
DOI: 10.1007/s10955-004-2059-0
Journal of Statistical Physics, Vol. 118, Nos. 5/6, March 2005 (© 2005)
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Systems with long range interactions in general are not additive, which can
lead to an inequivalence of the microcanonical and canonical ensembles. The
microcanonical ensemble may show richer behavior than the canonical one,
including negative specific heats and other non-common behaviors. We propose
a classification of microcanonical phase transitions, of their link to canonical
ones, and of the possible situations of ensemble inequivalence. We discuss pre-
viously observed phase transitions and inequivalence in self-gravitating, two-
dimensional fluid dynamics and non-neutral plasmas. We note a number of
generic situations that have not yet been observed in such systems.
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1. INTRODUCTION

In a large number of physical systems, any single particle experiences
a force which is dominated by interactions with far away particles. For
instance, in a system with algebraic decay of the inter-particle potential
V (r) ∼r→∞ 1/rα, when α is less than the dimension of the system, the
interaction is long range (such interactions are sometimes called “non-
integrable”). Such long range interacting systems are not-additive, as the
interaction of any macroscopic part of the system with the whole is not
negligible with respect to the internal energy of the given part.
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The main physical examples of non-additive, long range interacting
systems are: astrophysical self-gravitating systems,(3,9,13,20,28,31,34,39,43) two-
dimensional or geophysical fluid dynamics,(11,32,33,37) and certain plasma
physics models.(17,25) Spin systems(5,21) and toy models(2) with long range
interactions have also been widely studied.

As a consequence of the lack of additivity, peculiar thermodynamic
behaviors are likely to be observed in such Hamiltonian systems. For
instance, the usual proof of the validity of the canonical ensemble, for
a system in contact with a thermostat, or for a part of a bigger iso-
lated system, uses explicitly this additivity property. Hertel and Thirring(18)

provided a toy model, mimicking self-gravitating dynamics, which dis-
plays inequivalence between canonical and microcanonical solutions, with
negative specific heat regions in the microcanonical ensemble. Negative
specific heat and ensemble inequivalence, previously known to astrophys-
icists, were then found in various fields: plasma physics,(25,38) 2D fluid
dynamics(7) and geophysical fluid dynamics.(15) These examples show that
new types of phase transitions are found in long range interacting sys-
tems.

A natural question then arises: do we know all possible behaviors
stemming from long range interactions, and, if not, what are the possi-
ble phenomenologies? The aim of this article is to answer the question by
providing a classification of all microcanonical and canonical phase tran-
sitions, in long range interacting systems, with emphasis on situations of
ensemble inequivalence. Although we restrict here to long range interact-
ing systems, we want to stress that these systems are not the only ones
for which ensemble inequivalence may occur.(12) Let us note also that the
deep link between ensemble inequivalence and dynamical non-linear stabil-
ity issues has been recently recognized,(16) which provides a further incen-
tive for this study.

In order to formalize the problem, we first argue, in Section 2, that
the mean field approach is exact, in the limit of a large number of parti-
cles, for most systems with long range interactions. In this mean field con-
text, the microcanonical equilibrium is defined by the maximization, with
respect to an order parameter, of an entropy with an energy constraint.
The canonical equilibrium is then given by the minimization of the asso-
ciated free energy. The study of phase transitions is thus reduced to the
study of the singularities of these two variational problems, while the study
of ensemble inequivalence is reduced to comparing the equilibrium states
in both ensembles.

We propose a classification of all singularities, convexity changes,
and convexification properties of entropy functions, independently of the
underlying physical problem; it uses the tools of singularity theory, along
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the lines of the works of Varchenko(42) and Aicardi,(1) on the classification
of phase transitions for binary mixtures, in classical thermodynamics.
We thus classify all microcanonical and canonical phase transitions, their
mutual link, and all situations of ensemble inequivalence.

In Section 3, we carry on this program when one internal (the energy
for instance) and one external parameter are varied; we then review the
transitions already found in the (known to us) literature, by studying
actual N -body systems. We will see that the classification identifies many
new possibilities besides the well-known negative specific heat regions. In
Section 4, we give a similar classification and comparison with the existing
literature for systems with a parity symmetry.

In all this work, we study the possible inequivalence of ensembles,
when only one dynamical constraint is taken into account. This is valid
for inequivalence between the microcanonical and the canonical ensembles,
or between the canonical and grand canonical ensembles, for instance.
We briefly discuss the generalization to several constraints in the conclu-
sion.

2. MEAN FIELD STATISTICAL MECHANICS AND ENSEMBLE

INEQUIVALENCE

2.1. Microcanonical and Canonical Equilibrium States

A model will be said to have long range interactions when any single
particle experiences a force for which a macroscopic number of particles
contribute, and such that the contribution of closest particles is negligible
when the number of particles N goes to infinity. The statistical equilibrium
states of such systems are generically described by mean-field variational
problems. We first give some heuristic justification of this statement, before
referring to rigorous proofs for specific models.

The energy of such systems can be approximated, in the large N limit,
by the energy of a coarse-grained variable m which may be a scalar, a vec-
tor or a field (H ∼N→∞ Nh(m)). The description of equilibrium structures
then amounts to compute the probability P(m) of this coarse-grained
field. This probability is characterized by an entropy function or func-
tional in the large N limit: log (P (m)) ∼N→∞ Ns (m). As a result, the
microcanonical equilibrium state mmand entropy of the system S(E), for
a given energy E, are the solutions of the maximization of the entropy
function (functional) s with the energy constraint (this general approach
is explained in ref. 15:

S(E)= sup
m

{s(m) | h(m)=E}= s(mm). (1)
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The points where the supremum is reached defines mm(E), the microca-
nonical equilibrium state at energy E. We suppose that it exists;4 however
it is not necessarily unique.

With similar arguments, the canonical5 equilibrium mc, at inverse
temperature β, is given by the minimization of the free energy functional:

F(β)= inf
m

{−s(m)+βh(m)}=−s(mc)+βh(mc) (2)

We note that the usual free energy is F (β) /β. Nevertheless, for sake of
simplicity, we will always call F the free energy.6 The points where the infi-
mum is reached defines mc(β), the canonical equilibrium state at inverse
temperature β; we suppose that it exists, but as in the microcanonical case,
it is not necessarily unique. In a canonical context, this reduction to a var-
iational problem was already rigorously described for gravitating fermions
in ref. 19, and in a more general setting in ref. 29.

Such a mean field description has been proposed for the point-vortex
system,(22) two dimensional incompressible flows,(32,35) Quasi-geostrophic
flows, rotating Shallow-Water model,(11),7 self-gravitating systems,(9,28,34,39)

plasma physics,(17,25) spin systems.(2,5,21) Some rigorous large deviations
results, confirming this mean field description, have been rigorously obtained
for a large class of long range interacting systems: two-dimensional or quasi-
geostrophic models,(15,30,36) the point vortex model(7,24), spin systems.(5)

From now on, we call microcanonically stable, metastable and unsta-
ble state respectively a global maximum of problem (1) (that is a micro-
canonical equilibrium state), a local maximum of (1) which is not global,
and a local minimum or a saddle point of (1). We define similarly canoni-
cally stable, metastable and unstable states with problem (2). In the follow-
ing we will study generic properties of the two dual variational problems
(1) and (2), independently of any specific system. The Lagrange multi-
plier result insures that, for a given energy E, a critical point of (1) is a

4the existence has to be proved for each case, using properties of the entropy functional s(m),
which is usually strictly concave.

5in systems with long range interaction, the canonical ensemble does not describe the fluctu-
ations of a small subsystem. However, it can describe fluctuation of the whole system cou-
pled to a thermostat with vanishingly small coupling.

6For negative temperature states, for instance in two dimensional turbulence, the functional
−s(m)+βh(m) must still be minimized, whereas the usual free energy should be maximized.
Such a notation thus simplifies the discussion.

7The main peculiarity of models of two dimensional or quasi-geostrophic flows is the exis-
tence of an infinite number of conserved quantities (Casimirs), due to the continuous nature
of the dynamics, and similar to the conserved quantity of a Vlasov dynamics.
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critical point of (2) for some value of β, verifying −ds +βdh= 0.8 How-
ever the stability of this critical point (stable, metastable, unstable) may
differ for the two variational problems. We will say that the microcanon-
ical and canonical ensembles are equivalent at an energy E if it exists β

such that mm(E) = mc(β) (with mc(β) canonically stable). In the oppo-
site case, we will say that the two ensembles are not equivalent. The prob-
lem of ensemble equivalence thus reduces to the study of the solutions of
the two general variational problems (1) and (2). In the following para-
graph, we recall the results linking ensemble equivalence and the concavity
of S(E).

2.2. Characterization of Ensemble Equivalence

It is classically known that ensemble equivalence is related to the
concavity of the entropy S (E) (for instance authors of ref. 24 use this
property as a definition). If the entropy is twice differentiable and non
concave at some point, both ensembles are obviously not equivalent, since
the specific heat is always positive in the canonical ensemble.9 More gen-
erally, ensemble inequivalence is completely characterized by the concav-
ity of S (E). The concave envelope of the S(E) curve is defined as the
boundary of the intersection of all closed half-spaces which contains the
S(E) curve. One can prove the three following points by convex analy-
sis:(15)

1. a canonical equilibrium state at inverse temperature β is always a
microcanonical equilibrium state for some energy E.

2. a microcanonical equilibrium state of energy E is also a canon-
ical equilibrium state, for some inverse temperature β, if and only if the
function S coincides, at the point E, with its concave envelope.

3. the second point can be refined: we consider an energy E at
which S is regular (at least twice differentiable); then a microcanonical
equilibrium state of energy E is a canonical stable or metastable state, for

8By definition, the microcanonical inverse temperature β is the Lagrange parameter β corre-
sponding to the entropy maximum (it may be not uniquely defined, for instance at a first
order microcanonical transition point). When S is differentiable, we have β = s′(E). On the
contrary, in the canonical ensemble, β is a parameter. If the two ensembles are equivalent at
the energy E, then the canonical calculations with inverse temperature β = s′(E) will yield
the same equilibrium state and the energy E. When no confusion is possible, β will either
refer to the microcanonical or to the canonical inverse temperature.

9The specific heat is defined in the canonical ensemble as Ccano
v = −β2d2F/dβ2, and as

Cmicro
v =−β2/(d2S/dE2) in the microcanonical ensemble.
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some inverse temperature β, if, and only if, the function S is locally con-
cave around the point E (that is locally under its tangent).

A proof of points 1 and 2, in the context of long range interacting sys-
tems, from the variational problems (1) and (2), is given in ref. 15. Point
3 is a direct generalization.10

Let us furthermore argue that the knowledge of the canonical equi-
libria mc(β), for all β, is sufficient to know whether ensemble inequiva-
lence occurs or not. From the knowledge of all mc(β), we can compute
all canonical equilibrium energies {h (mc(β))}. If this energy ensemble is
the same as the energy range of the system, then the whole curve S(E)

can be constructed from {(h (mc(β)) , s (mc(β)))}. This curve is always con-
cave, as a canonical equilibrium (not necessarily unique) may be associ-
ated to each point. Thus there is no ensemble inequivalence. Conversely,
if the canonical energy range is different from the system energy range,
then for these energies, microcanonical equilibria are not canonical ones,
and ensembles are inequivalent. This discussion also shows that a micro-
canonical phase diagram, where the convexity changes and convexification
points or surface are represented, contains all information necessary to
construct the associated canonical phase diagram (the converse is wrong
in general).

The problem of ensemble inequivalence is thus reduced to the study
of the concavity of the function S(E). More generally, microcanonical
phase transitions then correspond to a lack of analyticity of the entropy
S (E), whereas ensemble inequivalence or canonical phase transitions are
characterized by convexity changes of the entropy S (E). We note that
in systems with short range interactions, the mechanism of phase sepa-
ration justifies the Maxwell construction, and explain why entropy func-
tions are generally concave. These considerations are model independent,
which leads to the central point of the paper, in Sections 3 and 4: we
have the opportunity to classify all the possible phase transitions for
these systems (or equivalently, to classify the analyticity breakings, con-
vexification and concavity properties of S(E)); we will make use for
this purpose of the tools of singularity theory(4) (or catastrophe the-
ory(41)).

10Here is a sketch of a possible proof: a canonical state mc, with energy E = h (mc), is by
definition said to be metastable if it is a local, and not a global minimum of the free energy
functional (for an infinite dimensional m, one has to specify explicitly some topology). If
the energy is continuous, states close to mc have an energy close to E. The application of
point 2 to a class of states with energy close to E proves 3.
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3. CLASSIFICATION OF LONG-RANGE INTERACTING SYSTEMS

PHASE-TRANSITIONS AND OF STATISTICAL ENSEMBLE

INEQUIVALENCE

In this section, we focus on the case where no symmetry property
is assumed for the dependence of the functionals s and h on the coarse-
grained variable m. We classify all maximization, convexity and convex-
ification singularities of an entropy–energy curve. For each situation, we
are interested in singularities which are not removed by any small per-
turbation of the functions s and h defining the variational problems (1)
and (2). Let us suppose that s and h depend on N + 1 parameters; heu-
ristically we will say that a singularity is generic with codimension n if it
spans an N −n dimensional hypersurface in the N +1 dimensional param-
eter space. Thus, if one explores an n+1 dimensional hypersurface in that
space, that is if n + 1 parameters can be varied, a codimension n singu-
larity will be generically observed. If we consider the energy E to be one
of these parameters (the internal one), n then refers to the number of
external parameters which has to be varied to observe generically codi-
mension n singularities. Varchenko(42) classified singularities of the convex
envelope of a finite set of smooth bounded function, up to codimension 2.
Aicardi(1) completed this classification and applied it to the classification
of phase transitions for binary mixtures. These works do not, however,
consider maximization singularities. Brysgalova(6) classified maximization
singularities for variational problems depending on a parameter. We know
no mathematical results classifying both singularities and convexification
properties of a variational problem. We now first describe “codimension
−1” points (see below), and classify all codimension 0 and 1 singularities
(that is with none or one external parameter), when only one constraint
(the energy) is considered. We then search in the literature which of these
transitions have been found in actual physical models of interacting parti-
cles.

3.1. Generic Points on a S(E) Curve

We describe here generic points of a S(E) curve, that is points accessi-
ble without tuning the energy. Formally, these would be “codimension −1”
singularities. We thus consider the three sources of singularity we are inter-
ested in: maximization singularity, convexity property and convexification.
The corresponding generic points are:

• Maximization singularities and analytic properties. A generic point
with respect to maximization is a point where S(E) is analytic.
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Fig. 1. The three types of generic points on the S(E)curve. Points in A zones are concave
and belong to the concave envelop: they correspond to a canonical solution; B points are
convex, thus canonically unstable; C points are concave but do not belong to the concave
envelop: they are canonically metastable. The thin line is the canonical curve in the inequiv-
alence range.

• Convexity properties. A generic point with respect to the convex-
ity properties is a point where the second derivative of S(E) is non-zero,
so that S has a definite concavity. This defines two types of generic points
with respect to the convexity properties, the concave and the convex ones.

• Properties with respect to convexification. A generic point of the
curve S(E) may or may not belong to the concave envelop of S. Thus,
there are two types of generic points with respect to convexification.

We may now combine the different properties to get the different types of
generic points:

• A concave point may or may not belong to the concave envelop
of S. Consequently, there are two types of concave generic points: those
who belong to the concave envelop (points A on Fig. 1), and those who
do not belong to the envelop (points C on Fig. 1).

• A convex point cannot belong to the concave envelop, so that
there is only one type of such generic points (points B on Fig. 1).

We have now classified the three types of generic points. The micro-
canonical and canonical ensembles are equivalent at points of the A type,
and inequivalent at points of the B or C types (B or C define the inequiv-
alence range). The negative specific heat regions correspond to points of
the B type. The range of admissible values for E can be decomposed into
several intervals, in the interior of which S (E) has the property A, B or
C. In codimension 0 (no external parameter), a generic curve S (E) will be
characterized by the bounds of these intervals. In the next section, we will
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follow the same scheme to systematically classify all these bounds, thus all
codimension 0 singularities.

3.2. Codimension 0 Singularities

In this section, we construct all generic entropy curves, that is curves
accessible without tuning an external parameter. We call codimension 0
points the special points met along a generic S(E) curve when varying the
energy and no other parameter. They are of codimension 0 with respect to
one of the three sources of singularities (the maximization process, the con-
vexity properties of S and the convexification of S), and generic points with
respect to the other two: roughly speaking, we can “use” the tuning of the
energy to find a special point with respect to just one of the sources. Thus,
we first enumerate the codimension 0 singularities arising from each of the
three sources, and then combine them with the generic points A, B or C.

3.2.1. The Three Sources of Singularities

• Maximization singularities and analytic properties. We want to
classify all the singularities for the maximum of a variational problem with
a constraint, when the value of the constraint is varied. We do not know
any rigorous results dealing with this problem, in the literature. However,
we use results from singularity theory,(6) proved for variational problems
depending on a parameter. Here we have no parameter in the function but
its role is played by the energy constraint. This difference might be impor-
tant in some particular cases; we neglect this possibility in the following.
Thus, from, ref. 6 we know that codimension 0 maximization singularities
are of only one type. It corresponds to an exchange of stability/metastabil-
ity between two different branches of solution of the variational problem.
At such point Ec, S is continuous, but the derivative β =∂S/∂E undergoes
a positive jump. We will refer to these points as microcanonical first order
transitions.

• Convexity properties. There is only one type of codimension 0 sin-
gularity arising from the convexity properties of S: the inflexion point,
where the second derivative of S vanishes (thus dβ/dE =0), and the third
derivative is non-zero. Since this corresponds to the point where a local
minimum of f (m,β)=βh(m)− s(m) becomes a saddle point, we will refer
to it as a canonical spinodal point.11

11We note that due to the long range interactions, the crossing of a spinodal point is not
associated to a spinodal decomposition (phase separation and coarsening) as in short range
interacting systems. The phenomenology of the dynamics will rather be associated to some
global destabilization.
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• Properties with respect to convexification. The concave envelop of
S is made by concave portions joined by straight lines. Thus, the only co-
dimension 0 singularity arising from convexification is the junction of a
curved and a straight portion of the concave envelop. Since this corre-
sponds to a jump in the first derivative of the free energy f (β), we will
refer to it as a canonical first order transition. At these points, two canon-
ical equilibrium states correspond to the same β, and only one of those is
the microcanonical state; this situation is also called partial equivalence of
ensembles.(15)

3.2.2. Construction of the Codimension 0 Singularities

We are now ready to construct all codimension 0 singularities of the
S(E) curve, by combining a codimension 0 situation in one of the three
sources of singularities with a generic point in the other two.

• Let us first consider the microcanonical first order transition, see
Fig. 2. At the point where two branches of S (E) meet, the jump in the
derivative ∂S/∂E is necessarily positive, so that the angle is reentrant. The
point thus never belongs to the concave envelop of S: it is never visible in
the canonical ensemble, it is in the inequivalence range. These two branches
have a definite concavity, and may both be concave or convex. This deter-
mines three types of microcanonical phase transitions, the concave-convex
and convex-concave ones being equivalent by change E →−E.

• Let us now turn to the inflexion point, or canonical spinodal
point: it connects a concave and a convex portion of S, and cannot belong
to the concave envelop of S: it is in the inequivalence range. There is only
one type of such points, represented on Fig. 2.

• The canonical first order transition bridges two contact point of
the double tangent to the curve S(E). At these two contact points, the
S(E) curve is always locally concave and there is only one type of such
points, see Fig. 2.

This completes the classification of codimension 0 singularities. To sum-
marize, there exist microcanonical first order transitions (three different
types, according to the concavity of the branches), canonical first order
transitions (one type), and canonical spinodal points (one type). From
these, only the canonical first order transition is visible in the canonical
ensemble; the others belong to the inequivalence range. A generic codi-
mension 0 S (E) curve is constructed with A, B or C type segments sepa-
rated by these singularities.
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Fig. 2. Codimension 0 singularities. The first three rows are the three types of microca-
nonical first order transition, the fourth is the canonical spinodal point, and the fifth is the
canonical first order transition. C stands for Concave, and V for conVex. The bold line is the
microcanonical solution as well as the canonical one when they are equivalent; the thin one
is the canonical solution. “Invisible” means that the transition is not visible in the canonical
ensemble. The canonical curve in not drawn for invisible situations.

3.2.3. Examples in Physical Systems

Hertel and Thirring(18) introduced in a pioneering paper an exactly
solvable model to illustrate the concepts of negative specific heat and
inequivalence of ensembles. This simple model already shows the three
types of generic points (including the negative specific heat), and all codi-
mension 0 singularities: a canonical first order transition, a canonical spin-
odal point, and a microcanonical first order transition between a convex and
a concave branch. These situations are also found in many different ver-
sions of more realistic self-gravitating systems.(9,21,31,39)

Examples can be found in other branches of physics: in ref. 16, Ellis
and collaborators show a β (E) curve for the quasi-geostrophic model dis-
playing the three types of generic points, a canonical first order transition,
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and a canonical spinodal point; in ref. 25 Kiessling and Neukirch find the
same phenomenology in a magnetically self-confined plasma torus.

All codimension 0 situations have thus already been found in physical
models; we turn now to the the codimension 1 situations.

3.3. Varying an External Parameter: Codimension 1 Singularities

The codimension 1 singularities arise along the S(E) curve when
varying the energy and one external parameter: they describe the way a
generic S(E) curve can be modified into another one. We follow the same
path as in the previous section to classify them: using singularity theory,
we first enumerate all codimension 1 situations for any of the three sources
of singularities, independently of the two other sources. We then construct
all codimension 1 singularities by combinations: either of a codimension
1 situation in one source with a generic point in the other two, or of a
codimension 0 situation with respect to two sources with a generic one in
the last source.

3.3.1. Codimension 1 Singularities for the Three Sources of
Singularities

• Maximization singularities and analytic properties. Using results of
singularity theory, we know that the codimension 1 maximization singu-
larities are of three types(6).

– the first type is the crossing of two microcanonical first order
transitions. It happens when three different branches of solutions of the
variational problem have the same entropy. We will refer to it as a micro-
canonical triple point.

– the second type is the appearance of a microcanonical first order
transition; it corresponds to a point where dβ/dE = d2S/dE2 = +∞. We
will call it a microcanonical critical point.

– the last type consists in the simultaneous appearance of two
microcanonical first order transitions; it happens when a formerly wholly
microcanonically metastable branch of S(E) crosses the stable one. Fol-
lowing the terminology used in binary mixture phase transitions, we will
call it an azeotropic point (see ref. 1, and Fig. 3 for an illustration).

• Convexity properties

– Varying the energy and an additional parameter allows one to
pick up on the S(E) curve points where the second and third derivatives
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Fig. 3. Codimension 1 singularities. The three curves S(E) and β(E) for each singularity
correspond to the situation just before the singularity is crossed, right at the singularity, and
just after it. See the text for comments; the meaning of the curves is as in Fig. 2, and dotted
lines represent metastable or unstable microcanonical branches.

of S(E) vanish. They show up as inflexion points with a horizontal tan-
gent in the β(E) curve. This situation will be called a convexity change.

• Properties with respect to convexification. When varying an external
parameter, the structure of the concave envelop, as a succession of concave
regions and straight lines, changes. The codimension 1 singularities arising
from convexification are precisely the points where this structure changes;
they are of two types:

– The first one is the appearance of a straight portion in the con-
cave envelope in a formerly concave region. This requires that d2S/dE2

and d3S/dE3 vanish together. It is actually a convexity change as
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described above, but with the additional request to be in the concave
envelop. This type of convexity change is the canonical critical point.

– The second one is the breaking of a straight portion in two straight
portions separated by a concave zone. This happens when there is a triple
tangent to the S(E) graph; this will be called a canonical triple point.

3.3.2. Construction of the Codimension 1 Singularities

The codimension 1 singularities are constructed by combining a
codimension 1 situation from one of the three sources of singularity, with
a generic point for the other two, or by combining two codimension 0
singularities.

• The microcanonical triple point involves three different branches of
solution, that may all be either convex or concave. We refer them by three
letters, for instance CVC (C for concave and V for convex). The first let-
ter refers to the convexity of the low energy branch, the second one to
the convexity of the appearing branch, and the third one to the convexity
of high energy branch (see Fig. 3). There are eight types of such points,
however, the CCV and VCC or the CVV and VVC cases, respectively, are
equivalent (by a change E →−E). The six remaining cases are illustrated
on Fig. 3. All these situations are always invisible in the concave envelop,
thus always canonically invisible.

• The microcanonical critical point necessarily arises, in codimen-
sion 1, inside a convex region of the S(E) curve, invisible in the concave
envelop. Thus, there is only one type of such points, see Fig. 3.

• The azeotropy phenomenon involves two branches, but it is not
possible to have the lower branch convex and the upper one concave. This
leaves three cases, from which only the concave-concave (CC) one is visi-
ble in the canonical ensemble; see Fig. 3. We refer to these situations by
two letters, for instance CV, where the second letter refers to the appearing
branch.

• There are two types of convexity change: one corresponds to the
appearance of a convex zone inside a concave one (referred by C), and the
other of a concave zone in a convex one (referred by V). The first case
may be visible after convexification. When such it is the canonical critical
point. See Fig. 3.

• The canonical triple point, or triple tangent case, always connects
three concave parts of the S(E) curve, so that there is only one type of
such points, see Fig. 3.
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• We turn now to a combination of two codimension 0 singulari-
ties: the encounter of a canonical spinodal point with a microcanonical first
order transition. Let us suppose that the branch with the inflexion point
is the low energy one (other cases are recovered by the change E →−E).
The four cases CV-C, CV-V, VC-C and VC-V exist, where the two first let-
ters refer to the concavity of the branch with the inflexion point, and the
last one, to the concavity of the other branch, see Fig. 3. The canonical
first order transition always happens alone, so that there is no other pos-
sible combination of codimension 0 situations.

The codimension 1 singularities allow us to discuss the onset of ensemble
inequivalence, i.e. how the concavity of the S(E) curve is destroyed when
varying an external parameter. The inspection of the above classification
tells us that this can happen in only two ways: at a canonical critical point
and at an azeotropic point.

Let us also summarize the links between microcanonical and canon-
ical codimension 1 singularities. The canonical critical point corresponds
to the appearance of a convex intruder in the entropy, the canonical tri-
ple point is linked to a convexification singularity, whereas the canonical
azeotropy occurs together with a CC microcanonical azeotropy.

We give now examples of physical models displaying some of these
codimension 1 situations.

3.3.3. Examples in Physical Systems

A cut-off is often imposed to regularize the short-range singularity
of self gravitating systems; the tuning of this new parameter allows to
observe codimension 1 singularities. The first rigorous study of the free
energy of self gravitating fermions has been performed by Hertel and Thir-
ring,(19) and the illustration of ensemble inequivalence associated to a first
order canonical phase transition is presented in ref. 40. A comprehensive
description of the phenomenology of the phase diagram may be found
in(9): in addition to all types of codimension 0 singularities, the phase
diagram exhibits a microcanonical critical point, a canonical critical point,
and a crossing point between a microcanonical first order transition and a
canonical spinodal point. In Section 2.2, we argued that the knowledge of
the entropy–energy curve, in particular of its concavity and convexification
properties, is sufficient to characterize both the microcanonical and canon-
ical phase transitions. In order to illustrate this point we draw a schematic
(−E, r) phase diagram for self-gravitating fermions (r is the short range
cut-off) on Fig. 4. On this diagram, both microcanonical and canonical
phase transitions are represented.
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A similar phenomenology has been found in the study of many
different versions of self gravitating systems, the external parameter being
always the short distance cut-off imposed on the gravitational interaction
in various ways.(9,39). We refer to the article(8) for a more complete bib-
liography and a more comprehensive description of phase transitions in
self-gravitating systems.

To summarize, if all codimension 0 singularities have been found in
various models of interacting particles, just a few codimension 1 situations
have already been observed. The classification thus allows to point out
new possible phenomenologies: microcanonical and canonical triple points,
azeotropy, and convexity change V (that is appearance of a concave zone
inside a convex one) have to our knowledge never been described in the
literature on long range interacting systems. Inspection of these transitions
shows that not only negative specific heat may occur in systems with long
range interaction, but also a wide zoology of uncommon behaviors.

CE MCE
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1/

−5

−4

−3
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−1
Ccp

C

V

Mcp

V

Cr

V

C

µ

−E

Fig. 4. Schematic phase diagram for self-gravitating fermions. Horizontal and vertical axis
are respectively minus the energy and a small length scale cut-off. This illustrates that a mi-
crocanonical diagram including microcanonical phase transitions as well as entropy concav-
ity and convexification properties is sufficient to summarize the canonical phase transitions.
The bold line is a first order microcanonical phase transition line (between gaseous and core-
halo phases), ending at a microcanonical critical point (Mcp). The grey line is a canonical
first order transition line (convexification singularity), with a canonical critical point (Ccp).
The dashed grey line is a line of canonical spinodal point. It crosses the microcanonical first
order phase transition at Cr. The hashed zone is the inequivalence area, absent in the canoni-
cal ensemble; the doubly hashed is the negative specific region. The bold dashed line is a line
of microcanonical stability change, marking the limits of stability of the gaseous and core-
halo phases (such microcanonical stability changes are not described in our classification).
For 1/µ= 0, we recover the self-gravitating isothermal collapse (CE) and gravitational phase
transition (MCE) points. A similar phase diagram has been done independently in ref. 10.
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4. CLASSIFICATION OF PHASE TRANSITIONS AND ENSEMBLE

INEQUIVALENCE SITUATIONS IN SYSTEMS WITH SYMMETRY

The classification of the previous section succeeded in reproducing the
phenomenology of many different systems, but not all of them. In partic-
ular, the various situations associated with second order phase transitions
do not appear. The reason is that the notion of codimension 0, codimen-
sion 1 singularities and so on were introduced under the only hypothesis
that the functional s(m) is infinitely differentiable, without any reference
to the physical system considered. However, the symmetries of the physi-
cal situation, if present, will reflect in the functional s(m), which then has
to verify a priori some additional hypothesis. This will lower the codimen-
sion of some singularities, creating a much richer phenomenology already
at the level of codimension 0 and 1 singularities. Thus, we have to com-
plete our classification to apply it to physical systems with symmetries, like
the parity symmetry of an Ising spin system, the rotational symmetry of a
self gravitating system in a spherical box...

4.1. Relation Between Symmetry and Codimension on a Simple

Example

To make clearer the point raised in the previous paragraph, let us con-
sider the mean field Ising model. Without external field, it displays a second
order phase transition in the canonical ensemble, not described in the clas-
sification so far: this is directly related to the parity symmetry of the model.
With an external field, this symmetry is destroyed, as well as the second
order phase transition; a first order phase transition, codimension 0 singu-
larity even in the absence of symmetry, may however remain.

To be more precise, we consider a functional s(m,E) with m∈R, with
a parity symmetry: s(−m,E) = s(m,E). As a consequence, all derivatives
of odd order vanish in m=0: ∂

(2n+1)
m s|(0,E) =0. Let us consider now a mi-

crocanonical critical point, defined as a point (mc,Ec) where ∂
(n)
m s|(mc,Ec) =

0, for n=1,2,3. Without any hypothesis on the function s, this requires a
priori to satisfy three equations. Thus, a generic critical point can only be
found by adding another degree of freedom, besides m and E, and is of
codimension 1. For instance a normal form for a critical point is given by
s (E,λ)= maxm

{−m4 +bm2 +am
}
, where a and b are linear combination

of E and λ, and λ is a tunable external parameter. The critical point is
given by a = b = 0 and the line of microcanonical first order transition is
given by a =0 and b>0. However, if s is symmetric under parity, all odd
derivatives automatically vanish at m = 0, so that finding a critical point
breaking this symmetry requires only to satisfy one equation, varying E.
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Moreover as the first derivative identically vanishes, the transition is con-
tinuous: a microcanonical second order phase transition is in that case
a codimension 0 phenomenon. For instance, a normal form is given by
s (E)=maxm

{−m4 + (E −Ec)m2
}
.

In the following, we make the hypothesis that for a more general sym-
metry, at least one variable m2 may be found such that all odd derivatives
with respect to m2 of s(m1,m2,E,λ) identically vanish: ∂

(2n+1)
m2 s|m2=0 = 0.

This is actually the case for a rotational symmetry, where the radius r

plays the role of m2. A case by case study should be done for any other
symmetry.

We are not aware of any mathematical result we could use to enumer-
ate the new singularities, such as ref. 6 for the non-symmetric case. We will
thus use in the following the heuristic, but systematic, criterion based on
the “number of equations to be solved”, as explained in this paragraph.

4.2. Codimension 0 Singularities

The singularities associated to the convexity properties, as well as
those concerning the convexification, are not modified when a symmetry
is assumed. As seen above, however, there is now an additional singular-
ity due to the maximization process: the second order phase transition,
associated with a symmetry breaking. At these points, a microcanonically
stable branch obeying the symmetry loses stability, and a non-symmetric
stable branch appears. By convention, we will suppose that the symmet-
ric branch is stable at energies larger than Ec, and the broken symmetry
branch is stable for energy smaller than Ec, although it is not necessary.
S(E) and dS/dE are continuous at E = Ec, but d2S/dE2 experiences a
negative jump (a positive jump if the opposite convention were adopted).

A priori, the high and low energy branches may be concave or convex,
but because of this negative jump condition, the association of a concave
low energy branch with a convex high energy branch is impossible. We are
thus left with three types of second order phase transitions denoted CC,
VC and VV where the first letter refers to the low energy branch convex-
ity, see Fig. 5. Only the CC microcanonical second order phase transition
is visible in the canonical ensemble: it is the canonical second order phase
transition. This completes the classification of codimension 0 singularities.

4.3. Codimension 1 Singularities

The new codimension 1 singularities arise on one hand from the new
codimension 1 singularities due to the maximization, and on the other
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Fig. 5. New codimension 0 singularities for systems with symmetry.

hand from the combination of the second order phase transition (of co-
dimension 0) with other codimension 0 singularities. We first identify the
new codimension 1 singularities, due to symmetry.

4.3.1. Codimension 1 Singularities for the Three Sources of
Singularities

• Maximization singularities and analytic properties
The microcanonical critical point, microcanonical triple point and azeo-
tropic point are unchanged. Five new singularities are added.

– the first one appears when the first five derivatives of s vanish
together along a certain direction. A normal form is given by S (E,λ) =
maxm

{−m6 −3bm4/2−3am2
}
, where a and b are linear combinations of

E and λ, and λ is the tunable external parameter which gives access
to codimension 1 singularities. In the (E,λ) plane, it connects a line of
microcanonical first order transitions with a line of second order phase
transitions; following the usual canonical terminology we will refer to it
as a microcanonical tricritical point.(14) Figure 6 shows the transition lines
in the (E,λ) plane in the vicinity of a microcanonical tricritical point. The
qualitative features of this diagram are universal: they do not depend on
the polynomial form chosen for S.

– the second one occurs when s has two equal maxima, and one of
these is quartic along one direction. A normal form is given by S1 (E,λ)=
maxm1

{−m4
1 −2am2

1 ; −m2
1 +b

}
, where a and b are linear combinations of
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a

b

4a=b

16a=3b

E

λ

2

2

Fig. 6. Transition lines in the vicinity of a microcanonical tricritical point, from the normal
form S (E,λ) = maxm

{−m6 −3bm4/2−3am2
}
. The tricritical point is reached for a = b = 0.

Small insets show the typical behavior of sa,b (m)in the various areas. The curve 4a = b2cor-
responds to the appearance of three local maxima. The bold curve (16a=3b2, b<0) is a first
order transition line. The bold-dashed curve is a second order transition line, with negative
concavity jump when going on the dashed side of the curve. a and b are linear combinations
of E and λ. Some possible directions for E and λ are represented by the dashed arrows; with
these orientations, the transition is first order for λ<0 and second order for λ>0.

E and λ. In the (E,λ) plane, it connects a line of microcanonical first
order transitions with a line of second order phase transitions. It is a
microcanonical critical end point.(14) Transition lines in the vicinity of a
microcanonical critical end point are shown on Fig. 7.

– the third and fourth happen at a crossing of two second order
transition lines, when the maximum of s is quartic along two directions
having the symmetry property. A normal form is given by S (E,λ) =
maxm1,m2

{−m4
1 −2am2

1 −m4
2 −2bm2

2 − cm2
1m

2
2

}
, where a →0 and b→0 are

linear combinations of E and λ, and c is a finite constant with c > −1.
Two cases have to be considered (see Fig. 8).
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a

b

Eλ

a =b
2

Fig. 7. Transition lines in the vicinity of a microcanonical critical end point, from the nor-
mal form S (E,λ)=maxm

{−m4 −2am2 ; −m2 +b
}
. Small insets show the typical behavior of

sa,b (m)in the various areas, the lhs figure referring to the quartic part. Meaning of curves
and arrows are as in Fig. 6.

When c < 1, varying the external parameter λ, two second order transi-
tions come closer and closer; once the critical value of the parameter is
reached, they cross each other and remain unaffected. We are not aware of
any standard denomination for this singularity; as it involves four phases
(m1 =m2 = 0, m1 = 0 and m2 �= 0, m1 �= 0 and m2 = 0, and m1 �= 0 and m2 �=
0), we call it a second order quadruple point. When c>1, the doubly asym-
metric phase m1 �= 0 and m2 �= 0 is unstable (see Fig. 8). For a < 0 and
b < 0, the two phases m1 = 0 and m2 �= 0, m1 �= 0 and m2 = 0 may have the
same entropy, and a first order transition between them occurs when a=b.
It is a microcanonical bicritical point.(14) Transition lines for all these situ-
ations are shown in Fig. 8.

– the last new singularity is the simultaneous appearance of two
second order phase transitions. It happens when the coefficient of the
quartic term around the maximum of s, along a certain direction, has a
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Fig. 8. Transition lines in the vicinity of a crossing of two microcanonical second order
transitions, from the normal form S (E,λ)=maxm1,m2

{−m4
1 −2am2

1− m4
2 −2bm2

2 −2cm2
1m

2
2

}

(see text). Letters S, Aa, Ab and AA refer to the four phases involved: Symmetric S m1 =
m2 = 0, Antisymmetric Ab: m1 = 0 and m2 �= 0, Antisymmetric Aa: m1 �= 0 and m2 = 0, and
Antisymmetric AA: m1 �=0 and m2 �=0. Their entropy is respectively SS =0, SAa =a2, SAb =b2

and SAA = (
b2 +a2 −2cab

)
/
(
1− c2

)
. Panels (a), (b) and (c) represent respectively −1<c<0,

c = 0, 0 < c < 1 and all correspond to a second order quadruple point (this is not a standard
term). Panel d is for c > 1 and corresponds to a microcanonical bicritical point. For c = 0,
small insets show the typical behavior of sa,b (m1,m2) in the various areas, the rhs (resp. lhs)
figure referring to the dependence on m1(resp m2). The second order lines are represented by
bold-dashed curve, with negative concavity jump when going on the dashed side of the curve.
Possible directions for E are represented by the arrows in panels (a), (c) and (d).

double root for e. We will refer to it as a second order azeotropic point.
If we call λ the free parameter, the locus of a second order phase tran-
sition is represented by a curve in the (λ,E) plane; a second order azeo-
tropy occurs when a line of constant λ is tangent to this curve. A normal
form is given by S (E,λ)=maxm

{−m4 +2
(
E2 −λ

)
m2

}
(see Fig. 9).

• Convexity properties. No new singularity arises from the inspec-
tion of the convexity properties.
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Fig. 9. Transition lines in the vicinity of a second order azeotropy, from the normal form
S (E,λ) = maxm

{−m4 +2
(
E2 −λ

)
m2

}
. The bold-dashed curve is a second order transition

line, with negative concavity jump when going on the dashed side of the curve.

• Properties with respect to convexification. No new singularity
arises from the convexification of S(E).

4.3.2. Construction of the Codimension 1 Singularities

We now have to construct the new codimension 1 singularities by
combining a new codimension 1 situation for the maximization process
with a generic point for the other two sources of singularities, or by com-
bining a second order phase transition with another codimension 0 sit-
uation. Although the procedure is straightforward, discussing all cases is
tedious. We have chosen to give a detailed discussion for the tricritical and
bicritical points only, in both ensembles. Table I summarizes all the results.

Tricritical points: Inspection of the entropy development around m=0
for the microcanonical tricritical point shows that at the tricritical point λ=
λc, E→E−

c , the temperature is given by β(E)�−C(Ec −E)1/2, where C is
a positive constant. This proves that the low energy branch (less symmetric
phase with our convention) is necessarily convex. According to the con-
cavity of the high energy branch, there are thus two types of such points,
which we denote VV and VC. Because of the convexity of at least one of
the branch, both types are invisible in the canonical ensemble. See Fig. 10.
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Table I. This Table Summarizes the New Codimension 1 Singularities, when some

Symmetry of the System is Considered

Singularity type Microcanonical singularity Nbr Canonical (Nbr) Ineq.

Maximization Tricritical 1/2 None None
Critical end point 1/6 None None
2nd order quadruple 4/20 2nd order quadruple (4) None

Bicritical (2)
Bicritical 2/8 Bicritical(2) 2
2nd order azeotropy 1/2 2nd order azeotropy (1) None

Convexity 2nd order +inflexion 1/2 Tricritical (1) 1
Convexification 2nd order +convexification 1 Critical end point (1) None

The third column is the number of singularities of a given type (the second number when
convexity properties are taken into account, the first one when not). The fourth column is
the number of singularities visible in the canonical ensemble together with their type. The
last column gives the number of singularities associated with the appearance/disappearance
of an energy range of ensemble inequivalence. For instance, they are 4 types of microca-
nonical second order quadruple points, 20 when convexity is taken into account, 6 of which
are canonically visible, giving respectively 4 canonical second order quadruple points and 2
canonical bicritical points. This last one is associated to the onset of ensemble inequivalence.

E E

EE

β β

ββ β

E

β

E

Fig. 10. Schematic caloric curves around a microcanonical VC (upper row) and a canonical
(lower row) tricritical point, respectively before (left), at (center), and after (right) the singu-
larity. The bold lines is the microcanonical solution as well as the canonical one when they
are equivalent; the thin line is the canonical solution in the inequivalence range (not drawn
on the top row); the dashed line represents microcanonically metastable or unstable branches.
Note the ensemble inequivalence onset around a canonical tricritical point.
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We can construct a codimension 1 situation by superposing a second
order transition (codimension 0) with a canonical spinodal point in one of
the two branches (codimension 0). If the inflexion point is in the low energy
branch, the second order transition evolves from a CC situation to a VC one.
This is visible in the canonical ensemble. As it corresponds to the appear-
ance of a first order transition from a second order one, it is a canonical
tricritical point. As a first order canonical transition appears at this point,
this singularity is associated to the onset of ensemble inequivalence, see Fig.
10. If the inflexion point is in the high energy branch, the situation evolves
from VV to VC; it is not visible in the canonical ensemble.

Bicritical points: We base our discussion of the microcanonical bicriti-
cal point on Fig. 8d. Depending on the orientation of the E and λ axis in
the (a, b) plane, there are two ways to cross the singularity. Along the first
one (E1, solid line on Fig. 8d), the first order phase transition disappears
at the singularity point, and the succession of phases is Aa-Ab-S→Aa-S;
we still adopt the convention that the symmetric phase is the one of high-
est energy). Taking into account the two negative concavity jumps asso-
ciated with the second order transitions, as well as the direction of E in
the (a, b) plane, we are left with four possible concavity configurations for
this Aa-Ab-S→Aa-S singularity: VVV→VV, VVC→VC, VCC→VC, and
CCC→CC (the CVC→CC case is eliminated by the choice of the direc-
tion for E: indeed, SAa = a2, SAb = b2, and the choice of the E direction
is such that Ab is more concave than Aa). Only the last one (CCC→CC)
is visible in the canonical ensemble. As it involves a canonically invisible
range near the first order transition, it is associated with the ensemble in-
equivalence onset. In the canonical ensemble, this situation involves a first
order and a second order phase transitions before the singularity and a
second order one after it. From the explicit computation of F (β) from the
normal form, we conclude that the second order transition before the tran-
sition is visible in the canonical ensemble. This singularity is thus a canon-
ical bicritical point; see Fig. 11 for schematic entropic and caloric curves in
that case. Along the E2 direction (dashed line on Fig. 8d), the first order
phase transition disappears and two second order phase transitions take
place: Aa-Ab→Aa-S-Ab. Taking into account the two concavity jumps
associated with the second order transitions, we have four possible concav-
ity configurations for this Aa-Ab→Aa-S-Ab type: VV→VVV, VV→VCV,
VC→VCC, CC→CCC (the case CV→CCV is also possible, but equiva-
lent, by symmetry, to the VC→VCC one). Only the CC→CCC case is
canonically visible, and it is associated with ensemble inequivalence onset.
It is also a canonical bicritical point.

The same discussion is carried out for all other singularities in appen-
dix. This allows to enumerate all possible microcanonical and canonical
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Fig. 11. Schematic entropic and caloric curves around a bicritical point, of CCC→CC
type, before, at and after the singularity. Lines have the same signification as in Fig. 10. Note
the other type of inequivalence onset.

transitions and their mutual relationship. The results are summarized in
Table I. Most of the new singularities take place in the inequivalence
range, and thus are canonically invisible, but two new types of inequiva-
lence onset are found, associated with the canonical tricritical and bicriti-
cal points.

Let us comment further on the links between canonical and mi-
crocanonical ensembles. As the canonical optimization problem and the
microcanonical one are formally equivalent (once the energy constraint is
considered as a parameter in the microcanonical problem, which is what
we have done), we should find exactly the same singularities in the two
ensembles, even though we have constructed the canonical solution by
convexification of the microcanonical one and not directly from the opti-
mization problem. This is indeed what we find, proving the consistency of
our results. All microcanonical singularities have thus a canonical equiv-
alent, but the microcanonical phenomenology is much richer, as it allows
many more concavity configurations. We review in the following paragraph
the different situations already observed in the literature, and point out
the ones which have not been found yet.

4.4. Examples

One of our main goals is to study the onset of ensemble inequiv-
alence, or equivalently the failure of the concavity of S(E) varying an
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external parameter. For non-symmetric systems, the canonical critical
point and the azeotropic point have been shown to be the only two types
of inequivalence onset. Two new types are identified for systems with sym-
metry. One is the canonical tricritical point, across which a CC microca-
nonical second order transition becomes a VC one. Onset of inequivalence
through a canonical tricritical point has been observed at least twice, in a
toy model of self gravitating system(2) and in a spin system.(5) This situa-
tion has also been studied in a general setting.(27) Onset of inequivalence
around a canonical bicritical point has to our knowledge never been found.

Concerning the other codimension 1 singularities listed in this sec-
tion, we are aware of just a few references. A microcanonical tricritical
point with a concave high energy branch has been found in a spin sys-
tem;(5) a microcanonical critical end point has been observed in ref. 2. All
the other classified situations, some of which are rather exotic, have appar-
ently never been found. As for the non-symmetric case, we expect some of
these new situations to be found when more complex models are studied.
Let us note that some of these singularities have of course been found in
a purely canonical setting: see for instance ref. 26.

5. CONCLUSION

We have proposed in this article a classification of phase transitions
in non additive systems. It relies on the fact that these systems are “mean
field like”, which enables one to find the microcanonical and canonical
equilibrium states as solutions of variational problems. Taking advantage
of this structure, and making use of existing results from singularity theory
when available, or of heuristic arguments when not, we have classified all
phase transitions for these systems up to codimension 1, that is we have
enumerated all the elementary pieces building the phase diagrams of sys-
tems with one constraint (usually the energy) and one free parameter. All
these results are summarized by Figs. 2, 3, 5 and Table I.

This classification gives a unique framework to understand the unusual
thermodynamic phenomena arising in the many fields of physics con-
cerned by this non-additivity problem: astrophysics, two dimensional and
geophysical turbulence, some models of plasma physics. All phase dia-
grams obtained so far in these fields (analytically or numerically), are
reproduced by the classification. In addition, we have exhibited some phe-
nomenologies likely to appear in the non-additive context, but not yet
found in any specific model. Among them, we can mention azeotropy
and canonical bicritical points, which are new types of ensemble inequiva-
lence onset. Moreover, lots of singularities associated with precise convex-
ity and convexification properties have also not been observed. We have
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not emphasized in the paper the critical exponents of the various tran-
sitions; however, it is clear that since the mean field approach is valid,
they are totally universal for the systems considered, and may be calcu-
lated easily.

We have restricted in this article the classification to codimension 1
situations (corresponding to systems with one free parameter), and one
conserved quantity (the energy in the whole article). It is thus possible to
generalize this work, either by classifying situations of codimension greater
than 2, or, maybe more interestingly, by considering systems with two or
more conserved quantities (angular momentum, total circulation for fluids
models). Taking into account more conserved quantities is likely to give
a much richer phenomenology, as shown for instance in the work,(43) for
the self gravitating gas with short range cut off, and conserved angular
momentum, in addition to the energy. Another problem not analyzed in
this work is the possibility of singularities at the border of the accessible
energy range for the system.

APPENDIX

In this appendix we give a detailed discussion of the construction of
all codimension 1 singularities in a system with symmetry (see Section
4.3.2), corresponding to the microcanonical critical end point, to the sec-
ond order quadruple point, and to the second order azeotropic point.

• The microcanonical critical end point is schematically represented
in Fig. 7. With axis (E,λ) as drawn, there is one first order transition for
λ < 0, and a first order then a second order transitions for λ > 0. Com-
bining the three types of second order transitions with the two possible
concavities of the additional branch yields six different situations, denoted
C-CC, V-CC, C-VC, V-VC, C-VV and V-VV, where the first letter refers to
the first order transition concavity and the two last ones refer to the sec-
ond order transition. Other directions for E and λ on Fig. 7 are recovered
by symmetry.

• the second order quadruple point involves four phases, visible on
Fig. 8, denoted AA, Aa, Ab, and S (A refers to asymmetric and S to sym-
metric, see Fig. 8a, b and c). Let us analyze the convexity of the entropy
d2S(E)/dE2, where the energy E is along a fixed direction in the (a, b)

plane. Each of the four second order transitions AA-Aa, AA-Ab, Aa-S
and Ab-S involves a negative concavity jump, independently of the way the
transitions are crossed in the (a, b) plane. Taking into account the signs
of these jumps, the 6 following cases are possible, for the concavity of the
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branches AA, Aa, Ab and S, respectively: VVVV, VVVC, VVCC, VCVC,
VCCC, CCCC. A priori, we do not have any information about which
branch between Aa or Ab is more convex than the other; however, fix-
ing the direction of E in the (a, b) plane may force the concavity jump
between Aa and Ab to have a definite sign, as we will see.

When crossing the singularity, the type of transition (succession of
phase on the E line) depends on the E direction (see for instance E1, E2
and E3 on Fig. 8). Along the E1 direction, one goes from a succession
of phases AA-Ab-S to AA-Aa-S; along the E2 direction, the succession
is Ab-S-Aa →Ab-AA-Aa; along E3, the succession is AA-Ab →AA-Aa-
S-Ab (this is possible only if the parameter c in the normal form is such
that −1<c<0): three transitions appear from a single one; along E4, the
succession is Ab-S →Ab-AA-Aa-S (this is possible only if the parameter
c in the normal form is such that 0<c<1): also in this case, three transi-
tions appear from a single one. All other possible directions for E and λ

can be recast into one of the four previous situations, using the changes of
variables E →−E, λ→−λ, and the symmetric role played by the branches
Aa and Ab. For instance, the E5 direction on Fig. 8c leads to Aa-AA-Ab
→ Aa-S-Ab, which is actually the same as E2, once the changes E →−E,
λ→−λ are made.

Taking into account the previously studied concavity configurations,
5 possible AA-Ab-S →AA-Aa-S transitions are found: VVV→VVV,
VVC→VVC, VCC→VVC, VCC→VCC, CCC→CCC (the VVC→VCC case
is also possible, but equivalent, by symmetry, to VCC→VVC). Only the
CCC→CCC type transitions are visible in the canonical ensemble; it is not
associated with the onset of ensemble inequivalence. Moreover, the con-
tinuity of β (E)and of S (E,λ) insures the continuity of F (β,λ) and of
∂βF (β,λ) = −E (β). Therefore, the microcanonical AA-Ab-S → AA-Aa-
S, CCC→CCC second order quadruple point is associated to a AA-Ab-
S→AA-Aa-S canonical second order quadruple point.

Taking into account the concavity configurations, 5 possible Ab-AA-
Aa →Ab-S-Aa transitions are found: VVV→VVV, VVV→VCV, CVV→
CCV, CVC→CCC, CCC→CCC (the VVC→VCC case is also possible,
but equivalent, by symmetry, to CVV→CCV). Only the CCC→CCC and
the CVC→CCC types are canonically visible, and the latter is associated
with the onset (disappearance when crossed that way) of an energy range
where ensembles are not equivalent: the convex AA branch is replaced
by a first order transition in the canonical one. The same reasoning as
above for the continuity of F (β,λ) and of ∂βF (β,λ)=−E (β) insures that
the CC microcanonical second order transitions remain second order tran-
sitions in the canonical ensemble. We conclude that the microcanonical
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Ab-AA-Aa→Ab-S-Aa, CCC→CCC second order quadruple point is asso-
ciated to a Ab-AA-Aa→Ab-S-Aa canonical second order quadruple point,
and the microcanonical Ab-AA-Aa →Ab-S-Aa, CVC→CCC second order
quadruple point is associated to a Ab-Aa→Ab-S-Aa canonical bicritical
point.

Taking into account the concavity configurations, 5 possible AA-
Ab→AA-Aa-S-Ab singularities are found: VV→VVVV, VV→VVCV,
VC→VVCC, VC→VCCC, CC→CCCC. The direction of E in the vicinity
of the singularity (for instance E3 on Fig. 8a) implies that the Aa branch
is more convex than the Ab one; that’s why the VV→VCCV case has to be
eliminated. Only the CC→CCCC type is canonically visible; it is not associ-
ated with ensemble inequivalence onset. We conclude that the microcanon-
ical AA-Ab→AA-Aa-S-Ab, CC→CCCC second order quadruple point is
associated with a AA-Ab→AA-Aa-S-Ab canonical second order quadruple
point.

Finally, taking into account the concavity configurations, 5 possible
Ab-S →Ab-AA-Aa-S singularities are found: VV→VVV, VC→ VVVC,
VC→VVCC, CC→CVCC, CC→CCCC. The direction of E implies that
the Ab branch is more convex than the Aa one, so that we have eliminated
the CC→CVVC case. The CC→CCCC case is canonically visible, not
associated with ensemble inequivalence onset, and corresponds to a Ab-S
→Ab-AA-Aa-S canonical second order quadruple point. The CC→CVCC
case is also canonically visible, and is associated to ensemble inequiva-
lence onset. Before the singularity, the system shows canonically a sec-
ond order phase transition, and, after the singularity, a first and a second
order one. Thus, it is a Ab-S→Ab-Aa-S canonical bicritical point (this is
the canonical equivalent-upon symmetry- of the microcanonical Aa-Ab-
S→Aa-S bicritical point).

• a second order azeotropy involves the appearance of two second
order transitions. If we use the convention that the low energy state is
an asymmetric one (as on Fig. 9), then just after the crossing of the sin-
gularity, one observes, varying the energy, two second order transitions,
with the configuration asymmetric-symmetric-asymmetric. The jumps in
d2S/dE2 are thus exactly opposite. Moreover, the jump is exactly zero
at the transition point (the entropy change is there quartic). Thus, the
concavity is not changed at the transition point. This yields two types of
such points, depending on the concavity of S, denoted as VV and CC,
with the usual convention.

Only the CC case is visible in the canonical ensemble. In the canoni-
cal ensemble, the second derivative of the free energy with respect to β is
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singular, and we observe the appearance of two jumps at the singularity
point. It is thus a canonical second order azeotropy.

• a second order transition may superpose with an inflexion point in
one of the two branches. If the inflexion point is in the low energy branch,
the second order transition evolves from a CC situation to a VC one. This
is visible in the canonical ensemble. As it corresponds to the appearance
of a first order transition from a second order one’s, it is a canonical tri-
critical point. As a first order canonical transition appears at this point,
this singularity is associated to the birth of an interval of energy for which
microcanonical and canonical ensembles are inequivalent.

If the inflexion point is in the high energy branch, the situation
evolves from VV to VC; it is not visible in the canonical ensemble.

• finally, a concave-concave second order transition may coincide with
the boundary of a straight segment of the concave envelop of S(E). There
is only one type of such point. It is canonically visible. In the canon-
ical ensemble, it gives a crossing between a first order and a second
order canonical phase transitions. It is thus a canonical critical endpoint.
It appears at the boundary of an ensemble inequivalence range, but it is
not associated with ensemble inequivalence appearance.
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4. V. I. Arnold, A. Varchenko, and S. Goussein-Zade, Singularités des Applications Différen-
tiables, Vol 1., Editions, (MIR, Moscow, 1982).
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