approximately stationary, explaining why the theoretical predictions are not
exact but only approximate. We stress that in the limit of large N , these states become
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Algebraic correlation functions and anomalous diffusion in the HMF model

stationary because their live times diverge much faster than N . For the Gaussian initial
distribution, the state is in equilibrium from the start, and stationary even with finite N :
hence the theoretical predictions agree extremely well with numerical results.

In addition, the above numerical computations clarify two new points: (i) the time
region where the theory is applicable, (ii) the second time scaling to fit the correlation
function and the diffusion. Both might depend on the degrees of freedom, but the latter,
(ii), appears to be not the case for the power-law tails. Obtaining the dependence for the
Gaussian is future work.

Finally, let us remark that the scenario of the relaxation described in [17, 18] is
confirmed even for initial distributions with power-law tails: this had never been tested
previously. The scenario claims that the system with long-range interactions experiences
first a violent relaxation, before the so-called collisional relaxation which drives the
system toward Boltzmann’s equilibrium. In the simulations reported here, non-stationary
and stable stationary states correspond respectively to the violent and the collisional
relaxations. One might also remark that distributions with power-law tails induce quasi-
stationary states above the dynamical critical energy, while not being q-distributions [42].
The latter might be a sufficient condition of QSS, but is definitely not a necessary
condition. To conclude let us remark that if the results discussed here concern the simple
HMF model, we should mention that it is believed to be general for long-range interacting
systems [43, 44].
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