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Abstract. We consider several models with long range interactions evolving via
Hamiltonian dynamics. The microcanonical dynamics of the basic Hamiltonian
mean field (HMF) model and perturbed HMF models with either global
anisotropy or an on-site potential are studied both analytically and numerically.
We find that, in the magnetic phase, the initial zero magnetization state remains
stable above a critical energy and is unstable below it. In the dynamically stable
state, these models exhibit relaxation timescales that increase algebraically with
the number N of particles, indicating the robustness of the quasistationary state
seen in previous studies. In the unstable state, the corresponding timescale
increases logarithmically in N .
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1. Introduction

In recent years, much work has been devoted to the understanding of the statistical
mechanics and the dynamics of systems with long range interactions. In these systems the
interaction potential between two particles decays at large distances r � 1 as V (r) ∼ r−α

with α ≤ d, d being the dimension of the system. Examples of such systems include
self-gravitating systems, two-dimensional and geophysical vortices, non-neutral plasma,
and systems describing wave–particle interactions (free-electron laser, CARL experiment,
etc) and magnetic dipolar systems (see [1] for reviews).

The long range nature of the interactions makes these systems non-additive. Due
to this property, at statistical equilibrium, inequivalence between the microcanonical and
the canonical ensembles is a generic feature. This was first observed in models of self-
gravitating stars [2, 3], and then seen in a number of other models ranging from the point
vortex model [4, 5], plasma physics [6], self-gravitating systems [7, 8], two-dimensional
flows [9] and long range Hamiltonian models [10, 11] to simple spin models with mean
field interactions [12, 13]. A classification of phase transitions and ensemble inequivalence
in generic long range systems [14] has shown that many possible types of behavior remain
to be seen in specific physical systems.

Beside these equilibrium peculiarities, the dynamics of systems with long range
interactions also present several new features. For a large number N of particles,
these systems may exhibit quasi-stationary states (QSS) [15, 16] (in the plasma or
astrophysical context, see for instance [17, 18]), very long relaxation time [16], vanishing
Lyapounov exponents [15, 19], anomalous relaxation and diffusion [20]–[24] and breaking
of ergodicity [13, 25]. These features are a result of similar collective (self-consistent)
dynamics [26] shared by systems with long range interactions. In the limit of a large
number of particles, such dynamics is well approximated by kinetic theories [18, 23], [27]–

[29] which to leading order in 1/
√

N describe Vlasov type dynamics, and after much longer
time, the relaxation towards equilibrium is governed by Lennard–Balescu type dynamics.

In this paper, we consider the dynamics of systems with long range interactions and
analyze the time it takes for a system to relax to its equilibrium state, starting from
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a thermodynamically unstable state. The relaxation process is usually initiated by the
formation of droplets of the equilibrium state which is followed by a coarsening process [30].
In systems with short range interactions, the initial droplets are of a typical radius which
does not grow with the system size. As a result, the characteristic time for the formation
of such droplets is also independent of the system size. On the other hand, in systems with
long range interactions the relaxation timescale diverges with the system size N . This
may result in long lived, quasistationary states (QSS) which are not the true equilibrium
state of the system but which relaxes to the equilibrium state on timescales that increase
algebraically with N .

Such long-lived states have been seen, for instance, in numerical studies of long-
ranged spin models [16]. These QSS have been explained as stable stationary states of the
Vlasov equation and may lead to anomalous diffusion [23, 31]. We note that an alternative
explanation, both for the existence of QSS and for anomalous diffusion, has been proposed
in the context of Tsallis non-extensive statistical mechanics [32, 33] (see [16] and [23] for
further discussions). Recent studies have considered the possible prediction of QSS using
the equilibrium statistical mechanics of the Vlasov equation [34]–[36]. The issue of the
robustness of QSS when the Hamiltonian is perturbed by short range interactions [37] or
when the system is coupled to an external bath [38, 39] has also been addressed, and it was
found that, while the power law behavior survives, the exponent may not be universal.
Such a slow relaxation is not the only possible behavior in these systems3. A recent
consideration of the thermodynamic stability of a mean field Ising model with stochastic
dynamics has found the relaxation time to be logarithmic in N [13]. It is thus of interest
to study the slow relaxation processes in systems with long range interactions and explore
in more detail the possible resulting timescales involved.

With this aim in mind, we consider the microcanonical dynamics of a generalized
Hamiltonian mean field (HMF) model which is a simple prototype of long-ranged systems
by adding a global anisotropy term or an on-site potential energy term to the Hamiltonian.
The basic HMF model ([40], see also [41]–[45]) describes a system of N classical XY
rotors with mean field coupling. Adding new terms to the Hamiltonian allows one to
vary an external parameter (such as anisotropy) and explore a richer phase diagram.
Our analysis of the Vlasov equation for these models shows that both logarithmic and
power law behavior are generically present in long-ranged systems. It is found that at
low energies the non-magnetic solution is dynamically unstable and the system relaxes to
the magnetically ordered state on a logarithmic timescale which follows from the dynamic
instability of the Vlasov equation. At higher energies, but still within the magnetic state,
the non-magnetic solution becomes linearly stable (although it is not the true equilibrium
state of the system) and the relaxation takes place on algebraically diverging timescales
and QSS are observed. We show the existence of QSS using analytic relations for the
marginal stability of the Vlasov equation. These results give further insight into the
robustness of QSS states when the interaction potential is perturbed.

Most of the QSS studied so far have dealt with homogeneous situations (namely
states whose distribution functions do not depend on the angle or spatial variable).
From a theoretical point of view, inhomogeneous QSS should exist in the same way as
homogeneous ones. The main reason why such states have not been studied in detail is

3 Relaxation times can be exponentially long if the initial state is metastable which we do not consider here.
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the difficulty to deal theoretically with the inhomogeneous marginal stability equation.
The QSS of the HMF model with on-site potential described in section 4 is an example of
inhomogeneous QSS. Moreover, the new method we propose to study them can be applied
to other situations, and also, for instance, to the usual isotropic HMF model.

The relaxation times mentioned above are interesting from another viewpoint. Since
the rationale for the existence of QSS is based on the approximation of the N particle
dynamics by a Vlasov dynamics, a crucial issue is the understanding of the validity of
such an approximation. In a classical work by Braun and Hepp [46], it was proved that
this approximation is valid for time t smaller than tV(N) for smooth interaction potential
and large enough N . Following the reasoning of [46] allows one to conclude that a lower
bound for tV(N) is proportional to ln N for large N . A recent paper [47] showed that,
for initial conditions close to some homogeneous QSS, a lower bound for tV(N) scales
like N1/8. In section 5, we give two new results concerning this issue. First, we prove
that the Braun and Hepp result is actually optimal. More precisely, we show that, for
some initial conditions, the kinetic description is not valid for time larger than ∼ ln N .
Second, we argue that most of the trajectories will have tV either equal to the lifetime of a
QSS (possibly algebraic), or logarithmically long tV, depending on the way the relaxation
towards equilibrium takes place.

The rest of this paper is organized as follows. In section 2, we define the HMF
model and study its dynamically unstable state in detail using the Vlasov equation and
numerical simulations. The anisotropic HMF model is the subject of section 3 in which
the dynamical phase diagram is obtained analytically in the energy-anisotropy plane. The
model with on-site potential is introduced and discussed in section 4. The issue of the
timescale over which the Vlasov equation holds is discussed in section 5. Finally, we
conclude with a summary and open questions in section 6.

2. Isotropic Hamiltonian mean field model

In this section, we consider the dynamics of the Hamiltonian mean field (HMF) model
which is defined by the Hamiltonian

H =
N∑

i=1

p2
i

2
+

1

2N

N∑

i,j=1

[1 − cos(θi − θj)] , (1)

where θi and pi are the phase and momentum of the ith particle, respectively, and N is the
number of particles. In the equilibrium state, a second-order phase transition between the
ferromagnetic and paramagnetic state occurs at the critical energy density εc = 3/4. This
has been shown in the canonical ensemble [40] and later verified for the microcanonical
ensemble using the large deviations’ method [48].

The time evolution of this system starting far from the equilibrium state has been
studied using Hamiltonian dynamics. The angle θi and momentum pi of the ith particle
obey

dθi

dt
= pi (2)

dpi

dt
= −mx sin θi + my cos θi, (3)
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where mx and my are the components of the magnetization density

�m =

(
1

N

N∑

i=1

cos θi,
1

N

N∑

i=1

sin θi

)
. (4)

The dynamics conserves the total energy and the total momentum. We start with an
initial condition with randomly distributed θi ∈ [−π, π] so that the average magnetization

is zero and the standard deviation about the mean is of the order of ∼1/
√

N . To fix the
total energy density ε, the momentum is chosen from a distribution f (0)(p) with pi lying
in the interval [pmin, pmax]. In this paper, we consider the following choices of momentum
distribution

f (0)(p) =

{
(1/2p0), p ∈ [−p0, p0]√

β/2π exp(−βp2/2), p ∈ (−∞,∞)
(5)

where the parameter p0 in the uniform (or waterbag) distribution and β in the Gaussian
case are related to the energy as

p0 =
√

6ε − 3,

β = 1/(2ε − 1).
(6)

The equations of motion (2) and (3) are integrated using a symplectic fourth-order
integrator with time step dt = 0.1. The reference coordinate axes in which θi is measured
is specified by the initial magnetization.

To study the dynamical behavior of magnetization, we first recall the classical
computation of the Vlasov equation [27, 46], [49]–[51] (see also [40] for the HMF model).
The probability density fd(θ, p, t) which counts the number of particles with angle θ and
momentum p at time t can be written as

fd(θ, p, t) =
1

N

N∑

i=1

δ(θi(t) − θ)δ(pi(t) − p). (7)

Taking the time derivative of both sides of the above equation and using the canonical
equations of motion, one obtains

∂fd

∂t
+ p

∂fd

∂θ
− ∂V

∂θ

∂fd

∂p
= 0, (8)

where the average potential V (θ, t) is given by

V (θ, t) =

∫ pmax

pmin

dp′
∫ π

−π

dθ′ (1 − cos(θ − θ′))fd(θ
′, p′, t). (9)

Expanding (7) to leading orders in 1/
√

N (see below), we obtain the Vlasov equation
obeyed by the (smooth) distribution f(θ, p, t) for infinite N :

∂f

∂t
+ p

∂f

∂θ
− ∂V

∂θ

∂f

∂p
= 0. (10)

It is easily verified that the initial condition with angles distributed uniformly and
momentum chosen from an arbitrary (normalized) distribution f (0)(p) is, in fact, a
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stationary state of this equation. To deal with the finite N case, we treat the finiteness
as a perturbation about the homogeneous stationary state of the infinite system:

f(θ, p, t) =
1

2π
f (0)(p) + λf (1)(θ, p, t), (11)

where, after linearization, the perturbed distribution f (1) is a solution of the integro-
differential equation

∂f (1)

∂t
+ p

∂f (1)

∂θ
− 1

2π

∂f (0)

∂p

∫
dp′ dθ′ f (1)(θ′, p′, t) sin(θ − θ′) = 0. (12)

Since the initial angles and momentum of the N particles are sampled according to the
distribution f (0), the small parameter λ is of the order of 1/

√
N .

We now study the linear dynamics about the distribution f (0)(p)/2π by considering
the eigenmodes of (12). A first treatment of the linear stability of stationary solutions
of the HMF equation can be found in [45] (see also [26] and [16]). As is explained, for
instance, in textbooks on plasma physics [27], any arbitrary function f (1)(θ, p, t) cannot be
decomposed into the eigenmodes of the linearized equation (12). However, when unstable
modes exist, after a short time the largest of them dominates the dynamics and therefore
at sufficiently long times, the temporal behavior can be described by the eigenmodes. We

define the Fourier modes f
(1)
k (p, ω) (and the conjugate f

(1)
−k ) as the eigenmodes of (12) of

type

f (1)(θ, p, t) = f
(1)
k (p, ω)ei(kθ+ωt). (13)

Since the last term in the Vlasov equation (12) involves only e±iθ, the Fourier modes must

have k = ±1. The coefficients f
(1)
±1 are then determined by

f
(1)
±1 (p, ω) +

1

2

∂f (0)

∂p

∫ pmax

pmin
dp′ f

(1)
±1 (p′, ω)

p ± ω
= 0. (14)

Integrating over p on both sides, one gets

I±(1 − J±) = 0 (15)

where

I± =

∫ pmax

pmin

dp f
(1)
±1 (p), J± = −1

2

∫ pmax

pmin

dp

p ± ω

∂f (0)

∂p
. (16)

The frequency ω is thus found from the condition J± = 1. For initial distributions
f (0) which are even for the variable p, this condition yields an equation in ω2. We now
consider specific choices of momentum distribution f (0)(p). For uniformly distributed
initial momentum, the frequency determined using the condition J± = 1 works out to
be [40]

ω2 = 6
(
ε − 7

12

)
. (17)

For ε > ε∗ = 7/12, unstable modes do not exist and the Vlasov equation is linearly stable.
It is, however, unstable for ε < ε∗ and the perturbation f (1)(θ, p, t) grows exponentially
fast towards the equilibrium state. Setting ω2 = −Ω2 for Ω real, we have

f (1)(θ, p, t) = Af
(1)
1 (θ, p)eΩt (18)
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Figure 1. (a) Time evolution of the average magnetization m(t) in the unstable
phase at ε = 0.55 for two values of N . (b) Data collapse for the scaled
magnetization

√
Nmx(t) versus t on the semi-logarithmic scale. The slope

Ω = 1/
√

5 of the solid line is given by (17). The data have been averaged
over 200 histories for each N .

where A is a constant. As mentioned above, this time dependence is valid for times
t � 1/Ω. To treat the behavior at short times, the finite N behavior in the initial
condition must be taken into account [27].

The average magnetization along the x and y axes, which are the observables of
interest, can be written as

(mx(t), my(t)) =

∫ pmax

pmin

dp

∫ π

−π

dθ (cos θ, sin θ)f(θ, p, t) (19)

= λ

∫ pmax

pmin

dp

∫ π

−π

dθ (cos θ, sin θ)f (1)(θ, p, t) + O(λ2). (20)

The magnitude of the average magnetization is given by m =
√

m2
x + m2

y and grows as

m ∼ 1√
N

eΩt. (21)

The results of our simulations in figure 1(a) show that, after a transient, the magnetization
grows exponentially, as expected on the basis of the preceding equation. Since the order
of magnitude of the constant A in (18) is proportional to 1/

√
N , the scaled magnetization√

Nmx in figure 1(b) collapses into a single curve. The growth rate is also in agreement
with Ω obtained in (17). The above perturbative analysis cannot hold at long times as
the linearization of the Vlasov equation breaks down when the magnetization reaches a
value of order one. A similar analysis can be carried out for the Gaussian distributed
initial momentum. In this case, we obtain that the modes exist only for ε < ε∗ = 3/4
and the eigenvalues of the modes are given by (37) with D = 0. Thus, (21) is obeyed
in this case as well with the corresponding eigenfrequency. From (21), we see that the
timescale on which the system acquires a finite m diverges as ln N . Although this is the
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same behavior as in the thermodynamically unstable phase of Ising model [13], the origin
of the logarithmic timescale here is dynamical while it follows from an argument based
on thermodynamics in the Ising case.

So far we have discussed the dynamical instability. The above argument gives a
ln N timescale for relaxation for ε < ε∗. Statistical mechanics predicts that homogeneous
states are thermodynamically unstable for all (allowed) values of ε < εc = 3/4. For
ε∗ < ε < εc, the distribution f (0)(p) is dynamically stable but thermodynamically unstable.
The relaxation is then not due to a dynamical instability and one then observes a N1.7

timescale (see [16]).

3. Anisotropic Hamiltonian mean field model

In this section, we consider the dynamics of the anisotropic HMF model defined by the
Hamiltonian

H =

N∑

i=1

p2
i

2
+

1

2N

N∑

i,j=1

[1 − cos(θi − θj)] −
D

2N

[
N∑

i=1

cos θi

]2

, (22)

where the last term represents the energy due to a global anisotropy in the magnetization
along the x axis. At zero temperature, if D is positive, the equilibrium magnetization
is along the x axis. Similarly for D < 0, the internal energy is lowered when the
magnetization is along the y direction. For simplicity we consider below the case D > 0.
To study the equilibrium phase diagram, consider the partition function in the canonical
ensemble:

Z =

∫ N∏

i=1

dpi dθie
−βH =

(
2πe−β

β

)N/2 ∫ ∏

i

dθi exp

[
βN

2

(
(1 + D)m2

x + m2
y

)]
. (23)

On using a Hubbard–Stratonovich transformation [40], the integrals over angles can be
rewritten as

Zθ =
N

2πβ
√

(1 + D)

∫
dbx dby exp

[
−N

(
b2
y

2β
+

b2
x

2β(1 + D)
− ln

∫ π

−π

dθ ebx cos θ+by sin θ

)]
,

(24)

where the double integral can be evaluated using the saddle point method for large N ,
leading to the free energy per particle

f =
− ln Z

Nβ
=

−1

2β
ln

(
2π

β

)
+

1

β

[
b
2

x

2β(1 + D)
+

b
2

y

2β
− ln

∫ π

−π

dθ ebx cos θ+by sin θ

]
. (25)

In the above expression, bx and by are determined by maximizing Zθ with respect to bx

and by, and are related to the equilibrium magnetization mx and my along the x and y

axis, respectively, as bx = β(1 + D)mx and by = βmy. As explained above, for D > 0, the
system orders along the x axis and the magnetization mx is determined by

mx =

∫ π

−π
dθ cos θeβ(1+D)mx cos θ

∫ π

−π
dθ eβ(1+D)mx cos θ

. (26)
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Close to the critical point, the above transcendental equation can be expanded in a Taylor
series about zero magnetization and we obtain m2

x = (8β(1+D)−16)/((4−β(1+D))β2(1+
D)2) for D > 0. The inverse critical temperature at which magnetization vanishes is given
by βc = 2/(1+D). The critical energy εc can be calculated using the free energy expression
above and we obtain

εc =

[
∂(βf)

∂β

]

β=βc

=
3 + D

4
. (27)

For the anisotropic Hamiltonian, the equations of motion are similar to those for the
isotropic case, (2) and (3), except that mx is replaced by (1+D)mx. The average potential
appearing in the corresponding Vlasov equation (10) is now given by

V (θ, t) =

∫ pmax

pmin

dp′
∫ π

−π

dθ′ [1 − cos(θ − θ′) − D cos θ cos θ′] f(θ′, p′, t). (28)

It can be checked that the homogeneous state (in θ) is a stationary state of the Vlasov
equation for the anisotropic HMF model so that the distribution f(θ, p, t) can be written
as (11). The distribution f (1) is now a solution of the following equation:

∂f (1)

∂t
+ p

∂f (1)

∂θ
− 1

2π

∂f (0)

∂p

∫
dp′ dθ′f (1)(θ′, p′, t) [sin(θ − θ′) + D sin θ cos θ′] = 0. (29)

As before, going to the Fourier space and picking the coefficient of e±iθ, we obtain

I± =

[(
1 +

D

2

)
I± +

D

2
I∓

]
J± (30)

where I± and J± are given in (16). For D �= 0, the frequency ω is then determined
through

(1 + D)J+J− −
(

1 +
D

2

)
(J+ + J−) + 1 = 0 (31)

which is a bilinear equation unlike in the isotropic case. We now find the dynamical phase
diagram and the frequency in the unstable phase for two choices of initial momentum
distribution.

Uniform distribution. For uniformly distributed f (0)(p), the integrals J± appearing in (31)
can be readily done and we obtain a fourth-order equation for the frequency ω:

4(ω2 − p2
0)

2 + 2 (2 + D) (ω2 − p2
0) + (1 + D) = 0 (32)

with the following four solutions:

ω2 = 6

(
ε − 7 + D

12

)
(33)

ω′2 = 6

(
ε − 7

12

)
. (34)

The frequency ω2 vanishes at ε∗ = (7 + D)/12 while ω′2 becomes zero at ε′∗ = 7/12.
Thus in the magnetically ordered phase, ε < εc, three regions can be identified: a linearly
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Figure 2. Dynamical phase diagram in the (ε,D) plane for the initial momentum
distribution chosen as Waterbag (a) and Gaussian (b). The solid line is the
thermodynamic phase boundary D(εc) and the broken line is the dynamical
boundary D(ε∗). The dotted line gives the line where ω′ vanishes. The dashed–
dotted line is the first-order line where the magnetization changes its direction.
Note that, in the Gaussian case, the dynamical and the thermodynamical
boundaries coincide.

stable region ε∗ < ε < εc where long relaxation timescales increasing as a power of N
are expected, an unstable regime ε′∗ < ε < ε∗ with a single mode of instability namely
Ω, and another unstable regime ε < ε′∗ with two modes of instability Ω and Ω′ where
Ω2 = −ω2 and Ω′2 = −ω′2. Since Ω > Ω′, the magnetization increases exponentially
fast with rate Ω. Thus, in the last two regimes, the relaxation timescales diverging as
ln N are expected. The (ε, D) phase diagram resulting from this analysis is given in
figure 2(a).

Our numerical results for the time evolution of the magnetization in the unstable and
the stable phases are shown in figure 3. For ε < ε∗ (figure 3(a)), data collapse of the
curves for various system sizes is observed when the magnetization is scaled with a factor√

N as in the last section. Thus, we again obtain ln N scaling for the relaxation time.
The growth rate in the unstable phase is also in agreement with ω in (33). For ε > ε∗

(figure 3(b)), the magnetization stays close to its initial value ∼ 1/
√

N for a long time
which is consistent with N1.7 scaling as for the basic HMF model.

Gaussian distribution. For initial momentum chosen from Gaussian distribution, the
dynamics are always unstable and the frequency ω2 = −Ω2, Ω real. Consider the integrals
J± defined in (16):

J+ = J− =
β

2

[
1 − Ω2

√
β

2π

∫ ∞

−∞
dp

e−βp2/2

p2 + Ω2

]
(35)

where we have used that the derivative of f (0) is an odd function. The integral in the last
term can be evaluated using the Schwinger trick:

∫ ∞

−∞
dp

e−βp2/2

p2 + Ω2
=

∫ ∞

−∞
dp e−βp2/2

∫ ∞

0

dq e−q(p2+Ω2) =
π

Ω
exp

(
βΩ2

2

)
Erfc

(√
β

2
Ω

)
. (36)
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Figure 3. Temporal behavior of the magnetization in the anisotropic HMF model
for uniformly distributed initial momentum. (a) The three curves in the unstable
phase show scaled magnetization

√
Nmx(t) for ε = 0.55 and D = 0.9. The slope of

the solid lines is given by ω in (33). (b) Evolution in the stable phase with ε = 0.8
and D = 0.9 (top to bottom) for N = 500(100), 2000(50), 5000(50), 10000(5). The
number of histories over which data are averaged is given in parentheses. The
scaled data is consistent with N1.7 scaling of the quasistationary lifetime.

Since the dispersion relation (31) is quadratic in J+ it has two solutions, namely
J+ = 1/(1 + D) and J+ = 1 with respective frequencies Ω and Ω′ which obey

1 −
√

βπ

2
Ω exp

(
βΩ2

2

)
Erfc

(√
β

2
Ω

)
=

2

β(1 + D)
(37)

1 −
√

βπ

2
Ω′ exp

(
βΩ′2

2

)
Erfc

(√
β

2
Ω′

)
=

2

β
. (38)

The real frequencies Ω, Ω′ vanish at ε∗ = (3 + D)/4 and ε′∗ = 3/4, respectively. The
critical energy ε∗(> ε′∗) coincides with εc as there is no stable phase when the initial
momentum is distributed according to a Gaussian distribution. One is thus left with two
unstable regimes, one with a single unstable mode (ε′∗ < ε < εc) and the other with two
unstable modes (ε < ε′∗). Since the left-hand side of the above equations for Ω and Ω′ is a
monotonically decreasing function lying between 1 and 0, one has Ω > Ω′ for D > 0. Thus
we expect the growth rate of mx to be Ω for all energies below εc. The dynamical phase
diagram corresponding to the case of Gaussian initial distribution is given in figure 2(b).
Our numerical results for the evolution of the magnetization verifying the conclusions
presented above are shown in figure 4.

4. Hamiltonian mean field model with on-site potential

We next consider the HMF model with cosine on-site potential whose Hamiltonian is

H =
1

2

N∑

i=1

p2
i +

1

2N

N∑

i,j=1

(1 − cos(θi − θj)) + W

N∑

i=1

cos2 θi. (39)
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Figure 4. Semi-log plot of the magnetization as a function of time for Gaussian
f (0)(p) in the dynamically unstable, ferromagnetic phase for N = 5× 105,D = 4
and various ε. The lines have a slope Ω given by (37).

where the last term in the Hamiltonian gives the energy due to an on-site potential. For
positive (negative) W , the steady state magnetization is along the y(x) axis and, in the
following, we assume W > 0. The equilibrium properties of this model can be calculated
following the same procedure outlined in section 2. The equilibrium magnetization my

along the y axis is determined by the following equation:

my =

∫ π

−π
dθ sin θeβmy sin θ−βW cos2 θ

∫ π

−π
dθ eβmy sin θ−βW cos2 θ

. (40)

The magnetization vanishes at a critical temperature determined via β−1
c = (I0(z) +

I1(z))/2I0(z) where I0 and I1 are the modified Bessel functions of the first kind and the
argument z = βcW/2. For positive W 	 1, the critical temperature at which m becomes
zero is given as (2 + W )/4 to leading order in W . The critical energy εc is then given by

εc =
1

2βc
+

1

2
+

W

βc
≈ 3

4
+

5W

8
. (41)

For the model defined by (39), the canonical equations of motion are

dθi

dt
= pi,

dpi

dt
= −mx sin θi + my cos θi + 2W cos θi sin θi. (42)

As in the previous sections, for a large number of particles the dynamics is well
approximated by the Vlasov equation (10) with the following potential:

V [f ] = −
∫ pmax

pmin

dp′
∫ π

−π

dθ′ cos(θ − θ′)f(θ′, p′, t) + W cos2 θ. (43)

Unlike for the models considered in the preceding sections, the homogeneous state is no
longer a stationary state of the Vlasov equation due to the presence of the last term in
the potential V . However, the distribution function f(θ, p) = Φ(e(θ, p)), with arbitrary
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function Φ, where the single-particle energy e is given by

e(θ, p) =
p2

2
+ V (θ) =

p2

2
− mx cos θ − my sin θ + W cos2 θ (44)

are stationary solutions of the Vlasov equation (10). This can be easily seen by
differentiating the Vlasov equation (10) and by noting that the potential energy V is
a function of the angle variable only. We stress that the magnetization values mx and my

must be self-consistently determined. The particular case f (0)(θ, p) ∼ exp(−βe(θ, p)) is
the statistical equilibrium density.

A special class of stationary distributions is given by f (0)(θ, p) = Φ(p2/2 + W cos2 θ).
The fact that mx = my = 0 follows by symmetry arguments. In the following, we will
study a waterbag stationary state distribution, i.e. Φ is a step function

f (0)(θ, p) =

{
A, p2

2
+ W cos2 θ < E

0, otherwise.
(45)

The distribution function f (0)(p) is thus constant over the domain D defined by

|p| < p0 (θ) =
√

2 (E − W cos2 θ), (46)

and is simply connected for W < E. The study of the case W > E can be done following
ideas similar to those described below. The normalization constant A is determined using∫ π

−π
dθ

∫ p0(θ)

−p0(θ)
dp f (0)(θ, p) = 1 and we have

1

2A
=

∫ π

−π

dθ
√

2 (E − W cos2 θ). (47)

The parameter E can be related to the conserved initial energy ε by performing the
integration over the p variable in (39) and we obtain

ε = A

∫ 2π

0

dθ
{

1
3

[
2
(
E − W cos2 θ

)]3/2
+ 2W cos2 θ

[
2
(
E − W cos2 θ

)]1/2
}

. (48)

To compute the linear stability threshold, as before, we linearize the dynamics close
to the stationary solution, f = f (0) + λf (1) exp(iωt). The perturbation f (1) then satisfies

iωf (1) + p
∂f (1)

∂θ
− dV [f (0)]

dθ

∂f (1)

∂p
− dV [f (1)]

dθ

∂f (0)

∂p
= 0. (49)

We will determine the energy ε∗ which corresponds to the neutral mode ω = 0. Below
this energy, the dynamics is expected to be unstable and stable above it. At ω = 0, the
above equation can be written explicitly as

p
∂f (1)

∂θ
− A [δ(p + p0(θ)) − δ(p − p0(θ))]

∫
dp′ dθ′ sin(θ − θ′)f (1)(θ′, p′, ω)

+ 2W sin θ cos θ
∂f (1)

∂p
= 0. (50)
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We solve this last equation by a formal expansion in terms of Dirac distributions δ and
its order n derivatives δ(n):

f (1) =
∞∑

n=0

an (θ) δ(n) (p + p0 (θ)) + bn (θ) δ(n) (p − p0 (θ)) . (51)

The equations for an and bn and their solutions can be found recursively. We report the
analysis only for a0 and b0:

da0

dθ
=

db0

dθ
= A

sin θmx [δf ] − cos θmy [δf ]

p0 (θ)
. (52)

The magnetization mx[δf ] must be determined self-consistently from the distribution
function. Using (51), the formula (52) and (47), we obtain

∫ π

−π

dθ
√

2 (E − W cos2 θ) =

∫ π

−π

dθ
sin2 θ√

2 (E − W cos2 θ)
. (53)

This is the equation for the marginal stability of the inhomogeneous waterbag distribution
function. We define

I(x) =
1

∫ 2π

0
dθ

√
1 − x cos2 θ

∫ 2π

0

dθ
sin2 θ√

1 − x cos2 θ
(54)

which can be expressed in terms of complete elliptic functions of the first and second
type. The equation for the marginal stability for inhomogeneous waterbag distributions
is then

2E = I

(
W

E

)
. (55)

One can prove that I is a strictly decreasing function from the interval [0; 1] onto the
interval [1/2; 1]. I−1 is thus an increasing function from [1/2; 1] onto [0; 1]. From this,
one can prove that the equation I−1(2E) = W/E has a single solution E∗(W ) for each
value of W in the range [0; 1/2], and no solutions for W > 1/2. For W = 1/2, we have
E∗ = W ; this is the limit above which the inhomogeneous waterbag ceases to be simply
connected (see the discussion below (46)). For values larger than W = 1/2, the transition
value E∗(W ) could be studied by considering doubly connected domains.

For W 	 1, equation (53) can be easily linearized and we obtain E∗(W ) =
1/4 + 3W/8 + O(W 2). Now using (48), we can compute the critical ε∗(W ) as a function
of W . For instance, for W 	 1, we obtain

ε∗ (W ) =
7

12
+

11W

24
+ O(W 2). (56)

For W = 0, we obtain the critical energy for the homogeneous waterbag distribution
ε∗ = 7/12 (see [16]). For any value 0 ≤ W ≤ 1/2, the critical value of the energy can
easily be computed numerically from (55). Figure 5 shows the curve of marginal stability.

At energies below ε∗(W ), where the waterbag state is unstable, the relaxation time
grows logarithmically with the system size, as in the case of the model with global
anisotropy. This is a result of the fact that the initial magnetization of the waterbag
state is of the order of 1/

√
N . For energies above ε∗(W ) where the waterbag state is

linearly stable, we expect a longer relaxation time, which grows algebraically with N .
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Figure 5. Dynamical phase diagram in the (ε,W ) plane for the inhomogeneous
uniform distribution of the HMF model with on-site potential. The bold line
is the line of marginal stability W (ε∗) and the thermodynamic phase boundary
W (εc) is shown as a dashed line. The dotted lines are the respective curves
obtained within the linear approximation for W 	 1 given in (41) and (56).

5. How long is the Vlasov approximation valid?

In this section, we discuss the validity of the approximation of the N -particle phase-space
distribution

fd(θ, p, t) =
1

N

N∑

i=1

δ(θi(t) − θ)δ(pi(t) − p) (57)

by a smooth density function fs(θ, p, t), where both fd and fs satisfy the Vlasov
equation (10) (mean field approximation). We ask: how long is this approximation
justified?

We consider an ensemble of initial conditions for the N particles {(θi(t = 0), pi(t =
0))1≤i≤N}. We suppose that the corresponding fd(t = 0) is close to some smooth
distribution function fs(t = 0) (i.e. the distance between fd and fs converges to zero as
N goes to infinity). If for almost all initial conditions, fd remains close to the smooth fs,
we say that the system has a kinetic behavior: all trajectories remain close to each other.
The kinetic evolution is then the solution of the Vlasov equation with initial condition
fs(t = 0). The issue of the validity of the mean field approximation, or equivalently of
the validity of the kinetic description, is to know for how long all trajectories remain close
to fs. Since fd satisfies the Vlasov equation, this issue is related to the stability of the
Vlasov equation.

Let us first summarize the known results. The validity of this mean field
approximation for large N has been established mathematically, for smooth potential
V , by Braun and Hepp [46] (see also [49]). More precisely, the theorem of Braun and
Hepp states that, for a mean-field microscopic two-body smooth potential, the distance
between two initially close solutions of the Vlasov equation increases at most exponentially
in time. Indeed, if f(t) and g(t) are two solutions, if Δ(f, g)(t = 0) is sufficiently small,
then Δ(f, g)(t) ≤ Δ(f, g)(0) exp(at), where Δ is the Wasserstein distance and a is a
constant.
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This result can be applied to the approximation of the N -particle Hamiltonian
dynamics by the Vlasov equation. We consider, for the N -particle dynamics, an
ensemble of initial conditions {(θi, pi)1≤i≤N} distributed according to the measure
f(θ1, p1, . . . , θN , pN) = ΠN

i=1fs(θi, pi). For large N , for a typical initial condition, the phase-
space initial distribution fd(θ, p, 0) will be close to fs(θ, p, 0). Typically Δ(fd, fs)(t = 0) =
O(1/Nα) with α > 0. Let us consider fs the solution of the Vlasov equation with initial
condition f (0). Because fd and fs are both solutions for the Vlasov equation, we can apply
the Braun and Hepp result. If we define tV to be the time at which the error Δ(fd, fs) is
of order unity, the theorem then implies that tV increases at least as ln N when N → ∞
(for this argument, see also [16]).

In sections 2 and 3, we have considered the special case where the initial distribution
f (0) is a stationary solution of the Vlasov equation. When f (0) is unstable, the perturbation
f (1) grows exponentially. We have explained and illustrated that tV is proportional to
ln N . Thus the trajectories diverge from fs on a timescale given by ln N/Ω. This thus
proves that the Braun and Hepp result for tV is not only a lower bound, but is actually
achieved. After this timescale, the trajectories diverge and the system does not have a
kinetic behavior any more.

When f (0) is a stable stationary solution of the Vlasov equation, tV is the stability
time of the quasi-stationary state. A very recent work [47] has proven that the N -particle
dynamics actually remains close to the stationary solutions, at least for times of the
order of N1/8, when the potential V is sufficiently smooth. On physical grounds, using
kinetic theory, one expects the validity time to be of the order of N for systems in which
each particle is characterized by more than one dynamical variable. When no resonance
between trajectories is possible, as is the case for systems with one dynamical variable,
one expects validity times to be much larger than N [23]. This peculiarity of 1d systems
has been numerically observed in the HMF model, where times of the order of N1.7 have
been measured for homogeneous quasi-stationary states [16]. This timescale seems to be
robust with respect to the perturbations of the Hamiltonian as we have demonstrated for
the anisotropic case in section 3.

Let us now consider the more general case when the initial condition is close to a
distribution f which is not stationary. In accordance with the observed phenomenology for
the Vlasov equation, one expects that f will have a rapid relaxation in a finite time either
towards a quasi-stationary state, or towards a periodic solution, or towards a statistical
equilibrium for the Vlasov equation. Because this first stage takes place in times which are
of order one (which do not depend on N), one expects that this initial relaxation will have
a negligible effect on the long time error. The validity time for the Vlasov approximation
will then be given by the validity time of the quasi-stationary states. Then times tV of
the order of Nα are expected. We thus conjecture that, for generic initial distributions,
the approximation by the Vlasov equation is valid over times which are the lifetime for
the quasi-stationary states.

6. Conclusions

In this paper, we studied the short time dynamics of models with long ranged
Hamiltonians. In each case, starting from the initial magnetization of the order of 1/

√
N ,

the time required to achieve a finite value of m scales with the number N of particles.
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This behavior is different from that of the corresponding short ranged Hamiltonians where
such time is of order unity. The dynamics were studied by a numerical integration of the
Hamilton’s equations of motion and a stability analysis of the Vlasov equation. The latter
analysis shows that, close to the unstable stationary states of the Vlasov equation, the
relaxation occurs over a time ∼ lnN while close to stable stationary states, the system
stays in a quasistationary state whose lifetime goes as a power law in N .

So far we considered only the deterministic dynamics. An interesting direction
would be to study such models when the dynamical rules are stochastic. One such case
has been discussed in [13] where the system of Ising spins evolves via microcanonical
Monte Carlo dynamics. Since the Ising energy can be obtained as a limiting case of
the Hamiltonians considered here (with anisotropy or on-site potential), it would be
worthwhile to study these systems with stochastic evolution rules. Besides, for the HMF
model, the ensemble equivalence in the equilibrium steady state has been shown using
the large deviation method [48]. Recent numerical studies [38, 52] of the dynamics of this
system in contact with a thermal bath have focused on the stable regime ε > ε∗ and
find that the quasistationary states seen in the microcanonical ensemble survive but the
lifetime increases as a power law (in N) with an exponent that decreases with increasing
system–bath coupling. It would be interesting to know if the unstable phase exhibits a
similar dependence on the coupling with the heat reservoir.
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[12] Barré J, Mukamel D and Ruffo S, 2001 Phys. Rev. Lett. 87 030601
[13] Mukamel D, Ruffo S and Schreiber N, 2005 Phys. Rev. Lett. 95 240604
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